
DEEP LEARNING CLASSIFICATION APPLIED TO
TRAFFIC ACCIDENTS PREDICTION

Richard Coll-Josifov Albert Masip-Álvarez David Lavèrnia-Ferrer
richard.coll@upc.edu albert.masip@upc.edu david.lavernia@upc.edu

Abstract

In this paper, YOLOv4 neural networks are
trained with the goal of detecting and classifying
objects from a street as seen from a drone. These
have been trained on the VisDrone dataset, which
is firstly validated through a custom-made graphic
user interface. Then, several tests regarding per-
formance, dataset composition and contrast have
been carried out on the trained models. Results
are compared to those from other previously exis-
ting models in order to evaluate their performance
and analyse their shortcomings. The trained mod-
els are then used to detect and classify objects in a
city scenario in real-time. Finally, an algorithm is
proposed to track the objects, infer their future tra-
jectories and predict potential collisions from the
expected trajectories.

Keywords: You Only Look Once (YOLO), com-
puter vision, deep learning, accident prediction.

1 Introduction

Driving errors are the main cause of traffic acci-
dents, as stated in [15], [26], [20] and [29]. Recent
studies show that lack of visibility, especially at
intersections, is one of the factors with the high-
est incidence of traffic accidents, as indicated in
[2].
The use of Deep Learning techniques applied to
prevent traffic accidents can be found in recent
contributions such as [27]. This publication uses
these techniques to detect different traffic signs
and elements of the road during traffic. Convo-
lutional Neural Networks (CNN) are used in [28]
to detect and classify animals that invade the cir-
culation pathway. It has been necessary to carry
out new trainings of the YOLO network on a cus-
tomised dataset before addressing the main con-
tribution of the work shown in this paper: the de-
tection of potential traffic accidents from identifi-
cation and classification techniques through Deep
Learning tools.
In Section 2, the problem statement and the state
of the art are presented, as well as a performance
test of previous pretrained YOLO models on the

customised dataset. In Section 3, the dataset is
presented and analysed. In Section 4 the neural
networks are trained and tested. In Section 5, the
different pre-existing models are compared to the
trained models. Finally, the accident prediction
algorithm is explained in Section 6.
All the code related to this paper can be found on:
https://github.com/RichardCollJosifov/YOLO

2 Problem statement

This paper analyses the training of a convolutional
neural network for the systematic detection and
classification of objects on a street into the fol-
lowing 6 categories: car, truck, pedestrian, bike,
motorbike and bus. Video stream is provided by
a drone flying over the scenario. Output results
from the classification procedure are used by an
algorithm that, given the current and previous
frame location of the objects, will make predic-
tions on their paths and will consider potential
collisions between the elements.
Real time execution is a strong requirement of the
system to be built.

2.1 State of the art

The most common approaches for object detec-
tion and classification that can be found in the
literature are those based on deep learning tech-
niques using convolutional neural networks. There
are multiple approaches that achieve real-time
processing speed. Out of the two-stage detec-
tion methods, the main ones for this area are
Faster-RCNN[23] as well as its extension Mask
R-CNN[9], whereas for the one-stage detection
methods, the most used one is “You Only Look
Once”[21] and, particularly, version YOLOv4 [6].
Besides YOLO architectures, another common
one-stage method is Single Shot MultiBox Detec-
tor (SDD) [17].
A recent study by Kim, J. et al., [14] compares
R-CNN, YOLOv4 and SDD for real-time vehi-
cle recognition, which is very similar to the task
of pedestrian and car detections. In their study
they found that in terms of processing speed in
frames per second (FPS), SDD was the fastest,

XLIII Jornadas de Automática

964

Visión por computador

https://doi.org/10.17979/spudc.9788497498418.0964

https://github.com/RichardCollJosifov/YOLO


with 105.14FPS in comparison to 82.1FPS for
YOLOv4 and 36.32FPS for Faster R-CNN. But
when it comes to the mean average precision,
YOLOv4 performed the best with 98.19%, in front
of 93.40% for Faster R-CNN and 90.56% for SDD.
Thus, as a good combination of both speed and
precision, YOLOv4 structure is determined to be
the best model structure for this usage.
Another study, by Benjdira, B. et al. [5], com-
pared YOLOv3 against Faster R-CNN for car de-
tections from drone aerial-view images, and found
that YOLOv3 outperformed Faster R-CNN in all
relevant metrics, including precision and process-
ing speed. Given that YOLOv4 improves on
YOLOv3, it can be assumed that these results also
hold for YOLOv4. Other studies have found sim-
ilar results [30] [11] [1].
As a consequence, in this paper YOLOv4 models
are trained. Furthermore, the Darknet framework
[22] commands have been used for the training,
usage and test of YOLO based neural networks in
order to reduce the coding requirements.
YOLOv4 has been used in front of other more ad-
vanced YOLO architectures, such as YOLOv5 [12]
or PP-YOLO[18] due to the fact that there are
more pre-trained models ours could be compared
in front of, as well as there being several com-
parisons of YOLOv4 to other methods for tasks
very similar to ours (and no such analysis yet for
more advanced architectures). YOLOv6[19] and
YOLOv7[31] were not used as well as they were
published when this project was already at an ad-
vanced stage.
There has been previous research in the area of
deep neural networks in order to predict possi-
ble accidents. Chavan, D. et al.[7] built a model,
COLLIDE-PRED, involving a YOLOv4 neural
network for object detection and classification,
with the results of it being fed to a siamese re-
gion proposal network (SiamRPN), which is a net-
work architecture for object tracking. After this,
the trajectories are fed to a Transformer, which
is a type of deep learning network, which then
makes predictions for the future paths of each ob-
ject. Their system then compares the predicted
paths of the different objects (as seen from surveil-
lance cameras), and a collision is predicted if at
the same instant the model predicts two objects
will be in the same position. Another study, by
Yao, Y. et al.[32], looked at an unsupervised sys-
tem to detect traffic anomalies based on cameras
mounted on cars, and thus being non-stationary.
Another study by Huang, X. et al. [10] used two
neural networks, one for spatial data and one for
temporal data to predict paths and possible colli-
sions. Other models, such as the one devised by
Kataoka, H. et al. [13], train models directly with
a dataset of (near-)accident scenarios.

2.2 Background

This work is built on previous research. In [25],
several YOLOv4 models were trained on the Stan-
ford Drone Dataset (SDDs) [24], which is a drone
based dataset with all images in zenithal view.
But the models trained on this dataset encoun-
tered problems relating to performance as well as
generalisation to other scenarios.
The research in the present paper is part of
a larger research project being carried out at
the Advanced Control Systems research group at
the Universitat Politècnica de Catalunya (UPC
BarcelonaTech), focusing on the coordination of
autonomous vehicles. The approach here taken
would be useful in coordinating the autonomous
vehicles for collision avoidance.

2.3 Previous models testing

A testing of pre-existing publicly available models
on the VisDrone test set was carried out to check
if there were any that fulfilled the requirements in
the average precision (measured in mAP, mean
Average Precision). Precision Pi for a specific
class i is calculated by the quotient:

Pi =
TPi

TPi + FPi
(1)

TPi are the true positives on class i; they are val-
ued 1 when the intersection over union is greater
than 50% and 0 otherwise. FPi are the false pos-
itives on class i; they are valued 1 when the in-
tersection over union is lower than 50% or the de-
tected class is not coherent with that one of the
object and 0 otherwise. The mean average preci-
sion is then determined by the mean of the average
precision for all classes to be detected and classi-
fied:

mAP =
1

6
·
(
Pc + Pp + Pbi + Pbu + Pm + Pt

)
(2)

being the subscripts: c for cars, p for pedestrians,
bi for bicycles, bu for buses, m for motorbikes and
t for trucks.
The tested models were those obtained in the pre-
vious study by Roset [25] as well as those pub-
lished by Bochkovskiy, author of YOLOv4 [6], and
whose models are COCO [16] based. In Table 1
the results of the best performing networks from
each source is shown. The recall measures the pro-
portion of ground truth objects that the model is
able to detect, categorize and size correctly. It is
defined by the quotient Recall = TP

TP+FN , being
FN the false negatives in those situations where
there is an object in the ground truth but the net-
work has no prediction on it. The F1 metric com-
bines into a single value the Precision and Recall:

XLIII Jornadas de Automática

965

Visión por computador

https://doi.org/10.17979/spudc.9788497498418.0964



F1 = 2 · Precision · Recall

Precision + Recall
(3)

Table 1: Previous models comparisons.

Model mAP Recall F1

C
O

C
O

yolov4-csp-swish 43.88% 45% 0.444
yolov4-csp-x-swish 45.61% 48% 0.467

yolov4-p5 44.93% 54% 0.490
yolov4-p6 52.48% 61% 0.564

S
D

D
s Roset Model 5 4.19% 7% 0.052

Roset Model 6 4.63% 6% 0.052

It can be observed that the models trained on
the Stanford Drone Dataset perform poorly. The
COCO based models perform good, albeit their
overall precision levels are brought down by their
low precision levels in the bicycles and motorbikes
categories. Nonetheless, their overall low mAP
values make it necessary to train custom-made
networks for this purpose in order to increase per-
formance.

3 Dataset generation

The selected dataset to start with was the Vis-
Drone dataset [33]. This dataset consists of sev-
eral sets of drones videos. The ones useful are
the Multi-Object Tracking set, which consists of
annotated videos containing multiple objects.

The dataset was not used directly, but first it was
pre-processed through a custom Matlab graphical
user interface (GUI) created to validate datasets,
as the authors of the dataset recognize in their
webpage that it contains several annotation er-
rors. In addition, their classes differed from the
ones being used here, and so the class numbering
system had to be adapted from 10 classes to the 6
classes used in this paper. In addition, some ob-
jects had been misclassified, in which case with the
GUI these errors were corrected, as well as there
being objects badly located, meaning they did not
cover the entirety of the object they were to iden-
tify. After having used the GUI to correct these
errors in around 11500 images, an analysis on the
changes was made, with between 5.99% and 9.35%
of changes in the objects annotations being made
to the used dataset, which seem to be high enough
values as to justify the need of the validation of
the data.

The validated dataset was then split into the
train/dev/test sets, following a rule of about 60%-
20%-20%. In total, around 7500 images were used
for training, and 2000 each for dev and test. This
division was done with whole video settings go-
ing to each (instead of just part of a video in ev-

Figure 1: General view of the GUI for the dataset
generation procedure

ery set), by trying to have a diverse population of
classes and lighting and orientation setups in all
the sets.

4 Neural network training

4.1 Darknet and YOLO networks

The Darknet framework allows, once it is set up,
to train a network easily just through a single com-
mand. The only necessary things besides the an-
notations for the dataset are to have a file with the
directories of the images to be used for training
and a file for the configuration of the YOLO net-
work. For all the different models the same train-
ing set will be used, so the only difference will be
in the configuration of the networks. Two YOLO
networks will be trained, with an additional two
more so called tiny-YOLO, which are a light ver-
sion of YOLO with less neurons and layers, that
has much higher processing speed but lower pre-
cision. The parameter to be changed will be the
input size of the image (and as a consequence,
the number of neurons and weights and bias to be
trained). For the YOLO, one of 480 × 480 input
image size and one of 640 × 640 are trained, to
be able to compare the increase in performance
due to this larger size of the input of the image,
whereas for the tiny-YOLO it is one with input
of 416 × 416 and one with input 640 × 640. All
the training has been undertaken through Google
cloud services. Data augmentation has been used,
as by default Darknet includes it already (it ran-
domly rotates images, changes saturation, bright-
ness and colour and uses Mosaic data augmenta-
tion).

4.2 Validation results

The models have then been tested firstly with the
dev set, with results on Table 2. The precision of
the yolov4-640 is high with high recall as well.

In front of the test set, the models have the fol-
lowing performance, as seen in Table 3, as well as

XLIII Jornadas de Automática

966

Visión por computador

https://doi.org/10.17979/spudc.9788497498418.0964



Table 2: Trained models performance on dev set.

Model mAP Recall F1
tiny-yolov4-416 41.00% 31% 0.353
tiny-yolov4-640 53.50% 47% 0.500

yolov4-480 69.73% 66% 0.678
yolov4-640 75.97% 70% 0.728

the performance on the three main categories seen
in Table 4. The mAP drops for all the models but
the recall increases, with an F1 metric for most
models just slightly below the one on the dev set.

Table 3: Trained models performance on test set.

Model mAP Recall F1
tiny-yolov4-416 34.08% 34% 0.340
tiny-yolov4-640 51.62% 64% 0.571

yolov4-480 60.35% 75% 0.668
yolov4-640 62.28% 79% 0.696

Table 4: Trained models’ testing results on test
set categories.

Model AP
car pedestrian bike

tiny-yolov4 416 56.44% 4.30% 28.13%
tiny-yolov4 640 83.17% 37.61% 66.17%

yolov4 480 87.87% 63.10% 80.59%
yolov4 640 89.24% 71.87% 82.47%

5 Detection Results

Given the performance differences between the
models trained on the Stanford Drone Dataset and
the VisDrone dataset, an analysis of potential fac-
tors explaining it is here presented.

5.1 Image size

Given the low input size in relation to the Vis-
Drone’s data resolution, a test was made to de-
termine the effects of the original image resolu-
tion and size in the prediction. The same high-
resolution image was fed to the system in its origi-
nal resolution (1900×1000), as well as that image
being reduced to 480 × 480, 320 × 320 and also
by reducing the image by adding a dark frame
around it (so that when the image was rescaled to
the input size of the network, the image would be
smaller).

The results indicate that in the original format,
the high resolution one, the system performs the

best. As the image’s resolution is decreased, the
number of predictions the system makes also de-
crease. An interesting point is the case of the im-
age with the dark frame, where the system does
make a lot of predictions, even more than in the
original image, but it misclassifies them, by pre-
dicting bicycles instead of the ground truth of cars.

(a) original (b) 480x480

(c) 320x320 (d) dark frame

Figure 2: Results of Roset Model 6 YOLOv4 in
modified images.

5.2 Contrast

Another aspect that might be relevant to a
model’s performance is the contrast in the im-
ages, both in light intensity and in colour range
(as in a flat versus a concentrated luminance dis-
tribution). The overall contrast of samples of each
dataset differs slightly, as seen in Figure 3.

(a) SDDs

(b) VisDrone

Figure 3: Colour histograms from the datasets.

XLIII Jornadas de Automática

967

Visión por computador

https://doi.org/10.17979/spudc.9788497498418.0964



In particular, in the SDDs dataset, some videos
have very low contrast, either by values lower than
200 or higher than 50 in the colours range. To test
if this is having an effect on the performance, the
VisDrone and the SDDs datasets were modified to
have a colour range between 50 and 200. In the
case of the yolov4-480 trained model, in the Vis-
Drone dataset, the performance was reduced un-
der this conditions, but for the Roset’s models the
performance increased slightly. But when testing
for the SDDs dataset, the Roset’s models in this
conditions negatively impact the performance as
well, as can be seen in Figure 4.

(a) SDDs

(b) VisDrone

Figure 4: Roset model 5 performance with con-
trast change.

5.3 Dataset view orientation

Another regard that has an impact on the perfor-
mance is the angle of the camera the images are
taken from. Purely bird-view to angled view ima-
ges, the good performance on one does not imply
the good performance on the other. For example,
the trained network yolov4-480 has an overall pre-
cision of 60.35% in the overall test set, but when
testing only in front of the zenithal view images
of the set, the mAP drops to 14.42%, due in part
to the low availability of zenithal view images in
the training set. A question arises whether the
zenithal and angled view images taken together
makes the system precision increase or decrease,
as compared to training just with one type or the

other. To test this, different models have been
trained with different amounts of zenithal view
images as percentage of the total images, as seen
in Table 5. The original model, model 1, con-
tained 861 zenithal view images, which represen-
ted 11.66% of all the training data. For the other
models, an additional video from the test set was
added to training (as it is then tested in the dev
set just for the purpose of this query) bringing
the total of zenithal view images to 1146. But
for each of the models 2, 3 and 4, the amount of
angled image was reduced (by eliminating similar
videos and reducing the frames from some videos)
to bring the percentage of zenithal to the levels of
33%, 57% and 70%.

Table 5: Number of images of each type.

Model Angled Zenithal % zenithal
1 7379 861 11.6682%
2 3471 1146 33.0164%
3 1985 1146 57.7329%
4 1625 1146 70.5231%

Then the models were trained with the Darknet
framework and tested in front of the dev set, with
results seen in Table 6. Applying a correlation
analysis on the mAP in front of the amount of an-
gled view images reveals a correlation coefficient of
0.9706 and a p-value of 0.0294, meaning that the
null hypothesis of no correlation between the vari-
ables can be dismissed. Thus, it seems to be the
case that the more angled view images there are,
the better the performance on zenithal view is,
regardless of a small addition of zenithal images.
So a network trained in a bigger combination of
both angled and zenithal images would seem to
have greater performance than a system trained
on just one or the other. These results, though,
are not conclusive given the small amount of data
(just 4 data points).

Table 6: Trained models of Table 5 performance
on VisDrone zenithal dev set.

Model mAP Recall F1
1 14.42% 43% 0.215
2 5.10% 6% 0.055
3 2.47% 4% 0.030
4 4.26% 11% 0.061

6 Accident prediction algorithm

This paper looks into applying just one neural net-
work, YOLOv4, for object detection and classifi-
cation followed by logic based and equation solvers

XLIII Jornadas de Automática

968

Visión por computador

https://doi.org/10.17979/spudc.9788497498418.0964



algorithms for the task of accident prediction from
non-moving drone view images.

6.1 Object Tracking

For object tracking the algorithm looks at one pre-
vious frame and considers an object to be the same
one if the centre of the current one is within the
bounds of the region of an object of the same class
in a previous frame. If the method finds the cur-
rent object in the preceding frame, it then tries
to find with the same algorithm the object in the
second preceding frame (it only does this for 2
previous frames).

Algorithm 1 Object Tracking

function objectTrack(cObj, previousOb-
jectsList)

for pObj in previousObjectsList do
if cObj.class == pObj.class then

if pObj.x < cObj.x < (pObj.x +
pObj.width) & pObj.y < cObj.y < (pObj.y +
pObj.height)) then return pObj

end if
end if

end for
return null
end function

6.2 Path Prediction

Making use of the function for object tracking, the
path prediction algorithm works by looking at the
previous frames where the object is located, and
does a linear regression with the centres of the ob-
ject at the different frames to make the prediction
of the path.

Algorithm 2 Path prediction

for i = 1 : length(currentObjectsList) do
cObj ← currentObjectsList(i)
previous ← ObjectTrack(cObj,

previousObjectsList)
if previous 6= null then

paths(i).path ← linearRegression(
(cObj.x, cObj.y), (previous.x, previous.y))

paths(i).position← (cObj.x, cObj.y)
paths(i).speed ← (cObj.x − previous.x,

cObj.y − previous.y)
paths(i).class← cObj.class
paths(i).exists = true

end if
end for

6.3 Accident Prediction

With the predicted paths, a linear equation solver
is used to, one to one, check for the intersection
point between all the paths, and if it is within
the dimensions of the image, and the direction of
both objects is towards that point (as computed
through their x, y speeds), an alert is generated
as the system predicts a collision.

Algorithm 3 Collision prediction

for i = 1 : length(paths)− 1 do
for j = i + 1 : length(paths) do

if paths(i).exists & paths(j).exists
then

(x, y) = solve(paths(i), paths(j))
if ((x, y) are Numbers & 0 ≤ x ≤

imWidth & 0 ≤ y ≤ imHeight) then
if sign(path(i).speed) 6=

sign(path(i).position − (x, y)) &
sign(path(j).speed) 6= sign(path(j).position −
(x, y)) then

collisWarn(path(i), path(j))
end if

end if
end if

end for
end for

6.4 Validation

The system has been validated in front of videos
recorded from a static drone, in general it works
correctly, in regard to detecting possible colli-
sions, but it generates a lot of false predictions
of possible collisions between objects that do not
come close to collision. In Figure 5 an example
with the outputs of the yolov4-480 network
(coloured rectangles) plus the predicted paths
(lines) and a predicted collision (red lines) can be
observed.

Figure 5: Example of collision prediction.

This system, though, is too sensitive to noise from
the predictions, as small deviations can mean that

XLIII Jornadas de Automática

969

Visión por computador

https://doi.org/10.17979/spudc.9788497498418.0964



the predicted path is very different from the real
path, as well as the fact that predicted paths
are linear and cannot represent the most com-
plex paths usually done by the vehicles and pe-
destrians.

Regarding the processing time, the algorithm is
still too slow, with Figure 6 showing the histogram
of the computing times in a test set. The ave-
rage processing time, executed as Matlab code and
run on an average laptop, is of 0.5954 seconds,
but with certain frames taking considerably longer
with up to 2.5 seconds in some frames.

Figure 6: Histogram of computing time in a lap-
top.

7 Conclusions and future work

In this paper, YOLOv4 neural networks have been
trained on the VisDrone dataset, which have then
been used for an accident prediction algorithm.
The collision prediction algorithm works correctly
in anticipating possible accidents but with some
drawbacks, mainly the system is too sensible to
noise and overpredicts potential accidents.

The effects of angled and birds-eye view data mix-
ing have been tested, with the conclusion that ad-
ditional angled view images increase the perfor-
mance of the system in birds-eye view.

Future work should be carried out in the field of in-
tegration and development of more advanced path
prediction algorithms, such that it combines real-
time processing speed with adaptive and complex
path proposals. Most current techniques, though,
either focus on people path prediction, such as
[3], or on vehicle path prediction, such as [8] (al-
though current methods face problems generali-
sing to multiple settings [4]). So a system using
multiple algorithms depending on the object could
be devised.

Acknowledgement

This work has been co-financed by the Spanish
State Research Agency (AEI) and the European
Regional Development Fund (ERFD) through
the project SaCoAV (ref. MINECO PID2020-
114244RB-I00 ), by the European Regional Deve-
lopment Fund of the European Union in the frame-
work of the ERDF Operational Program of Cat-
alonia 2014-2020 (ref. 001-P-001643 Looming Fac-
tory) and by the DGR of Generalitat de Catalunya
(SAC group ref. 2017/SGR/482).

References

[1] Abdulghani, A. M. A., Menekse Dalveren, G.
G. (2022) “Moving Object Detection in Video
under Different Weather Conditions Using
YOLO and Faster R-CNN Algorithms”, Eu-
ropean Journal of Science and Technology,
No. 33, pp. 40-54.

[2] Adanu, E. K. et al., (2021) “An Analysis of
the Effects of Crash Factors and Precrash Ac-
tions on Side Impact Crashes at Unsignalized
Intersections”, Journal of Advanced Trans-
portation.

[3] Alahi, A., Goel, K., Ramanathan, V., Robic-
quet, A., Fei-Fei, L. and Savarese, S., (2016)
“Social LSTM: Human trajectory prediction
in crowded spaces”, Computer Vision and
Pattern Recognition.

[4] Bahari, M., Saadatnejad, S., Rahimi,
A., Shaverdikondori, M., Shahidzadeh, A.,
Moosavi-Dezfooli, S. and Alahi, A., (2022)
“Vehicle trajectory prediction works, but
not everywhere” IEEE/CVF Conference on
Computer Vision and Pattern Recognition.

[5] Benjdira, B. et al., (2019) “Car Detection us-
ing Unmanned Aerial Vehicles: Comparison
between Faster R-CNN and YOLOv3”, In-
ternational Conference on Unmanned Vehicle
Systems, pp. 1-6.

[6] Bochkovskiy, A., Wang, C. and Mark Liao,
H., (2020) “YOLOv4: Optimal Speed and
Accuracy of Object Detection”, arXiv.

[7] Chavan, D., Saad, D. and Chakraborty, D.,
(2021) “COLLIDE-PRED: Prediction of On-
Road Collision From Surveillance Videos”,
arXiv.

[8] Deo, N. and Trivedi, M., (2018) “Convo-
lutional Social Pooling for Vehicle Trajec-
tory Prediction”, IEEE/CVF Conference on
Computer Vision and Pattern Recognition.

XLIII Jornadas de Automática

970

Visión por computador

https://doi.org/10.17979/spudc.9788497498418.0964



[9] He, K., Gkioxari, G., Dollar, P. and Girshick,
R., (2017) “Mask R-CNN”, International
Conference on Computer Vision (ICCV), pp.
2980-2988.

[10] Huang, X. et al., (2020) “Intelligent Intersec-
tion: Two-Stream Convolutional Networks
for Real-time Near Accident Detection in
Traffic Video”, ACM Transactions on Spatial
Algorithms and Systems, June 2020, pp 1-28.

[11] Jiao, L. et al., (2019) “A Survey of Deep
Learning-Based Object Detection”, IEEE
Access, vol. 7, pp. 128837-128868.

[12] Jocher, G., (2020) “YOLOv5”, GitHub.

[13] Kataoka, H., Suzuki, T., Aoki, Y. and Satoh,
Y., (2018) “Anticipating Traffic Accidents
with Adaptive Loss and Large-scale Incident
DB”, IEEE Conference on Computer Vision
and Pattern Recognition.

[14] Kim, J., Sung, J. and Park, S., (2022) “Com-
parison of Faster-RCNN, YOLO, and SSD for
Real-Time Vehicle Type Recognition”, IEEE
International Conference on Consumer Elec-
tronics - Asia, pp. 1-4.

[15] Lenard, J., and Hill, J., (2004) “Interaction
of Road Environment, Vehicle and Human
Factors in the Causation of Pedestrian Ac-
cidents”, International Expert Symposium on
Accident Research (ESAR).

[16] Lin, TY. et al. (2014) “Microsoft COCO:
Common Objects in Context”, Computer Vi-
sion - ECCV 2016, pp 740-755.

[17] Liu, W. et al., (2016) “SSD: Single Shot
MultiBox Detector”, Computer Vision -
ECCV 2016, pp 21-37.

[18] Long, X. et al., (2020) “PP-YOLO: An Effec-
tive and Efficient Implementation of Object
Detector”, arXiv.

[19] Meituan, (2022) “YOLOv6”, GitHub.

[20] Papantoniou, P. et al, (2019) “Which factors
lead to driving errors? A structural equation
model analysis through a driving simulator
experiment”, IATSS Research 43.

[21] Redmon, J. et al., (2016) “You Only Look
Once: Unified, Real-Time Object Detec-
tion”,IEEE Conference on Computer Vision
and Pattern Recognition, pp. 779-788.

[22] Redmon, J. and Farhadi,A., (2018)
“YOLOv3: An Incremental Improvement”,
arXiv.

[23] Ren, S. et al., (2015) “Faster R-CNN: To-
wards Real-Time Object Detection with Re-
gion Proposal Networks”, Advances in Neural
Information Processing Systems, Vol. 28.

[24] Robicquet, A. et al., (2016) “Learning Social
Etiquette: Human Trajectory Prediction In
Crowded Scenes”, European Conference on
Computer Vision .

[25] Roset, J., (2021) “Estudi sobre la cat-
egoritzacio d’elements terrestres a partir
d’imatges aeries de pla zenital”, Universi-
tat Politecnica de Catalunya, url: http:
//hdl.handle.net/2117/360728.

[26] Rumar, K., (2011) “The basic driver error:
late detection”, Ergonomics, 33:10-11, 1281-
1290.

[27] Sanjeewani, P. and Verma, B., (2021) “Single
class detection-based deep learning approach
for identification of road safety attributes”,
Neural Computing and Applications.

[28] Santhanam, S. et al., (2021) “Animal Detec-
tion for Road safety using Deep Learning”,
International Conference on Computational
Intelligence and Computing Applications.

[29] Santoso, G. P. and Maulina, D., (2019) “Hu-
man Error in Traffic Accidents: Differences
between Car Driver and Motorcyclist Experi-
ences”, Psychological Research on Urban So-
ciety.

[30] Shakir Sumit, S. et al., (2020) “In object de-
tection deep learning methods, YOLO shows
supremum to Mask R-CNN”, Journal of
Physics: Conference Series.

[31] Wang, C., Bochkovskiy, A. and Mark Liao,
H., (2022) “YOLOv7: Trainable bag-of-
freebies sets new state-of-the-art for real-time
object detectors”, arXiv.

[32] Yao, Y. et al., (2019) “Unsupervised
Traffic Accident Detection in First-Person
Videos”, International Conference on Intel-
ligent Robots and Systems (IROS).

[33] Zhu P., Wen L., Du D., et al., (2021) “Detec-
tion and Tracking Meet Drones Challenge”,
IEEE Transactions on Pattern Analysis and
Machine Intelligence, pp 1-1.

c© 2022 by the authors.
Submitted for possible
open access publication

under the terms and conditions of the Cre-
ative Commons Attribution CC-BY-NC-SA 4.0
license (https://creativecommons.org/licenses/by-nc-
sa/4.0/deed.es).

XLIII Jornadas de Automática

971

Visión por computador

https://doi.org/10.17979/spudc.9788497498418.0964




