
Computer Physics Communications 279 (2022) 108453
Contents lists available at ScienceDirect

Computer Physics Communications

www.elsevier.com/locate/cpc

UCNS3D: An open-source high-order finite-volume unstructured CFD

solver ✩,✩✩

Antonis F. Antoniadis a, Dimitris Drikakis b, Pericles S. Farmakis c,d,e, Lin Fu f,g,
Ioannis Kokkinakis b, Xesús Nogueira h, Paulo A.S.F. Silva a, Martin Skote a,
Vladimir Titarev i, Panagiotis Tsoutsanis a,∗
a Centre for Computational Engineering Sciences, Cranfield University, Cranfield MK43 0AL, United Kingdom
b University of Nicosia, Nicosia CY-2417, Cyprus
c Laboratory for Laser Energetics, University of Rochester, NY, 14623, USA
d Flash Center for Computational Science, Department of Physics and Astronomy, University of Rochester, NY, 14627, USA
e Department of Mechanical Engineering, University of Rochester, NY, 14623, USA
f Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
g Department of Mathematics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
h Universidade da Coruña, Group of Numerical Methods in Engineering-GMNI, Center for Technological Innovation in Construction and Civil Engineering- CITEEC,
Civil Engineering School, Campus de Elviña, A Coruña 15071, Spain
i Federal Research Center “Computer Science and Control” of the Russian Academy of Sciences, Moscow 119333, Russia,

a r t i c l e i n f o a b s t r a c t

Article history:
Received 23 February 2022
Received in revised form 8 June 2022
Accepted 13 June 2022
Available online 17 June 2022

Dataset link: https://
doi .org /10 .17862 /cranfield .rd .16447212 .v1

Dataset link: https://
doi .org /10 .17862 /cranfield .rd .11836164 .v1

Dataset link: https://
doi .org /10 .17862 /cranfield .rd .8983772 .v1

Dataset link: https://
doi .org /10 .17862 /cranfield .rd .19146182 .v1

Keywords:
CFD
High-order
Finite-volume
Parallel
HPC
Open-source

UCNS3D is an open-source computational solver for compressible flows on unstructured meshes. State-
of-the-art high-order methods and their associated benefits can now be implemented for industrial-scale
CFD problems due to the flexibility and highly-automated generation offered by unstructured meshes.
We present the governing equations of the physical models employed in UCNS3D, and the numerical
framework developed for their solution. The code has been designed so that extended to other systems
of equations and numerical models is straightforward. The employed methods are validated towards a
series of stringent well-established test problems against experimental or analytical solutions, where the
full capabilities of UCNS3D in terms of applications spectrum, robustness, efficiency, and accuracy are
demonstrated.

Program summary
Program title: UCNS3D (Unstructured Compressible Flow Solver)
CPC Library link to program files: https://doi .org /10 .17632 /222zh873kh .1
Developer’s repository link: https://github .com /ucns3d -team /UCNS3D
Licensing provisions: GNU General Public License 3
Programming language: Fortran2008
Nature of problem: UCNS3D is intended for the simulation of compressible flows in 2D and 3D
unstructured meshes, by employing high-resolution, high-order methods capable of providing physically
meaningful results in a computational efficient manner. The solver is designed for a broad range of
problems encountered in engineering applications such as transitional, fully turbulent, and
multicomponent flows with several fidelity level modelling options available.
Solution method: The present software includes multiple physical models, numerical methods, and
modelling techniques such as iLES, RANS, DES for unstructured meshes. The software has been

✩ The review of this paper was arranged by Prof. N.S. Scott.
✩✩ This paper and its associated computer program are available via the Computer Physics Communications homepage on ScienceDirect (http://www.sciencedirect .com /
science /journal /00104655).

* Corresponding author.
E-mail addresses: a.f.antoniadis@cranfield.ac.uk (A.F. Antoniadis), drikakis.d@unic.ac.cy (D. Drikakis), pfar@lle.rochester.edu (P.S. Farmakis), linfu@ust.hk (L. Fu),

yanisint@gmail.com (I. Kokkinakis), xesus.nogueira@udc.es (X. Nogueira), paulo.a.silva@cranfield.ac.uk (P.A.S.F. Silva), m.skote@cranfield.ac.uk (M. Skote),
vladimir.titarev@frccsc.ru (V. Titarev), panagiotis.tsoutsanis@cranfield.ac.uk (P. Tsoutsanis).
https://doi.org/10.1016/j.cpc.2022.108453
0010-4655/© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.cpc.2022.108453
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/cpc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cpc.2022.108453&domain=pdf
https://doi.org/10.17862/cranfield.rd.16447212.v1
https://doi.org/10.17862/cranfield.rd.16447212.v1
https://doi.org/10.17862/cranfield.rd.11836164.v1
https://doi.org/10.17862/cranfield.rd.11836164.v1
https://doi.org/10.17862/cranfield.rd.8983772.v1
https://doi.org/10.17862/cranfield.rd.8983772.v1
https://doi.org/10.17862/cranfield.rd.19146182.v1
https://doi.org/10.17862/cranfield.rd.19146182.v1
https://doi.org/10.17632/222zh873kh.1
https://github.com/ucns3d-team/UCNS3D
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
mailto:a.f.antoniadis@cranfield.ac.uk
mailto:drikakis.d@unic.ac.cy
mailto:pfar@lle.rochester.edu
mailto:linfu@ust.hk
mailto:yanisint@gmail.com
mailto:xesus.nogueira@udc.es
mailto:paulo.a.silva@cranfield.ac.uk
mailto:m.skote@cranfield.ac.uk
mailto:vladimir.titarev@frccsc.ru
mailto:panagiotis.tsoutsanis@cranfield.ac.uk
https://doi.org/10.1016/j.cpc.2022.108453
http://creativecommons.org/licenses/by/4.0/

A.F. Antoniadis, D. Drikakis, P.S. Farmakis et al. Computer Physics Communications 279 (2022) 108453

developed such that the inclusion of additional physical models and numerical methods can be easily
accommodated.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Compressible flows are found in an overwhelming range of ap-
plications across several disciplines. These include turbulent flows
around aircraft, automotive vehicles, space launch vehicles, wind-
turbines; multiphysics flows in high-energy-density physics like
supernova explosions and inertial confinement fusion, liquid jet
atomization in scramjet engines, shockwave lithotripsy. Improving
our understanding of these flows is key to several of the most im-
portant challenges facing today’s society, such as the drive to net-
zero, understanding the origins of the cosmos, and curing diseases.
The active research and development landscape in CFD, has led
to breakthroughs in method developments, high effectiveness in
simulation workflows and computational performance, lower un-
certainty in simulated predictions and with a richer understanding
of increasingly complex multi-disciplinary physics.

The numerical simulation of compressible flows, requires an ar-
senal of numerical methods, physics models, and efficient compu-
tational paradigms due to the simultaneous presence of a plethora
of physical phenomena with competing requirements, e.g., shock
waves, turbulence, cavitation, and hydrodynamic instabilities. Phe-
nomena with strong gradients such as shock waves require non-
oscillatory numerical methods to sharply capture, while delicate
smooth structures such as vortices require highly accurate schemes
to resolve. Another challenge is that the resolution required to
study and understand such phenomena for cases of practical in-
terest, where the Reynolds number is high, often necessitates the
use of large scale high-performance computing facilities (HPC).
Therefore, it is of paramount importance for the CFD software
implementation to possess a favourable parallel computational ef-
ficiency. Moreover, most flows of practical interest are usually
encountered in settings where the geometry of interest could
be highly complicated, and several geometrical design iterations
might be required, leading to unstructured meshes having estab-
lished themselves as the modern passkey for this challenging re-
quirement.

One of the strategies that has been widely adopted for ad-
dressing all of the aforementioned challenges across the finite-
volume (FV) [1–17], finite-element (FE) [18–26], spectral Finite
Volume (SFV) [27–31], and combinations of them [32–37] is to
develop and apply high-resolution and high-order numerical meth-
ods. High-resolution, high-order methods reduce unphysical oscil-
lations across discontinuities, providing enhanced accuracy in flow
predictions in smooth regions, while being more computational ef-
ficient than low-order methods.

UCNS3D is an open-source high-order compressible CFD solver
based on unstructured meshes. The robustness, flexibility, com-
putational efficiency, and accuracy are the key attributes by
which the entire computational framework of UCNS3D includ-
ing methods, models, and algorithms, is based on. The arse-
nal of high-resolution numerical schemes comprises of: Cen-
tral schemes, Monotone Upstream centred scheme for Conserva-
tion Laws (MUSCL) schemes, Weighted Essentially non-oscillatory
(WENO) schemes, Central WENO (CWENO) schemes, CWENOZ
schemes, Multidimensional Optimal Order Detection (MOOD)
schemes ranging from 1st to 7th order of spatial accuracy, and
a wide range of temporal discretisation methods for steady and
transient flow problems. The multicomponent flows are solved
using the diffuse-interface paradigm, and turbulent flow simula-
tion modes include RANS (Reynolds-Averaged Navier-Stokes), DES
2

(Detached Eddy Simulation), DDES (Delayed Detached Eddy Sim-
ulation), iLES (implicit Large Eddy Simulation), and DNS (Direct
Numerical Simulation). To ensure that the benefits of high-order
methods are realised for practical applications, the parallel imple-
mentation strategically employs both MPI and OpenMP interfaces
suited to harness the computing power available in a computa-
tionally efficient manner, as will be further discussed in this paper.
UCNS3D offers the unique flexibility of combining high-order FV
methods with several levels of fidelity for simulating compress-
ible flows. This is clearly demonstrated in the following example
of simulating the turbulent flow past an aircraft. Depending on the
computational budget available, carrying out transient iLES might
not be always feasible. Therefore, the user can instead resort to
the RANS equations while still taking advantage of deploying high-
order methods to improve the accuracy of the simulation results.

UCNS3D is not the only compressible CFD code that can sup-
port unstructured meshes, since other established solvers such
as OpenFoam [38], SU2 [39], PyFR [21], solve compressible flow
problems on unstructured meshes as well. However, UCNS3D is a
CFD solver within which the user can deploy very high-order FV
schemes for several governing equations including turbulent flows,
flows with rotating geometries, as well as multicomponent flows.
While, similarly to other established solvers, it can also serve as a
platform for developers and researchers to further develop and ex-
pand the existing physical models and algorithms embedded into
the solver’s structure.

The main value proposition of UCNS3D is to aid researchers,
academics and CAT (Computer Aided Technology) analysts, all who
require high-fidelity predictions from a CFD simulation, by (i)
omitting the need to generate additional meshes, and (ii) by pro-
viding an intuitive coding framework to extend the physics do-
mains further without the inconvenience of having to implement
core numerics, algorithms and data bookkeeping components of
the code.

There are two types of users UCNS3D is well suited for. Firstly,
those who perform flow analysis to enhance their physics un-
derstanding and apply these insights to improve the design of
discrete manufactured products and systems, e.g., civil aviation,
automotive and motorsports, renewable energy. And then those
in research groups who realise research and development us-
ing UCNS3D through collaborations by extending its physics do-
mains and improving the core computational framework capabil-
ities [1,40–42]. UCNS3D is a computational platform that enables
researchers to collaborate, co-develop, and share ideas to push fur-
ther the boundaries of science.

The remainder of this paper is structured as follows. Section 2
describes the governing equations used in UCNS3D. Section 3 is
devoted to presenting the complete numerical framework devel-
oped in UCNS3D. Section 4 outlines the features, structure and de-
scription of input/output files, and package installation and imple-
mentation and how they are linked with the previously presented
governing equations and numerical framework. Section 5 follows
with several representative test problems in 2D and 3D where the
high-order of accuracy, and robust non-oscillatory properties of
the framework are highlighted. The cases considered include the
2D vortex evolution, the 2D interaction of a shock wave with en-
tropy wave, the 3D viscous iLES of the Taylor-Green vortex, RANS
of full aircraft at cruise conditions, the iLES of the SD7003 airfoil,
the RANS simulation of the Caradone & Tung rotor, and finally, the
interaction between a helium bubble and a shockwave. A represen-

http://creativecommons.org/licenses/by/4.0/

A.F. Antoniadis, D. Drikakis, P.S. Farmakis et al. Computer Physics Communications 279 (2022) 108453
tative example of the parallel performance of UCNS3D is detailed
in Section 6, while the conclusions are provided in Section 7.

2. Governing equations

In this section, some of the most important systems imple-
mented in UCNS3D are described.

2.1. Linear advection equation

The linear advection equation considered is as follows:

∂U

∂t
+ ∇ · (vU) = 0, (1)

where U is the conserved scalar, and v is the wave speed vector.
This equation is the starting point for the development, validation
and verification for any method developed in the software.

2.2. Navier-Stokes equations

The compressible Navier-Stokes equations are considered, writ-
ten in conservative form as:

∂U(x, t)

∂t
+ ∇ · (�Fc(U) − �Fv(U,∇U)) = S(U,∇U), (2)

where U is the vector of the conserved variables, S is the source
term vector and unless otherwise specified it is going to be as-
sumed to be zero, and �Fc and �Fv are the inviscid and viscous flux
vectors, respectively, as

U =

⎡
⎢⎢⎢⎣

ρ
ρu
ρv
ρw

E

⎤
⎥⎥⎥⎦ , �Fc =

⎡
⎢⎢⎢⎣

ρun

ρuun + nx p
ρvun + ny p
ρwun + nz p

un(E + p)

⎤
⎥⎥⎥⎦ ,

�Fv =

⎡
⎢⎢⎢⎣

0
nxτxx + nyτxy + nzτxz

nxτyx + nyτyy + nzτyz

nxτzx + nyτzy + nzτzz

nx�x + ny�y + nz�z

⎤
⎥⎥⎥⎦ ,

(3)

where ρ is the density; u, v, w are the velocity components in x, y
and z Cartesian coordinates, respectively, and un is the velocity
normal to the bounded surface area, defined by un = nxu + ny v +
nz w . Ideal gas is assumed where the total energy per unit mass is
calculated by E = p/ (γ − 1) + (1/2)ρ(u2 + v2 + w2), where p is
the pressure, γ = 1.4 is the ratio of specific heats for air at nor-
mal atmospheric conditions; The laminar viscosity is related to the
temperature through the Sutherland’s law as

μl

μ0
=

(
T

T0

) 3
2 T0 + S

T + S
, (4)

S is the Sutherland temperature and the subscript 0 denotes a ref-
erence state for the corresponding variables. The work of viscous
stresses and heat conduction, �, is given by:

�x = uτxx + vτxy + wτxz + μl

Pr

γ

(γ − 1)

∂T

∂x
,

�y = uτyx + vτyy + wτyz + μl

Pr

γ

(γ − 1)

∂T

∂ y
,

�z = uτzz + vτzy + wτzz + μl

Pr

γ

(γ − 1)

∂T

∂z
.

(5)

The viscous stress tensor τi j is defined by is
3

τi j = (μl)

(
∂ui

∂x j
+ ∂u j

∂xi
− 2

3

∂uk

∂xk
δi j

)
, (6)

where δi j is the Kronecker delta and the subscripts i, j, k refer to
the Cartesian coordinate components x = (x, y, z). Unless other-
wise stated, the reference values are taken at atmospheric con-
ditions (sea level): dynamic viscosity μ0 = 1.7894 × 10−5 kg/(ms);
reference temperatures T0 = 288.16 K; S = 110.4 K; and Prandtl
number Pr = 0.72. The inviscid Euler equations are simply ob-
tained by setting the viscous fluxes �Fv = 0.

2.3. Reynolds-Averaged Navier-Stokes equations

For the RANS equations, the Spalart-Allmaras (SA) turbulence
model [43] is coupled to Eq. (2), and the equation for this model
is given by:

∂ν̃

∂t
+ ∇ · (vν̃

) =Cb1 S̃ν̃ + 1

σ

(
∇ · ((νl + ν̃)∇ν̃) + Cb2∇ν̃2

)

− C w1 f w

(
ν̃

d

)2

,

(7)

where v being the Cartesian velocity vector, νl being the kinematic
laminar viscosity and ν̃ being the SA turbulent viscosity working
variable. The turbulence parameter ν̃ is related to eddy viscosity
μt by:

μt = ρν̃ f v1, where f v1 = (ρν̃/μl)
3

(ρν̃/μl)
3 + C3

v1

, (8)

and

S̃ =
 + f v2
ν̃

κ2d2
, f v2 = 1 − (ρν̃/μl)

1 + (ρν̃/μl) f v1
, (9)

 being the vorticity magnitude, and d being the wall distance.
For the complete definitions of all the parameters, the readers are
referred to the original work of Spalart-Allmaras [43]. Finally, with
the inclusion of SA turbulence model, Eq. (5) is revised, and the
term μl

Pr is modified to include the turbulence model contribu-

tion
(

μl
Pr + μt

Prt

)
, where μt and Prt being the turbulent dynamic

viscosity and Prandtl number respectively. Similarly, Eq. (6) is re-
vised, and the term (μl) is replaced by (μl + μt). The SA turbu-
lence model is also deployed for DES [44] and DDES [45] within
UCNS3D, where the wall distance d is replaced by the equivalent
expressions for DES and DDES accordingly [45].

2.4. Multiple reference framework

To avoid any relative motions between parts of the spatial do-
main, the frame of reference is decomposed into two parts: ro-
tational and stationary. This procedure is known as Multiple Ref-
erence Frame (MRF) and works by switching the observer view of
the problem. By defining an axisymmetric subdomain with a rotat-
ing reference frame attached to the blade at a particular position,
an unsteady problem can be reformulated as steady. Then, the gov-
erning equations in each subdomain are computed differently. A
useful mathematical approach to deal with more than one frame
of reference is using the absolute velocity formulation, as it does
not require special reference transformation at the interface be-
tween the subdomains. In this sense, the governing equations for
each subdomain are computed with respect to its reference frame,
but the velocities are stored in the absolute frame. The inviscid
flux, �Fc , and the source, S, on Eq. (2) are modified as

A.F. Antoniadis, D. Drikakis, P.S. Farmakis et al. Computer Physics Communications 279 (2022) 108453
�Fc =

⎡
⎢⎢⎢⎣

ρur

ρuru + nx p
ρur v + ny p
ρur w + nz p

Eur + pu

⎤
⎥⎥⎥⎦ ,S =

⎡
⎢⎢⎢⎣

0
ρ (ω2 w − ω3 v)

ρ (−ω1 w + ω3u)

ρ (ω1 v − ω2u)

0

⎤
⎥⎥⎥⎦ , (10)

where ur is the relative velocity (�ur = �u− �ω×�r), the steady angular
velocity is �ω = (ω1, ω2, ω3) and �r is the radius vector pointing
from the specified rotation centre. Additionally, the wall boundary
condition is also modified to �u = �ω × �r.

2.5. 5-equation multicomponent model

The quasi-conservative five-equation model of Allaire et al. [46]
is also considered for inviscid compressible multicomponent flows
that has been widely-used in conjunction with high-resolution
methods [47]. For two fluids, this involves two continuity equa-
tions, a momentum equation per dimension, an energy equation,
and the non-conservative advection equation of the volume frac-
tion of one of the two fluids as given below

∂U(x, t)

∂t
+ ∇ · �Fc(U) = S(U,∇U), (11)

where U is the vector of the conserved variables, �Fc is the inviscid
flux vector and S is the source term vector defined as

U =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

a1ρ1
a2ρ2
ρu
ρv
ρw

E
a1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, �Fc =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

a1ρ1un

a2ρ2un

ρuun + nx p
ρvun + ny p
ρwun + nz p

un(E + p)

a1un

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,S =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
0

a1∇ · u

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (12)

where un is the velocity normal to the bounded surface area, de-
fined by un = nxu + ny v + nz w , ρ is the density, p is the pressure,
E is the total energy and a is the volume fraction. The stiffened gas
equation of state (EOS) is employed for closing the five-equation
model. It has been primarily selected due to its application for flow
problems involving gases, liquids and solids. The stiffened gas EOS
characterises each fluid pressure as:

pi = (γi − 1)ρiεi − γiπ∞,i, (13)

where π∞,i ≥ 0 is a reference pressure, and will be set to π∞ = 0
for gases. The averaged density ρ and ρε are given by the follow-
ing equations as

ρ =
∑

i

aiρi, (14)

ρε =
∑

i

aiρiεi, (15)

where ε is the internal energy, with ρε = E − 1
2 ρ(u2 + v2 + w2).

The EOS of the mixture reads

ξ = 1

γ − 1
=

∑
i

ai

γi − 1
, (16)

π∞γ

γ − 1
=

∑
i

ai
π∞,iγi

γi − 1
, (17)

p = (γ − 1)ρε − γπ∞. (18)
4

Fig. 1. Drawing illustrating the interface between the considered cell i and its neigh-
bour j highlighting the normal vector and the quadrature points at the interface.

3. Numerical framework

Consider the unsteady non-linear hyperbolic system of conser-
vation laws on a 3D domain
, written in its conservative form:

∂U(x, t)

∂t
+ ∇ · (�Fc(U) − �Fv(U,∇U)) = S(U,∇U), (19)

where U is the vector of the conserved variables, �Fc and �Fv are the
inviscid and viscous flux vectors respectively, and S is the source
term vector. The physical domain
 in consists of any combination
of conforming tetrahedral, hexahedral, prism or pyramids in 3D,
and quadrilateral or triangular in 2D. All the elements are indexed
by a unique mono-index i. Integrating Eq. (19) over the mesh el-
ement i using a high-order explicit finite-volume formulation the
following equation is obtained:

dUi

dt
= − 1

|V i|
N f∑
l=1

Nqp∑
α=1

�Fcl

(
Un

l,L(xl,α, t),Un
l,R(xl,α, t)

)
ωα |Sl|

+ 1

|V i|
N f∑
l=1

Nqp∑
α=1

�Fvl (Un
l,L(xl,α, t),Un

l,R(xl,α, t),

∇Un
l,L(xl,α, t),∇Un

l,R(xl,α, t))ωα |Sl|
+ Si,

(20)

where Ui are the volume averaged conserved variables

Ui = 1

|V i|
∫
V i

U(x, y, z)dV , (21)

and �Fcl and �Fvl are the numerical flux function in the direction
normal to the cell interface between two cells as seen in Fig. 1,
N f is the number of faces per element, Nqp is the number of
quadrature points used for approximating the surface integrals,
|Sl| is the surface area of the corresponding face, and Un

l,L(xl,α, t)
and Un

l,R(xl,α, t) are the high-order approximations of the solu-
tions for the considered cell and its neighbour respectively and
∇Un

l,L(xl,α, t) and ∇Un
l,R(xl,α, t) are the high-order approximations

of the gradients for the considered cell and its neighbour respec-
tively; while α corresponds to different Gaussian integration points
xα and weights ωα over each face. The volume, surface and line in-
tegrals are numerically approximated by suitable quadrature rules,
see [48] for details on numerical approximations of multiple inte-
grals.

A.F. Antoniadis, D. Drikakis, P.S. Farmakis et al. Computer Physics Communications 279 (2022) 108453
3.1. Spatial discretisation

The reconstruction process adopted in UCNS3D follows the ap-
proaches of Tsoutsanis et al. [49,50], Titarev et al. [51] that have
been previously applied to smooth and discontinuous flow prob-
lems [1–4,40,52–61] and only the key components are going to be
described herein and the reader is referred to [49–51]. For a cell
i a high-order polynomial pi(x, y, z) of order r can be built that
provides r + 1 order of accuracy, by requiring it to have the same
average as a general quantity Ui . This can be formulated as:

Ui = 1

|V i|
∫
V i

pi(x, y, z)dV . (22)

In order to reduce scaling effects, usually encountered when deal-
ing with unstructured meshes of various elements shapes and
sizes, a transformation from physical space (x, y, z) to a refer-
ence space (ξ, η, ζ) is performed as introduced by Dumbser et al.
[6,49]. Each non-triangular or tetrahedral element is decomposed
into triangular or tetrahedral elements, and one of the decom-
posed elements is used as a reference element for transforming
to the new system of coordinates, as suggested by Tsoutsanis et al.
[50]. The decomposition strategy is discussed in [50]. One impor-
tant property of the transformation is that the spatial average of
the conserved variable Ui does not change during transformation,

Ui = 1

|V i|
∫
V i

U(x, y, z) dV ≡ 1

|V ′
i |
∫
V ′

i

U(ξ,η, ζ) dξdηdζ, (23)

where V ′
i is the volume of the considered cell i in the reference

co-ordinate system. The reconstruction is performed by building
a central stencil S1 by recursively adding neighbouring elements,
consisting of M + 1 cells including the considered cell i. Several
stencil selection algorithms have been developed in, UCNS3D but
the most frequently used one is the stencil-based compact algo-
rithm (SBC) introduced in, [62] where the reader is referred to for
more details. For improved robustness, we employ M = 2K cells in
the stencil as reported in several previous studies [6,17,49,62–66],
where K is the total number of polynomial coefficients given by:

K (r,d) = 1

d!
d∏

l=1

(r + l) , (24)

where d ∈ [2, 3] is the number of space dimensions. The central
stencil S1 is given by

Sc
i =

Mc⋃
m=0

Vm, (25)

where the index m refers to the local numbering of the elements
in the stencil with the element with index 0 being the considered
cell i, and the index c referring to the stencil number (in case of
multiple stencils) where for the central stencil c = 1. The entire
stencil of the considered cell i is transformed in reference space
S ′c

i , where the rth order reconstruction polynomial is an expansion
over local polynomial basis functions φk(ξ, η, ζ) given by:

p(ξ,η, ζ) =
K∑

k=0

akφk(ξ,η, ζ) = U0 +
K∑

k=1

akφk(ξ,η, ζ), (26)

where U0 corresponds to the vector of conserved variables at the
considered cell i, and ak are the degrees of freedom of the poly-
nomial. The degrees of freedom ak for the polynomial for each cell
5

m are obtained by satisfying the condition that the cell average of
the reconstruction polynomial p(ξ, η, ζ) must be equal to the cell
average of the solution Um:∫

V ′
m

p(ξ,η, ζ)dξdηdζ = |V ′
m|U0 +

K∑
k=1

∫
V ′

m

akφk dξdηdζ

= |V ′
m|Um, m = 1, . . . , M.

(27)

It needs to be stressed that since for hexahedral, quadrilateral,
prisms and pyramid cells the transformation to reference space
into a unit element cell cannot be guaranteed, the basis functions
ψk also need to satisfy equation (22). The basis functions employed
ψk for all the elements in the stencil are defined as follows:

φk(ξ,η, ζ) ≡ ψk(ξ,η, ζ) − 1

|V ′
0|

∫
V ′

0

ψk dξdηdζ k = 1,2, . . . , K ,

(28)

and in the present study ψk are Legendre polynomials basis func-
tions. Denoting the integrals of the basis function k over the cell
m in the stencil, and the vector of right-hand side by Amk and b
respectively as given by

Amk =
∫

V ′
m

φk dξdηdζ, bm = |V ′
m|(Um − U0), (29)

the equations for degrees of freedom ak can be rewritten in a ma-
trix form as:

K∑
k=1

Amkak = bm, m = 1,2, . . . M. (30)

The resulting linear system is solved by a QR decomposition based
on Householder transformation [67] while using a Moore-Penrose
pseudo-inverse of Amk which is only computed once at the begin-
ning of the simulation to for improving computational speed as
detailed in [62]. Up to 7th-order accurate least-square polynomial
reconstructions are available in UCNS3D for 2D and 3D problems.

3.1.1. Central
The central scheme, implemented in UCNS3D, refers to the

linear scheme utilising only one central stencil, as described pre-
viously. Its standalone use however is limited due to the non-
existing non-oscillatory properties, and it can only be used in
conjunction with the MOOD algorithm, or in flow problems with
low-Mach number.

3.1.2. MUSCL
UCNS3D implements the MUSCL scheme where a high-order

variation of the solution within every cell is approximated by the
corresponding polynomial, whose degrees of freedom ak are com-
puted during the least-squares reconstruction process. The scheme
can be written as:

Ul,α = Ui + θi ·
K∑

k=1

akφk(ξa, ηa, ζa), (31)

where Ul,α is the extrapolated reconstructed solution at a face l,
and at a quadrature point α, Ui is the value for the conserved
variable of the considered element i, and (ξa, ηa, ζa) are the coor-
dinates of the quadrature point at the l face. All polynomials, for
all the faces and for all the quadrature points, are then limited by
the limiter θi which is valid for the cell i to prevent any spuri-
ous oscillations. In the MUSCL framework, the following steps are
taken:

A.F. Antoniadis, D. Drikakis, P.S. Farmakis et al. Computer Physics Communications 279 (2022) 108453
1. Find the minimum and maximum values of the conserved
variable from the neighbouring elements and the considered
cell i

2. Compute the unlimited least square reconstructed solution
Ul,α

3. Compute the maximum allowable value for θl,α , which corre-
sponds to the slope limiter value at side l and quadrature point
α for cell i

4. Select the minimum value of the slope limiter from all the
faces, all the quadrature points α such that θi = min(θl,a)

where l is the index of the face of the considered cell.

It is the third step that differentiates the limiting function em-
ployed, and UCNS3D deploys the widely used limiters of Barth and
Jespersen [68], and of Venkatakrishnan [69]. Both of these slope
limiters are restricted to 2nd-order of spatial accuracy. However,
for up to 4th-order accurate MUSCL schemes, the Michalak and
Ollivier-Gooch [70] limiter (MOG) as well as its further extended
bounds versions MOGE, MOGV developed in [61] are also available.
The MOGE and MOGV variants redefine the elements included for
obtaining the minimum and maximum values of step 2, by includ-
ing all the stencil elements and all the vertex neighbours of the
considered cell, respectively. The reader is referred to [61] for a
detailed description of the limiting functions used.

3.1.3. WENO
The WENO scheme used in UCNS3D, employs a non-linear

combination of various reconstruction polynomials from the cen-
tral stencil and additional directional stencils, and each polynomial
is weighted according to the smoothness of its solution, and it is
based on the approaches of [6,49,50,65]. The polynomials are given
as:

pi(ξ,η, ζ)weno =
st∑

s=1

ωs ps(ξ,η, ζ), (32)

where st is the total number of stencils. Substituting back to
Eq. (26) for ps(ξ, η, ζ), we obtain the following expression:

ps (ξ,η, ζ) =
K∑

k=0

a(s)
k φk(ξ,η, ζ). (33)

Using the condition that the sum of all weights is unity, yields:

pi(ξ,η, ζ)weno = U0 +
K∑

k=1

(
st∑

s=0

ωsas
k

)
φk(ξ,η, ζ)

≡ U0 +
K∑

k=1

ãkφk(ξ,η, ζ),

(34)

where ãk are the reconstructed degrees of freedom; and the non-
linear weight ωm is defined as:

ωs = ω̃s
st∑

s=1
ω̃s

where ω̃s = λs

(ε + SIs)b
. (35)

The smoothness indicator SIm is given by:

SIs =
∑

1≤|β|≤r

∫
V ′

0

(
Dβ ps(ξ,η, ζ)

)2
(dξ,dη,dζ), (36)

where β is a multi-index, r is the polynomial’s order, λm is the
linear weight. The central stencil is assigned a large linear weight
λ1 while the remaining directional stencils are assigned a value of
6

λs = 1 and a value to prevent division by zero of ε = 10−6 is used,
b = 4 and D is the derivative operator. The smoothness indicator
is a quadratic function of the degrees of freedom (as

k) and Eq. (36)
can be rewritten as:

SIs =
K∑

k=1

as
k

⎛
⎝ K∑

q=1

OIkqas
q

⎞
⎠ , (37)

where the oscillation indication matrix OIkq is given by:

OIkq =
∑

1≤|β|≤r

∫
V ′

0

(
Dβφk(ξ,η, ζ)

) (
Dβφq(ξ,η, ζ)

)
(dξ,dη,dζ),

(38)

and can be precomputed and stored at the beginning of the sim-
ulation. The WENO reconstruction can be carried out with respect
to the characteristic variables, and the reader is referred to [50,51]
and references therein regarding the implementation. For the di-
rectional stencils, several algorithms have been developed [62] and
are available in UCNS3D, with the default being Type 3, due to its
favourable balance in terms of robustness and computational cost.

3.1.4. CWENO
The CWENO scheme developed by Tsoutsanis and Dumbser [1]

improves both the computational efficiency and robustness of the
original WENO schemes. The key characteristic of the CWENO
scheme is the combination of an optimal (high-order) polynomial
popt using the central stencil with lower-order polynomials em-
ploying the directional stencils. At the presence of smooth data the
optimal polynomial is recovered and the desired-order of accuracy
is obtained, whereas at the presence of discontinuous data at least
one of the lower-order polynomials (from the directional stencils)
could contain smooth data, therefore reducing the oscillations in
the computed solution. All the polynomials involved are subject to
the same requirements as previously set of matching the cell av-
erages of the solution. The computational savings compared to the
WENO schemes arise from the reduced size of the directional sten-
cils, and the fact that the directional stencils are contained in the
central stencil, as it can be seen in Fig. 2. The definition of an op-
timal polynomial given by:

popt(ξ,η, ζ) =
st∑

s=1

λs ps(ξ,η, ζ), (39)

where s is the stencil index, with s = 1 being the central, s =
(2, 3, .., st) being the directional, st being the total number of sten-
cils, and λs being the linear coefficient for each stencil, whose
sum is equal to 1. The p1 polynomial is not computed directly,
but computed by subtracting the lower-order polynomials from the
optimum polynomial as follows:

p1(ξ,η, ζ) = 1

λ1

(
popt(ξ,η, ζ) −

st∑
s=2

λs ps(ξ,η, ζ)

)
. (40)

The CWENO reconstruction polynomial is a non-linear combination
of all the polynomials as follows:

p(ξ,η, ζ)cweno =
st∑

s=1

ωs ps(ξ,η, ζ), (41)

where ωs correspond to the non-linear weights assigned to each
polynomial, and in regions with smooth data ωs ≈ λs , hence ob-
taining the high-order approximation from the central stencil, and

A.F. Antoniadis, D. Drikakis, P.S. Farmakis et al. Computer Physics Communications 279 (2022) 108453

Fig. 2. Examples of central and directional stencils for P = 4 for the WENO, and CWENO/CWENOZ schemes. The considered cell is illustrated in red colour, the central
stencil elements by grey colour, and each of the directional stencils illustrated by different colours. It can be noticed that the CWENO/Z schemes employ significantly smaller
directional stencils compared to WENO schemes. (For interpretation of the colours in the figure(s), the reader is referred to the web version of this article.)
in regions of discontinuous solutions the reconstructed solution
will be mostly influenced from the lower-order polynomials of the
directional stencils, where ãk are the reconstructed degrees of free-
dom; and the non-linear weight ωs is defined as:

ωs = ω̃s
st∑

s=1
ω̃s

where ω̃s = λm

(ε + SIs)b
. (42)

Similarly, to the WENO scheme ε = 10−6 is used and b = 4. For
the present study we employ r = 1 for the directional polynomials
resulting in 2nd-order of accuracy, and any arbitrary order of ac-
curacy for the polynomial associated with the central stencil. The
smoothness indicators used for CWENO scheme are the same as
in the WENO scheme defined previously. The linear weights are
assigned by firstly assigning the non-normalised linear weight for
the central stencil λ′

1 an arbitrary value, and then normalising this
as follows:

λ1 = 1 − 1

λ′
1
, (43)

with the linear weights associated with lower-order polynomials
being assigned the same linear weights as follows:

λs = 1 − λ1

st − 1
, (44)

where st is the total number of stencils.

3.1.5. CWENOZ
The CWENOZ scheme developed by Tsoutsanis and Dumbser [1]

follows in principle the CWENO scheme, the key differentiation be-
ing the approximation of the non-linear weights. The definition
of the optimal polynomial remains the same as before, and the
CWENOZ reconstruction polynomial is given as a non-linear com-
bination of all the polynomials in the following manner:

p(ξ,η, ζ)cwenoz =
st∑

s=1

ωs ps(ξ,η, ζ), (45)

where ωs correspond to the non-linear weights assigned to each
polynomial. The WENOZ strategy of combining unequal degree
polynomials was introduced by Borges et al. and Castro et al.
[71,72] and has been adapted for unequal polynomials, reconstruc-
tion stencils and arbitrary elements as has recently been reported
by [9,73]. The non-linear weights are now defined as:
7

ωs = ω̃s
st∑

s=1
ω̃s

where ω̃s = λs

(
1 + τ

ε + SIs

)
. (46)

With τ being the universal oscillation indicator and taken as the
absolute difference between the smoothness indicators as follows:

τ =

⎛
⎜⎜⎜⎝

st∑
s=2

|SIs − SI1|
st − 1

⎞
⎟⎟⎟⎠

b

. (47)

Similarly to the WENO scheme ε = 10−6 is used and b = 4. We
employ r = 1 for the directional polynomials resulting in 2nd-order
of accuracy, and any arbitrary order of accuracy for the polynomial
associated with the central stencil, while the linear weight’s as-
signment procedure is the same with the CWENO.

3.2. Low-Mach number treatment

In low-Mach number regions, it is known that Godunov type
schemes exhibit an artificially large velocity jump at the cell in-
terfaces, as it was demonstrated by Thornber et al. [74]. The pro-
posed solution was to modify the extrapolated reconstructed val-
ues at the cell interfaces in order to take into account the correct
flow physics of low speed flows. Alternative low-Mach number
treatments include the semi-implicit pressure based approaches
[75–81] that have been successfully applied for all Mach and low-
Mach number flow problems. It was later on demonstrated by
Simmonds et al. [60] that for unstructured meshes the original
low-Mach number treatment did not provide favourable and ro-
bust improvements, since only the normal velocity jumps at the
cell interfaces required modifications and not the tangential ones.
Therefore, the UCNS3D employs the low-Mach number treatment
of Simmonds et al. [60] where only the normal components n̂ of
the velocity at the interfaces are modified, and not their tangential
n‖ .

un̂∗
L = (1 + z)un̂

L + (1 − z)un̂
R

2
,

un̂∗
R = (1 + z)un̂

R + (1 − z)un̂
L

2
,

z = min(1,max(ML, MR))

(48)

with ML, MR corresponding to the Mach number based on the
left and right-states respectively, and un̂∗

L , un̂∗
R denotes the modi-

fied extrapolated normal component of velocities for the left- and

A.F. Antoniadis, D. Drikakis, P.S. Farmakis et al. Computer Physics Communications 279 (2022) 108453

Fig. 3. Flow-chart of the MOOD-augmented UCNS3D code. In its current configuration, the high-order numerical scheme selected by the user (Central, CWENOZ, MUSCL, etc.)
“piggybacks” the a posteriori MOOD algorithm. The switch of accuracy criteria of the PAD/NAD sensors for the parachuting and the bulletproof scheme is also shown as steps
5, 6a, and 6b. The steps with dark orange outlines refer to the transition from a higher order of accuracy to the 2nd order MUSCL scheme, the first auxiliary, while those
outlined with red refer to parachuting the solution to the bulletproof first order accurate Godunov’s flux. A solution decremented to first order is exempted of the PAD/NAD
due to its conservativity property.
right-states respectively, and un̂
L , un̂

R denote the reconstructed ex-
trapolated values for the velocity in the direction normal to the
face/edge for the left- and right-states respectively. The local Mach
number for the left and right states ML, MR is calculated based
on the velocity magnitude of all the velocity components indepen-
dent of the normal direction. It has to be noted that the low-Mach
number treatment is mostly benefiting 2nd-order and 3rd-order
schemes, since the velocity jumps are reduced when employing
very high-order schemes. More importantly the hexahedral and
quadrilateral elements are the ones that experience the most no-
table improvements, whereas the triangular, tetrahedral, prisms,
and pyramids are rather less sensitive to the treatment due to
their increased degrees of freedom (orientation), something that
has also been reported by Rieper [82].

3.3. MOOD

The Multidimensional Optimal Order Detection (MOOD) algo-
rithm, introduced by Clain et al. [17], has been established as a
unique a posteriori method to enhance the non-oscillatory proper-
ties of any numerical method. A further improvement to the orig-
inal method, developed by Farmakis et al. [40], is the method of
choice implemented in UCNS3D, and has been tested successfully
for very intensive computational problems with sharp discontinu-
ities, density and velocity gradients, f.e. high-speed 2D and 3D
converging flows perturbed by the Rayleigh-Taylor and Richtmyer-
Meshkov instabilities. The key tenet of the MOOD algorithm is that
for all the cells in the computational domain, a candidate solu-
tion should be both physically and numerically admissible. If these
conditions are not satisfied in a given cell, the order of accuracy
of the scheme is reduced locally until the candidate solution is
admissible. Specifically, following the solution of the fluxes, each
candidate solution calculated using any of the high-order methods
implemented in UCNS3D (such as Central, CWENO, MUSCL, etc.)
will be passed through two detectors:

1. Physical Admissible Detector (PAD): This detector checks that the
solution is physical, that is, all points must have positive den-
sity and positive pressure at all times. In essence, this detector
will identify any point exhibiting NaN values.

2. Numerical Admissible Detector (NAD) [5]: This is a more flexible
version of the Discrete Maximum Principle (DMP) [17]. The
detector checks that the solution is monotonic, and that no
8

new extrema are created. It compares the candidate solution
with the solution obtained in the previous Runge-Kutta step.

If the candidate solution does not satisfy the PAD & NAD criteria,
then the code parachutes into a 2nd-order MUSCL scheme, and a
relaxed version of the PAD & NAD criteria is applied again. This
transition with more relaxed criteria has been strategically opted
to maintain the solution of a cell both admissible and of the high-
est possible order. In case the new candidate solution is also not
admissible, then a bulletproof scheme is used. For UCNS3D, this
is Godunov’s flux. Being a first-order Upwind scheme, Godunov’s
method is known to satisfy the PAD & NAD criteria by defini-
tion. At this point, it should be noted that MOOD’s a posteriori
nature gives rise to one important complication. If a solution is
not admissible in a single cell, this entails that the solutions for its
neighbouring cells will have to be recomputed as well; these solu-
tions might be contaminated by the stricken cell’s solution through
the flux operation. If not addressed, contaminated solutions might
lead to a cascade of non-admissible solutions in subsequent itera-
tions. It is for this reason that when a cell is marked by application
of the PAD & NAD criteria, its neighbouring cells are also identified
accordingly. This enables the creation of the necessary stencil, as
anticipated by the next scheme up the MOOD cascade. The en-
tire operation of the MOOD implementation of Farmakis et al. in
UCNS3D can be seen in the flow chart in Fig. 3. The collection
of cells Vi represents the set of first neighbours of the cell i in
consideration. In its present form, the NAD criterion assesses the
conservative variables’ vector, as suggested by [64]. The candidate
solution U∗

i for a cell i during any Runge-Kutta stage should be
within a certain range provided by the Vi region defined previ-
ously. The superscript (n) indicates here the previous Runge-Kutta
step, not the previous time step:

min
y∈Vi

(Un(y)) − δ ≤ U∗
i ≤ min

y∈Vi

(Un(y)) + δ . (49)

The original DMP-relaxed margins, as introduced by [83], can be
seen in step 6a. of the flow chart. Denoted by (◦), they read:

δ◦ = max

(
10−4,10−3 ·

[
max(Un(y)) − min(Un(y))

])
, (50)
y∈Vi y∈Vi y∈Vi

A.F. Antoniadis, D. Drikakis, P.S. Farmakis et al. Computer Physics Communications 279 (2022) 108453
while the “tempered” criteria, employed in step 6b. of the flow
chart and denoted by

(
R
)
, ensure a prudent, as well as smooth

transition along the cascade, from second to first order of accuracy.
They are selected as:

δR = max
y∈Vi

(
10−4,10−1 ·

[
max
y∈Vi

(Un(y)) − min
y∈Vi

(Un(y))

])
. (51)

The relaxed criteria, developed for the UCNS3D, reduce signifi-
cantly the computational overhead of the MOOD method, with-
out reducing the efficacy of the framework to ensure the non-
oscillatory properties solution. This has to do also with the
favourable non-oscillatory properties of the limiters employed for
the 2nd-order MUSCL scheme, for instance the Barth and Jespersen
limiter [68]. For more details regarding the implementation and
testing of the algorithm, the readers are referred to the work of
Farmakis et al. [40].

3.4. Rotating frame domain decomposition

The frame of reference is defined at the solver level with no
need of mesh-based interface. This approach employs a shape ge-
ometry formulation on the solver algorithm to identify in which
reference frame the element is located. The rotational zone is de-
fined as a cylinder defined by two points coordinates and radius.
These input parameters as well as the rotational velocity are de-
fined on the MRF.DAT file.

The velocity components are computed in absolute formulation
within the appropriate flux correction according to the element
frame of reference. The rotational velocity is computed at each
Gaussian quadrature points taking into account its relative dis-
tance to the rotating axis. Two additional computation tasks are
performed on the calculation process to change the frame from in-
ertial frame to rotational: inclusion of extra source term and flux
correction. For a more detailed description of the implementation
and validation of this technique, the reader must refer to [4,84].

3.5. Fluxes approximation

For the inviscid fluxes several well-established and verified ap-
proximate Riemann solvers are employed such as the approximate
HLLC (Harten-Lax-van Leer-Contact) Riemann solver of Toro et al.
[85,86], the Roe Riemann solver [87], and the Rusanov Riemann
solver [88]. For the viscous fluxes, the gradients are computed
using the previously described least-square linear reconstruction
with additional constraints for the boundary conditions as detailed
in [50,89]. Only in the presence of bad-quality elements, a Green
Gauss gradient approximation may be used, as described in the
work of Tsoutsanis et al. [50]. For the viscous stress tensor and
the heat flux vector in the Navier-Stokes equations, the gradients
of the discontinuous states for the approximation of the viscous
fluxes are averaged by including the penalty terms similar to pre-
vious approaches [90–92] in the following manner:

∇U = 1

2
(∇UL + ∇UR) + α

Lint
(UR − UL) �n, (52)

where Lint is the distance between the cell centres of adjacent
cells, and α = 4/3 similarly to previous approaches [90,91].

3.6. Temporal discretisation

The temporal discretisation in UCNS3D follows the method of
lines paradigm, whereas a separate discretisation of space and time
can be deployed, since it offers favourable flexibility.
9

3.6.1. Steady simulations
For steady state simulations, Eq. (20) can be rewritten in the

following semi-discrete form

dUi

dt
= Ri, (53)

where Ri is the right-hand side residual, which should converge
to the machine zero. The two options available include an explicit
first-order forward Euler time stepping [93], and an implicit first-
order backward Euler time where Eq. (53) takes the following form
for the latter:

dUn
i

dt
= Un+1

i − Un
i

dt
= Rn+1

i . (54)

Linearising in time, Eq. (54) gives

dUn
i

dt
= Rn

i + ∂Rn
i

∂U
, (55)

where Ri should be equal to zero, hence (55) becomes(
I

dt
− ∂Rn

i

∂U

)
dUi = Rn

i . (56)

The solution at each element i is updated via Un+1
i = Un

i + dUi ,

where I stands for the identity matrix. The term
∂Rn

i

∂U
stands for

the Jacobian matrix and contains the linearisation of the invis-
cid, viscous flux vectors as well as the source terms. A first-order
approximation of the numerical fluxes is employed for the approx-
imation of the Jacobians since due to its simplicity, compact stencil
support, and memory requirements. The simple flux function cho-
sen is based on the Rusanov flux, given as

Ri
(
Ui,U j,nij

) =1

2

(
F

nij
c,v(Ui,∇Ui) + F

nij
c,v(U j,∇U j)

)
− 1

2
|λi j

c + λ
i j
v | (U j − Ui

)
,

(57)

with the maximum convective and viscous eigenvalue written re-
spectively

λ
i j
c = |Vi j · ni j| + aij,

λ
i j
v = μi j

ρi j|x j − xi| ,
(58)

where ni j is the normal vector to the element interface, Vi j is
the velocity vector and aij is the speed of sound. The viscous
eigenvalue is approximated by the viscous spectral radius x j − xi .
Within UCNS3D the linear system of Eq. (56) with the Rusanov
flux can be solved by a matrix-free lower-upper symmetric Gauss-
Seidel (LU-SGS). The original LU-SGS method was proposed for the
structured meshes [94,95]. We use its extension to unstructured
meshes [96,97], with our implementation similar to [98,99], an LU-
SGS implementation with full diagonal and off-diagonal elements
as described in [53], and a simple block Jacobi method. Finally, the
boundary conditions are also treated implicitly according to Batten
et al. [100]. Both the explicit and implicit time-stepping schemes
are augmented by local time-stepping for convergence accelera-
tion.

3.6.2. Unsteady simulations
For transient simulations UCNS3D employ explicit Strong Sta-

bility Preserving (SSP) Runge-Kutta methods ranging from 1st- to
4th-order of accuracy in time, including the implementations of
Gottlieb and Shu [93], and Spiteri and Ruuth [101] where the read-
ers are referred for further details. For flows problems that we

A.F. Antoniadis, D. Drikakis, P.S. Farmakis et al. Computer Physics Communications 279 (2022) 108453
want to not be limited by the severe CFL limit of explicit schemes,
the well established and widely used dual-time stepping strat-
egy [102] is employed where the transient problem is solved as
a series of steady-state problems, and therefore the previously es-
tablished techniques can be used to accelerate the convergence to
steady state. Rewriting Eq. (20) in the following semi-discrete form

dUi

dτ
= R∗

i (U∗)/V n+1
i , (59)

with the unsteady residual defined as:

R∗
i (U∗) =Ri(U∗) + 3

2�t
(V n+1

i U∗
i) − 2

�t
(V n

i Un
i)

+ 1

2�t
(V n−1

i Un−1
i).

(60)

Where τ is the pseudo-time, �t is the physical time, and Ri(U∗) is
the residual. When the desired convergence to the pseudo-steady
state problem is achieved, then Un+1

i = U∗
i .

3.7. Source terms

The source terms are approximated within each control volume,
with Gaussian quadrature rules suitable for the polynomial order
selected for the spatial discretisation. Special treatment is applied
only in the source term of the 5 equation multicomponent Euler
Eq. (11). In that case the approach of Johnsen and Colonius [103]
is adopted and the source term is numerically approximated as
surface integral, rather than a volume one, while using the same
velocity estimate as the one used for the evaluation of the fluxes
as shown below:∫
V i

a1∇ · u dV ≈
∫
V i

a1 dV ·
∫

∂V i

(un)
Riem. dS. (61)

4. Overview and features

In this section, we provide an overview of UCNS3D, including
the package installation, the features, the code structure, descrip-
tion on input and output files. We summarise the implementation
details of the software and how several aspects of the governing
equations and numerical framework previously introduced in Sec-
tions 2 and 3 are represented in the code, so that other scientists
can leverage the high-order framework for their intended applica-
tions and for further developments.

4.1. Package installation

UCNS3D is available at http://www.ucns3d .com. It is written in
Fortran 2008 with MPI [104] and OpenMP [105] embedded func-
tionality. UCNS3D utilises BLAS libraries [106] for several floating-
point operations such as Matrix-Vector and Matrix-Matrix multi-
plications. UCNS3D also employs the ParMetis and Metis libraries
[107] for partitioning the computational domain, and the TecIO li-
brary [108] for writing binary files using the Tecplot interface. The
UCNS3D package includes several directories and their descrip-
tion is provided in Table 1. The users should consult the README
file at https://github .com /ucns3d -team /UCNS3D for instructions on
how to compile and run UCNS3D, and the following set of fea-
tures refer to version UCNS3D 1.3 version. The current oper-
ating systems supported are linux distributions such as Ubuntu,
Suse, Redhat, CentoS and MacOS as well as in Windows 10 using
WSL and WSL2. The user should ensure that the correct locations
of the selected compilers and libraries are defined prior to the
compilation of UCNS3D and that the appropriate options are se-
lected in the Makefile file. The users are referred to https://
10
Table 1
Description of the files included in UCNS3D.

Name Description

CODE/ Source code files
CODE/Makefile selection of compiler and libraries to be used
CODE/Makefile.common Makefile input, does not need to be modified
SCRIPTS/ Example scripts for several HPC systems
ARCHER_LIB/ Example makefile for ARCHER2
MacOS/ Instruction and makefile for MacOS
TRANSLATORS/ Translators from STAR-CD, UGRID to native

format
LICENSE The GNU public license file
README Readme file with instructions on how to

compile, install and run UCNS3D
PARAMETERS_README Detailed description of every option of the

parameter file UCNS3D.DAT
README_TESTS Description of the tests provided
README_UCNS3D Description of how to develop solution profiles

and boundaries in UCNS3D

github .com /ucns3d -team /UCNS3D for instructions on how to com-
pile and run the solver.

4.2. Features

UCNS3D implements both two- and three-dimensional unstruc-
tured mesh framework, that consists of triangular, quadrilateral,
prism, hexahedral, pyramid, and tetrahedral elements. It employs
a wide range of spatial numerical schemes of order ranging from
1st to 7th-order. These schemes include MUSCL, WENO, CWENO,
CWENOZ, and MOOD. Temporal scheme order ranges from 1st
to 4th-order, in either explicit or implicit time-stepping meth-
ods, including SSP Runge-Kutta methods and dual-time stepping
method. Gradient calculation algorithms include the least-square
and Green-Gauss methods, as well as several well-established ap-
proximate Riemann solvers such as HLL, HLLC, Roe, etc. Spatial
integrals are approximated via multidimensional Gaussian quadra-
ture rules of compatible order with the chosen spatial order.
The key details of the methods employed are outlined in Sec-
tion 3. UCNS3D can solve several compressible flow problems gov-
erned by the following equations: Euler, Navier-Stokes, Reynolds-
Averaged Navier-Stokes, 5-equation multi-component flows, as de-
tailed in Section 2. Various boundary conditions have been imple-
mented such as periodic, no-slip wall, inflow, outflow and pressure
far-field. New features that are under consideration or currently
under implementation are discussed in Section 7.

UCNS3D is a fully parallel solver employing both MPI and
OpenMP interfaces, and it has been developed with practical-
ity in mind, hence operations such as mesh partitioning are ex-
ecuted during runtime, while the MPI-IO library is utilised to
write/read binary checkpoint files and take advantage of scalable
IO operations supported by HPC infrastructure. UCNS3D has been
successfully ported and tested in several HPC facilities including
ARCHER, ARCHER2, HLRS-Hawk, HLRS-Hazelhen, SuperMUC, CSD3,
and MARCONI [41,42,109,110]. And the performance on a repre-
sentative benchmark is outlined in Section 6. UCNS3D is provided
with a representative collection of 2D and 3D tests including the
mesh files and parameter files as a starting point for users to fa-
miliarise and validate any further development done. The tests are
provided in the https://doi .org /10 .5281 /zenodo .3375432 repository.

4.3. Code structure

The only requirement for the mesh files for UCNS3D is that
the mesh files should include the boundary conditions. Therefore,
regardless of the mesh file format provided the user should en-
sure that the boundary conditions are specified during the grid-
generation process. UCNS3D solves the governing equations with

http://www.ucns3d.com
https://github.com/ucns3d-team/UCNS3D
https://github.com/ucns3d-team/UCNS3D
https://github.com/ucns3d-team/UCNS3D
https://doi.org/10.5281/zenodo.3375432

A.F. Antoniadis, D. Drikakis, P.S. Farmakis et al. Computer Physics Communications 279 (2022) 108453
Table 2
Input files for UCNS3D.

Name Description

ucns3d_p UCNS3D executable
GRID.bnd Grid boundary file
GRID.cel Grid connectivity file
GRID.vrt Grid vertex coordinates file
UCNS3D.DAT Parameter file for controlling the operation of UCNS3D

(including equations, discretisations, I/O operations,
turbulence modelling etc)

MRF.DAT Parameter file for the Multiple Reference Framework of
UCNS3D

MOOD.DAT Parameter file controlling the operation for the MOOD
algorithm of UCNS3D

MULTI.DAT Parameter file specifying all the components for the
5-equation multicomponent model of UCNS3D

the prescribed boundary conditions, with the numerical method
selected, until either the maximum number of iterations, the maxi-
mum wall-clock time, or the final time is reached. UCNS3D exports
history, statistics, and solution files in either ASCII or binary format
that can be viewed in visualisation software packages such as Tec-
plot [111], Paraview [112], Visit [113] etc.

The code is structured in individual Fortran modules, each one
of them is associated with one particular operation such as bound-
ary conditions, Riemann solvers, mesh partitioning, time discreti-
sation, parallel communications, solver parameters, input/output
operations, etc. The naming convention for all the module files fol-
lows the operation that each module executes.

4.4. Description of input/output files

UCNS3D requires the executable ucns3d_p in the same direc-
tory with the files associated with the grid that can be provided
in either of the popular formats of fluent *.msh, in UGRID format
*.ugrid, or STAR-CD format STAR files. The file that controls the
operation of UCNS3D is the parameter file UCNS3D.DAT, where all
the options are outlined. If other parameter files are present then
the relative mode of UCNS3D will be enabled. For instance, if the
MRF.DAT file is present in the same directory then the multiple-
reference framework will be engaged. Depending on the parame-
ters and options selected, several files will be generated including
binary checkpoint (restart) file, solution files for visualisation, force
file, statistics for parallel benchmarking, etc. The list of input and
output files is provided in Table 2 and Table 3 respectively.

4.5. Implementation

UCNS3D has been implemented by utilising several modules,
where each of the modules can contain several functions and sub-
routines. The modules can be categorised with respect to the na-
ture of the operations contained in them. For example there are
certain modules associated with the geometrical operations while
others are associated with flow operations, as shown in Fig. 4.
Therefore the modules of UCNS3D are described in the relevant
sections that follow.

4.5.1. Geometry
This category of modules, is related to the several geometri-

cal operations required including computing cell-centres, finding
neighbours, building stencils, etc.

1. grid_p.f90: contains several operations associated with the un-
structured mesh such as the connectivity including subrou-
tines dedicated to finding the direct side neighbours, the con-
struction of the central and directional stencils as shown in
Fig. 2 and several stencil selection algorithms [62], finding the
shape of every element etc.
11
Table 3
Output files for UCNS3D.

Name Description

Errors.dat Errors in L∞ and L2 error norms, and computational
times

Statistics.dat Computational times statistics, for scalability
benchmarks

residual.dat file containing the residuals of the conserved variables
iterations for steady state flow problems

history.txt History of the operations performed during the
simulation

FORCE.dat History of the Lift and Drag forces
RESTART.dat Checkpoint file with instantaneous (or converged)

solution
RESTART_AV.dat Checkpoint file with time-averaged solution
OUT_*. instantaneous (or converged) solution of the entire

domain (binary or ASCII, Tecplot or vtk output)
SURF_* instantaneous (or converged) solution for the wall

bounded surfaces/edges of the domain (binary or ASCII,
Tecplot or vtk output)

OUT_AVER_* time-averaged solution of the entire domain (binary or
ASCII, Tecplot or vtk output)

SURF_AVER_* time-averaged solution for the wall bounded
surfaces/edges of the domain (binary or ASCII, Tecplot
or vtk output)

PROBE_* time-history of solution in terms of primitive variables
for the numbered probe position (ASCII)

2. grid_t.f90: consists of the operations related to computing sev-
eral geometrical characteristics of the unstructured mesh such
as the volume, edges, cell-centres, Gaussian quadrature points.
The normal vectors at the surfaces/edges as shown in Fig. 1
and their corresponding rotation matrix and their inverse are
also computed for projecting the solution along the direction
of the normal at the cell-face and project back, and finally a
subroutine that finds the cells associated with each probe po-
sition defined by the user is included.

3. bc_p.f90: the subroutines that determine the boundary condi-
tions for every bounded cell, and also determining the corre-
sponding periodic cells make up this module.

4.5.2. Polynomials
This category of modules, is related to the operations such as

computing basis functions for the reconstruction polynomials and
the derivatives of them.

1. basis_p.f90: contains the functions for computing the basis ψk
as defined in Eq. (28) for any given point for any cell, accord-
ing to the order and type of polynomial for 2D and 3D.

2. der_r.f90: consists of functions that compute the derivatives
Dβφk(ξ, η, ζ) for the generic and Legendre polynomials, that
are required in several places such as the approximation of the
smoothness indicators in Eq. (38), for the approximation of the
viscous stresses from the least-square polynomial Eq. (6) etc.

4.5.3. Reconstruction
This category of modules, is related to multiple operations re-

quired for obtaining reconstructed solutions. They can be further
subcategorised to Initial, Schemes and Matrix as follows:

Initial
The initial category, refers to operations that can be performed

prior to advancing the solution, since in the case where the mesh
remains fixed in time, the simulation speed can be reduced by lim-
iting the number of operations that involve matrices that do not
change with time. Such examples include the least-square matri-
ces etc.

A.F. Antoniadis, D. Drikakis, P.S. Farmakis et al. Computer Physics Communications 279 (2022) 108453

Fig. 4. Drawing of the UCNS3D modules arranged according to the nature of their contained operations: a) Geometry, b) Polynomials, c) Reconstruction d) Initialisation e)
Flow g) Generic Operations.
1. local_pt.f90: contains all the subroutines related to the trans-
formation of the cells and their associated stencils from phys-
ical space (x, y, z) to a reference space (ξ, η, ζ) as defines in
[49], and a subroutine for deciding which gradients approxi-
mation methods to employ for different cells based on quality
characteristics of the cells.

2. prestore.f90: mainly consists of subroutines for prestoring the
Moore-Penrose pseudo-inverse of matrix Amk reconstruction
matrix as shown in Eq. (30) for each stencil of every cell, as
well as the oscillation indication matrix OIkq for the WENO,
CWENO, CWENOZ variants as defined in Eq. (38).

Schemes
The schemes category, refers to operations that are dependent

upon the spatial-discretisation scheme chosen, and it involves pro-
cedures to compute the gradient of the flow variables, and perform
the reconstruction.

1. gradients.f90: contains several subroutines for computing the
gradients for the conserved variables required for the con-
vective fluxes, and the velocity and temperature gradients re-
quired for the diffusive fluxes. Several subroutines are available
for computing the gradients using a least-square or Green-
Gauss method.

2. reconstruct_p.f90: all the subroutines dedicated to the re-
construction process, including the central, MUSCL, WENO/
CWENO/ CWENOZ variants as defined in subsections 3.1.1,
3.1.2, 3.1.3, 3.1.4, 3.1.5 respectively are contained in this mod-
ule.

3. mood.f90:this module contains the PAD and NAD criteria for
the MOOD operator of Eq. (51) and Eq. (50), as well as a sub-
routine that detects which neighbouring cells need to be fixed
as well.
12
Matrix
The matrix category, refers to operations that are related to the

solution of the least-square matrix problem for obtaining the un-
known coefficients (degrees of freedom) of the polynomials.

1. svd.f90: contains the subroutines for the SVD decomposition
solution procedure for the least square reconstruction process
of the system shown in Eq. (30).

2. matrix.f90: contains the subroutines for the QR decomposition
using a Householder transformation for the least square recon-
struction process shown in Eq. (30).

4.5.4. Initialisation
This category of modules, is related to all the operations for

initialising the flow field, either from user-defined profiles, or from
check-point (RESTART) files.

1. init_p.f90: consists of the operations for the initialisation of
the flow-field either from prescribed initial solution profiles, or
from a previous simulation and the associated check pointing
file.

2. profile.f90: contains subroutines and functions dedicated for
specifying the initial condition of the flow-field. There are
several previously defined initial condition profiles that cor-
respond to well established test problems such as the Taylor-
Green vortex, the 2D and 3D explosion, the double Mach re-
flection and others. The users can use these subroutines for
introducing new initial condition profiles of their choice.

4.5.5. Advance
This category of modules, is related to the time advancement

of the solution, and the several methods available to perform this
operation.

A.F. Antoniadis, D. Drikakis, P.S. Farmakis et al. Computer Physics Communications 279 (2022) 108453
1. time_p.f90: contains the subroutines associated with activities
related to the time-advancement of the solution. These activi-
ties include computing the time-step size (with global or local
time-stepping technique), explicit SSP Runge-Kutta time dis-
cretisation schemes for transient flow problems, implicit and
explicit time-stepping schemes for steady state-problems, and
implicit and explicit time-stepping schemes using the dual-
time stepping paradigm.

2. implicit_time.f90: all the subroutines responsible for solving
the linear system of Eq. (56) for the implicit-time stepping
method, using either a block-Jacobi or an LU-SGS method
[98,99] are contained in this module.

4.5.6. Flow
This category of modules, is related to all the flow-operations

including computing viscosity, using approximate Riemann solvers,
computing the inviscid and viscous fluxes, and source terms.

1. flow_operations.f90: consists of functions and subroutines for
flow-related operations such as applying the boundary con-
ditions, computing the viscosity based on Sutherland’s law
as seen in Eq. (4), transforming from primitive to conserva-
tive variables and vice versa, transforming from conservative
to characteristic variables and vice versa, applying the low-
Mach number correction as defined in Eq. (48), customising
the inflow/outflow boundary conditions, computing the in-
stantaneous and time-averaged shear stresses, computing the

Q-criterion, computing the Jacobian
∂Rn

i

∂U
, Eigenvectors of the

convective and diffusive fluxes, and a subroutine dedicated to
tracking the interfaces as shown in Fig. 19, volume and other
statistics for multi component flow applications.

2. implicit_fluxes.f90: includes the operations for building the

linear system
(

I

dt
− ∂Rn

i

∂U

)
as shown in Eq. (56) for the

implicit-time stepping method including the diagonal and off-
diagonal element matrices, or the through the matrix-free ap-
proach of [98,99].

3. flux_p.f90: consists of the subroutines dedicated for comput-
ing the convective and diffusive fluxes in 2D and 3D across all
the faces/edges and Gaussian quadrature points as defined in
Eq. (20).

4. riemann.f90: all the subroutines that each one of them corre-
sponds to a particular 2D or 3D approximate Riemann solver
including the HLLC, Rusanov, Roe, and other variants of them,
are included in this module.

5. source.f90: contains the subroutines for computing the source
terms for the corresponding governing equations selected, and
the associated turbulence model as shown in Eq. (7).

4.5.7. Generic operations
This category of modules, is related to several operations re-

lated to the operation of the code, including variable declarations,
reading and writing files, MPI communications, partitioning the
mesh, translating from one mesh input to another, as well as mem-
ory management.

1. communications.f90: includes all the subroutines related to
establishing and performing the communication for the bound-
ary extrapolated values across inter-processor boundaries and
the communication for the stencil cells across inter-processor
boundaries.

2. declarations.f90: contains the definition of all the global ob-
ject data types and variables, and the OpenMP status for the
private variables. The definition of the variables is detailed in
their commented section.
13
3. io.f90: consists of most of the I/O operations including reading
the grid files, and writing the solution files in several formats
such as Tecplot or VTK, and reading and writing the check-
point files using MPI-IO functionality.

4. main.f90: the driver program of UCNS3D.
5. memory.f90: includes the majority of the subroutines associ-

ated with the dynamic memory allocation and deallocation of
all the shared and thread private datatypes.

6. mpi_p.f90: contains the declarations of the MPI variables used
in UCNS3D.

7. parameters.f90: consists of the subroutine that reads all of the
user-defined parameters from the UCNS3D.DAT file, and ad-
ditional sets values for all the other parameters that are not
included in the UCNS3D.DAT file such as turbulence model
constants, type of low-Mach number correction etc. This sub-
routine has predefined optimised code profiles for different
operations of the code such as RANS, DDES, ILES etc. This sub-
routine also controls if the MRF, MOOD, MULTISPECIES func-
tionality of UCNS3D is going to be activated based on the
presence of the corresponding files in the run directory of the
code.

8. parts.f90: contains several subroutines for the partitioning the
mesh using either serial Metis, and customised variants of that
based on the cell-type and reconstruction type, or ParMetis
[107].

9. translate.f90: includes all the subroutines and functions for
translating the input mesh and boundary conditions to the na-
tive UCNS3D format.

5. Selected examples

5.1. Vortex evolution

The 2D vortex evolution test problem introduced by Balsara and
Shu [114] is used, involving an isentropic vortex propagating at
supersonic Mach number at 45◦ across the domain modelled by
the unsteady inviscid Euler equations. The computational domain
is given by [0, 10] × [0, 10] with periodic boundary conditions ap-
plied on all sides. The unperturbed domain has an initial condition
(ρ, u, v, p) = (1,1,1,1), where temperature and entropy are de-
fined as T = p/ρ , and S = p/ργ and the vortex perturbations are
given by:

δT = − (γ − 1) ε2

8γπ2
e
(
1−r2

)
,

(δu, δv) = ε

2π
e0.5

(
1−r2

)
(− (y − 5) , (x − 5)) .

(62)

The vortex strength is ε = 5 and adiabatic gas constant γ = 1.4.
The eL2 and error is computed as follows:

eL2 =

√√√√∑
i

∫

i

(
Ue

(
x, t f

)− Uc
(
x, t f

))2
dV∑

i |
i | , (63)

where Uc
(
x, t f

)
and Ue

(
x, t f

)
are the computed and exact solu-

tions at the end of the simulation t f . The exact solution Ue
(
x, t f

)
being given by the initial condition itself at t0. A mixed-element
unstructured mesh is considered for this test problem of 16, 32,
64, 128 and 256 edges per side resolution similar to the one de-
picted in Fig. 2, and the simulation is run for a time of t f = 10. The
main aim of this test problem is to assess the accuracy of the Cen-
tral, WENO and CWENOZ schemes for a smooth flow problem, and
determine if the schemes can achieve their designed order of accu-
racy. For a more comprehensive assessment of all the methods of
UCNS3D towards smooth flow problems, the reader is referred to

A.F. Antoniadis, D. Drikakis, P.S. Farmakis et al. Computer Physics Communications 279 (2022) 108453

Fig. 5. eL2 density error norm variation with 1/h, h being the cells min edge, at t f = 10 using several schemes and order of accuracy, for the vortex-evolution test problem
on a 2D mixed-element unstructured mesh. It can be noticed that all the schemes achieve convergence rates close to their designed ones (indicated by dotted lines) as the
grid resolution is increased.
[1,60–62]. It can be seen from Fig. 5, that all the schemes achieve
convergence rates close to their designed order of accuracy as the
grid resolution is increased

5.2. Shu-Osher problem

The well-established Shu-Osher [115] test problem is employed,
which involves the interaction between a shock wave and an en-
tropy wave. The computational domain is [−4.5, 4.5] × [0, 1], with
periodic boundary conditions in y-axis, and the supersonic inflow
and outflow condition on the left and right side of the domain, re-
spectively. The initial profile consists of a shock wave (ρ, u, v, p) =
(3.857143,2.629369,0,10.333333) on the left with x < −4 and an
entropy wave (ρ, u, v, p) = (1 + 0.2sin(5x),0,0,1) in the rest of
the domain. A 2D triangular mesh is utilised with a resolution of
each edge being h = 0.025 with approximately 33, 886 elements.
The reference solution is computed with a 1D solver of the Eu-
ler equations using 10, 000 grid points and employing a 5th order
WENO scheme. The calculation is run until t = 1.8. From the den-
sity distribution plots shown in Fig. 6 it can be noticed that all
the schemes achieve a good agreement with the reference solution,
however the WENO 4th-order scheme exhibits an overprediction of
the peaks and valleys at the shock-wave entropy interaction region
while the CWENO and CWENOZ schemes do not present any oscil-
lations. It needs to be stressed that CWENO or CWENOZ schemes
are considerably cheaper in terms of computational resources com-
pared to the WENO schemes ranging from 20%-150% for this 2D
problem, as detailed in Tsoutsanis and Dumbser [1].

5.3. iLES of Taylor Green vortex Re = 1600

The iLES of the 3D viscous Taylor-Green vortex test problem
at Re = 1600 is employed, for assessing the performance of sev-
eral schemes. It is one of the most widely used test problem
for the validation of numerical methods, and in particularly at
relative coarse-“under-resolved” meshes within the LES context
[20,50,60,116–121], since at these resolutions the dissipation and
dispersion characteristics of non-linear methods are pronounced.
The computational domain is defined as
 = [0, 2π]3 with pe-
14
Fig. 6. Density distribution for the Shu-Osher [115] shock tube test problem at the
final time t = 1.8 using various schemes and comparison with the reference solution
obtained from the one-dimensional Euler equations on 10, 000 grid points using a
WENO-5th order scheme. It can be noticed that the CWENO and CWENOZ are less
oscillatory compared to the WENO schemes.

riodic boundary conditions. This formulation of the Taylor-Green
vortex problem is initialised with the following velocity, density
and pressure fields:

u(x, y, z,0) = sin(kx) cos(ky) cos(kz), (64)

v(x, y, z,0) = − cos(kx) sin(ky) cos(kz), (65)

w(x, y, z,0) = 0, (66)

ρ(x, y, z,0) = 1, (67)

A.F. Antoniadis, D. Drikakis, P.S. Farmakis et al. Computer Physics Communications 279 (2022) 108453

Fig. 7. Solution of the Taylor-Green vortex flow at Re=1600 computed with the CWENO5 scheme on a hexahedral mesh of 1283. The isosurfaces of the velocity magnitude at
three levels (0.1, 0.5, 1.0) are plotted at times t = 1.3, 4.1, 8.2 and 11 from top left to bottom right respectively.
p(x, y, z,0) = 100 + ρ

16
[cos(2z) + 2] · [cos(2x) + cos(2y)]. (68)

The initial condition corresponds to an initial Mach number
M ≈ 0.08, with wavenumber k = 2π/λ = 1. Simulations were car-
ried out on a hexahedral mesh 1283 resolution with 5th-order
spatial discretisation schemes (see Fig. 7 for solution of the Taylor-
Green vortex flow at Re=1600 computed with the CWENO5 scheme
on a hexahedral mesh of 1283). The WENO, CWENO, and CWENOZ
variants were used with a CFL number of 1.3 for the explicit
Runge-Kutta 4th-order scheme, up to t = 20 for obtaining the dis-
sipation statistics. The DNS results of Brachet et al. [122] are used
for comparisons against the computed solutions.

From the obtained results as shown in Fig. 8 it can be noticed
that the energy dissipation rate is in close agreement with the
Re = 1600 DNS results. The main differences are that the CWENO
and CWENOZ schemes exhibit a less dissipative behaviour com-
pared to the equivalent WENO scheme at both grid-resolutions.

5.4. RANS of NASA CRM

This test case concerns the transonic flow over an aircraft con-
figuration, the NASA Common Research Model (CRM) at cruise
flight conditions. Drag prediction of the CRM model has been the
main objective for the 4th , 5th and 6th drag prediction workshops
[123,124].

Case 1a from the 4th workshop is considered for the current
analysis, the CRM configuration includes wing, body and horizon-
15
tal stabilizer. The flow is computed at a constant lift of, Cl = 0.5
with error of ±0.001. The freestream conditions correspond to a
Mach number of M = 0.85 with a Reynolds number of 5 × 106

based on the reference chord length. Two grids are employed la-
belled as coarse and medium consisting of 3.5 and 11.0 million
elements respectively with a local refinement on the main wing
and horizontal stabiliser as shown in Fig. 9. For a more detailed
description of the setup of this problem the reader is referred to
the work of Antoniadis et al. [125].

The main aim for employing the present transonic case is to
assess the potential benefits of the WENO third and fifth order
methods denoted with W3 and W4 respectively over a second
order MUSCL scheme denoted as M2 as well with reference ex-
perimental and CFD data. The distribution of pressure coefficient
on the CRM configuration is shown in Fig. 10 and at two rep-
resentative spanwise stations on the main wing in Fig. 11. The
third and fifth order profiles are plotted against the chord-wise
length and compared with the NTF pressure measurements [123].
The presence of the shock on the wing’s suction side is evident
for both stations near the wing’s mid-spanwise location. Grid re-
finement suggests smaller discrepancies with respect to the shock
position (η = 0.60) compared with the experiment, regardless of
the scheme adopted.

Table 4 summarises the force predictions, and the correspond-
ing angle of attack for constant lift, the predicted drag coefficient
and the error �Cd in terms of drag counts with respect to the
experiment [123]. The medium resolution mesh provides a signif-

A.F. Antoniadis, D. Drikakis, P.S. Farmakis et al. Computer Physics Communications 279 (2022) 108453

Fig. 8. Kinetic energy dissipation rate for the iLES of the Taylor-Green Vortex Re = 1600 obtained with various schemes on 1283 hexahedral mesh, and comparison with the
DNS results of Brachet et al. [122]. It can be noticed that all the schemes perform similarly, with CWENO and CWENOZ schemes being marginally less dissipative compared
to WENO.
Fig. 9. Grid configurations for the transonic flow over the CRM model.

Table 4
Computed drag coefficient for all schemes and grids, compared with
the average CFD and experimental values [123].

Elements (106) a Cd �Cd (counts)

C-M2 3.5 2.395 0.03227 47.6
C-W3 3.5 2.295 0.02962 21.11
C-W5 3.5 2.360 0.02942 19.06
M-M2 11.0 2.210 0.02810 5.89
M-W3 11.0 2.236 0.02742 0.93
M-W5 11.0 2.264 0.02716 3.49

DPW-CFD - 2.340 0.02701 5
DPW-NTF - 3.020 0.02751 -

icant improvement in terms of the error, while WENO schemes
further improve the predictions at both grid resolutions. It has to
be noted that for the present test problem the W3 scheme repre-
sents a more suitable method with a favourable balance between
cost and accuracy for these types of aeronautical configurations
under RANS, since the additional cost of the W5 scheme does not
justify its use. For appreciation of the computational cost of the
present simulations for this test problem, the time taken per iter-
ation for the coarse mesh is presented and has been normalised
with respect to the time taken per iteration for the same mesh
with the commercial CFD software package ANSYS Fluent [126,127]
as shown in Table 5.

Specifically Fluent version 19.2 was used, and the solver set-
tings selected were as close as possible to the ones used by
UCNS3D such as double precision, density based solver with
Spalart-Allmaras turbulence model and ideal-gas law for density
16
Table 5
Normalised time taken per-iteration for the coarse mesh for the RANS
of NASA CRM using UCNS3D and ANSYS Fluent.

Normalised time taken per iteration

UCNS3D MUSCL2 1.4
UCNS3D WENO3 2.53
UCNS3D WENO5 3.87

ANSYS Fluent UPWIND2 1.0

Fig. 10. Coefficient of pressure on the medium grid W3 solutions, CRM configuration
(M∞ = 0.85, Cl = 0.5 and Rec = 5.0 × 106).

and Sutherlands viscosity, Roe-FDS scheme, 2nd-order accuracy
for mean flow variables and for the turbulence model, and im-
plicit time-stepping with a fixed (no ramping) CFL of 10 (which
is the same as the one used by UCNS3D). All the simulation tim-
ing measurements were performed in a workstation consisting of
a 32core AMD Threadripper Pro 3975WX CPU, 256 GB of DDR4
memory running a Centos 8 distribution. All the simulations were
performed using 32 MPI processes.

Finally, the wall clock time taken for the simulation to con-
verge was also measured, since this also provides a representative
measure of the total computational cost. UCNS3D required 53 min-
utes to converge the lift coefficient within the tolerance of ±0.001,
while ANSYS Fluent required 45 minutes to converge with the
same tolerance. It has to be noted that the wall clock times for
WENO3 and WENO5 order schemes for UCNS3D are not provided
since they were initialised with the converged results from the
MUSCL2 simulations.

A.F. Antoniadis, D. Drikakis, P.S. Farmakis et al. Computer Physics Communications 279 (2022) 108453

Fig. 11. Coefficient of pressure at two spanwise stations (η) on the main wing compared with the wind tunnel measurement [123], CRM configurations (M∞ = 0.85, Cl = 0.5
and Rec = 5.0 × 106).
Fig. 12. Slice of the mesh used for the SD7003 test problem.

5.5. iLES of SD7003 aerofoil

This test case concerns the turbulent flow over the SD7003
wing at Mach number of M = 0.2, angle of attack of α = 8◦ and
Reynolds number Re = 60, 000 based on the chord length. This
flow is characterised by a laminar separation region, which reat-
taches further downstream forming a Laminar Separation Bubble
(LSB), and along the separation bubble transition to turbulence oc-
curs. This test case is widely used to assess the performance of
various numerical schemes in the context of LES, for predicting
separation, transition and turbulent flow [19,20,128,129]. The pur-
pose of this simulation is to assess the potential benefits or not of
employing the low-Mach (LM) number treatment previously intro-
duced.

A hybrid unstructured mesh of approximately 5.6 million cells
is generated, consisting of hexahedral and prismatic cells, as illus-
trated in Fig. 12. The domain extends 20c upstream and down-
stream, and 0.2c in the span-wise direction, where c is the chord
length. The grid resolution at the boundary layer region gives a
y+ ≈ 1 at the first cell off the surface, and 80 cells are used in
the span-wise direction. Periodic boundary conditions are used in
the span-wise direction, no-slip boundary conditions at the sur-
face of the aerofoil and free-stream conditions at the farfield. The
WENO 4th-order scheme is employed, with a CFL number of 0.9,
and the solution is advanced in time with the explicit Runge-Kutta
3rd-order scheme. The simulations were run for t = 20tc to de-
velop the flow, and an additional 20tc for time averaging, where
tc = c/U∞ .

Contour plots of time- and span-averaged streamwise velocity
are shown in Fig. 13, where it can be noticed that the predicted
laminar separation bubble near the leading edge on the suction
side of the aerofoil is smaller for the result with the LM treatment
compared to that without the LM treatment. The LM treatment
improves the agreement with the reference data sets [20,128,129]
17
Table 6
Obtained results for the SD7003 test cases using WENO 4th-order schemes, and
comparison with reference datasets.

Data set CL C D xsep/c xrea/c Method

Present W4 0.903 0.058 0.038 0.391 WENO FV
Present W4-LM 0.928 0.051 0.029 0.329 WENO FV
Garmann et al. [128] 0.969 0.039 0.023 0.259 6th-order FD
Vermeire et al. [20] 0.941 0.049 0.045 0.315 5th-order FR
Beck et al. [129] 0.932 0.050 0.030 0.336 8th-order DG

in terms of the separation and reattachment positions, as shown
in Table 6.

The instantaneous isosurfaces of Q-criterion coloured by the ve-
locity magnitude are shown in Fig. 14 for the fully developed flow
after 20tc . Smaller-scale flow structures seem to be captured by
the numerical scheme with the LM fix, which is inline with previ-
ous findings from Simmonds et al. [60].

The span- and time-averaged pressure coefficient C P distri-
bution is plotted in Fig. 15, along with the reference data sets
[20,128,129]. When the LM treatment is enabled, the result is
in closer agreement with the reference data sets in particular
with the ones of Beck et al. [129], including the location of the
transition region, where without it the transition appears further
downstream. Therefore, this LM treatment can prove beneficial in
low-Mach number regions of compressible flows, unless very high-
order methods are employed (5th-order and higher) where the
benefits of this treatment are not easily realised.

5.6. Caradonna & Tung rotor

The accuracy and efficiency of the developed rotating frame-
work is evaluated on the hovering two-bladed rotor Caradonna
and Tung [130], where the readers are referred for the experi-
mental setup. The blade is based on an untwisted and untapped
NACA 0012 aerofoil with a radius of 1.143 m and an aspect ra-
tio of 6. The case with a blade tip Mach number of Mtip = 0.89
and pitch angles of θc = 8◦ is considered for the computational
assessment, using the MUSCL-MOGE limiter and the RANS equa-
tions with SA turbulence model with a 15 million elements mixed-
element mesh, and the reader is referred to the work of Silva et al.
[4] for a detailed description of the numerical parameters chosen
and the setup of this test problem.

The operating conditions are considered fairly challenging both
in terms of the experiment but also with respect to prediction abil-

A.F. Antoniadis, D. Drikakis, P.S. Farmakis et al. Computer Physics Communications 279 (2022) 108453

Fig. 13. Span-averaged and time-averaged stream-wise velocity contour for the SD7003 test problem using WENO 4th -order schemes.

Fig. 14. Instantaneous isosurfaces of Q criterion coloured by velocity magnitude for the SD7003 test problem using WENO 4th -order schemes.
Fig. 15. Span-averaged and time-averaged pressure coefficient C P distribution along
the chord of the SD7003 aerofoil, using WENO 4th-order schemes and comparison
with reference datasets from Garmann et al. [128], Vermeire et al. [20] and Beck et
al. [129].

ities of CFD solvers, and the key objective is to assess the robust-
ness and accuracy of the UCNS3D framework. This flow problem
is characterised by the strong vortical structures which develop
at the tip of the blade, and their interaction with the blade at
each rotation, defined as the as Blade-Vortex Interaction (BVI).
This interaction, is one of the most complex features of hover-
ing flows and is highly sensitive to the numerical approach and
18
spatial resolution [131]. It also significantly affects the rotor aero-
dynamic performance. Therefore, a numerical method that is able
to capture the core of the vortex without being largely dissipated
is a desired feature [132]. Fig. 16 shows the effect of order of
the numerical-scheme on capturing the pressure profile at the tip
blade, r/R = 0.96. This region is mostly influenced by the tip vor-
tex interaction with a shock at x/c ≈ 0.25, therefore an accurate
and robust numerical method is necessary. The low-order predic-
tions struggle to capture the sharp pressure drop and its recovery,
presenting small spurious oscillations at 0.35 < x/c < 0.6. While
on, the higher-order solutions are in good agreement with the ex-
periment through the entire span section.

Fig. 17 shows the predicted tip vortex trajectories of the com-
puted solutions compared with the experiment [130] and pre-
scribed wake models [133]. The vortex radial contraction shown
in Fig. 17 (top), is well predicted by computations up to the first
blade passage, where after this point the impact of a higher-order
scheme is negligible, something that is attributed to the effect of
the rotor hub which is neglected in the present computational
model. Overall, the computed solutions of the vortex contraction
agree with the work of Kocurek [133]. In Fig. 17 (b) it can be seen
that the CFD results accurately predict the slow convection of the
tip vortices seen in the vertical displacement (Z/R) up to a full
cycle.

Finally, the helical wake structure of the tip vortex using the
same level of iso-vorticity contours is shown in Fig. 18, where it

A.F. Antoniadis, D. Drikakis, P.S. Farmakis et al. Computer Physics Communications 279 (2022) 108453
Fig. 16. Pressure Coefficient at r/R = 0.97 for all orders.

Fig. 17. Vortex age and trajectory of computed solutions in terms of vortex radial
contraction (top) and downwash rate (bottom) against azimuth angle compared
with experiment.

is clear that higher-order schemes improve the predictions of the
wake sheet and vortex tip flow phenomena while preserving the
helical vortex filaments up to several radii downstream the rotor.
As the wake is transported downwards, the interaction of primary
and secondary structures is noticed, which stretch between the tip
vortices making an S-shaped path also seen experimentally [134].
The horseshoe vortices present on low-order scheme strain into
the vortex tube as the numerical dissipation decreases, something
also documented in [135]. It has to be stressed that until recently
this secondary vortex production has been seen as overemphasised
by high-order solutions and not believed to be an accurate physical
phenomenon, but state-of-the-art volumetric flow measurement
has confirmed its presence through the Lagrangian volumetric PIV
19
Table 7
Time averaged velocities of several flow features of the shock-bubble interac-
tion problem obtained with the present simulation and compared against the
experimental results of Haas and Sturtevant [138], and the computational re-
sults of Coralic and Colonius [136]. The time intervals that have been used to
average the velocities are [10, 52] μs for the upstream interface, [140, 240] μs
for the jet, and [140, 240] μs for the downstream interface. It can be noticed
that all the obtained predictions are within the variations of the experiment,
and in close agreement with the computational results of [136].

Grid size uui (m/s) u ji (m/s) udi (m/s)

2D-fine 181.242 237.086 145.895
3D 178.402 228.375 144.197

Coralic & Colonius WENO5 [136] 173 230 145
Haas & Sturtevant exp. [138] 170 ± 17 230 ± 23 145 ± 15

variant technique [134]. The computational time taken per itera-
tion to execute this case was compared with the commercial soft-
ware ANSYS CFX 19.2 [127]. The solver settings were selected to
reproduce the numerical specifications used by UCNS3D as close
as possible, density based solver with SST turbulence model, ideal-
gas law for density and 2nd-order accuracy with the same CFL. A
single node consisting of two Intel E5-2620 v4 (Broadwell) CPUs
giving 16 CPU cores and 128 GB of shared memory was used
for the simulation measurements. After 11 hours wall-clock time
of computation using 16 MPI processes, CFX and UCNS3D com-
pleted 1130 and 2506 iterations, respectively. The convergence of
integrated force and torque on both solvers were achieved after
approximately 800 iterations.

5.7. Helium bubble shock wave

The interaction of a weak shockwave (travelling in air) with a
helium bubble has been modelled in 2D and 3D. Several variations
of this test problem have been widely used [10,103,136,137] for
assessing the performance of several techniques for multicompo-
nent flow modelling and the present setup is based on the exper-
imental setup by Haas and Sturtevant [138]. A bubble of diameter
Db = 5 cm, is placed within an air filled shock tube. The bubble
consists of helium and air of 28% mass concentration. A shock-
wave moving from right to left impacts the bubble, contaminated
by the surrounding air. The specific heats of 1.4 and 1.66 are used
for air and helium, respectively, and the initial condition is given
by:

(a1ρ1,a2ρ2, u, v, p,a1) =⎧⎪⎨
⎪⎩

(0.0,1.204,0,0,101325,0) , for Pre-shock,

(0.0,1.658,−114.49,0,159060,0) , for Post-shock,

(0.158,0.061,0,0,101325,0.95) , for Bubble.

(69)

The computation domain is discretised by a mixed-element un-
structured mesh consisting of quadrilateral and triangular elements
in 2D, and arbitrary hexahedrals and prisms in 3D with the shock-
bubble interaction region being refined. A fine mesh is employed
in 2D with an average element edge length in the shock bubble in-
teraction zone of e f ≈ Db/400, and an edge length of ec ≈ Db/50
for the 3D mesh. A slip-wall boundary condition is used at the top
and bottom boundaries of the domain, while inflow and outflow
boundary conditions are prescribed at the right and left of the do-
main respectively. The reader is referred to [139] for more details
on the parameters for the setup used. A CWENO5 scheme is em-
ployed, and the simulation is run until t = 1000 μs.

From the results obtained as shown in Fig. 19, Fig. 20 and
Fig. 21, it can be seen that the time evolution of the bubble and
shockwave interaction is correctly captured including the forma-
tion of a jet and a vortex ring at late times, and is in agreement

A.F. Antoniadis, D. Drikakis, P.S. Farmakis et al. Computer Physics Communications 279 (2022) 108453

Fig. 18. Iso-vortex surfaces coloured by vorticity magnitude contours, comparing the effect of order resolution of vortex wake.

Fig. 19. Plot of the definition of the interfaces and of the evolution of the position of these interfaces using a CWENO5 scheme on the finest 2D mesh and 3D mesh. The
evolution of the interface’s position is in good agreement with the results of Terashima and Tryggvason [140] and Quirk and Karni [141].
with the results obtained by [10,103,136] qualitatively. As the bub-
ble evolves, three distinct interfaces identified are the jet (ji),
the upstream (ui) and the downstream (di) as shown in Fig. 19.
From the space-time diagram of these distinct interface positions,
the predicted locations are in good agreement with the reference
results of Terashima and Tryggvason [140] and Quirk and Karni
[141]. The results have been non-dimensionalised with respect to
the diameter of the bubble at the time that the shock hits the bub-
ble [10,140,141].

The results obtained in terms of the averaged velocities of the
jet, upstream and downstream interface are in good agreement
with the experimental results of Haas and Sturtevant [138], and
the computational results of Coralic and Colonius [136] as shown
in Table 7. Due to the resolution employed for the 3D setup of the
problem, a slower merging of the jet and the downstream interface
is seen compared to the 2D setup.

6. Parallel performance

The parallel performance optimisation and benchmarking of
UCNS3D across several HPC systems has been thoroughly doc-
umented in several studies performed under EU-PRACE projects
[41,42,109,110]. The most recent representative benchmark con-
cerns the iLES of the NASA High-Lift CRM model with 240 Million
cells at Reynolds=5.49 Million and AoA=21.47◦ using the CWENO4
order scheme, as it shown in Fig. 22. A strong scalability test
20
Fig. 20. Density contour plots (24 equally distanced levels between 0.19 to 1.74) of
the computed solution of the shockwave helium bubble interaction test problem at
various instants using the finest mesh. As the shock wave passes the helium bubble,
Kelvin-Helmholtz instabilities develop at the material interface that later on break
down while resulting in an asymmetric solution profiles.

was performed, on the HLRS-HAWK system, based on the AMD
Epyc 7742 Rome processors. Each node containing 2 processors,
each one of them consisting of 64 cores running at 2.25 GHz. The
benchmarks started from 16 nodes (2048 cores) which is the min-
imum number of nodes that the problem can fit in the memory, to
1024 nodes (131072 cores), using the MPI and OpenMP implemen-
tation with 8 MPI processes per node (4 in each processor), and 16
threads per process, so that all the physical cores are populated.
This configuration has been found to be the optimum in this hard-
ware architecture. From the results obtained as shown in Fig. 23

A.F. Antoniadis, D. Drikakis, P.S. Farmakis et al. Computer Physics Communications 279 (2022) 108453

Fig. 21. Contour plots of volume fraction, vorticity magnitude at the centre of the computational domain and isosurfaces of three levels of volume fraction (0.25, 0.5, 0.9) of
the computed solution of the shockwave 3D helium bubble interaction test problem at different instants.
Fig. 22. Contour plot of skin friction coefficient on the surface of the NASA
CRM High-Lift model used for the iLES simulation at Reynolds 5.49 Million, and
AoA=21.47◦ .

the performance is measured in terms of the number of physi-
cal timesteps that can be executed within a day (24 hours) and
the actual performance is very close to the theoretical/ideal per-
formance expected. It can also be noticed that parallel efficiency
(defined as the ratio of true speedup over theoretical speedup) re-
mains above 85% up to 131072 cores, which s is indicative of the
good scalability of UCNS3D for iLES. For more detailed benchmarks
and optimisation strategies of UCNS3D the reader is referred to
[41,42,109,110].

7. Conclusions

The open-source CFD code UCNS3D was presented. The code
can solve laminar, transitional, turbulent and multicomponent
flows using mixed-element unstructured meshes. Multiple state-
of-the-art high-order numerical methods incorporated into the
software are useful considering the vastly different computational
requirements of this wide range of challenging problems. We
also describe the requirements for building UCNS3D, including
the open-source software libraries that are available online and
their design. A description of the files, and the code directo-
ries, is provided. We provided a representative set of examples,
including advection of a smooth vortex, shock-entropy waves in-
teraction, iLES of Taylor-Green vortex, RANS of transonic full air-
craft configuration during the cruise, iLES of the SD7003 airfoil,
21
Fig. 23. Strong scalability testing on HLRS-HAWK, using a 240 Million elements
mesh for the NASA CRM High-Lift model and a 4th-order accurate CWENO4 scheme
for an iLES simulation. This run was obtained with the optimum 16 threads per
task, 8 processes per node.

RANS of the Caradonna & Tung rotor, and the multicomponent
shockwave-interaction with a Helium bubble. The parallel perfor-
mance of UCNS3D on a large-scale problem is also assessed, where
it achieves a nearly-ideal parallel computational efficiency at ≈ 105

processors.
Future developments pursued regarding UCNS3D include the

overset mesh interface, addition of the DG framework, hybrid DG-
FV, addition of the 6-equation and 7-equation multicomponent
models, and inclusion of real-gas effects for high-Mach number
flows.

Declaration of competing interest

Declaration of interest: none

Data availability

The datasets associated with the test problems presented
are available at the Cranfield Online Research Data repository
https://doi .org/10 .17862/cranfield .rd .16447212 .v1, https://doi .org/
10 .17862/cranfield .rd .11836164 .v1, https://doi .org/10 .17862/cran
field .rd .8983772 .v1, https://doi .org/10 .17862/cranfield .rd .19146182 .
v1.

https://doi.org/10.17862/cranfield.rd.16447212.v1
https://doi.org/10.17862/cranfield.rd.16447212.v1
https://doi.org/10.17862/cranfield.rd.16447212.v1
https://doi.org/10.17862/cranfield.rd.11836164.v1
https://doi.org/10.17862/cranfield.rd.11836164.v1
https://doi.org/10.17862/cranfield.rd.11836164.v1
https://doi.org/10.17862/cranfield.rd.8983772.v1
https://doi.org/10.17862/cranfield.rd.8983772.v1
https://doi.org/10.17862/cranfield.rd.8983772.v1
https://doi.org/10.17862/cranfield.rd.8983772.v1
https://doi.org/10.17862/cranfield.rd.19146182.v1
https://doi.org/10.17862/cranfield.rd.19146182.v1
https://doi.org/10.17862/cranfield.rd.19146182.v1
https://doi.org/10.17862/cranfield.rd.19146182.v1

A.F. Antoniadis, D. Drikakis, P.S. Farmakis et al. Computer Physics Communications 279 (2022) 108453
Acknowledgements

UCNS3D has been developed over a number of years, and we
would like to thank many people who have made significant con-
tributions. In particular, we would like to thank Anastasiia Shamak-
ina, Anna Mack, Venkata Ayyalasomayajula, and Thomas Ponweiser
for developments associated with the parallel performance opti-
mization, and big data handling. The development and application
of UCNS3D have been supported by several funding bodies includ-
ing EU funding (Grants 314139, 653838, 823767), Engineering and
Physical Sciences Research Council (EPSRC) (grants EP/L000261/1,
EP/P020259/1, EP/G069581/1, EP/T518104/1; award 13794), and
UKRI Innovate UK (Grant 263261). Finally we would like to thank
the reviewers for their recommendations.

References

[1] P. Tsoutsanis, M. Dumbser, Comput. Fluids 225 (2021), https://doi .org /10 .1016 /
j .compfluid .2021.104961.

[2] P. Tsoutsanis, I. Kokkinakis, L. Konozsy, D. Drikakis, R. Williams, D. Youngs,
Comput. Methods Appl. Mech. Eng. 293 (2015) 207–231, https://doi .org /10 .
1016 /j .cma .2015 .04 .010.

[3] F. Ricci, P. Silva, P. Tsoutsanis, A. Antoniadis, Aerosp. Sci. Technol. 97 (2020),
https://doi .org /10 .1016 /j .ast .2019 .105648.

[4] P. Silva, P. Tsoutsanis, A. Antoniadis, Aerosp. Sci. Technol. 111 (2021), https://
doi .org /10 .1016 /j .ast .2021.106518.

[5] M. Dumbser, O. Zanotti, R. Loubére, S. Diot, J. Comput. Phys. 278 (2014) 47–75.
[6] M. Dumbser, M. Kaser, V. Titarev, E. Toro, J. Comput. Phys. 226 (1) (2007)

204–243.
[7] V. Titarev, E. Toro, J. Comput. Phys. 201 (1) (2004) 238–260.
[8] M. Dumbser, W. Boscheri, M. Semplice, G. Russo, SIAM J. Sci. Comput. 39 (6)

(2017) A2564–A2591, https://doi .org /10 .1137 /17M1111036.
[9] J. Zhu, J. Qiu, SIAM J. Sci. Comput. 40 (2018) A903–A928.

[10] Q. Wang, R. Deiterding, J. Pan, Y.-X. Ren, Comput. Fluids 202 (2020), https://
doi .org /10 .1016 /j .compfluid .2020 .104518.

[11] M. Wong, S. Lele, J. Comput. Phys. 339 (2017) 179–209, https://doi .org /10 .
1016 /j .jcp .2017.03 .008.

[12] G. Hu, R. Li, T. Tang, Commun. Comput. Phys. 9 (3) (2011) 627–648.
[13] L. Fu, Comput. Phys. Commun. 244 (2019) 117–131, https://doi .org /10 .1016 /j .

cpc .2019 .06 .013.
[14] L. Fu, X. Hu, N. Adams, J. Comput. Phys. 349 (2017) 97–121, https://doi .org /

10 .1016 /j .jcp .2017.07.054.
[15] L. Fu, X. Hu, N. Adams, J. Comput. Phys. 305 (2016) 333–359, https://doi .org /

10 .1016 /j .jcp .2015 .10 .037.
[16] L. Fu, Comput. Phys. Commun. 235 (2019) 25–39, https://doi .org /10 .1016 /j .

cpc .2018 .10 .009.
[17] S. Clain, S. Diot, R. Loubereé, J. Comput. Phys. 230 (10) (2011) 4028–4050,

https://doi .org /10 .1016 /j .jcp .2011.02 .026.
[18] M. Tavelli, M. Dumbser, J. Comput. Phys. 341 (2017) 341–376.
[19] B. Vermeire, P. Vincent, J. Comput. Phys. 327 (2016) 368–388.
[20] B. Vermeire, F. Witherden, P. Vincent, J. Comput. Phys. 334 (2017) 497–521.
[21] F. Witherden, A. Farrington, P. Vincent, Comput. Phys. Commun. 185 (11)

(2014) 3028–3040, https://doi .org /10 .1016 /j .cpc .2014 .07.011.
[22] P.-O. Persson, J. Peraire, SIAM J. Sci. Comput. 30 (6) (2008) 2709–2733.
[23] R. Moura, G. Mengaldo, J. Peiro, S. Sherwin, J. Comput. Phys. 330 (2017)

615–623, https://doi .org /10 .1016 /j .jcp .2016 .10 .056.
[24] D. De Grazia, G. Mengaldo, D. Moxey, P. Vincent, S. Sherwin, Int. J. Numer.

Methods Fluids 75 (12) (2014) 860–877, https://doi .org /10 .1002 /fld .3915.
[25] N.K. Burgess, D.J. Mavriplis, in: 50th$ AIAA Aerospace Sciences Meeting In-

cluding the New Horizons Forum and Aerospace Exposition, January 2012,
pp. 1–37.

[26] P. Castonguay, P. Vincent, A. Jameson, J. Sci. Comput. 51 (1) (2012) 224–256,
https://doi .org /10 .1007 /s10915 -011 -9505 -3.

[27] Z. Wang, J. Comput. Phys. 178 (1) (2002) 210–251.
[28] Z. Wang, L. Zhang, Y. Liu, J. Comput. Phys. 194 (2) (2004) 716–741.
[29] Z. Wang, Y. Liu, J. Comput. Phys. 179 (2) (2002) 665–697.
[30] Z. Xu, Y. Liu, C.-W. Shu, J. Comput. Phys. 228 (16) (2009) 5787–5802.
[31] C. Breviglieri, A. Maximiliano, E. Basso, J. Azevedo, in: 27th AIAA Applied

Aerodynamics Conference, vol. 79128, 2009.
[32] T. Haga, K. Sawada, Z.J. Wang, Commun. Comput. Phys. 6 (5) (2009) 978–986.
[33] W. Boscheri, M. Semplice, M. Dumbser, Commun. Comput. Phys. 25 (2) (2019)

311–346, https://doi .org /10 .4208 /cicp .OA-2018 -0069.
[34] D. Balsara, C. Altmann, C.-D. Munz, M. Dumbser, J. Comput. Phys. 226 (1)

(2007) 586–620, https://doi .org /10 .1016 /j .jcp .2007.04 .032.
[35] A. Bermúdez, S. Busto, M. Dumbser, J. Ferrín, L. Saavedra, M. Vázquez-Cendón,

J. Comput. Phys. 421 (2020) 109743.
22
[36] M. Dumbser, D. Balsara, E. Toro, C.-D. Munz, J. Comput. Phys. 227 (18) (2008)
8209–8253.

[37] X. Liu, L. Xuan, Y. Xia, H. Luo, Comput. Fluids 152 (2017) 217–230, https://
doi .org /10 .1016 /j .compfluid .2017.04 .027.

[38] H. Jasak, Int. J. Nav. Archit. Ocean Eng. 1 (2) (2009) 89–94, https://doi .org /10 .
3744 /JNAOE .2009 .1.2 .089.

[39] F. Palacios, M. Colonno, A. Aranake, A. Campos, S. Copeland, T. Economon, A.
Lonkar, T. Lukaczyk, T. Taylor, J. Alonso, 2013.

[40] P. Farmakis, P. Tsoutsanis, X. Nogueira, Comput. Methods Appl. Mech. Eng. 363
(2020), https://doi .org /10 .1016 /j .cma .2020 .112921.

[41] T. Ponweiser, P. Tsoutsanis, PRACE-HOVE 1 report, 2017, URL https://prace -ri .
eu /wp -content /uploads /WP222 .pdf.

[42] A. Shamakina, P. Tsoutsanis, PRACE-HOVE 2 report, 2019, URL https://prace -ri .
eu /wp -content /uploads /WP288 .pdf.

[43] P.R. Spalart, S.R. Allmaras, Rech. Aérosp. 1 (1994) 5–21.
[44] N. Nikitin, F. Nicoud, B. Wasistho, K. Squires, P. Spalart, Phys. Fluids 12 (7)

(2000) 1629–1632, https://doi .org /10 .1063 /1.870414.
[45] P. Spalart, S. Deck, M. Shur, K. Squires, M. Strelets, A. Travin, Theor. Comput.

Fluid Dyn. 20 (3) (2006) 181–195, https://doi .org /10 .1007 /s00162 -006 -0015 -
0.

[46] G. Allaire, S. Clerc, S. Kokh, J. Comput. Phys. 181 (2) (2002) 577–616, https://
doi .org /10 .1006 /jcph .2002 .7143.

[47] V. Maltsev, M. Skote, P. Tsoutsanis, Phys. Fluids 34 (2) (2022), https://doi .org /
10 .1063 /5 .0077314.

[48] A. Stroud, Math. Comput. 30 (134) (1976) 291–294, https://doi .org /10 .1090 /
S0025 -5718 -1976 -0391484 -0.

[49] P. Tsoutsanis, V. Titarev, D. Drikakis, J. Comput. Phys. 230 (4) (2011)
1585–1601.

[50] P. Tsoutsanis, A. Antoniadis, D. Drikakis, J. Comput. Phys. 256 (2014) 254–276.
[51] V. Titarev, P. Tsoutsanis, D. Drikakis, Commun. Comput. Phys. 8 (3) (2010)

585–609.
[52] P. Tsoutsanis, D. Drikakis, J. Coupled Syst. Multiscale Dyn. 4 (2016) 170–186,

https://doi .org /10 .1166 /jcsmd .2016 .1104.
[53] A. Antoniadis, P. Tsoutsanis, D. Drikakis, in: 53rd AIAA Aerospace Sciences

Meeting, vol. 0317, 2015.
[54] A. Antoniadis, P. Tsoutsanis, D. Drikakis, in: 42nd AIAA Fluid Dynamics Con-

ference and Exhibit, vol. 2833, 2012.
[55] A. Antoniadis, P. Tsoutsanis, I. Kokkinakis, Z. Rana, D. Drikakis, in: 53rd AIAA

Aerospace Sciences Meeting, vol. 0813, 2015.
[56] A. Antoniadis, D. Drikakis, I.W. Kokkinakis, P. Tsoutsanis, Z. Rana, in: 20th

AIAA International Space Planes and Hypersonic Systems and Technologies
Conference, vol. 3524, 2015.

[57] P. Tsoutsanis, H. Srinivasan, in: ECCOMAS Congress 2016, Crete, Greece, 2016.
[58] P. Tsoutsanis, N. Simmonds, A. Gaylard, in: ECCOMAS Congress 2016, Crete,

Greece, 2016.
[59] P. Tsoutsanis, D. Drikakis, in: ECCOMAS Congress 2016, Crete, Greece, 2016.
[60] N. Simmonds, P. Tsoutsanis, A. Antoniadis, K. Jenkins, A. Gaylard, Appl. Math.

Comput. 336 (2018) 368–393.
[61] P. Tsoutsanis, J. Comput. Phys. 362 (2018) 69–94.
[62] P. Tsoutsanis, J. Comput. Phys. X 4 (2019), https://doi .org /10 .1016 /j .jcpx .2019 .

100037.
[63] A. Jalali, C. Ollivier-Gooch, in: 21st AIAA Computational Fluid Dynamics Con-

ference, 2013.
[64] S. Diot, S. Clain, R. Loubére, Comput. Fluids 64 (2012) 43–63, https://doi .org /

10 .1016 /j .compfluid .2012 .05 .004.
[65] M. Dumbser, M. Castro, C. Pares, E. Toro, Comput. Fluids 38 (9) (2009)

1731–1748.
[66] X. Nogueira, L. Cueto-Felgueroso, I. Colominas, F. Navarrina, M. Casteleiro,

Comput. Methods Appl. Mech. Eng. 199 (37–40) (2010) 2544–2558.
[67] G.W. Stewart, Society for Industrial and Applied Mathematics SIAM, 1998.
[68] T.J. Barth, D.C. Jespersen, 27th Aerospace Sciences Meeting, 1989.
[69] V. Venkatakrishnan, J. Comput. Phys. 118 (1) (1995) 120–130, https://doi .org /

10 .1006 /jcph .1995 .1084.
[70] C. Michalak, C. Ollivier-Gooch, J. Comput. Phys. 228 (23) (2009) 8693–8711.
[71] R. Borges, M. Carmona, B. Costa, W. Don, J. Comput. Phys. 227 (2008)

3191–3211.
[72] M. Castro, B. Costa, W. Don, J. Comput. Phys. 230 (2011) 1766–1792.
[73] J. Zhu, C.-W. Shu, J. Comput. Phys. 406 (2020) 109212.
[74] B. Thornber, A. Mosedale, D. Drikakis, D. Youngs, R. Williams, J. Comput. Phys.

227 (10) (2008) 4873–4894.
[75] C.-D. Munz, S. Roller, R. Klein, K. Geratz, Comput. Fluids 32 (2) (2003)

173–196, https://doi .org /10 .1016 /S0045 -7930(02)00010 -5.
[76] J. Park, C.-D. Munz, Int. J. Numer. Methods Fluids 49 (8) (2005) 905–931,

https://doi .org /10 .1002 /fld .1032.
[77] P. Degond, M. Tang, Commun. Comput. Phys. 10 (1) (2011) 1–31, https://doi .

org /10 .4208 /cicp .210709 .210610a.
[78] S. Boscarino, G. Russo, L. Scandurra, J. Sci. Comput. 77 (2) (2018) 850–884,

https://doi .org /10 .1007 /s10915 -018 -0731 -9.
[79] E. Abbate, A. Iollo, G. Puppo, SIAM J. Sci. Comput. 41 (5) (2019) A2850–A2879,

https://doi .org /10 .1137 /18M1232954.

https://doi.org/10.1016/j.compfluid.2021.104961
https://doi.org/10.1016/j.compfluid.2021.104961
https://doi.org/10.1016/j.cma.2015.04.010
https://doi.org/10.1016/j.cma.2015.04.010
https://doi.org/10.1016/j.ast.2019.105648
https://doi.org/10.1016/j.ast.2021.106518
https://doi.org/10.1016/j.ast.2021.106518
http://refhub.elsevier.com/S0010-4655(22)00172-2/bib2A9404E8F1A7D769522A69B20ECF5BC1s1
http://refhub.elsevier.com/S0010-4655(22)00172-2/bib7656768C48FEAC223236D155721E41D6s1
http://refhub.elsevier.com/S0010-4655(22)00172-2/bib7656768C48FEAC223236D155721E41D6s1
http://refhub.elsevier.com/S0010-4655(22)00172-2/bib7B1CE1BAE94C007693B42FD6F390CBA9s1
https://doi.org/10.1137/17M1111036
http://refhub.elsevier.com/S0010-4655(22)00172-2/bib6AD257234FF26110F900F7399A36E940s1
https://doi.org/10.1016/j.compfluid.2020.104518
https://doi.org/10.1016/j.compfluid.2020.104518
https://doi.org/10.1016/j.jcp.2017.03.008
https://doi.org/10.1016/j.jcp.2017.03.008
http://refhub.elsevier.com/S0010-4655(22)00172-2/bib9F6458CB8D634154956F5255CC5F9624s1
https://doi.org/10.1016/j.cpc.2019.06.013
https://doi.org/10.1016/j.cpc.2019.06.013
https://doi.org/10.1016/j.jcp.2017.07.054
https://doi.org/10.1016/j.jcp.2017.07.054
https://doi.org/10.1016/j.jcp.2015.10.037
https://doi.org/10.1016/j.jcp.2015.10.037
https://doi.org/10.1016/j.cpc.2018.10.009
https://doi.org/10.1016/j.cpc.2018.10.009
https://doi.org/10.1016/j.jcp.2011.02.026
http://refhub.elsevier.com/S0010-4655(22)00172-2/bib2B2B93C9C4111324B2744CFE82DAFAA0s1
http://refhub.elsevier.com/S0010-4655(22)00172-2/bibE11487FC773CF03F3AC704640C6EBA9Bs1
http://refhub.elsevier.com/S0010-4655(22)00172-2/bib2F31C6A50AD793BA4817CC602F3942D1s1
https://doi.org/10.1016/j.cpc.2014.07.011
http://refhub.elsevier.com/S0010-4655(22)00172-2/bib0E4EBDFA30C902131B5812A44B52C544s1
https://doi.org/10.1016/j.jcp.2016.10.056
https://doi.org/10.1002/fld.3915
http://refhub.elsevier.com/S0010-4655(22)00172-2/bib7F69D1A4BD6E3B2FC1A26BE799B5107Fs1
http://refhub.elsevier.com/S0010-4655(22)00172-2/bib7F69D1A4BD6E3B2FC1A26BE799B5107Fs1
http://refhub.elsevier.com/S0010-4655(22)00172-2/bib7F69D1A4BD6E3B2FC1A26BE799B5107Fs1
https://doi.org/10.1007/s10915-011-9505-3
http://refhub.elsevier.com/S0010-4655(22)00172-2/bibBA3A4EE050A6035DA722248219DA478Bs1
http://refhub.elsevier.com/S0010-4655(22)00172-2/bibB3BBF20D444FBF20A8B61E74995BE173s1
http://refhub.elsevier.com/S0010-4655(22)00172-2/bibF82D6685AF264C1C47939E80DDF53E04s1
http://refhub.elsevier.com/S0010-4655(22)00172-2/bib7E59B905D80F66DD36CC55C27078B235s1
http://refhub.elsevier.com/S0010-4655(22)00172-2/bib821117CF7FD9D8E84BF20FEB19B1FF1Es1
http://refhub.elsevier.com/S0010-4655(22)00172-2/bib821117CF7FD9D8E84BF20FEB19B1FF1Es1
http://refhub.elsevier.com/S0010-4655(22)00172-2/bib712FDFFEB2C6AE5CF0F3276B0BA068E4s1
https://doi.org/10.4208/cicp.OA-2018-0069
https://doi.org/10.1016/j.jcp.2007.04.032
http://refhub.elsevier.com/S0010-4655(22)00172-2/bib71F8900DFC50AF10DAC9B43E423282B8s1
http://refhub.elsevier.com/S0010-4655(22)00172-2/bib71F8900DFC50AF10DAC9B43E423282B8s1
http://refhub.elsevier.com/S0010-4655(22)00172-2/bib5639EBD874EC01504D62CE59A0309BB3s1
http://refhub.elsevier.com/S0010-4655(22)00172-2/bib5639EBD874EC01504D62CE59A0309BB3s1
https://doi.org/10.1016/j.compfluid.2017.04.027
https://doi.org/10.1016/j.compfluid.2017.04.027
https://doi.org/10.3744/JNAOE.2009.1.2.089
https://doi.org/10.3744/JNAOE.2009.1.2.089
https://doi.org/10.1016/j.cma.2020.112921
https://prace-ri.eu/wp-content/uploads/WP222.pdf
https://prace-ri.eu/wp-content/uploads/WP222.pdf
https://prace-ri.eu/wp-content/uploads/WP288.pdf
https://prace-ri.eu/wp-content/uploads/WP288.pdf
http://refhub.elsevier.com/S0010-4655(22)00172-2/bibE8180C2C066222582EFEE3D7DD23B77Cs1
https://doi.org/10.1063/1.870414
https://doi.org/10.1007/s00162-006-0015-0
https://doi.org/10.1007/s00162-006-0015-0
https://doi.org/10.1006/jcph.2002.7143
https://doi.org/10.1006/jcph.2002.7143
https://doi.org/10.1063/5.0077314
https://doi.org/10.1063/5.0077314
https://doi.org/10.1090/S0025-5718-1976-0391484-0
https://doi.org/10.1090/S0025-5718-1976-0391484-0
http://refhub.elsevier.com/S0010-4655(22)00172-2/bib122C6285596679019F36D3ABD33E445Ds1
http://refhub.elsevier.com/S0010-4655(22)00172-2/bib122C6285596679019F36D3ABD33E445Ds1
http://refhub.elsevier.com/S0010-4655(22)00172-2/bibA6430518CFED14156682974670A2001As1
http://refhub.elsevier.com/S0010-4655(22)00172-2/bib6D86D953C0365F2BD5A727AC4BD42AC5s1
http://refhub.elsevier.com/S0010-4655(22)00172-2/bib6D86D953C0365F2BD5A727AC4BD42AC5s1
https://doi.org/10.1166/jcsmd.2016.1104
http://refhub.elsevier.com/S0010-4655(22)00172-2/bib1512F39FDC19A99E16A578C4C9417181s1
http://refhub.elsevier.com/S0010-4655(22)00172-2/bib1512F39FDC19A99E16A578C4C9417181s1
http://refhub.elsevier.com/S0010-4655(22)00172-2/bibE90163CA4B96353C57EDD0B19BF17F96s1
http://refhub.elsevier.com/S0010-4655(22)00172-2/bibE90163CA4B96353C57EDD0B19BF17F96s1
http://refhub.elsevier.com/S0010-4655(22)00172-2/bib7B35C6811175788BD93344726BBE8970s1
http://refhub.elsevier.com/S0010-4655(22)00172-2/bib7B35C6811175788BD93344726BBE8970s1
http://refhub.elsevier.com/S0010-4655(22)00172-2/bibD2FBEBC8766B875F4F75C30A12C3B984s1
http://refhub.elsevier.com/S0010-4655(22)00172-2/bibD2FBEBC8766B875F4F75C30A12C3B984s1
http://refhub.elsevier.com/S0010-4655(22)00172-2/bibD2FBEBC8766B875F4F75C30A12C3B984s1
http://refhub.elsevier.com/S0010-4655(22)00172-2/bibB9C620D9EA98DCF516CECFD2DCDEB703s1
http://refhub.elsevier.com/S0010-4655(22)00172-2/bibB8D2C8A52BCB90D35ABDA54A4ADB6014s1
http://refhub.elsevier.com/S0010-4655(22)00172-2/bibB8D2C8A52BCB90D35ABDA54A4ADB6014s1
http://refhub.elsevier.com/S0010-4655(22)00172-2/bib05BDC1709285C05566CA6EFEE99DD3CAs1
http://refhub.elsevier.com/S0010-4655(22)00172-2/bibCEDD5ED496F3519954278ED8F0414DC4s1
http://refhub.elsevier.com/S0010-4655(22)00172-2/bibCEDD5ED496F3519954278ED8F0414DC4s1
http://refhub.elsevier.com/S0010-4655(22)00172-2/bibF84C8AA7EDBBEBA2C7C77432747B114Es1
https://doi.org/10.1016/j.jcpx.2019.100037
https://doi.org/10.1016/j.jcpx.2019.100037
http://refhub.elsevier.com/S0010-4655(22)00172-2/bibDE8F5CAAE705E5C5CE0009AA4247D000s1
http://refhub.elsevier.com/S0010-4655(22)00172-2/bibDE8F5CAAE705E5C5CE0009AA4247D000s1
https://doi.org/10.1016/j.compfluid.2012.05.004
https://doi.org/10.1016/j.compfluid.2012.05.004
http://refhub.elsevier.com/S0010-4655(22)00172-2/bibE69A8F8C1F124C919D00104472E064C9s1
http://refhub.elsevier.com/S0010-4655(22)00172-2/bibE69A8F8C1F124C919D00104472E064C9s1
http://refhub.elsevier.com/S0010-4655(22)00172-2/bib55270DD18C98418F3BE1D1D6DA1649D0s1
http://refhub.elsevier.com/S0010-4655(22)00172-2/bib55270DD18C98418F3BE1D1D6DA1649D0s1
http://refhub.elsevier.com/S0010-4655(22)00172-2/bib66C35CD8077F7E1DB5FAEFBC048A646As1
http://refhub.elsevier.com/S0010-4655(22)00172-2/bib2444262AA020AB9A1E39B4AC5CDABB51s1
https://doi.org/10.1006/jcph.1995.1084
https://doi.org/10.1006/jcph.1995.1084
http://refhub.elsevier.com/S0010-4655(22)00172-2/bib901738DCE02EB9B5BD26604A5E101513s1
http://refhub.elsevier.com/S0010-4655(22)00172-2/bib5AEE7CCCCEA4F56C878157B101F3C6C9s1
http://refhub.elsevier.com/S0010-4655(22)00172-2/bib5AEE7CCCCEA4F56C878157B101F3C6C9s1
http://refhub.elsevier.com/S0010-4655(22)00172-2/bib3CDB52D8D20A31324750AC6974259376s1
http://refhub.elsevier.com/S0010-4655(22)00172-2/bib3939931F8598B4ED093F7C31A5A2B5D9s1
http://refhub.elsevier.com/S0010-4655(22)00172-2/bibEAB67A87B65354B8749939C750CA2125s1
http://refhub.elsevier.com/S0010-4655(22)00172-2/bibEAB67A87B65354B8749939C750CA2125s1
https://doi.org/10.1016/S0045-7930(02)00010-5
https://doi.org/10.1002/fld.1032
https://doi.org/10.4208/cicp.210709.210610a
https://doi.org/10.4208/cicp.210709.210610a
https://doi.org/10.1007/s10915-018-0731-9
https://doi.org/10.1137/18M1232954

A.F. Antoniadis, D. Drikakis, P.S. Farmakis et al. Computer Physics Communications 279 (2022) 108453
[80] S. Busto, M. Tavelli, W. Boscheri, M. Dumbser, Comput. Fluids 198 (2020),
https://doi .org /10 .1016 /j .compfluid .2019 .104399.

[81] S. Busto, L. Rio-Martin, M. Vazquez-Cendon, M. Dumbser, Appl. Math. Comput.
402 (2021), https://doi .org /10 .1016 /j .amc .2021.126117.

[82] F. Rieper, G. Bader, J. Comput. Phys. 228 (8) (2009) 2918–2933.
[83] J. Fernández-Fidalgo, X. Nogueira, L. Ramírez, I. Colominas, Comput. Methods

Appl. Mech. Eng. 335 (2018) 91–127.
[84] P.A. Silva, P. Tsoutsanis, A. Antoniadis, Aerosp. Sci. Technol. 122 (2) (2022),

https://doi .org /10 .1016 /j .ast .2022 .107401.
[85] E. Toro, M. Spruce, W. Speares, Shock Waves 4 (1) (1994) 25–34.
[86] E. Toro, Shock Waves 29 (2019) 1065–1082.
[87] P. Roe, J. Comput. Phys. 43 (2) (1981) 357–372, https://doi .org /10 .1016 /0021 -

9991(81)90128 -5.
[88] V. Rusanov, USSR Comput. Math. Math. Phys. 1 (1961) 267–279.
[89] L. Ivan, C. Groth, J. Comput. Phys. 257 (PA) (2014) 830–862, https://doi .org /10 .

1016 /j .jcp .2013 .09 .045.
[90] H. Nishikawa, Comput. Fluids 49 (2011) 62–86.
[91] A. Jalali, M. Sharbatdar, C. Ollivier-Gooch, Comput. Fluids 101 (2014) 220–232.
[92] G. Gassner, F. Lorcher, C. Munz, J. Comput. Phys. 224 (2) (2007) 1049–1063.
[93] S. Gottlieb, C.-W. Shu, Math. Comput. 67 (221) (1998) 73–85, https://doi .org /

10 .1090 /S0025 -5718 -98 -00913 -2.
[94] S. Yoon, A. Jameson, AIAA J. 26 (9) (1988) 1025–1026.
[95] A. Jameson, S. Yoon, AIAA J. 25 (7) (1987) 929–935.
[96] I. Men’shov, Y. Nakamura, in: A Collection of Technical Papers of 6th Int.

Symp. on CFD, vol. 2, Lake Tahoe, Nevada, 1995, p. 815.
[97] I. Men’shov, Y. Nakamura, Comput. Fluids 29 (6) (2000) 595–616.
[98] H. Luo, J. Baum, R. Lohner, J. Comput. Phys. 146 (2) (1998) 664–690.
[99] M. Petrov, A. Tambova, V. Titarev, S. Utyuzhnikov, A. Chikitkin, Comput. Math.

Math. Phys. 58 (11) (2018) 1865–1886.
[100] P. Batten, M. Leschziner, U. Goldberg, J. Comput. Phys. 137 (1) (1997) 38–78.
[101] R.J. Spiteri, S.J. Ruuth, SIAM J. Numer. Anal. 40 (2) (2002) 469–491.
[102] A. Jameson, AIAA paper 6 (1991-1596), 1991, https://doi .org /10 .2514 /6 .1991 -

1596.
[103] E. Johnsen, T. Colonius, J. Comput. Phys. 219 (2) (2006) 715–732, https://doi .

org /10 .1016 /j .jcp .2006 .04 .018.
[104] MPI, https://www.mpi -forum .org /docs /mpi -4 .0 /mpi40 -report .pdf. (Ac-

cessed 10 October 2021).
[105] OpenMP, https://www.openmp .org/. (Accessed 10 October 2021).
[106] BLAS, http://www.netlib .org /blas/. (Accessed 10 October 2021).
[107] K. G., Encyclopedia of parallel computing, https://doi .org /10 .1007 /978 -0 -387 -

09766 -4 _500, 2011.
[108] TecIO, https://www.tecplot .com /products /tecio -library/. (Accessed 10 October

2021).
[109] P. Tsoutsanis, A. Antoniadis, K. Jenkins, Comput. Fluids 173 (2018) 157–170,

https://doi .org /10 .1016 /j .compfluid .2018 .03 .012.
[110] P. Tsoutsanis, ARCHER performance report, 2017, pp. 157–170, URL www.

archer.ac .uk /community /benchmarks /archer-knl /KNLperfUCNS3D .pdf.
[111] Tecplot, https://www.tecplot .com. (Accessed 10 October 2021).
[112] Paraview, https://www.paraview.org. (Accessed 10 October 2021).

[113] Visit, https://visit -dav.github .io /visit -website/. (Accessed 10 October 2021).
[114] D. Balsara, C.-W. Shu, J. Comput. Phys. 160 (2) (2000) 405–452.
[115] C.-W. Shu, S. Osher, J. Comput. Phys. 83 (1) (1989) 32–78.
[116] D. Drikakis, C. Fureby, F. Grinstein, D. Youngs, J. Turbul. 8 (2007) 1–12.
[117] J. Bull, A. Jameson, AIAA J. 53 (9) (2015) 2750–2761.
[118] M. Dumbser, I. Peshkov, E. Romenski, O. Zanotti, J. Comput. Phys. 314 (2016)

824–862.
[119] J.-B. Chapelier, M. de la Llave Plata, E. Lamballais, Comput. Methods Appl.

Mech. Eng. 307 (2016) 275–299.
[120] A. Sifounakis, S. Lee, D. You, J. Comput. Phys. 326 (2016) 845–861.
[121] C.-W. Shu, W.-S. Don, D. Gottlieb, O. Schilling, L. Jameson, J. Sci. Comput.

24 (1) (2005) 569–595.
[122] M. Brachet, D. Meiron, B. Nickel, R. Morf, U. Frisch, S. Orszag, J. Fluid Mech.

130 (1983) 411–452, https://doi .org /10 .1017 /S0022112083001159.
[123] J. Vassberg, E. Tinoco, M. Mani, B. Rider, T. Zickuhr, D. Levy, O. Brodersen, B.

Eisfeld, S. Crippa, R. Wahls, J. Morrison, D. Mavriplis, M. Murayama, J. Aircr.
51 (4) (2014) 1070–1089, https://doi .org /10 .2514 /1.C032418.

[124] D. Levy, K. Laflin, E. Tinoco, J. Vassberg, M. Mani, B. Rider, C. Rumsey, R. Wahls,
J. Morrison, O. Brodersen, S. Crippa, D. Mavriplis, M. Murayama, 2013.

[125] A.F. Antoniadis, P. Tsoutsanis, D. Drikakis, Comput. Fluids 146 (2017) 86–104,
https://doi .org /10 .1016 /j .compfluid .2017.01.002.

[126] ANSYS, URL www.ansys .com /en -gb /training -center, 2021.
[127] ANSYS, URL www.ansys .com /en -gb /training -center, 2021.
[128] D. Garmann, M. Visbal, P. Orkwis, Int. J. Numer. Methods Fluids 71 (12) (2013)

1546–1565.
[129] A. Beck, T. Bolemann, D. Flad, H. Frank, G. Gassner, F. Hindenlang, C.-D. Munz,

Int. J. Numer. Methods Fluids 76 (8) (2014) 522–548.
[130] F.X. Caradonna, C. Tung, NASA Technical Memorandum 81232, 1981.
[131] M. Costes, T. Renaud, B. Rodriguez, Int. J. Comput. Fluid Dyn. 26 (6–8) (2012)

383–405.
[132] N. Hariharan, A. Wissink, M. Steffen, M. Potsdam, in: 49th AIAA Aerospace Sci-

ences Meeting Including the New Horizons Forum and Aerospace Exposition,
American Institute of Aeronautics and Astronautics, Reston, Virginia, 2011.

[133] J.D. Kocurek, J.L. Tangler, J. Am. Helicopter Soc. 22 (1) (1977) 24–35.
[134] A. Gardner, C. Wolf, M. Raffel, Prog. Aerosp. Sci. (2019) 100566.
[135] S.L. Wood, J.G. Coder, N.S. Hariharan, in: 2018 AIAA Aerospace Sciences Meet-

ing, American Institute of Aeronautics and Astronautics, Reston, Virginia,
2018.

[136] V. Coralic, T. Colonius, J. Comput. Phys. 274 (2014) 95–121, https://doi .org /10 .
1016 /j .jcp .2014 .06 .003.

[137] A. Bagabir, D. Drikakis, Shock Waves 11 (2001) 209–218.
[138] J. Haas, B. Sturtevant, J. Fluid Mech. 181 (1987) 41–76, https://doi .org /10 .

1017 /S0022112087002003.
[139] P. Tsoutsanis, E.M. Adebayo, A. Carriba Merino, A. Perez Arjona, M. Skote, J.

Sci. Comput. 89 (2021), https://doi .org /10 .1007 /s10915 -021 -01673 -y.
[140] H. Terashima, G. Tryggvason, J. Comput. Phys. 228 (11) (2009) 4012–4037,

https://doi .org /10 .1016 /j .jcp .2009 .02 .023.
[141] J. Quirk, S. Karni, J. Fluid Mech. 318 (1996) 129–163, https://doi .org /10 .1017 /

S0022112096007069.
23

https://doi.org/10.1016/j.compfluid.2019.104399
https://doi.org/10.1016/j.amc.2021.126117
http://refhub.elsevier.com/S0010-4655(22)00172-2/bib7DD39833551247E132B0EFA66319DF82s1
http://refhub.elsevier.com/S0010-4655(22)00172-2/bib93B499D4D1C597BA8636D499158739BEs1
http://refhub.elsevier.com/S0010-4655(22)00172-2/bib93B499D4D1C597BA8636D499158739BEs1
https://doi.org/10.1016/j.ast.2022.107401
http://refhub.elsevier.com/S0010-4655(22)00172-2/bib02564D34DF465F7FC38B11B70EAB704Fs1
http://refhub.elsevier.com/S0010-4655(22)00172-2/bib13B64E4116EA9CE67C8688CC93C1599Es1
https://doi.org/10.1016/0021-9991(81)90128-5
https://doi.org/10.1016/0021-9991(81)90128-5
http://refhub.elsevier.com/S0010-4655(22)00172-2/bib1DCE9DA3B041657E5EA82B8F2A23B5DCs1
https://doi.org/10.1016/j.jcp.2013.09.045
https://doi.org/10.1016/j.jcp.2013.09.045
http://refhub.elsevier.com/S0010-4655(22)00172-2/bibEAC873E7039579FA26570AFB651D5685s1
http://refhub.elsevier.com/S0010-4655(22)00172-2/bib83029AA4CCDB805068DCF820E2B7B105s1
http://refhub.elsevier.com/S0010-4655(22)00172-2/bib16466DEDA9DEED2162B8B26E195E86B0s1
https://doi.org/10.1090/S0025-5718-98-00913-2
https://doi.org/10.1090/S0025-5718-98-00913-2
http://refhub.elsevier.com/S0010-4655(22)00172-2/bibF1106692CE054DCA83CEC10EFFFB33CDs1
http://refhub.elsevier.com/S0010-4655(22)00172-2/bib62DA5545DB8D0BA4BCC0BC7275FDD175s1
http://refhub.elsevier.com/S0010-4655(22)00172-2/bibA64D65641275EA7D1D18769F2990687Es1
http://refhub.elsevier.com/S0010-4655(22)00172-2/bibA64D65641275EA7D1D18769F2990687Es1
http://refhub.elsevier.com/S0010-4655(22)00172-2/bib2D87D74342631F49754FD6D7904BC3D9s1
http://refhub.elsevier.com/S0010-4655(22)00172-2/bibCBD2D372E2BA36A68C4F310AAF5DEA9Ds1
http://refhub.elsevier.com/S0010-4655(22)00172-2/bib1D991E06AB51507B86F7B0AAFF8F69C7s1
http://refhub.elsevier.com/S0010-4655(22)00172-2/bib1D991E06AB51507B86F7B0AAFF8F69C7s1
http://refhub.elsevier.com/S0010-4655(22)00172-2/bibA73BBB4B087B316EC9A02C03010A9945s1
http://refhub.elsevier.com/S0010-4655(22)00172-2/bibBAD9A1290F5C1F0051066367C25126C7s1
https://doi.org/10.2514/6.1991-1596
https://doi.org/10.2514/6.1991-1596
https://doi.org/10.1016/j.jcp.2006.04.018
https://doi.org/10.1016/j.jcp.2006.04.018
https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf
https://www.openmp.org/
http://www.netlib.org/blas/
https://doi.org/10.1007/978-0-387-09766-4_500
https://doi.org/10.1007/978-0-387-09766-4_500
https://www.tecplot.com/products/tecio-library/
https://doi.org/10.1016/j.compfluid.2018.03.012
http://www.archer.ac.uk/community/benchmarks/archer-knl/KNLperfUCNS3D.pdf
http://www.archer.ac.uk/community/benchmarks/archer-knl/KNLperfUCNS3D.pdf
https://www.tecplot.com
https://www.paraview.org
https://visit-dav.github.io/visit-website/
http://refhub.elsevier.com/S0010-4655(22)00172-2/bibADE905F299673ED8CADD4C30A923D513s1
http://refhub.elsevier.com/S0010-4655(22)00172-2/bib69555548B143E37599C411F4B1CC10BDs1
http://refhub.elsevier.com/S0010-4655(22)00172-2/bibD27E7EB4836855B2C35AB609D1284661s1
http://refhub.elsevier.com/S0010-4655(22)00172-2/bib81BEB6DDD8BDC0916DE2FCF4A14FA8E9s1
http://refhub.elsevier.com/S0010-4655(22)00172-2/bibF7B71AC39BA914447D7EAFDEF8AA05E8s1
http://refhub.elsevier.com/S0010-4655(22)00172-2/bibF7B71AC39BA914447D7EAFDEF8AA05E8s1
http://refhub.elsevier.com/S0010-4655(22)00172-2/bib1087B609A9B207FCE01E23848BBB360As1
http://refhub.elsevier.com/S0010-4655(22)00172-2/bib1087B609A9B207FCE01E23848BBB360As1
http://refhub.elsevier.com/S0010-4655(22)00172-2/bib3712107954F0AD0CDE4D7E04F7AADE75s1
http://refhub.elsevier.com/S0010-4655(22)00172-2/bib36478EA829AAA82B141BBE0EA0FA126Bs1
http://refhub.elsevier.com/S0010-4655(22)00172-2/bib36478EA829AAA82B141BBE0EA0FA126Bs1
https://doi.org/10.1017/S0022112083001159
https://doi.org/10.2514/1.C032418
https://doi.org/10.1016/j.compfluid.2017.01.002
http://www.ansys.com/en-gb/training-center
http://www.ansys.com/en-gb/training-center
http://refhub.elsevier.com/S0010-4655(22)00172-2/bib735DAF208567FEF8B4D710DB2483108Bs1
http://refhub.elsevier.com/S0010-4655(22)00172-2/bib735DAF208567FEF8B4D710DB2483108Bs1
http://refhub.elsevier.com/S0010-4655(22)00172-2/bib58F1E7C5B3BAE12D9EE709D65851DD04s1
http://refhub.elsevier.com/S0010-4655(22)00172-2/bib58F1E7C5B3BAE12D9EE709D65851DD04s1
http://refhub.elsevier.com/S0010-4655(22)00172-2/bib863206C60CC45C5CB2632F7951A1F6AFs1
http://refhub.elsevier.com/S0010-4655(22)00172-2/bib80B04A139547AFF1608DADC51D968AD0s1
http://refhub.elsevier.com/S0010-4655(22)00172-2/bib80B04A139547AFF1608DADC51D968AD0s1
http://refhub.elsevier.com/S0010-4655(22)00172-2/bibF74028987CCF09BEAA90DA1EC8E875F4s1
http://refhub.elsevier.com/S0010-4655(22)00172-2/bibF74028987CCF09BEAA90DA1EC8E875F4s1
http://refhub.elsevier.com/S0010-4655(22)00172-2/bibF74028987CCF09BEAA90DA1EC8E875F4s1
http://refhub.elsevier.com/S0010-4655(22)00172-2/bib3F6F146B63097160F4DC597337E91049s1
http://refhub.elsevier.com/S0010-4655(22)00172-2/bibA89EA0E723DC15BC49D8728590ABA98Es1
http://refhub.elsevier.com/S0010-4655(22)00172-2/bib6D871550F0B6192CBA95ACC879345E07s1
http://refhub.elsevier.com/S0010-4655(22)00172-2/bib6D871550F0B6192CBA95ACC879345E07s1
http://refhub.elsevier.com/S0010-4655(22)00172-2/bib6D871550F0B6192CBA95ACC879345E07s1
https://doi.org/10.1016/j.jcp.2014.06.003
https://doi.org/10.1016/j.jcp.2014.06.003
http://refhub.elsevier.com/S0010-4655(22)00172-2/bibFD3318B3AE9046E98FFF075A8C9F3BB7s1
https://doi.org/10.1017/S0022112087002003
https://doi.org/10.1017/S0022112087002003
https://doi.org/10.1007/s10915-021-01673-y
https://doi.org/10.1016/j.jcp.2009.02.023
https://doi.org/10.1017/S0022112096007069
https://doi.org/10.1017/S0022112096007069

	UCNS3D: An open-source high-order finite-volume unstructured CFD solver
	1 Introduction
	2 Governing equations
	2.1 Linear advection equation
	2.2 Navier-Stokes equations
	2.3 Reynolds-Averaged Navier-Stokes equations
	2.4 Multiple reference framework
	2.5 5-equation multicomponent model

	3 Numerical framework
	3.1 Spatial discretisation
	3.1.1 Central
	3.1.2 MUSCL
	3.1.3 WENO
	3.1.4 CWENO
	3.1.5 CWENOZ

	3.2 Low-Mach number treatment
	3.3 MOOD
	3.4 Rotating frame domain decomposition
	3.5 Fluxes approximation
	3.6 Temporal discretisation
	3.6.1 Steady simulations
	3.6.2 Unsteady simulations

	3.7 Source terms

	4 Overview and features
	4.1 Package installation
	4.2 Features
	4.3 Code structure
	4.4 Description of input/output files
	4.5 Implementation
	4.5.1 Geometry
	4.5.2 Polynomials
	4.5.3 Reconstruction
	4.5.4 Initialisation
	4.5.5 Advance
	4.5.6 Flow
	4.5.7 Generic operations

	5 Selected examples
	5.1 Vortex evolution
	5.2 Shu-Osher problem
	5.3 iLES of Taylor Green vortex Re=1600
	5.4 RANS of NASA CRM
	5.5 iLES of SD7003 aerofoil
	5.6 Caradonna & Tung rotor
	5.7 Helium bubble shock wave

	6 Parallel performance
	7 Conclusions
	Declaration of competing interest
	Data availability
	Acknowledgements
	References

