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Abstract

Artificial Neural Networks (ANN) and Machine
Learning (ML) currently also known as Deep
Learning (DL) became more and more important
in industrial applications during the last decade.
This is due to new possibilities by strongly in-
creased available computational power in connec-
tion with a renaissance of ANN in terms of so
called Deep Learning (DL). As DL requires espe-
cially for Big Data extreme computational power,
the question of resource preserving methods came
recently into the focus. Also, the often propagated
intelligence of DL resp. ”Cognitive Computing”
in terms of contextual information processing is
more often discussed since it is effectively missed
in DL solutions. One option to overcome both
challenges might be the third generation of ANNs:
Spiking Neural Networks (SNN). But since SNN
training methods are slow compared to DL learning
algorithms, the question of the way how to learn
SNNs arose. We will discuss different aspects of
learning algorithms for SNNs: Is it useful to adopt
DL learning algorithms to SNN or not, especially
if one will preserve the ”cognitive” functions of
SNNs?

Keywords: Spiking Neural Networks, Learning
Algorithms, STDP, Hebbian Learning, Artificial
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1 MOTIVATION AND
PROBLEM STATEMENT

Currently, we can observe the 3rd heyday of Arti-
ficial Neural Networks (ANN) which leaded to the
current hype of Artificial Intelligence, especially
represented by the so called Deep Learning (DL).
Following the first works from McCulloch and
Pitts in 1943 [19] and the first decline initially due
to the work of Perceptrons by Minsky and Papert
in 1969 [20], several remarkable basic learning al-
gorithms have been developed during the 70’s and
80’s (e.g. Hopfield nets [11], Self-Organised Fea-
ture Maps [15] or Neocognitron [3] to name just a

few) before the second heyday started with the in-
troduction of Backpropagation [24] end of the 80’s
and during the 90’s. Remarkable for this period:
Ivakhnenko developed the Group Handling of data
Method (GMDH) [13] showing an option for the
training of multilayer networks, nowadays known
as Deep Learning. In this period falls as well the
these days often used Long-Short-Term-Memory
LSTM [9] for time-dependent data such as used in
speech recognition - in my perspective one of the
last really novel approaches within ANN.

Even though this period was very successful from
a scientific point of view especially regarding the
demonstration of different learning algorithms,
the real break through towards industrial appli-
cations didn’t occurred. The simple reason for
that: the computational power was at that time
not enough to achieve fast and reliable results
in relative short training time. Thus the high
promises already postulated in the 60’s such as
e.g. the singularity point (1961 one predicted, that
in 10 or 15 years later, machines will be as intelli-
gent as humans [23]) couldn’t be fulfilled one more
time. Despite several efforts to speed up compu-
tation for ANNs in the 90’s like e.g. MA16 [25],
KOBOLD [1] or CNAPS [4], the development of
general purpose architecture overtook these spe-
cialised architectures simply by the number of hu-
man resources involved in the development. Thus,
the computational speed for ANNs still depended
on the speed of general purpose architecture re-
sulting in another lean period for ANNs end of
the 90’s.

Starting during the middle of the first decade in
the 21st century, a second renaissance of ANNs
leading to DL was mainly driven by new com-
puter architectures and high performance comput-
ing making it possible to learn in short and ac-
ceptable time frames even for deep structures with
multiple layers and big data sets as well. Due to
this technical advance, researcher remembered the
roots of ANNs: the neurological system - and thus
how the brain is built by neurons - as a paragon.
The main idea is, that every problem can be solved
if one uses enough neurons in order to mimic the
abilities of at least parts of the brain to some ex-
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tent. Consequently, a huge number of artificial
neurons in several hidden layers were introduced
and combined with advanced learning algorithms
and it’s variations leading to DL in order to mimic
such brain structures. As the spiral of advances in
both areas - computer architecture and big data
processing - are still ongoing and promoted by big
companies, we are nowadays in the third heyday
of ANNs resp. DL or more subsumed as Artificial
Intelligence (AI).

The last years have shown, that DL based ap-
proaches are extremely successful for solving in-
dustrial problems especially for big data applica-
tions as long as the learning data show the prob-
lems well enough. This is due to the fact, that we
use in general a parameter based training what
leads at the end to a system, that fits it’s weights
on the statistical distributions of the presented
data very well. Thus, this approach will fail, if
abilities of brains such as e.g. contextual informa-
tion processing, curiosity or cognition come into
the play to solve problems. He et al. stated that
classical ANNs and DL performing very well in
several applications fields, such as e.g. image pro-
cessing or speech recognition, but they fail in gen-
eral when it is about contextual information [7].
Same can be observed as well in other domains
like control or disease prediction. In my opinion,
classical ANN/DL are unable to compete with hu-
man decision findings based on experience always
in the moment we need kind of human cognition
in its most literally sense.

In order to tackle that challenge, the so called
third generation of artificial neural networks are
an auspicious option: Spiking Neural Networks
(SNN) [17]. But, compared to DL, SNN have a
severe drawback: Neurological plausible learning
is in comparison extremely slow, even though they
are comparable or even outperform DL at least
once they are trained correctly. In the following
sections, after a short introduction to SNN, the
pros and cons of SNNs are discussed also in the
light of its originally application of simulating the
neural system to gain new insights versus its now
upcoming industrials applications especially from
the point of view of learning algorithms. The pa-
per will close with a discussion in the sense to give
an thought-provoking impulse towards the philos-
ophy using training algorithms for SNN.

2 SPIKING NEURAL
NETWORKS

In contrast to ANNs, which are based on math-
ematical abstract and relative simple models of
biological neurons, Spiking Neural Networks were
originally developed in order to better understand

brain mechanisms and simulate neural tissue resp.
populations of neurons in the brain. A very good
overview of the basic related papers and ideas
also discussing the first and second generations of
ANNs is given in [17]. In order to simulate the
neurological conditions and circumstances, differ-
ent approaches from highly precise and complex
ones towards more simplified ones have been de-
veloped. The challenge for these models are to
find the balance between precise models to under-
stand the mechanism down to the ionic currents in
cells and computational easier models still incor-
porating detailed functions while not loosing the
originary properties of neuromorphic information
processing.

Probably one of the most known models for a pre-
cise reproduction down to ionic currents in the cell
is the Hodgkin-Huxley-model [10]. The idea is to
divide the cell membrane into compartments sim-
ulating the properties of ion currents via an elec-
trical equivalent circuit whereas the behaviour of
the current for each ion are described via resistors
and capacitors individually for each compartment.
The equivalent circuit can be described by differ-
ential equations. Consequently, by combing the
different compartments a complete cell can be re-
constructed and thus simulated. Obviously, this
approach is a very complex one and consumes a
lot of computational power.

In order to overcome the problem of complex-
ity and required computational power Izhekevich
developed another commonly used approach [12].
He simplified the Hodgkin-Huxley-model towards
two differential equations representing one neuron.
Herein, he introduced 4 variables which can be
tuned in the sense of simulating every type of bi-
ological neurons.

Apart from the above described approaches, the
probably most prominent model used for SNNs in
a more common sense apart from pure simulation
of the brain tissues is the Leaky-Integrate-and-
Fire neuron (LIaF) [6], which will be introduced
in the following subsection.

2.1 BASICS OF
LEAKY-INTEGRATE-AND-FIRE
NEURONS FOR SNN

The LIaF is depicted as well by an electrical
equivalent circuit representing the ensemble of a
synapse and the soma of a neuron as is shown in
figure 1. Via the synapse(s) input current(s) rep-
resenting an action potential from different pre-
ceding neurons is incorporated tot he model. As
the neurological information processing systems
don’t know numbers, the corresponding action po-
tentials depending on their firing points in time
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Figure 1: Electrical equivalent circuit of an Leaky-
Integrate-and-Fire Neuron. Adopted from [6]

are represented by Diracs. Indeed, the informa-
tion in biological neural networks is coded via the
occurrence of action potentials in the course of
time - what completely differ from the method we
use in current computer architecture. Thus, SNNs
incorporate time dependence intrinsic.

In figure 1 on the left hand side, the equivalent cir-
cuit of a synapse is shown. It represents a simple
low pass filter in order to transform the Dirac into
a time-smoothed signal more similar to an incom-
ing action potential. The soma on the right hand
side of figure 1 is depicted by a parallel circuit of
a resistance and a capacitor. Every time a spike
arrives via the synapse, the capacitor is charged
- the integrative part of the model. The voltage
of the capacitor is analogue to the membrane po-
tential of a neuron. Once the voltage exceed a
certain threshold, the discriminator emits a spike
and the voltage of the capacitor is reset to zero.
The charge of the capacitor is discharged all the
time via the resistance in parallel - the leaky part
of the model. The leaky part is the analogue for
the sodium-potassium pump responsible to dis-
charge the biological neuron towards its resting
membrane potential. This simple circuit can be
easily described with differential equations, and by
changing the values of R and C individual different
types of neurons can be - roughly spoken - simu-
lated. For its simplicity the LIaF is probably the
most prominent model for SNNs at the moment.
In addition, the model can easily be extended e.g.
for more realistic synaptic models like the Modi-
fied Stochastic Synaptic Model (MSSM) [2].

2.2 ADVANTAGES AND
DRAWBACKS

In comparison with ANNs there are several ad-
vantages, but also drawbacks for SNNs. Before
disclosing these arguments, please remark an im-
portant information: Regarding the performance
resp. accuracy SNNs are not inferior to ANNs but
often even better. In [26] SNNs have shown com-
parable results to ANN and ML for the classifica-
tion of the Iris data set. Same has been shown
for the MNIST data set in comparison with a
CNN [16], whereas the letters have been recorded
with a retinomorphic data set [22] for the SNN.

Thus, from this point of view, both approaches
are on an equal footing.

Nevertheless, several advantages of SNNs can be
listed. First of all, due to the intrinsic information
representation of SNNs, the communication be-
tween the neurons are easier to realise in hardware:
SNNs are requiring only one bit for the communi-
cation instead of 64 or higher bit numbers for cur-
rent data representations via modern data bus sys-
tems. Thus, in principle, the connection structure
that can be formed might be much more complex
for SNNs than for ANNs. As well, since natural
systems are built for energy efficiency, power con-
sumption of SNN is intrinsic lower. Consequently,
on the equal chip surface more and complexer net-
works might be implemented compared to ANNs.
Most important, but still not finally proofed is the
hypothesis, that SNNs will perform better in cases
where data contains contextual information or if
cognitive abilities are needed to solve a problem.

Despite all the named advantages, SNNs have
some drawback as well: Training algorithms for
SNNs are less effective and less elaborated in com-
parison to ANNs. In addition, real neuromor-
phic hardware to speed up training algorithms for
SNNs taking into account the named advantages
are still rare [21]. Moreover, since the coding of
data in industrial applications is due to missing
neuromorphic sensors not appropriate for the in-
formation processing coded via spike trains, the
recorded data have to be converted first into an ac-
cording spike train representation for further pro-
cessing with SNNs - and the outcome as well back
to a numerous representation.

3 LEARNING FOR SPIKING
NEURAL NETWORKS

Although the problem of hardware to speed up
SNN is an important issue also related to train-
ing [21] in general, this paper focuses on the is-
sue of training algorithms for SNNs and not their
hardware implementation. For this, current learn-
ing strategies will be shown in the next subsec-
tions. In general, two trends can be observed:
Adopting well known training algorithms from
ANNs to SNNs or the use of neurological inspired
learning algorithms. For both options, the prob-
lem of transforming the data into a SNN-conform
data representation will be neglected at this point
and assumed as being solved in an applicable way.

3.1 NEUROLOGICAL PLAUSIBLE
LEARNING ALGORITHMS

A classical training method for ANNs was origi-
nally derived from Neurology and thus is also used
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for SNNs: the Hebbian Learning rule [8], based
on the idea of correlated learning by James [14]
in 1890, also known as what fire together, wire to-
gether. That means, when the pre-synaptic neu-
ron is firing in correlation with the connected post-
synaptic neuron, the connection between the two
neurons is strengthen. But, following the Hebbian
Learning rule would mean, that connections will
only be strengthen, what is contradictory to na-
ture and to learning in general. Learning means
also the ability to weaken connections. Therefore,
the rate-based Hebbian Learning rule has been
developed [28, 6]. Herein the weakening of the
synaptic connection is not only implemented in
the moment of learning, but also while not using
a synapse over a longer time period. By applying
this approach not only SNNs but also ANNs can
be trained - but not as efficient in terms of training
time as known for training algorithms from ANN,
since the convergence towards the optimal efficient
state of the synapses (the paragon in ANNs would
be the weights) evolves in relation to ANN train-
ing algorithms quite slow.

Looking on Hebbian Learning, the correlation in
time of Diracs from pre- to post-synaptic neu-
rons is not really included neither in the sense of
strengthen or weakening the connections between
both neurons. Thus, to introduced this neurolog-
ical effect as well, Spike-Timing-Dependent Plas-
ticity (STDP) [18, 6] has been introduced. Herein
the change of the transmission efficiency between
the neurons via the connecting synapse is mod-
ulated in form of an exponential functions de-
pending on the time difference of the occurrence
of spike in the pre- and postsynaptic neuron as
shown in figure 2. More specific, the shorter the
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Figure 2: Spike-Timing-Dependent Plasticity
STDP. The transmission efficiency between two
neurons depends on the correlated spike occur-
rence of connected neurons pre and post.

time slot between pre- and postsynaptic spike, the
stronger is the change of transmission efficiency in
terms of strengthen it until the exact point of syn-
chronicity is reached resulting in a maximum pos-
itive change. Exactly after that maximum point
of strengthening, the effect is inverted completely.

Once, the postsynaptic spiking is before the presy-
naptic spiking, efficiency of transmission is weak-
ened, starting from a maximum weakening toward
zero, again via an exponential function.

Both approaches, rate-based Hebbian Learning
and Spike-Timing-Dependent Plasticity are often
combined for the training of SNNs, since both
approaches are directly derived from neurological
paragons. For this, these training algorithms per-
forming a learning method very close to its neuro-
logical paragon - but still lack efficiency from an
engineering point of view, since learning is rela-
tively slow.

3.2 ADOPTED LEARNING
ALGORITHMS FROM ANN

Another trend to train SNNs is kind of two-folded:
the use of well known training algorithms from
ANN/DL transferred to SNNs. Herein, two op-
tions can be observed. The first option is quite
obvious: since the sense of training networks is to
find the optimal combination of weights for cer-
tain network architecture to solve the problem in
question. Once, the architecture is found with
an optimal weight combination using a classical
ANN/DL learning algorithm, the same architec-
ture and weights can be assigned to a SNN. Ac-
tually, that way, the SNN is not involved in the
training at all.

The second and more complicated way is to trans-
form the ANN/DL training algorithms directly to
train SNNs. Hereby, two algorithms are currently
in the focus: Backpropagation (BP) [24] and Re-
inforcement Learning (RL) [27]. Backpropagation
including its variations is probably the most used
training algorithm for ANNs/DL. But it uses a dif-
ferent paradigm for learning as nature don’t use
exact during target values and corresponding er-
rors during learning. Since nature never knows the
perfect target value in an engineering sense while
training it is slowly approaching the learning tar-
get by experience, kind of try-and-error approach
without teaching inputs.

More specific, regarding the transformation of
Backpropagation towards training of SNNs, there
are two severe problems to overcome. First of all,
SNNs working with Diracs, a non steady differ-
entiable function - what is needed for Backprop-
agation. To solve this problem, one can do a
workaround as in [16], In order to obtain a steady
differentiable function, the authors are using the
virtual potential of the LIaf neurons. The problem
of the reset of the virtual membrane potential to
zero in the moment of spiking is avoided by filter-
ing the virtual mebrane potential using a low pass
filter, thus eliminating the drop due to the occu-
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rance of a spike. This way, the virtual membrane
potential becomes a steady differentiable function
and can be used for Backpropagation.

The second problem with Backpropagation for
SNN is a neurological one: Biological neural net-
works - and thus SNNs - do not possess a mean
to propagate the error back through the neu-
rons. To overcome this fact, adapted Backpropa-
gation algorithms introduce a kind of virtual path
to propagate the error back, thus the weights
can be adopted accordingly the Backpropagation
paradigm [16].

In contrast to Backpropagation the learning
paradigm of Reinforcement Learning is quite close
to the natural learning paradigm from the neuro-
logical point of view. RL learns due to rewards,
thus trying to maximise the reward obtained by
doing learning steps in regard of achieving a long
term goal. That way, in a first glance, again, the
weights must be adjusted in a natural way. To
overcame an artificial adjustment of the weights,
RL is often combined with the rate-based Hebbian
rule in combination with STDP. In this combina-
tion, this approach is probably currently the clos-
est training algorithm compared with the natural
learning paradigm.

3.3 NETWORK ARCHITECTURES
FOR ANN AND SNN

One point we didn’t consider yet is the architec-
ture of networks used in ANN/DL and SNN. Basi-
cally, two typically network architectures are used
as shown in figure 3. Most ANN/DL architectures

Feedforward structure
Directed structure

Population structure
Complex towards fully connected structure

Figure 3: Connectivity structures. Left: typical
feedforward structure as can be found in the pe-
ripheral nervous system or the optic nerve. Right:
Population structure as can be found in the brain.

are based on feedforward structures including its
variations such as e.g. feedback between layers.
These structures can be observed in parts of the
natural paragon as well, e.g. in the peripheral ner-
vous system for the control of the musculoskeletal
system or in the brain for the optic nerve from
retina until the visual cortex.

Nevertheless, every time, the processing of contex-

tual informations or even higher cognition comes
into the play, population coding is much more
likely and has been shown e.g. for the emergence
of movement sequences in the brain [5]. The con-
nections between the neurons of a population can
be complex including recurrent up to fully con-
nected structures. But, the more complex a net-
work architecture becomes in the sense of feedback
loops up to fully connected structures, the less ef-
ficient ANN/DL learning algorithms are.

4 DISCUSSION

After presenting the currently most used learning
algorithms for SNNs with its main advantages and
drawbacks, the fundamental question can be ad-
dressed: Should one use ANN/DL algorithms for
training SNNs because of their higher efficiency
or neurological plausible once despite their lack of
training time?

In a first glance, from the engineering point of
view, the answer might be easy: As long as we
take the efficiency in terms of training time com-
bined with the resulting accuracy into account,
the transformation of well known and elaborated
ANN/DL raining algorithms towards SNN train-
ing is favourable. But why one would do so, if
the ANN/DL already used for industrial applica-
tions aren’t inferior to SNNs? The only argument
from my point of view would be the energy con-
sumption argument, but up to now, we don’t have
appropriate hardware architecture to exploit this
effect.

Moreover, the question already raised in the moti-
vation section regarding contextual or even cogni-
tive data processing is questionable for ANN/DL
training algorithms due to its connective architec-
tures of the used networks. Remember, that the
brain network for cognition and emergence of will
are most probably organised as populations. Even
the whole brain is structured in a way, that you
always will find a path from one neuron to an-
other, even though the path will run over thousand
or millions of other neurons. Thus, one should
use SNNs to mimic this feature for applications.
But in this moment, it’s questionable, if ANN/ML
learning algorithms are still able to train these ex-
tremely complex structures in an appropriate way.
Unfortunately, up to now, we don’t have the com-
putational means to proof that hypotheses.

One should nit forget another important argu-
ment. SNNs are not designed from its roots to
be applied in industrial applications, but to inves-
tigate the neuromorphic information processing in
terms of a better understanding of the ongoing in-
formation processes in the brain and to simulate
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them in order to proof their correctness. In this
context, it is out of question, that we need to use
a neurological plausible training algorithm even if
this will require an enormous amount of computa-
tional power, otherwise the understanding of the
neuromorphic information processing will falsified
due to a non-appropriate learning method.

Finally, I would like to postulate the following to
start a disputation: As long as there is no fast
hardware adapted to the neurological model for
training SNNs, I see no advantage of SNNs over
ANNs/DL for industrial applications without con-
textual reference or cognition. However, if we
look at applications from a research perspective in
terms of understanding neuromorphic information
processing in our neural networks and especially
in the brain, which could also lead to understand-
ing our cognition, neurologically plausible train-
ing methods for SNNs are indispensable. Subse-
quently, one could think about implementing cog-
nitive decisions in non-industrial applications as
well - if this is ethically justifiable. Let’s start the
disputation from this postulate!
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