XLIII Jornadas de Automatica

Visién por computador

TOWARDS A FRAMEWORK FOR THE
DEMOCRATISATION OF DEEP SEMANTIC
SEGMENTATION MODELS

Rubén Escobedo and Jénathan Heras
Department of Mathematics and Computer Science, University of La Rioja, Spain
e-mail: {ruescog, joheras}@unirioja.es

Abstract

Semantic segmentation models based on deep
learning techniques have been successfully applied
in several contexts. However, non-expert users
might find challenging the use of those techniques
due to several reasons, including the necessity of
trying different algorithms implemented in hetero-
geneous libraries, the configuration of hyperparam-
eters, the lack of support of many state-of-the-art
algorithms for training them on custom datasets,
or the variety of metrics employed to evaluate se-
mantic segmentation models. In this work, we
present the first steps towards the development of
a framework that facilitates the construction and
usage of deep segmentation models.

Keywords: Semantic Segmentation;
Learning; Democratisation.

Deep

1 INTRODUCTION

Semantic segmentation is a computer vision task
that aims to classify every pixel of an image in
a fixed set of classes. This task has received a
lot of attention in recent years due to its multiple
applications in contexts such as agriculture, man-
ufacturing, robotics or medicine [6]. The interest
in semantic segmentation is partially due to the
development of deep learning architectures that
provide accurate segmentation models [5]. In spite
of its success, the adoption of deep learning tech-
niques for semantic segmentation by users outside
the machine learning community is a slow process
due to several factors [3]. First of all, the constant
flow of new deep learning architectures for seman-
tic segmentation makes it difficult to keep track
of the best methods. In addition, even if there is
a trend of publishing the source code of the algo-
rithms associated with research papers, most algo-
rithms are not prepared to train models with cus-
tom datasets, and it might be challenging to use
such a code in new projects. This issue has been
faced with the development of frameworks, such
as MMSegmentation [14] or FastAl [7], that pro-
vide several deep segmentation algorithms ready
to be trained with the users’ datasets.

The implementation of several algorithms in the
same framework is an important feature since
there is not a silver bullet solution to solve all the
semantic segmentation problems [15]; and, hence,
it is necessary to search for the most suitable al-
gorithm and configuration of hyperparameters for
each particular task. However, there is not a single
framework that provides all the existing semantic
segmentation algorithms, and each library uses its
own format for encoding datasets, and has its own
training protocol, performance measures, and pre-
processing steps. Therefore, it is difficult to train
and compare different methods implemented in
different frameworks, and conclude which one is
the best for a particular problem. In this work, we
present an ongoing project to tackle those prob-
lems by developing a high-level API that facili-
tates the construction and usage of deep semantic
segmentation models.

The rest of this paper is organised as follows.
In the next section, we provide the related work
of this project, and, subsequently, in Section 3,
we present the challenges that a non-expert user
faces when using existing semantic segmentation
libraries. After that, in Section 4, we present the
design of our framework to tackle those challenges,
and in Section 5, we show an example of the us-
age of the preliminary version of our framework.
Finally, the paper ends with some conclusions and
further work. Our framework is open-source and
can be found at https://github.com/ruescog
/SegmentationManager.

2 RELATED WORK

This work can be framed in the field of Automated
Machine Learning (AutoML) [8]. In the particular
context of semantic segmentation, AutoML tech-
niques are mainly focused on automatically de-
signing deep architectures; this is known as Neu-
ral Architecture Search (NAS) [16]. Even if this
approach has outperformed manually designed ar-
chitectures, these techniques are data and compu-
tationally intensive; and, therefore, they are not
suitable to be applied for custom datasets, or by
users that do not have access to large amounts of
GPUs. On the contrary, we propose a framework

980 https://doi.org/10.17979/spudc.9788497498418.0980



XLIII Jornadas de Automatica

Table 1: Features of existing semantic segmenta-
tion libraries

Library Base library  f architectures Last update
FastAl Pytorch 2 2022
MIScnn Tensorflow 1 2022
MMSegmentation Pytorch 33 2022
PaddlePaddleSeg  PaddlePaddle 45 2022
SegmenTron Pytorch 28 2020
Semtorch Pytorch 5 2021
SM Tensorflow 4 2020
SMP Pytorch 9 2022

aligned with systems such as Auto-Sklearn [4] or
Auto-Weka [9] that are tools that automatically
search through a space of machine learning algo-
rithms and hyperparameters defined by the user.
Namely, we aim to design a framework that helps
non-expert users to automatically search through
the space of semantic segmentation algorithms
(available in several frameworks and libraries) to
maximise their performance for a given problem.

Currently, we can find several libraries that pro-
vide deep semantic segmentation algorithms. For
our work, we have focused on semantic segmen-
tation libraries that provide several algorithms,
can be trained on custom datasets, and are im-
plemented in Python (the dominant programming
language language for deep learning models), see
Table 1. As can be seen in Table 1, this field is in
constant evolution (all the tools have released new
version in the last two years) and there is not a
single underlying deep learning library — several
libraries like Tensorflow, Pytorch and PaddlePad-
dle are employed. This variety of libraries hinders
the comparison of models across tools; in addition,
there are other challenges related to the construc-
tion and usage of semantic segmentation models.

3 CURRENT CHALLENGES

In the pipeline to create a semantic segmenta-
tion model, we can distinguish four stages that
are common to any semantic segmentation library:
data and model preparation, training, evaluation,
and usage.

For the data and model preparation stage, one of
the most important aspects is the annotation for-
mat (usually mask images or COCO files) taken as
input by the frameworks — this is relevant since
there is not a standard annotation format, and
annotation tools, like LabelMe! or Computer Vi-
sion Annotation tool?> produce different kinds of
files. Another aspect in the data preparation step
is related to how the data is split into training
and testing sets. Most frameworks require a spe-

"http://1labelme.csail.mit.edu/
https://github.com/openvinotoolkit /cvat

Visién por computador

cific folder structure, and in some cases it is also
necessary to explicitly provide files with the lists
of training and testing images. Finally, in this
first stage, it remains the question of how to con-
figure the model (that is, fixing hyperparameters
such as the network architecture, the batch size,
the learning rate and so on). Such a configuration
is usually provided by means of either a configu-
ration file or by modifying the source code that
launches the training process — usually, the lat-
ter requires some programming experience. Such
a heterogeneity of annotation formats, file struc-
tures, and configuration files hinders the use of
several frameworks and libraries.

For the training stage, the analysed frameworks
of Table 1 provide similar features. Deep seg-
mentation algorithms require large datasets to be
trained from scratch (for instance, the COCO
dataset includes 80 K images [11]); however, most
custom datasets are small. A successful approach
to deal with this problem is fine-tuning [1], a trans-
fer learning technique that re-uses a model trained
in a source task, where a lot of data is available,
in a new target task, with usually scarce data.
This functionality is supported by all the analysed
frameworks, that, in addition, provide a model zoo
to apply fine-tuning from different source models.

The last two stages of the pipeline, evaluation
and usage, are closely related and pose similar
challenges. Semantic segmentation algorithms are
usually evaluated using metrics such as Dice coef-
ficient or Jaccard index [6]. However, each frame-
work has its own implementation of those met-
rics. Therefore, it might not be sound to directly
compare the results used with different systems.
Similarly, the usage of the models greatly varies
from tool to tool since each system loads mod-
els, performs predictions, and outputs the results
in a particular way. This makes difficult to com-
pare models generated with different systems. An
approach to solve these problems is based on the
definition of converters among libraries. Some of
these solutions are collected in a project called
Deep learning model converter [18]. Another sim-
ilar project is the Open Neural Network Exchange
(ONNX) [13] that aims to build models with the
ONNX representation and then use the framework
that better adapts to the users’ goals to execute
it. The main problem with the approach based on
converters is that some frameworks do not imple-
ment all types of layers of deep learning models;
so, certain models cannot be converted to all the
frameworks.

Finally, in all the stages of the construction of deep
segmentation models might appear errors, that in
some cases are difficult to decipher for both expert

https://doi.org/10.17979/spudc.9788497498418.0980 981



XLIII Jornadas de Automatica

and non-expert users.

In our work, we aim to deal with all the chal-
lenges explained throughout this section by defin-
ing a high-level system that allows the integration
of deep learning frameworks and libraries.

4 FRAMEWORK DESIGN

We have designed, and implemented, an open-
source library in Python that simplifies and au-
tomatises the process of training multiple seman-
tic segmentation models using different libraries
(currently, it supports the tools of Table 1 that
have Pytorch as underlying library), and select
the best of them. To this aim, we have design
a workflow that captures all the necessary steps
to train several semantic segmentation models and
select the best one. Currently, the workflow can be
mainly used by means of a Jupyter notebook [10],
and has been implemented using the facade design
pattern so it can be easily extended in the future.

The workflow of our library can be summarised
as follows. First of all, the user selects the image
dataset to be studied. Such a dataset must contain
two folders one with the images and one with the
masks associated to such images. When loading
the dataset, our library automatically performs
some validity checks to avoid further errors (for
instance, it checks that each image of the dataset
has an associated mask, and that the mask has
the correct format).

Subsequently, the user indicates how the dataset
will be split for evaluation. Currently, our library
provides two modes: train-val-split, and k-fold. In
the former, the dataset is split into three groups:
training (for optimising the weights of the mod-
els), validation (for choosing the best set of hy-
perparameters), and test (for finally, evaluating
the model). In the latter mode, a cross validation
procedure is employed for evaluating the different
models.

After that, the user can apply several data aug-
mentation methods [17]. Data augmentation is a
regularisation technique that generates new train-
ing samples from the original dataset by applying
colour or geometric transformations. This func-
tionality is supported by the Albumentations li-
brary [2].

Finally, the user selects the architectures to train
and their parameters. By default all the networks
will be trained by using fine-tuning, but they can
also be trained from scratch. After this step,
the models are trained and evaluated automati-
cally without any user intervention. As a result,
the library produces a report where the different

Visién por computador

trained models are evaluated and compared, and
also saves the best model for further usage.

5 A RUNNING EXAMPLE

As a running example, we have trained several seg-
mentation models by using the vineyard dataset
presented in [12]. In particular, we have trained
a Unet model with the ResNet18 backbone, and
a Unet model with the Resnet34 backbone, and a
DeepLabv3+ model with a MobileNet backbone.
The first model is trained thanks to the SemTorch
library, the second using the SMP library, and the
third model is trained thanks to the functionality
of SegmenTron.

All the code that is required to train and com-
pare different models with our library is provided
in Figure 1. As can be seen from such an im-
age, the user has to define a segmentation man-
ager that consists of three objects: a dataset man-
ager (in charge of loading the dataset), a vali-
dation manager (in charge of defining how the
dataset is split for training and evaluation) and
a transformation manager (that provides the data
augmentation techniques that will be applied to
the dataset). After that, the user can invoke
the method multiple_train of the segmentation
manager to train multiple models (the user can
either employ the by-default hyperparameters of
those models or fix them manually). After the
training process, the user can visualise a summary
of the models when evaluated on the test set, see
Figure 2; and also generate a boxplot with those
results, see Figure 3.

6 CONCLUSIONS AND
FURTHER WORK

In this paper, we have presented an on-going work
to facilitate the use and construction of seman-
tic segmentation models using deep learning tech-
niques. This is achieved by providing a high-level
API that provides access to several semantic seg-
mentation libraries.

As further work, there are several remaining tasks
to tackle. First of all, we aim to include in our
framework other libraries, and provide a mecha-
nism to easily extend it in the future. Moreover, it
would be interesting to incorporate techniques like
Bayesian optimisation methods to select the best
hyperparameter configuration for each semantic
segmentation algorithm. Finally, another impor-
tant challenge that will be faced in the future is
how to reduce the time required to train seman-
tic segmentation models. This issue can be allevi-
ated by the usage of multiple GPUs or distributed

982 https://doi.org/10.17979/spudc.9788497498418.0980



XLIII Jornadas de Automatica

dataset_manager = SegmentationManager.build_default_dataset("dataset”, img_prefix = "color_", mask_prefix

transform_manager = SegmentationManager.build_default_transformation(["default™])
validation_manager = SegmentationManager.build_default_validation(mode = "kfold")
sm = SegmentationManager(dataset_manager, transform_manager, validation_manager)

sm.multiple_train([
‘modell”, ARCHITECTURE.UNET, BACKBONE.RESMNET18, WEIGHTS.NONE, le-3, "semtorch™),

Vision por computador

- "gt")

(
(
(
]

[ 1 sm.summary()

[ 1] sm.plot_train_walid()

"model2", ARCHITECTURE.UNET, BACKBONE.RESNET34),
"model3", ARCHITECTURE.DEEPLABV3_PLUS, BACKBOME.MOBILENET VW2)
, batch_size = 4, mode = "fine_tune”, n_epochs

5, n_freeze_epochs = 1)

Figure 1: Code to train several models using our library

training in a cluster of computers, but this feature
should be provided to users in a transparent man-

ner.
model name fold valid loss dice multi Acknowledgement
. Lz ] L Lol This work was partially supported by Ministerio
1 model2  test 0.520797 0.417553 de Ciencia e Innovacién [PID2020-115225RB-100
/ AEI / 10.13039,/501100011033].
2 model3  test 0.412336 0.478929

Figure 2: Metrics obtained by the trained models

References

1]

Azizpour, H., Sullivan, J., & Carlsson,
S. (2014). “Cnn features off-the-shelf: An
astounding baseline for recognition”. In
CVPRW (pp. 512-519).

Buslaev, A., Iglovikov, V. 1., Khvedchenya,
E., Parinov, A., Druzhinin, M., & Kalinin, A.
A.(2020). “Albumentations: fast and flexible
image augmentations”. Information, 11(2),

Dacrema, M. F., Cremonesi, P., & Jan-
nach, D. (2019). “Are we really making much
progress? A worrying analysis of recent neu-
ral recommendation approaches”. In Proceed-
ings of the 13th ACM conference on recom-
mender systems (pp. 101-109).

Feurer, M., Eggensperger, K., Falkner, S.,
Lindauer, M., & Hutter, F. (2020). “Auto-
sklearn 2.0: The next generation”. arXiv

125.

3]
= 0.4 4 L]
=
E
o %
8 0.3 N

0.2 4

[4]
+
rméell rnonl:IeIZ rmcllel';l
model_name

Figure 3: Boxplot of the results obtained by the

trained models

[5]

preprint arXiv:2007.04074, 24.

Garcia-Garcia, A., Orts-Escolano, S., Oprea,
S., Villena-Martinez, V., Martinez-Gonzalez,
P., & Garcia-Rodriguez, J. (2018). “A survey
on deep learning techniques for image and
video semantic segmentation”. Applied Soft
Computing, 70, 41-65.

https://doi.otg/10.17979/spudc.9788497498418.0980 983



XLIII Jornadas de Automatica

[6] Hao, S., Zhou, Y., & Guo, Y. (2020). “A brief
survey on semantic segmentation with deep
learning”. Neurocomputing, 406, 302-321.

[7] Howard, J., & Gugger, S. (2020). “Fastai: a
layered API for deep learning”. Information,
11(2), 108.

[8] Hutter, F., Kotthoff, L., & Vanschoren, J.
(2019). “Automated machine learning: meth-
ods, systems, challenges” (p. 219). Springer
Nature.

[9] Kotthoff, L., Thornton, C., Hoos, H. H., Hut-
ter, F., & Leyton-Brown, K. (2019). “Auto-
WEKA: Automatic model selection and hy-
perparameter optimization in WEKA”. In
Automated machine learning (pp. 81-95).
Springer, Cham.

[10] Kluyver, T., Ragan-Kelley, B., PAQrez, F.,
Granger, B. E., Bussonnier, M., Frederic, J.,
... & Willing, C. (2016). “Jupyter Notebooks
— a publishing format for reproducible com-
putational workflows” (Vol. 2016, pp. 87-90).

[11] Lin, T. Y., Maire, M., Belongie, S., Hays, J.,
Perona, P., Ramanan, D., ...& Zitnick, C.
L. (2014). “Microsoft coco: Common objects
in context”. In Furopean conference on com-
puter vision (pp. 740-755). Springer, Cham.

[12] Marani, R., Milella, A., Petitti, A., & Reina,
G. (2021). “Deep neural networks for grape
bunch segmentation in natural images from a
consumer-grade camera”. Precision Agricul-
ture, 22(2), 387-413.

[13] Microsoft, Facebook open source & AWS
(2018). “ONNX: Open Neural Network Ex-
change”.

[14] MMSegmentation  Contributors  (2020).
“MMSegmentation: OpenMMLab Semantic
Segmentation Toolbox and Benchmark”.
https://github.com/open-mmlab/mmsegm
entation.

[15] Mohri, M., Rostamizadeh, A., & Talwalkar,
A. (2018). “Foundations of machine learn-
ing”. MIT press.

[16] Nekrasov, V., Chen, H., Shen, C., & Reid,
1. (2019). “Fast neural architecture search
of compact semantic segmentation models
via auxiliary cells”. In Proceedings of the
IEEE/CVF conference on computer vision
and pattern recognition (pp. 9126-9135).

[17] Simard, P. Y., Steinkraus, D., & Platt, J. C.
(2003, August). “Best practices for convolu-
tional neural networks applied to visual doc-
ument analysis”. In Iedar (Vol. 3, No. 2003).

Visién por computador

[18] Yuan, S. (2018) “Deep learning model con-
vertors”.

© 2022 by the authors.

‘ @ ® @ @ \ Submitted for possible
open access publication

under the terms and conditions of the Cre-
ative Commons Attribution CC-BY-NC-SA 4.0
license (https://creativecommons.org/licenses/by-nc-
sa/4.0/deed.es).

984 https://doi.org/10.17979/spudc.9788497498418.0980





