XLIII Jornadas de Automatica

Robdtica

LIDAR-based Detection of Furrows for Agricultural Robot
Autonomous Navigation

Javier Luna-Santamaria, Jose Ramiro Martinez-de Dios, Anibal Ollero
GRVC Robotics Lab, Univ. de Sevilla, Spain. Emails: javierluna3@gmail.com, {jdedios, aollero}@us.es

Abstract

Robust and accurate autonomous navigation is a
main challenge in agricultural robotics. This paper
presents a LIDAR-based processing system for au-
tonomous robot navigation in crops with high vege-
tation density. The method detects and locates the
crop furrows and provides them to the robot con-
trol system, which guides the robot such that its
caterpillar tracks move along the furrows prevent-
ing damages in the crop. The proposed LIDAR-
based processing pipeline includes various incon-
sistencies removal and template matching steps to
deal with the high noise level of LIDAR scans. It
has been tmplemented in C++ using ROS Noetic
and validated in two different plantations with dif-
ferent crop growth status.

Keywords: Agricultural robots, LIDAR pro-
cessing, robot applications.

1 Introduction

The need for improving crop production to ful-
fill the growing food demand and, at the same
time, reducing the use of water and fertilizers and
improving product quality has motivated intense
R&D activities in autonomous robots for agricul-
ture. In the last years a number of agricultural
robots have been developed. Some of them have
been designed as general purpose robots, such as
Swagbot [1] or Agrobot [2]. The complexity of the
robot autonomous operation in unstructured en-
vironments has focused the development of robots
for specific agricultural tasks such as disease iden-
tification, mechanical and chemical weeding, pol-
lination, pruning, or harvesting, among many oth-
ers [3]. Some few robots have been designed for
a variety of crops. Some examples are: César [4],
designed for orchard or vineyard applications, or
Greenbot [5], which is devised for horticulture,
fruit, and arable farming. However, the most com-
mon approach is to specify and design a robot for
a particular crop. That is the case, for instance,
of AgBot [6] for corn, Lumai-5 [7] for wheat, eA-
GROBOT [8] for cotton and groundnut, Ted [9] for
grape, or RIPPA [10] for lettuce and cauliflower.
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Figure 1: Top) visual image of a crop. Bottom)
3D LIDAR scan vegetation.

Autonomous navigation in complex unstructured
environments is one of the main challenges of agri-
cultural robots. A good number of autonomous
navigation systems for these robots rely on the
use of GNSS, see e.g. [5], [9]. However, GNSS
does not always provide the accuracy and robust-
ness required for complex tasks such as harvest-
ing. Some few robots, such as K-Weedbot [11],
use vision for navigation. However, agricultural
environments have drastic lighting changes that
induce difficulties in the use of vision systems for
autonomous navigation. GNSS is often combined
with other external sensors to increase the accu-
racy of navigation and task execution. In robots
such as Agrirobot [12] and in [13], GNSS is com-
bined with camera and LIDAR. LIDAR is an inter-
esting sensor for these tasks since it provides rich
geometrical information, it is robust to changes in
lighting conditions, and can operate at night.

This work deals with the autonomous navigation
of agricultural robots operating in crops with high
vegetation density only using LIDAR, see Figure
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1. Although LIDAR has been widely used in agri-
cultural robot navigation, it has been generally
combined with GNSS. The number of existing
agricultural robots or perception systems using
only LIDAR is very scarce. Also, existing robots
that use LIDAR operate in crops with low or mod-
erate vegetation densities, whereas our method is
devised for crops with high vegetation densities.

This paper presents a LIDAR-based method to
detect and locate furrows for autonomous guid-
ance of ground robots in agricultural tasks. The
method detects the furrows and provides them to
the robot control system, which guides the robot
equipped with caterpillar tracks to move along
the furrows preventing damages in the crop. The
method is composed of four LIDAR processing
modules that: 1) filter the initial LIDAR scan;
2) extract candidate points likely to be caused
by furrows; 3) perform an spatio-temporal anal-
ysis grouping the candidates to select the central
furrows along which the robot caterpillar tracks
move; and 4) extract the furrows lines, which
are used for robot control. The LIDAR process-
ing scheme includes several filtering and inconsis-
tencies removal mechanisms to increase accuracy
and robustness, and deal with the high noise level
present in the incoming LIDAR point clouds. It
has been implemented in C++ and validated in a
wide range of conditions, see Figure 1, including
crop growth status and ground conditions.

The rest of the paper is structured as follows. The
general diagram of the adopted autonomous navi-
gation system is presented in Section 2. The pro-
posed LIDAR processing methods are summarized
in Section 3. Section 4 presents the experimental
validation. Section 5 closes the paper and high-
lights the main future steps.

2 General Description

Our objective is to devise a robust and low-cost
solution, with moderate accuracy sensors and low
computational requirements in order to enhance
its applicability in real applications. The robot
is an Unmanned Ground Vehicle equipped with a
GNSS receiver, which accuracy cannot enable the
required robot navigation. It is also equipped with
a moderate-cost 3D LIDAR, consisting of four 2D
scan channels with different elevation angles. The
LIDAR is mounted at the front of the robot with
a negative pitch angle of —30° approximately.

The crop environment is assumed unstructured,
without any markers and any adaptations that
would constrain its applicability in real conditions.
We assume that a map of the crop area is avail-
able. If the crop area has a polygonal shape, the
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coordinates of the polygon vertices are assumed
known. The crop contains a number of parallel
and approximately rectilinear furrows covering all
the area. The furrows start and end at the bound-
aries of the crop. The separation distance between
furrows is assumed known and approximately con-
stant. The crop is assumed free of obstacles for
navigation. Conversely to many existing robot
navigation systems, our scheme does not require
a detailed map nor an explicit estimation of the
robot pose: they would require accurate sensors
and navigation methods, increasing cost and on-
board computational requirements. In our system
the operator provides the boundaries of the crop.
The robot detects the furrows and uses their lo-
cation to guide the robot. When the robot has
reached the crop boundary, it moves to the adja-
cent furrow.

Figure 2 shows a scheme of the developed archi-
tecture. Trajectory Following analyzes the LIDAR
scans, detects the crop furrows, and provides them
to the robot control system to enable navigation
along the furrows, adapting to the potential fur-
rows curves and irregularities. Trajectory Planner
implements a state machine that triggers the ex-
ecution of Trajectory Following for navigating in
the plantation using the crop boundaries. Finally,
the Navigation Manager synchronises all modules
to enable the expected operation. This paper
presents Trajectory Following, which is the most
complex module. For brevity, the descriptions of
modules Trajectory Planner, Robot Control, and
Navigation Manager are omitted.

I
I
GNSsS | Trajectory Navigation |
RECEIVER | ' Planner Manager }
! I
: ¢ / ¢ [
. I
3D | Trajectory |
LDAR —#l Following l—bl Robot Control | |
I

I
I

Figure 2: Scheme of the adopted LIDAR-based
robot autonomous navigation system.

3 Methods

Our objective is to extract the furrows using solely
the points resulting from each channel of the robot
LIDAR scans. Each LiDAR point p = (z,y, 2,1, t)
contains information of the point in the environ-
ment that reflected the laser beam: (z,y,z2), 3D
position on the LiDAR coordinate system; r, re-
flectivity of the impact point; and ¢, timestamp.

The proposed LIDAR processing scheme, see Fig-
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ure 3, is composed of four modules. First, Pre-
filtering removes LIDAR points with no inter-
est for furrow extraction, filtering out points that
hamper furrow extraction, reducing the number of
LIDAR points to be processed, hence decreasing
the computation cost. Candidate Extraction se-
lects the points with higher likelihood to be orig-
inated by furrows. Next, Spatio-Temporal Anal-
ysis examines the spatio-temporal consistency of
the detected furrow candidates using a time win-
dow grouping them in different clusters. Finally,
Furrows Extraction extracts the furrow using the
spatio-temporal information. The output furrows
are characterised as lines, from which the robot
control references can be determined.

3D LIDAR SCAN FURROWS LINES
\
|

Pre-filtering

Points Candidates Spatio-Temporal
Extraction Analysis

- /

Figure 3: Pipeline of the proposed LIDAR-based
processing scheme.

Furrows
Extraction

3.1 Pre-filtering

LIDAR scans in crops have high noise level, see
Figure 1, due to the LIDAR reflections on differ-
ent surfaces such as plant leaves, stems, or ridges.
This module process each LIDAR channel in each
scan and provides as output a point cloud with
the points of interest for furrows extraction. It is
divided into two main stages. The first one es-
timates a linear model that contains most of the
points caused by LIDAR reflections on leaves. The
next stage uses this model to select the points of
interest from the point cloud and remove the re-
maining points.

First, for each LIDAR channel in each scan it
estimates a linear model that contains the ma-
jority of the points originated by reflections on
leaves. Leaf points are a large proportion of the
point cloud. RANSAC [14] is adopted due to
its robustness against outliers. In our problem
RANSAC treats leaf points as inliers as they are
scattered around a straight line. The remain-
ing points are treated as outliers. In the second
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stage, the estimated linear model, see Figure 4,
is used to decide which points should be selected
for the furrows candidates extraction. An effi-
cient linear classifier that uses discriminant func-
tion fp = w' is adopted. @' and " are defined
as W' = [m -1 b], gl = [x Y 1],
where m and b are the slope and intercept values
obtained from the model estimation, and (z,y),
the coordinates of the point being filtered. fp dis-
tinguishes the points into two groups: those below
fp, and those above fp, see Figure 4. The latter
points are kept: they are of interest for extracting
points candidates. The former, are removed.

For clarity, the operation each stage in the pro-
posed scheme is illustrated using simulated data.
The real LIDAR scan is too noisy and complex to
make evident the operation of the modules. Re-
sults with real LIDAR data in crops are shown in
Section 4. The operation of Pre-filtering in one
channel of the LIDAR scan is illustrated in Figure
4. The figure shows the estimated model (black
line), the points classified as of interest (in green),
and the points removed (in grey). The LIDAR
reference coordinate system is also shown.

Points of
interest

\

Figure 4: Illustration of the operation of Pre-

filtering.

3.2 Candidate Points Extraction

This module extracts points that are candidate to
be caused by furrows. It has two steps. LIDAR
points caused by reflections on furrows have the
highest range values. First, local maxima points
for each LIDAR channel are detected. In the sec-
ond step, each local maxima is submitted to a ver-
ification step in which it is checked whether the
point is a candidate to belong to a furrow or un-
wanted points result of noisy point distributions.

First, the local maxima of each channel in each LI-
DAR scan are obtained by comparing each point
against their neighbors and analyzing their dis-
tance to the estimated model. Point py will be de-
tected as local maximum if dp, = \/Zp,2 + Ypo 2>
its distance to the model on the ground X-Y plane,
is higher than d,,, the X-Y distance to the model
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of all the points p; in the neighborhood of pg:

dp, > dp, Vi€ Spy, (1)

where S}, the neighborhood of pg defined as:
S;Do = [po—SPAN,p0+SPAN], (2)

where 2SPAN is the size of the neighborhood.
Too low values of SPAN originate extra undesired
local maxima as a consequence of noise in small
sets of points. Too high values prevent detecting
actual furrows points as candidates. The value
used in the experiments is SPAN = 24 points.

Figure 5-top illustrates the operation of the first
step. The rectilinear model and points result-
ing from Pre-filtering are shown respectively as a
black line and green dots. The neighborhood used
in local maxima detection is shown in dashed rect-
angles, and the detected local maxima, in black.

The second step verifies if the detected local max-
ima points are likely to be originated by a furrow
or not. Even after filtering, the pattern of a fur-
row in a point cloud keeps being very noisy. In
this step each local maximum point is verified by
matching its neighbourhood using templates with
triangular shapes consisting of two straight lines
that intersect at the maximum point with angle
a. Figure 5-bottom illustrates the operation and
shows the template (red lines), angle o between
the straight lines, and d, the distance from the
local maximum to the model computed in Pre-

filtering.
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Figure 5: Illustration of: top) local maximum de-
tection; and bottom) local maximum point verifi-
cation through template matching.
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3.3 Spatio-Temporal Analysis

This module analyses the spatio-temporal consis-
tency of the furrow candidate points to improve
robustness in furrow extraction. The robot mo-
tion is low when compared to LIDAR rate. Hence,
the environment does not change significantly be-
tween consecutive scans. In order to improve ac-
curacy and robustness, furrows are characterized
with more spatial and temporal information.

The spatio-temporal analysis is performed by col-
lecting the candidate points extracted from all the
channels for N consecutive scans and then apply-
ing a clustering algorithm to group together those
belonging to the same furrows. N is set taking
into account the LIDAR frame rate, the output
rate desired for furrows extraction, and the robot
motion (to make sure that the environment per-
ceived by the sensor within the time window has
not changed significantly). The clustering algo-
rithm adopted has been designed for the charac-
teristics of the problem. First, furrow candidate
points are grouped according to their Y-axis coor-
dinate. Second, the separation in the Y-axis be-
tween the furrows is assumed known as described
in Section 2. This enables using intra-cluster dis-
tance for clustering. Additionally, the clustering
method can be adapted for a given number of clus-
ters. In our problem since the inter-furrow dis-
tance is known, considering the LIDAR setting,
the number of expected furrows in the scans can
be foreseen. Clustering is as follows. If two furrow
candidate points taken in scans within the tempo-
ral window have a distance in the Y-axis lower
than the intra-cluster distance, these points are
assigned as belonging to the same cluster.

Figure 6 illustrates operation of the spatio-
temporal analysis. The candidate points of all
channels of the LIDAR scans within the time win-
dow are grouped into a total of 4 furrow clusters,
shown at the bottom of the figure.

3.4 Furrows Extraction

This module analyzes the furrow clusters obtained
in Spatio- Temporal Analysis to extract the furrows
lines. First, the two central furrows, along which
the robot caterpillar tracks traverse, are extracted
by matching the furrow clusters with a template
based on the known inter-furrow distance in the
Y-axis. The template is slided along the Y-axis in
the central range of coordinates. The clusters’ po-
sitions that minimizes the total squared error are
taken as the position of the central furrows. Next,
the furrow lines corresponding to each of the ex-
tracted central furrows are computed by fitting
the candidate points. This data has a low level
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of outliers. A linear regression using least squares
is used to obtain the straight lines in the ground
X-Y plane that best fit the candidate points cor-
responding to the central furrows. The adopted
model is described by the slope m, and the inter-
cept b. Both central furrows are approximately
parallel, and have the same slope. The candi-
date points for all channels from both furrows are
mixed to obtain the slope of the model. This en-
ables increasing accuracy, which is particularly in-
teresting for the clusters that do not have can-
didate points from all the scan channels. After-
wards, the intercept b of each furrow line is deter-
mined separately using only the candidate points
from each central furrow.

Figure 6 illustrates the operation of furrows ex-
traction. It computes the coordinates on the
ground X-Y plane of the central furrows. The fur-
rows lines are provided to the robot controller.

Left Furrow Right Furrow
Line Line

/ N
AR I
'
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Figure 6: Illustration of furrows extraction. The
resulting furrow lines are shown.

4 Experiments

The proposed method has been experimentally
validated in various broccoli plantations in the
Spanish province of Sevilla in a wide variety
of conditions including crop growth status and
ground. The 3D LIDAR used was a Pep-
perl+Fuchs R2300, which provides a scanning rate
of 25 Hz, 4 channels per scan, an angular resolu-
tion of 0.1°, 100° horizontal, and 9° vertical field
of view, and maximum range of 10 m. The LI-
DAR was placed at the front of the robot at 1.6 m
from the ground, and with a pitch angle of —30°.
The robot moved approximately at a speed of 30
cm/s. The scheme has been implemented in C++
using ROS Noetic. The number of scans to define
the time window for candidate points accumula-
tion in Temporal analysis was set to N = 5. The
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inter-furrow distance was approximately 1.5 m in
all the scenarios.

Figure 7 summarizes the results when applying
each module of the processing scheme to a LI-
DAR scan in one experiment. The point cloud
from the input scan is shown in Figure 7-a. There
are three furrows in the field of view of the LI-
DAR, the two central ones and one more at the
left side of these. Figure 7-b shows the resulting
points after applying module Pre-filtering to the
points in one channel. The estimated model is
represented with a green straight line. The points
below the straight line are filtered out as not inter-
esting for furrow extraction. The point cloud from
the filtered LIDAR scan (considering all channels)
is shown in Figure 7-c. Next, the furrow candidate
points are extracted from the filtered point cloud
as described in Section 3.2. The candidates are
shown in white color in Figure 7-d. Next, Spatio-
Temporal Analysis computes the clusters from the
candidate points accumulated from all channels
during N = 5 scans. The resulting clusters repre-
sented in different colors are shown in Figure 7-e
below the point cloud. The points of the same
cluster are represented by the same colour. Fi-
nally, Furrows Fxtraction detected the lines corre-
sponding to the central furrows. The resulting ex-
tracted furrow lines are shown in Figure 7-f. They
are provided as input to the robot control system.

Figure 8 summarizes the performance of the
method in crops with different sizes of plants:
large (a), medium (b), and small (¢). For each
case, the figure shows the initial point cloud from a
LIDAR scan (left), resulting clusters after Spatio-
Temporal Analysis (center), and resulting central
furrow lines (right). In the three cases the scheme
performed as expected.

The scheme was validated in sets of experiments in
a wide variety of conditions including crop growth
status and ground conditions. In average the
scheme successfully detected and located the fur-
rows in 90% of the LIDAR scans. The success
rate was higher for crops with smaller plants than
with larger plants, due to the vegetation occlud-
ing the LIDAR. Even with large plants the suc-
cess rate was above 85%. Moreover, the robust-
ness has been enhanced to avoid providing false
references to the robot controller. A time consis-
tency filter was implemented to detect and discard
if the resulting furrow lines are found inconsistent
with the furrow lines obtained in previous scans.
Thus, two seconds is the maximum time that no
valid furrow line has been provided in all the per-
formed experiments, specifically in the crop with
the largest plants. Being that the worse perfor-
mance, the method performance is acceptable, as
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Figure 7: Results after applying each module of the processing scheme to a LIDAR scan in one experiment:
a) initial point cloud from a LIDAR scan; b) points resulting from applying Pre-filtering to a single LIDAR
channel; ¢) point cloud (with all channels) resulting after Pre-filtering; d) candidate points (in white
colour) resulting from Point Candidate Extraction; e) resulting clusters after Spatio-Temporal Analysis,
the points in each cluster are in a different colour; and f) central furrow lines resulting from Furrows
Extraction.

)

Figure 8: Performance of the proposed scheme with a) large , b) medium, and c¢) small plants. For
each case the figure shows: left) initial point cloud from a LIDAR scan; center) resulting clusters after
Spatio-Temporal Analysis; and right) resulting central furrow lines.
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due to the the low motion of the robot, it can keep
navigating with the previous reference. Besides
robust, the proposed method is computationally
efficient. It has been tested in real time in a Intel
Core 15-7200U (7th Gen) processor being the out-
put rate of furrows extracted approximately 5 Hz,
sufficient for the desired robot navigation speed.

5 Conclusions

Autonomous navigation is one of the main difficul-
ties of agricultural robots. This paper presented
a LIDAR-based processing scheme for detection
and localization of furrows in crops with high veg-
etation density. The detected furrows are input
of the robot control system such that the robot
tracks can accurately move along the furrows. The
processing pipeline 1) filters each LIDAR scan; 2)
extracts candidate points likely to be caused by
furrows; 3) selects furrows using spatio-temporal
information of the candidates; and 4) extracts the
furrows lines. The scheme was validated in crops
in a wide range of conditions.

Future works includes more extensive validation
and the development the LIDAR processing meth-
ods to guide the robot in manoeuvres of moving
between adjacent crop furrows.
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