A Classification and Review of Tools for Developing and
Interacting with Machine Learning Systems

Eduardo Mosqueira-Rey
Universidade da Coruna (CITIC)
A Coruiia, Spain
eduardo@udc.es

David Alonso-Rios
Universidade da Coruna (CITIC)
A Coruna, Spain
dalonso@udc.es

ABSTRACT

In this paper we aim to bring some order to the myriad of tools that
have emerged in the field of Artificial Intelligence (AI), focusing on
the field of Machine Learning (ML). For this purpose, we suggest
a classification of the tools in which the categories are organized
following the development lifecycle of an ML system and we make a
review of the existing tools within each section of the classification.
We believe this will help to better understand the ecosystem of tools
currently available and will also allow us to identify niches in which
to develop new tools to aid in the development of Al and ML systems.
After reviewing the state-of-the-art of the tools, we have identified
three trends in them: the incorporation of humans into the loop
of the machine learning process, the movement from ad-hoc and
experimental approaches to a more engineering perspective and the
ability to make it easier to develop intelligent systems for people
without an educational background in the area, in order to move
the focus from the technical environment to the domain-specific
problem.

CCS CONCEPTS

« Computing methodologies — Artificial intelligence; Ma-
chine learning;

KEYWORDS

Artificial Intelligence, Machine Learning, Tools

ACM Reference Format:

Eduardo Mosqueira-Rey, Elena Hernandez Pereira, David Alonso-Rios,
and José Bobes-Bascaran. 2022. A Classification and Review of Tools for
Developing and Interacting with Machine Learning Systems. In The 37th
ACM/SIGAPP Symposium on Applied Computing (SAC °22), April 25-29,
2022, Virtual Event, . ACM, New York, NY, USA, Article 4, 10 pages. https:
//doi.org/10.1145/3477314.3507310

This work is licensed under a Creative Commons Attribution International 4.0 License.

SAC 22, April 25-29, 2022, Virtual Event,

© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8713-2/22/04.
https://doi.org/10.1145/3477314.3507310

1092

FElena Hernandez Pereira
Universidade da Coruna (CITIC)
A Coruna, Spain
elena.hernandez@udc.es

José Bobes-Bascaran
Universidade da Coruna (CITIC)
A Coruiia, Spain
jose.bobes@udc.es

1 INTRODUCTION

To design and to interact with Artificial Intelligence (AI) systems
in general, and Machine Learning (ML) systems in particular, many
tools have been provided by industry leaders and free-software or-
ganizations that help in the different steps of the Al pipeline: gather
data, extract features, label the examples, select the model, tune the
hyper-parameters, and evaluate the model performance. Moreover,
the tool-set allows users to test and discard certain approaches at
an early stage, and move the focus to the domain-specific problem.

This paper aims to offer a classification and review of such tools.
In order to achieve this goal, the authors consulted the literature,
searching for documents by title focusing on each particular type
of tool separately and filtering by relevance based on the abstract,
recentness and the number of citations. Research papers were ob-
tained from online academic databases such as Google Scholar,
ACM Digital Library, IEEE Xplore, ScienceDirect, Springer Link
or Scopus. On the other hand, specific tools that are available for
download can be aimed at academic or non-academic audiences,
and can be found through their own websites or even the app stores
of the major platforms.

These tools can be roughly organized in categories that are not
mutually exclusive. These categories are organized more or less
following the development lifecycle of an Al system, paying special
attention to ML systems, which is the most dynamic branch of Al
today and where most developments are carried out.

Therefore, we will start from an initial classification focused on
data management and rapid prototyping. Subsequently, we can in-
clude the popular frameworks that exist today for the development
of AT and ML solutions. These frameworks were initially used to
develop traditional ML, also called passive or classical ML in which
we have cycles of supplying data to the system, observing the out-
puts and drawing conclusions that serve to improve the results of
the next cycle.

Subsequently, these passive systems opened up to dynamic col-
laboration with users, first in the form of active learning [70], where
humans were used as oracles to call upon when there was a need to
label a new datum. In these systems, control rested with the learning
algorithms, which called on humans when deemed necessary. Later
these systems were extended to models where control was more
shared between algorithms and humans, giving rise to interactive
machine learning [23], where interactions between algorithms and

https://doi.org/10.1145/3477314.3507310
https://doi.org/10.1145/3477314.3507310
https://doi.org/10.1145/3477314.3507310
https://creativecommons.org/licenses/by/4.0/

SAC 22, April 25-29, 2022, Virtual Event,

machines were more focused, frequent, and incremental. Since the
interaction between users and learning systems is tighter, Human-
Computer Interaction (HCI) techniques are regaining importance
in this approach.

The next step are tools that try to help us develop Al-based
systems without having much experience in the field, i.e., we may
be experts in our application domain but know very little about the
different Al and ML models available [47]. They are tools that try
to automate slow and iterative tasks allowing to create models with
high scaling, efficiency and productivity, while maintaining their
quality. These tools are often based on cloud developments, offered
through a “Software as a service” (SaaS) model. Here we can also
contemplate Machine Teaching tools [78, 87], where the control
of learning falls on human experts in the domain that delimit the
knowledge that they intend to transfer to the learning model.

Once the model is built, we need to ask the model to explain its
conclusions. In this way, explainable Al [27] tools attempt to make
the decisions of Al models explainable and justifiable to humans.
In other words, it is not enough for a system to work well, it has
to be able to explain why it has worked well, since nowadays the
decisions taken by Al-powered systems may affect humans’ lives
(as in e.g. medicine, law or defense).

We end the classification with tools that help build AI models
by users who, in many cases, are not even aware that they are
helping to develop them. These tools are based on the power of large
numbers, i.e., many people doing small tasks, but which together
offer synergies that are difficult to obtain in any other way. The
final classification obtained can be seen in the following list:

e Data related tools: the existence of processes and tools
for generating training data, previously a matter mostly for
one-off research projects, now have a large impact on the
success of machine learning projects [64].

Prototyping tools: that help designers to build working
prototypes of artificial intelligence systems.

Frameworks: libraries that make use of Al solutions, in a
more user-friendly and configurable way.

Active learning tools: tools to develop systems that use an
entity with extensive knowledge of the domain (typically a
human expert) as an oracle for label unlabeled examples.
Interactive learning tools: in which there is a closer in-
teraction between users and learning systems, with people
interactively supplying information in a more focused, fre-
quent, and incremental way compared to traditional ML.
AutoML tools: provides methods and processes to ease the
tasks of creating an evaluating an ML model.

Cloud tools: platforms under the umbrella of Machine Learn-
ing as a Service (MLaaS) that cover, in between others, data
pre-processing, model training and evaluation.

Machine teaching tools: applications that allow a final
user with no technical expertise in Al (acting as a teacher)
to build classifiers and entity extractors.

Explainable tools: help on interpreting model predictions,
making the results understandable for humans.
Crowd-sourcing labeling tools: allow a huge amount of
users to provide labels for the examples to be used for train-
ing and validation of ML models.

1093

E. Mosqueira-Rey et al.

The contribution of this work is, therefore, a classification of
the different tools that exist for developing and interacting with
Al and ML systems, and a review of the existing tools within each
section of the classification. We believe this will help to better
understand the ecosystem of tools currently available and will also
allow us to identify niches in which to develop new tools to aid in
the development of Al systems.

In Table 1 we can consult a summary of all the categories, subcat-
egories and tools mentioned in the text. It is important to explain
that the table is not exhaustive; the most representative or relevant
tools in each section have been included, but there are many others
that could not be mentioned for lack of space. Within each section
we have cited, on occasion, other papers with more exhaustive
reviews of tools within that category, and we encourage the reader
to refer to them for more detailed information. It is also necessary
to remember that the categories are not mutually exclusive and
that certain tools can be perfectly classified within several.

2 DATA RELATED TOOLS

From the product development field and the agile world we obtain
the idea of a “Minimum Viable Product (MVP)”. An MVP is a product
with just enough features to satisfy early customers, and to provide
feedback for future product development [69]. From the world of
machine learning we can now coin the term “Minimum Viable Data
(MVD)’ that refers to the minimum data needed to train the machine
learning models [93].

The process of data collecting, labeling, and model training is
expensive and time-consuming. Defining an MVD strategy in the
prototyping phase (perhaps in collaboration with a data scientist
[99]) could lead to significant reductions in cost and time to market,
or new insights about the characteristics of the data needed. The
idea is to increase speed and reduce complexity defining a minimum
viable data set. Once successful, researchers can provide additional
data in the future to be integrated in the system.

An example of tools for MVD are rapid interactive refinement
tools such as the image segmentation tools. Images are typically
partitioned based on edges and regions, focusing on uniformity and
discontinuities (a taxonomy of possible approaches can be found in
[28]). Depending on the degree of automation, this technique can
be classified as:

e Manual: Offers total control and optimal results, but it can
be too time-consuming, error-prone and tedious (e.g. as-
signing each pixel to its corresponding class) for intensive
professional environments. Examples include RectLabel [17]
and VGG Image Annotator (VIA) [20].

Fully-automated: Requires no human involvement but fails
to achieve optimal results. Great advances have been made
in recent years, however, thanks to new techniques such as
Deep Learning (DL). A notable DL tool is U-Net [82], which
has generated many extensions [25] (see also [79] for an
overview of DL in medical image processing). But so far, this
approach has found little success in professional settings.
Semi-automated: The user typically provides partial infor-
mation (e.g. boundaries or labels), which is then automati-
cally completed by algorithms. This combines the expertise

A Classification and Review of Tools for Developing and Interacting with ML...

Table 1: Summary of categories and tools

Category

Sub-category

Tool

Manual

RectLabel [17], VIA [20]

Data img. tools

Semi-automated

3D Slicer [2], ITK-SNAP [11]

Fully-automated

U-Net [82]

Prototyping

Wizard of Oz (WOZ) [65]
Delft Al Toolkit [93]
Lobe.ai [66], ml5.js [68]

Core libraries

Compilers:
Cython [30]

Vector: NumPy [46]

IPython

(751,

Data preparation

Pandas [97]

Data visualization

Matplotlib [53]
Seaborn [96]

Frameworks

Machine learning

Python: Scikit-learn [74]

C++: Shogun [88]
Java: Weka [45]

Deep learning

TensorFlow [22]

Keras [35], PyTorch [73]

GPT-3 [32]

Big data

Spark [101]
Hadoop [98]

AL tools

ALiPy [91], Libact [100]
modAL [36], NEXT [83]

General purpose

AnchorViz [90]

IML tools

Unstructured data

Crayons [38], CueFlik [41]
Tastik [31], AIDE [58]

JAABA [57], AIML [95], Inter-

actML [49]

Wekinator [39], BeatBox [50]
SLU toolset [29], CLBCI [61].

Explanatory

CAIPI [92]

ML developers

H20 AutoML [63]
AutoKeras [56]

AutoML tools

Non-ML developers

VDS [62], Akkio [3],

DataRobot [8], Levity [13],

Obviously.ai [14]

Technical tasks

AMC [48]

Cloud tools

Google Cloud AutoML [9]

IBM Watson ML Studio [10]
Microsoft Azure ML Std [7]

Amazon SageMaker Std

5]

MT tools

Teachable Machine tool [18]

Bonsai [16]

LUIS [12], PICL [15]

XAl tools

LIME [80], Skater [21]
MS InterpretML [71]
Google Explanable AI [1]
Al Explainability 360 [24]

Python packages

ELI5 [60]
Alibi [59]
Dalex [26]

Crowdsourcing

Amazon Mechanical Turk [4]

Appen [6]
Toloka.ai [19]

1094

SAC ’22, April 25-29, 2022, Virtual Event,

of humans with the effectiveness and repeatability of au-
tomation, representing an attractive middle ground between
the two former approaches and offering a good trade-off
between effort and results. These tools are widely used in
medicine, for example, 3D Slicer [2] and ITK-SNAP [11].

3 PROTOTYPING TOOLS

Other tools focus not on data but on helping designers build work-
ing prototypes of artificial intelligence systems. For example, we can
cite the Wizard of Oz (WOZ) approach [65] that allows the designer
to easily sketch the AI for themselves, for collaborators, and for
usability testing, before investing in a functional Al system. Once
the design matures, the toolkit allows the designer to replace the
WOZ version of Al with appropriate functional implementations
of algorithmic AL

A relevant example is the Delft Al Toolkit [93], a tool that pro-
vides a drag-and-drop, visual programming environment to build
the interaction and behavior of an Al system. In addition to build-
ing the logic of the application, the tool allows the designer to
incrementally prototype the Al, form and behavior.

Some other tools provide the users with a specific use case as
image recognition so that they can experiment directly in the appli-
cation without expert knowledge. An example is Microsoft’s Lobe.ai
[66]. This tool divides the process of machine learning into three
steps: (1) collect and label images, (2) train and understand the re-
sults and (3) play with your model and improve it. This way, Lobe.ai
simplifies the data collection and labeling process, starts training a
machine learning model without any setup or configuration and
gives live feedback on model’s performance allowing to understand
model’s strengths and weaknesses more quickly.

Another tool that aims to make machine learning approachable
for non-expert users is mi5.js [68]. This tool is more a library that
provides access to machine learning algorithms and models in
the browser, providing immediate access to to pre-trained models
for multiple situations (detecting human poses, generating text,
styling an image with another, composing music, pitch detection,
and common English language word relationships, etc.). Currently,
many of these developments have been oriented towards AutoML,
which we discuss in section 7.

4 FRAMEWORKS

The tools mentioned in the past sections normally are based on Al
frameworks. These Al frameworks are created with the aim of mak-
ing the technology more accessible for end-users. The approaches
can vary depending on the types of users that are being consid-
ered (e.g. developers, data scientists, designers, etc.). For example,
ML model creation frameworks are very popular nowadays, and
they are aimed at users that are comfortable writing code [78]. In
[43] and [89] we can consult comparisons of the different frame-
works. Most of these frameworks are written using the Python [42]
programming language. The main reasons for this fact are:

e It is a language with an easy learning curve.

o It is a powerful but flexible language: multi-platform, multi-
paradigm, garbage-collected, dynamically-typed, etc.

e It has a strong community, specially in scientific research.

o It has a powerful ecosystem that produces synergies.

SAC 22, April 25-29, 2022, Virtual Event,

Some other reasons about how Python has become a high-level
language suited for science and engineering can be found in [72]
and a brief history of scientific computing in Python in [67].

However, Python also has disadvantages. The main one is usually
its low performance due to the fact that it is an interpreted language.
The typical way to solve this is to divide the libraries into two
parts, a backend with the core functionalities, written in an efficient
language such as C or C++, and a frontend, written in Python, which
acts as an interface with the user or programmer.

Nevertheless, probably the main reason for the success of Python
and the frameworks and libraries written with it, is their open-
ness. Starting with the language itself, released with the permissive
Python Software Foundation License (PSFL) and controlled by a
nonprofit organization, the Python Software Foundation (PSF).

The core scientific libraries of Python (NumPy, Pandas, Mat-
plotlib, etc.) form an ecosystem called ScyPy [94] that is also open
source (with a permissive BSD compatible license) and that is spon-
sored by NumFOCUS, a public charity in the United States. This fact
has promoted that libraries built on this basis also follow the same
philosophy, even when they are developed by large corporations
and not so much by foundations or universities. This scenario favors
innovation, constant updating and the growth of the community.

The frameworks and libraries of Al can be organized in a hierar-
chy, starting from the low level and going upwards in complexity
and abstraction. An overview of them can be consulted in [89]:

Core: Core libraries and tools that are the basis of the ecosys-
tem. Here we can highlight compilers like IPython [75] or
Cython [30] and libraries for performing efficient vectorized
computing such as NumPy [46].

Data preparation: Nowadays, data management is an im-
portant part of the Al workflow. Within this area, the Pandas
[97] library stands out, allowing us to manage, filter, query
and perform operations with tables and data series.

Data visualization: Visualizing data is often almost as im-
portant as managing it. Within this field, libraries such as
Matplotlib [53] or Seaborn [96] stand out.

Machine learning: There are several machine-learning li-
braries, some of the most popular are Scikit-learn [74] for
the Python language, Shogun [88] for the C++ language or
Weka [45] for the Java language.

Deep learning: DL is a subfield of ML concerned with deep
neural nets, that is, with a high number of layers. In this
category we can highlight general purpose libraries such as
TensorFlow [22], developed by Google Brain; Keras [35] built
on top of TensorFlow and, nowadays integrated into it as a
high level layer; and Pytorch [73] developed by Facebook.
Also we can find libraries for specific purposes such as GPT-3
(Generative Pre-trained Transformer) [32] a model developed
by OpenAl for natural language processing (NLP).

Big data: Big data tools analyze extremely large data sets to
reveal patterns, trends, and associations, especially relating
to human behavior and interactions. Within this field we can
highlight tools like Spark [101] or Hadoop [98] used mainly
with the Java language.

1095

E. Mosqueira-Rey et al.

5 ACTIVE LEARNING TOOLS

Active Learning (AL) is a machine learning approach in which the
learner (typically a machine) requests an oracle (typically a human,
who acts as a teacher) to label examples that are not clear or that will
provide relevant information in the learning process. As a result,
the learner improves its learning performance (i.e., maximizing
accuracy).

The idea behind is to use fewer training examples than other
supervised ML techniques in order to achieve higher accuracy. This
is of special relevance where many unlabeled examples are available
but the acquisition of labels is a costly task, or in scenarios with
limited labeled data.

The learner is in control of the learning process, and iteratively
selects unlabeled examples to be labeled by the oracle. The selection
of specific examples is performed using queries. To explore further
on the different query strategies we refer to [85] and [70].

Humans could be involved executing one or more of the follow-
ing tasks:

o At preparation: collecting and preparing the initial data, to
generate the first version of the model.

e At execution: as oracles, labeling the data when requested
by the learning algorithm.

o Atvalidation: as model evaluators, checking the performance
updating the model when needed.

The great majority of tools available correspond to the Python
ecosystem. ALiPy [91], which is a toolbox that provides a module-
based implementation, offering support for novel settings as multi-
labeled data examples, noisy oracle, and cost-sensitive annotation.
Libact [100], a package that provides an easy-to-use environment
for solving AL problems, that implements several AL algorithms
and leaves interfaces so that it can be extended by the user. modAL
[36], a modular framework, fully compatible with scikit-learn (it is
built on top of it) and suitable for rapid prototyping. NEXT [54, 83],
a system that runs in the cloud and integrates with a crowdsourcing
tool to collect labels, and exposes a REST Web API as an integration
mechanism.

Even tough Active Learning is a mature technique, there are still
some issues to be solved as several assumptions where made from
the very beginning that do not hold today [86]. When performing
this review, we lack more integration of AL approaches in modern
and popular Al platforms.

6 INTERACTIVE LEARNING TOOLS

In Active Learning (AL) the system remains in control of the learn-
ing model and humans only interact with it when requested. In
Interactive Machine Learning (IML) [23], on the other hand, there is
a closer interaction between users and learning systems, with peo-
ple interactively supplying information in a more focused, frequent,
and incremental way. The idea is to have humans and computers
working together on the same task doing what each of them does
best at any specific moment [77].

Humans can be included in different parts of the ML workflow.
They can be used first, performing identification and annotation
tasks that are simple for them but complicated for machines; in the
middle, helping the model to perform inference tasks, providing

A Classification and Review of Tools for Developing and Interacting with ML...

reinforcement information and insights about the learning pro-
cess; and, finally, at the end, validating, interpreting and correcting
the results of a machine learning system. This interaction is spe-
cially interesting in complex domains, such as health informatics,
where data sets are full of uncertainty and incompleteness, and the
problems they try to solve are hard [51].

As there is greater interactivity with humans, the system in-
terface now becomes more important, as it is responsible for the
bidirectional feedback between users and model, making interface
design critical to the success of the IML process [37].

As IML is a recent research field within ML and it encompasses
many different aspects of the ML workflow, there are not many
specific tools developed to support it. The most notable is AnchorViz
[90], an interactive visualization tool that facilitates the discovery of
prediction errors and previously unseen concepts through human-
driven semantic data exploration. Apart from this, what we found
were ad-hoc developments aimed at solving specific problems.

For example, IML has been successfully applied to systems that
analyze unstructured data—data that has no identifiable structure,
does not have a predefined model, or does not fit into relational
databases, such as images, video and audio files, and certain types
of text documents—. That is, IML seems to be especially useful in
giving additional structure to something that does not have it.

For example, for images we can cite tools such as Crayons [38],
a system that uses IML to create image classifiers or CueFlik [41] a
web image search application in which users create their own rules
for classifying images giving examples and counterexamples. But
one application with images that has been very successful is using
IML for interactive image segmentation (already mentioned when
talking about data related tools). Among the recent developments
within this technique we can name the ilastik tool [31] that contains
pre-defined workflows for image segmentation, object classifica-
tion, counting and tracking and that allows non-expert users to
interactively provide annotations to steep the learning curve; or
AIDE [58], an image annotation framework for ecological surveys
that integrates closely users and machine learning models. Jiang et
al. [55] made a thorough survey of existing IML works in the visual
analytics community.

Other tools were developed to deal with unstructured data dif-
ferent from images. For videos we have the JAABA tool [57] used
for adding labels to frames of videos to identify certain animals’
behaviors; Assisted Interactive Machine Learning (AIML) [95] used
for the recognition of musical gestures; or InteractML [49] a tool
for making machine learning accessible for creative practitioners
working with movement interaction in immersive media. In the
music field we can find the Wekinator tool [39, 40], a software
system that enables the application of music information retrieval
techniques (based on machine learning) to real-time musical per-
formance; or the BeatBox tool [50], a system that enables end-user
creation of custom beatbox recognizers. For time series we can cite
the SLU toolset [29] used for applying IML techniques to improve
SLU (Spoken Language Understanding) models; and developments
in the field of electromyography (EMG) analysis [102] or in the
development of brain-computer interfaces like CLBCI (Co-Learning
for Brain—-Computer Interfaces) [61].

Finally we can use IML as a way to address the problem of
the black-box nature of many of the ML models. For example the

1096

SAC ’22, April 25-29, 2022, Virtual Event,

tool called CAIPI [92] for explanatory interactive learning allows
the model to query users but also explains that query to them.
Users then answer the query but also correct the explanation. The
idea is to enhance the explanatory power of ML algorithms and,
consequently, the trust that the users put in them.

7 AUTOML TOOLS

Automated Machine Learning tools (AutoML) provide methods and
processes to make ML model creation and evaluation easier, and
ultimately, available for non-Machine Learning experts. This set of
tools seek to automate the decision on what learning algorithms to
use, what hyper-parameters to select or which features are more
relevant for a certain model. Furthermore, they provide a means of
model evaluation and optimization.

On the one hand, we found several AutoML tools suited for de-
velopers or data scientist (they require software knowledge) such
as H20 AutoML [63] or AutoKeras [56], which have lots of docu-
mentation providing examples of running code.

On the other hand, there are tools which goal is to democratize
these technologies so users (non-experts) can perform complex
analytics, and create ML models. Here we can cite Virtual Data
Scientist (VDS) which is a component of the Northstar tool [62]
that allows users to feed data sets, from which they can extract
features to get insights on the data. It provides a user-friendly
interface supporting touch screens and digital pens. Moreover, it
trains ML models to run prediction tasks on the data sets.

We include also several online tools under the term “no-code
ATI” which provide an easy-to-use environment where the user
could create fully functional Al prototypes and soluctions. Some
examples in this category are Akkio [3], DataRobot [8], levity.ai
[13], obviously.ai [14].

Other group of tools are focused on technical tasks such as model
compression, which allow models to run efficiently on devices
which have limited computation resources (e.g., mobile phones).
Among them we can highlight AMC [48], which leverages reinforce-
ment learning to automatically search the design space, improving
the model compression quality.

For a more in-depth review of the field we can cite the recent
work of He et al.[47]. Also, the main cloud platforms (eg., AWS,
Azure, Google) are including great AutoML tools as part of their
ML stacks, but we have decided to classify this type of tools as a
separate category in the following section.

8 CLOUD TOOLS

The main advantage of the cloud is that it provides a platform
for the users allowing them to focus in the problem itself, with-
out having to worry about the infrastructure. Particularly, when
related to Machine Learning the term Machine Learning as a Ser-
vice (MLaaS) involves various cloud-based platforms that cover, in
between others data pre-processing, model training and evaluation.

In this category we can found products from the biggest tech
companies including Google Cloud AutoML [9], IBM Watson ML
Studio [10], Microsoft Azure ML Services [7], and Amazon Sage-
Maker [5]. These are the oldest and most mature platforms that
provide various products for Machine Learning ranging from natu-
ral language processing, service bots, and even deep learning.

SAC 22, April 25-29, 2022, Virtual Event,

The core element of Google’s machine learning services in the
cloud is the Cloud AutoML suite [9] which suggests a no-code
approach to building data-driven solutions with integrated pre-
dictions. AutoML was designed to build custom models for both
newcomers and experienced machine learning engineers, but also
suggests a set of pre-built models available via a set of APIs. The
elements that help to differentiate this tool from the rest, are the
video and audio data tools, specifically created to support these
data types. In fact, the most versatile toolkit for image analysis is
currently available at Google Cloud.

IBM Machine Learning platform is organized like other providers.
The system offers three options at the moment: (1) the IBM Cloud for
data, a suite of integrated solutions that automate the deployment
of Al use cases in production; (2) the Watson Machine Learning
Cloud service, a set of REST APIs to develop applications that
make smarter decisions, solve tough problems, and improve user
outcomes; and, (3) the Watson Machine Learning Server, a single-
node server that is part of the IBM Watson Studio and that offers
analytical assets and machine learning model notebooks. They all
offer Auto-Al lifecycle management for models. With its array of
open source tools and techniques, IBM Machine Learning gives
flexibility over model deployment and model retraining at scale to
data scientists.

Microsoft Azure Machine Learning Studio is a development en-
vironment that creates a resourceful playground both for entry-
level and experienced data scientists. It has tools that range from
data analysis, data visualization, data labeling, to deep learning.
Approaching machine learning with Azure entails some learning
curve, but it eventually leads to a deeper understanding of all major
techniques in the field. The Azure ML graphical interface visual-
izes each step within the workflow and supports newcomers. One
of the main benefits of using Azure is the variety of algorithms
available to play with and the data transformation tools that are
helpful during data analysis. Recently, Azure opened a preview
for Azure Percept. The main idea behind Percept is to provide an
SDK for creating models that can be integrated with Microsoft-
partnered hardware devices. This entails an easy way of building
and integrating computer vision or tools for speech recognition.

Amazon has two major products dedicated to machine learning.
The earlier platform called Amazon Machine Learning and Sage-
Maker, the actual machine learning platform. Amazon launched
SageMaker Studio in 2021 as the first IDE for machine learning. This
tool provides a web based interface that allows to perform quick
model building and deployment within a single environment. All
development methods and tools, including notebooks, debugging in-
struments, data modeling, and its automatic creation is available via
SageMaker Studio for both experienced data scientists and those
who just need things done without digging deeper into dataset
preparations and modeling.

To wrap up with machine learning as a service (MLaaS) platforms,
it seems that Azure has currently the most versatile toolset on the
MLaaS market. It covers the majority of ML-related tasks, provides
two distinct products for building custom models, and has a solid
set of APIs for those who don’t want to attack data science with
their bare hands. Related to ML in cloud, there exists a survey
which investigates the effects using the concepts of ML on cloud
environments in terms of automation of resource management

1097

E. Mosqueira-Rey et al.

and scheduling [52]. Another survey investigates the impact of
the cloud computing paradigm into the ML field [76]. This work
analyzes statistics tools and libraries deployed in the cloud, existing
tools augmented to run jobs on the cloud and ML as SaaS.

Deploying a Machine Learning model in production can be chal-
lenging. In fact, that 87% of data science projects do not make it
to production. These platforms, which combine Machine Learning,
DevOps, and Data Engineering practices to deploy and maintain ML
systems reliably and efficiently, help address these issues. DevOps
is an approach to software development that suggests merging
devs and ops teams to optimize software development processes
by focusing on short and fast releases. This is achieved by apply-
ing a high level of automation to routine tasks. The popularity of
DevOps among the software development community gave birth
to the term MLOps, which applies the same principles of DevOp to
machine learning, which led to the emergence of automated data
management, model training/deployment, and monitoring. That’s
why in 2021, MLaaS providers offer tools for MLOps practitioners
to manage these machine learning pipelines.

As ML in cloud computing has numerous benefits, yet they have
drawbacks as well. Here we can highlight the need of consistent
connectivity, the need of privacy policies and security for data, and
the challenge of integration into organizations.

9 MACHINE TEACHING TOOLS

Machine Teaching (MT) is a new Al paradigm in which a teacher
(typically a human) transfers knowledge to a learner (typically an
Al system).

The MLaaS and MLOps tools in the previous section aim to
implement and maintain ML systems in production reliably and
efficiently. These tools can be understood as early attempts at of-
fering MT-related capabilities, but they require ML expertise. That
is, if you are offering ML-specific information (e.g., learning rate,
network architecture, etc.) you are not really acting as a teacher, be-
cause you are not transferring knowledge about the topic but about
the technique [78]. A teacher gives information about labels but
also semantic information about why these labels are used, as well
as assessing performance. That is, the goal is to take advantage of
the abilities we humans have when it comes to sharing knowledge
among us, and using them to transfer knowledge to a machine.

Cloud tools are typically aimed at facilitating the creation and
maintenance of traditional Al systems. They focus on engineering
tasks and working efficiently, and are not intended for more MT-
relevant aspects such as “concept evolution”, although they are
slowly evolving to become more useful to people who are not
necessarily proficient in Al In terms of MT tools we could say that
they have evolved in parallel to the MT paradigm itself, progressing
from a batch setting [103] to a “never-ending loop” [87].

Some specific examples we could mention include the Teachable
Machine tool [18], in which a user selects examples for the system—
or provides them live—and then trains it, checking its correctness
at the same time. Another example is Project Bonsai [16], whose
motto is “build Al without data science”.

Recent tools, then, tend to be more interactive, with examples like
Language Understanding (LUIS) [12] and Platform for Interactive
Concept Learning (PICL) [15], both from Microsoft (a discussion of

A Classification and Review of Tools for Developing and Interacting with ML...

interactive versus non-interactive tools can be found in [78]). LUIS
is an ML-based service for building natural language capabilities
into apps, bots, and IoT devices. It learns continuously via Active
Learning, letting the user update and improve the model. PICL, on
the other hand, is probably the tool that is most explicitly connected
to the current MT paradigm. In this tool “the human teacher guides
the machine towards accomplishing the task of interest. The system
leverages big data to find examples that maximize the training value
of its interaction with the teacher” [87].

The interesting aspect of these systems is that the purely techni-
cal matters—such as the training, scoring, regularization, splitting
the data set—happen under the hood, allowing the user to focus
in providing the best labels to the examples, resulting in a highly
accurate model. It is also remarkable that the interface has been
carefully designed for a non-expert user.

10 EXPLAINABLE TOOLS

The goal of explainable tools is to help understanding the Al model
outputs and build trust. In this section, we focus on explainability by
means of external techniques. They are referred as to post-modeling
explainability techniques and have been included in tools as LIME
(Local Interpretable Model-Agnostic Explanations) [80] that builds
locally linear models around the predictions of an opaque model to
explain it. This tool generates an explanation by approximating the
underlying model by an interpretable one, learned on perturbations
of the original instance. The key intuition behind LIME is that it is
much easier to approximate a black-box model by a simple model
locally (in the neighborhood of the prediction we want to explain),
as opposed to trying to approximate a model globally. This is done
by weighting the perturbed instances by their similarity to the
instance to be explained. LIME was used to explain a myriad of
classifiers (such as random forests, support vector machines (SVM),
and neural networks) in the text and image domains. In Ribeiro et
al. [81] anchors is introduced, a novel model-agnostic system that
explains individual predictions of a model by using high-precision
IF-THEN rules — “anchors” — that support (anchor) the predictions
well enough. To find anchors, the authors use reinforcement tech-
niques in combination with a graph search algorithm to explore
the sets of perturbations around the data and their effect on the
predictions. An empirical evaluation of LIME is performed in [44]
which reveals its main advantages and limitations.

Even if it is in beta phase, Skater [21] is an open-source, model-
agnostic unified Python framework for model explainability and
interpretability. Skater originally started off as a fork of LIME but
then broke out as an independent framework of it’s own. This tool
approaches explainability both globally (inference based on a com-
plete dataset) and locally (inference individual predictions) and it
supports deep neural networks, tree algorithms, and scalable Bayes.
Skater can also be used to discover hidden feature interactions and
then to inform future analyses with that information. Skater en-
ables consistency in the ability to interpret predictive models when
in-memory as well as when operationalized, giving practitioners
the opportunity to measure how feature interactions change across
different model versions. Such form of interpretation is also useful
for enabling trust when using off-the-shelf predictive models from
an ML marketplace.

1098

SAC ’22, April 25-29, 2022, Virtual Event,

Another example is Microsoft InterpretML [71] an open-source
package that incorporates state-of-the-art machine learning inter-
pretability techniques under one roof. With this package, the user
can train interpretable glassbox models and explain blackbox sys-
tems. InterpretML helps the user understand its model’s global
behavior, or understand the reasons behind individual predictions.
Along the same line, Google Explainable AI [1] is a framework that
helps to understand and interpret what led machine learning mod-
els to a particular prediction. It is centered around an instance-level
feature attributions, which provide a signed per-feature attribu-
tion score proportional to the feature’s contribution to the model’s
prediction. The framework includes a What-If tool, an interactive
visual interface designed to help visualize data and enable prob-
ing of ML models. Recently, in collaboration with OpenAl, Google
came up with Activation Atlases [34], an approach to visualize how
neural networks interact with each other and how they mature
with information along with the depth of layers. This approach
was developed for looking at the inner workings of convolutional
vision networks and getting a human-interpretable overview of
concepts within the hidden network layers. It started with feature
visualization on individual neurons but has since moved to visualize
neurons jointly.

Al Explainability 360 [24] is a toolkit from IBM developed as
a open source framework that supports the interpretability and
explainability of datasets and machine learning models. This tool
includes a collection of algorithms that cover different dimensions
of explanations along with proxy explainability metrics.

Among the explainable tools, there are several examples in terms
of python packages. One of them is ELI5 — Explain Like I'm Five
- [60], which has built-in support for several ML frameworks and
provides a way to explain black-box models. It offers visualizations
and debugging to these models through its unified API and it can
be used for both inspect model parameters and try to figure out
how the model works globally; and inspect an individual prediction
of a model, try to figure out why the model makes the decision it
makes. Another example is Alibi [59] that provides high-quality
implementations of black-box, white-box, local and global explana-
tion methods for classification and regression models. Finally, we
can cite Dalex [26] a set of tools that examines any given model,
simple or complex, and explains the behavior of that model. Dalex
creates a level of abstraction around each model that makes it easier
to explore and explain.

All these different tools allow us to analyze the black-box models,
and each of them looks from a slightly different angle. Some of these
tools focus on a global explanation — a holistic view of the main
factors that influence the predictions of the model. Other tools
focus on generating a local explanation, which means focusing
on a specific prediction made by the model. What is essential to
understand is each model explainability tool is different. Using two
distinct tools for computing global explanations lead to two diverse
outcomes, and thus, a different understanding of the model.

11 CROWDSOURCING LABELING TOOLS

As part of the Al pipeline, and particularly when using a super-
vised approach to build an Al model, the labeling task is crucial, as

SAC 22, April 25-29, 2022, Virtual Event,

without it no matter what happens in the following phases of the
process, the model would just not be efficient at all [70].

A crowdsourcing Al tool uses a huge amount of users that indi-
vidually, label examples to be used by Al algorithms. These small
tasks, where the human outperforms the machine, are delegated
to hundreds or users that complete the tasks in exchange for a
monetary reward.

The most relevant example is Amazon Mechanical Turk [4]. It is
a crowdsourcing platform (marketplace) enabling individuals and
businesses to engage a distributed workforce to perform a task. The
tasks are called Human Intelligence Tasks (HIT) which are a single,
self-contained tasks a human will tackle.

Other examples of this type of tools are: Appen [6], which deals
with several data types including speech and natural language data,
image and video data, text and alphanumeric data, and relevance
data to improve search and social media engines. Toloka.ai [19],
which is a platform that manages large-scale data collection and
annotation projects for ML.

It is not a surprise that the best accuracy we get in the labeling
process, the better performance we will obtain from our model.
Nevertheless, when using a crowdsourcing approach it is not possi-
ble to be behind each user checking their work, so we are exposed
to labeling errors. In some platforms these errors can be tackled
and eliminated before going into the model [33].

12 DISCUSSION AND CONCLUSIONS

The history of Al can be told as a succession of “springs” (times of
great developments and expectations) followed by “winters” (times
when this enthusiasm cools down when the anticipated expecta-
tions are not met). Thus, the initial enthusiasm of the 1960s, which
saw artificial general intelligence as something feasible, led us to a
first winter at the end of the 1970s, when the true complexity of the
problem was revealed. A later spring in the 1980s came with the
development of expert systems focused on solving concrete prob-
lems in complex domains. The limitations of the symbolic model,
the lack of computational power and the inability of these systems
to be conveniently updated led to a new winter in the 1990s.

Today we can say that we are living in a new springtime, sus-
tained in this case by the following pillars: an increase in com-
putational capacity, based on the use of GPU-based technology;
development of new techniques and models, especially those based
on machine learning in general and deep learning in particular
and, finally, the availability of massive amounts of data and the
ease of handling them in a distributed manner. This spring has also
been noticed in the tools for the development of Al systems. We
can say that today, with the development of Al frameworks and
libraries, most of them published under free licenses, developing
an intelligent model is easier than ever.

These tools were initially designed for the development of a
classical scheme in which all the all labeled data is provided in
advance, and the ML algorithm is modeled, built, tested and then
offered to the public without further changes, but models that are
developed under this scenario might run the risk of not scaling
well, becoming static, being hard to evaluate, and degrading their
performance due to changes in the context they are deployed into.

1099

E. Mosqueira-Rey et al.

Therefore, we can say that a first trend observed in the devel-
opment of Al tools is to incorporate, to a greater or lesser extent,
humans into the loop of the machine learning process. This can be
done by following several strategies, one is to use only humans as
labelers of new data with the model retaining control of learning
(Active Learning). Another strategy is for humans and machines
to work together, interactively and incrementally, sharing control
of the learning process (Interactive Machine Learning). Finally, the
Machine Teaching approach involves humans teaching machines
following learning schemes similar to those that humans employ
to teach other humans.

Another trend we have observed in this work is that the tools, as
they mature, are moving away from the ad-hoc and experimental
approach to a more engineering perspective. In this way, we see how
tools such as AutoML or cloud platforms for developing machine
learning as a service provide users with a basic infrastructure that
has never been available before in the history of Al

A final trend detected in this work is that the tools developed
not only try to make it easier to develop intelligent systems, or
to offer us a working infrastructure to carry it out, but also try
to focus our attention, as far as possible, on the domain-specific
problem and not so much on the technique needed to implement it.
In other words, it wants to offer the domain expert, who is not an
expert in Al the possibility of developing an intelligent system. This
would democratize Al and offer it to people without an educational
background in the area.

A final though is that, while developing and deploying ML
systems is relatively quick and inexpensive today, maintaining
them over time is likely to be difficult and expensive. This is due
that ML systems have a special capacity for incurring technical
debt—the long term costs incurred by moving quickly in software
engineering—as pointed by Sculley et al. [84], not only because
they have all of the maintenance problems of traditional code but
also because the have an additional set of ML-specific issues. Only
time will tell if this spring leads to a summer, or a new winter.

ACKNOWLEDGMENTS

This work has been supported by the State Research Agency of
the Spanish Government, grant (PID2019-107194GB-100 / AEI /
10.13039/501100011033) and by the Xunta de Galicia, grant (ED431C
2018/34) with the European Union ERDF funds. We wish to ac-
knowledge the support received from the Centro de Investigacién
de Galicia “CITIC”, funded by Xunta de Galicia and the European
Union (European Regional Development Fund- Galicia 2014-2020
Program), by grant ED431G 2019/01.

REFERENCES

[1] 2020. AI Explanations whitepaper. https://cerre.eu/wp-content/uploads/2020/
07/ai_explainability_whitepaper_google.pdf

2021. 3D Slicer image computing platform. https://www.slicer.org/
2021. akkio. https://www.akkio.com/

2021. Amazon Mechanical Turk. https://www.mturk.com/

2021. Amazon SageMaker. https://aws.amazon.com/sagemaker/

2021. Appen. https://appen.com/

2021. Azure Machine Learning Studio. https://studio.azureml.net/
2021. datarobot. https://www.datarobot.com/

2021. Google’s Al Platform. https://cloud.google.com/automl/

2021. IBM Watson Studio. https://www.ibm.com/cloud/watson-studio
2021. ITK-SNAP. http://www.itksnap.org/

2021. Language Understanding (LUIS). https://www.luis.ai/

= — —— e ———
O O 00 O\ U A W DN

https://cerre.eu/wp-content/uploads/2020/07/ai_explainability_whitepaper_google.pdf
https://cerre.eu/wp-content/uploads/2020/07/ai_explainability_whitepaper_google.pdf
https://www.slicer.org/
https://www.akkio.com/
https://www.mturk.com/
https://aws.amazon.com/sagemaker/
https://appen.com/
https://studio.azureml.net/
https://www.datarobot.com/
https://cloud.google.com/automl/
https://www.ibm.com/cloud/watson-studio
http://www.itksnap.org/
https://www.luis.ai/

A Classification and Review of Tools for Developing and Interacting with ML... SAC ’22, April 25-29, 2022, Virtual Event,

[13] 2021. levity. https://levity.ai/

[14] 2021. obviously. https://www.obviously.ai/

[15] 2021. Platform for Interactive Concept Learning (PICL). https://www.microsoft.
com/research/project/platform-for-interactive- concept-learning-picl/

[40] Rebecca Anne Fiebrink. 2011. Real-time human interaction with supervised
learning algorithms for music composition and performance. Ph.D. Dissertation.
Princeton University.

[41] James Fogarty, Desney Tan, Ashish Kapoor, and Simon Winder. 2008. CueFlik:

2021. Project Bonsai. https://bons.ai

2021. RectLabel. https://rectlabel.com/

2021. Teachable Machine. https://teachablemachine.withgoogle.com/

2021. Toloka.ai framework. https://toloka.ai/

2021. VGG Image Annotator. https://www.robots.ox.ac.uk/~vgg/software/via/
Pramit Choudhary et al Aaron Kramer. 2017. Skater. https://oracle.github.io/
Skater/index.html

Martin Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,
Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, et al.
2015. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems.
https://www.tensorflow.org/ Software available from tensorflow.org.

Saleema Amershi, Maya Cakmak, William Bradley Knox, and Todd Kulesza. 2014.
Power to the People: The Role of Humans in Interactive Machine Learning. Al
Magazine 35, 4 (Dec. 2014), 105-120. https://doi.org/10.1609/aimag.v35i4.2513
Vijay Arya, Rachel K. E. Bellamy, Pin-Yu Chen, Amit Dhurandhar, Michael
Hind, Samuel C. Hoffman, Stephanie Houde, Q. Vera Liao, Ronny Luss, Alek-
sandra Mojsilovi¢, et al. 2019. One Explanation Does Not Fit All: A Toolkit and
Taxonomy of Al Explainability Techniques. arXiv:cs.Al/1909.03012

Reza Azad, Maryam Asadi-Aghbolaghi, Mahmood Fathy, and Sergio Escalera.
2019. Bi-directional ConvLSTM U-Net with densley connected convolutions.
In Proceedings of the IEEE/CVF International Conference on Computer Vision
Workshops.

Hubert Baniecki, Wojciech Kretowicz, Piotr Piatyszek, Jakub Wisniewski, and
Przemyslaw Biecek. 2021. dalex: Responsible Machine Learning with Interactive
Explainability and Fairness in Python. Journal of Machine Learning Research 22,
214 (2021), 1-7. http://jmlr.org/papers/v22/20-1473.html

Alejandro Barredo Arrieta, Natalia Diaz-Rodriguez, Javier Del Ser, Adrien Ben-
netot, Siham Tabik, Alberto Barbado, Salvador Garcia, Sergio Gil-Lopez, Daniel
Molina, Richard Benjamins, Raja Chatila, and Francisco Herrera. 2020. Ex-
plainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities
and challenges toward responsible Al. Information Fusion 58 (2020), 82 - 115.
https://doi.org/10.1016/j.inffus.2019.12.012

D Baswaraj, A Govardhan, and P Premchand. 2012. Active Contours and Image
Segmentation: The Current State Of the Art. Global Journal of Computer Science
and Technology (2012). https://computerresearch.org/index.php/computer/
article/view/568

Lee Begeja, Bernard Renger, David Gibbon, Zhu Liu, and Behzad Shahraray.
2004. Interactive machine learning techniques for improving SLU models. In
Proceedings of the HLT-NAACL 2004 Workshop on Spoken Language Understand-
ing for Conversational Systems and Higher Level Linguistic Information for Speech
Processing. 10-16.

S. Behnel, R. Bradshaw, C. Citro, L. Dalcin, D. S. Seljebotn, and K. Smith. 2011.
Cython: The Best of Both Worlds. Computing in Science Engineering 13, 2 (2011),
31-39. https://doi.org/10.1109/MCSE.2010.118

Stuart Berg, Dominik Kutra, Thorben Kroeger, Christoph N. Straehle, Bern-
hard X. Kausler, Carsten Haubold, Martin Schiegg, Janez Ales, Thorsten Beier,
Markus Rudy, et al. 2019. Ilastik: interactive machine learning for (bio)image
analysis. Nature Methods 16, 12 (2019), 1226-1232. https://doi.org/10.1038/
541592-019-0582-9

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, et al. 2020.
Language Models are Few-Shot Learners. arXiv:cs.CL/2005.14165

Michael Buhrmester, Tracy Kwang, and Samuel D. Gosling. 2011. Amazon’s
Mechanical Turk: A New Source of Inexpensive, Yet High-Quality, Data?
Perspectives on Psychological Science 6, 1 (2011), 3-5. https://doi.org/10.
1177/1745691610393980 arXiv:https://doi.org/10.1177/1745691610393980 PMID:
26162106.

Shan Carter, Zan Armstrong, Ludwig Schubert, Ian Johnson, and Chris Olah.
2019. Activation Atlas. Distill (2019). https://doi.org/10.23915/distill.00015
Francois Chollet et al. 2015. Keras. https://keras.io.

Tivadar Danka and Peter Horvath. 2018. modAL: A modular active learning
framework for Python. arXiv preprint arXiv:1805.00979 (2018).

[37] John]. Dudley and Per Ola Kristensson. 2018. A Review of User Interface Design

for Interactive Machine Learning. ACM Trans. Interact. Intell. Syst. 8, 2, Article
8 (June 2018), 37 pages. https://doi.org/10.1145/3185517

Jerry Alan Fails and Dan R. Olsen. 2003. Interactive Machine Learning. In
Proceedings of the 8th International Conference on Intelligent User Interfaces
(IUI "03). Association for Computing Machinery, New York, NY, USA, 39-45.
https://doi.org/10.1145/604045.604056

Rebecca Fiebrink and Perry R Cook. 2010. The Wekinator: a system for real-time,
interactive machine learning in music. In Proceedings of The Eleventh Interna-
tional Society for Music Information Retrieval Conference (ISMIR 2010)(Utrecht),
Vol. 3.

Interactive Concept Learning in Image Search. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems (CHI "08). Association for
Computing Machinery, New York, NY, USA, 29-38. https://doi.org/10.1145/
1357054.1357061

Python Software Foundation. 2021. The Python Tutorial. https://docs.python.
org/3/tutorial/.

Migran N. Gevorkyan, Anastasia V. Demidova, Tatiana S. Demidova, and An-
ton A. Sobolev. 2019. Review and comparative analysis of machine learning
libraries for machine learning. Discrete and Continuous Models and Applied
Computational Science 27, 4 (2019), 305-315. http://journals.rudn.ru/miph/
article/view/22913

Yoseph Hailemariam, Abbas Yazdinejad, Reza M. Parizi, Gautam Srivastava, and
Ali Dehghantanha. 2020. An Empirical Evaluation of AI Deep Explainable Tools.
In 2020 IEEE Globecom Workshops (GC Wkshps. 1-6. https://doi.org/10.1109/
GCWkshps50303.2020.9367541

Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann,
and Ian H. Witten. 2009. The WEKA Data Mining Software: An Update. SIGKDD
Explor. Newsl. 11, 1 (Nov. 2009), 10-18. https://doi.org/10.1145/1656274.1656278
Charles R. Harris, K. Jarrod Millman, Stéfan J van der Walt, Ralf Gommers,
Pauli Virtanen, David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg,
Nathaniel J. Smith, et al. 2020. Array programming with NumPy. Nature 585
(2020), 357-362. https://doi.org/10.1038/s41586-020-2649-2

Xin He, Kaiyong Zhao, and Xiaowen Chu. 2021. AutoML: A survey of the
state-of-the-art. Knowledge-Based Systems 212 (2021), 106622. https://doi.org/
10.1016/j.knosys.2020.106622

Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia Li, and Song Han. 2018.
AMC: AutoML for Model Compression and Acceleration on Mobile Devices. In
Proceedings of the European Conference on Computer Vision (ECCV). 784-800.
Clarice Hilton, Nicola Plant, Carlos Gonzalez Diaz, Phoenix Perry, Ruth Gib-
son, Bruno Martelli, Michael Zbyszynski, Rebecca Fiebrink, and Marco Gillies.
2021. InteractML: Making machine learning accessible for creative practitioners
working with movement interaction in immersive media. In Proceedings of the
27th ACM Symposium on Virtual Reality Software and Technology. 1-10.

Kyle Hipke, Michael Toomim, Rebecca Fiebrink, and James Fogarty. 2014. Beat-
Box: End-User Interactive Definition and Training of Recognizers for Percussive
Vocalizations. In Proceedings of the 2014 International Working Conference on
Advanced Visual Interfaces (AVI '14). Association for Computing Machinery,
New York, NY, USA, 121-124. https://doi.org/10.1145/2598153.2598189
Andreas Holzinger, Markus Plass, Michael Kickmeier-Rust, Katharina Holzinger,
Gloria Cerasela % Crigan, Camelia-M Pintea, and Vasile Palade. 2019. Interactive
machine learning: experimental evidence for the human in the algorithmic
loop. Applied Intelligence 49, 7 (2019), 2401-2414. https://doi.org/10.1007/
510489-018-1361-5

Elham Hormozi, Hadi Hormozi, Mohammad Kazem Akbari, and Morteza Sar-
golzai Javan. 2012. Using of Machine Learning into Cloud Environment (A
Survey): Managing and Scheduling of Resources in Cloud Systems. In 2012 Sev-
enth International Conference on P2P, Parallel, Grid, Cloud and Internet Computing.
363-368. https://doi.org/10.1109/3PGCIC.2012.69

[53] J. D. Hunter. 2007. Matplotlib: A 2D Graphics Environment. Computing in

Science Engineering 9, 3 (2007), 90-95. https://doi.org/10.1109/MCSE.2007.55
Kevin G Jamieson, Lalit Jain, Chris Fernandez, Nicholas J. Glattard, and Rob
Nowak. 2015. NEXT: A System for Real-World Development, Evaluation, and
Application of Active Learning. In Advances in Neural Information Processing
Systems, C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett (Eds.),
Vol. 28. Curran Associates, Inc. https://proceedings.neurips.cc/paper/2015/file/
89ae0fe22c47d374bc9350ef99e01685-Paper.pdf

Liu Jiang, Shixia Liu, and Changjian Chen. 2019. Recent research advances on
interactive machine learning. Journal of Visualization 22, 2 (2019), 401-417.
https://doi.org/10.1007/s12650-018-0531-1

Haifeng Jin, Qingquan Song, and Xia Hu. 2019. Auto-Keras: An Efficient Neural
Architecture Search System. In Proceedings of the 25th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery & Data Mining. ACM, 1946-1956.
Mayank Kabra, Alice A Robie, Marta Rivera-Alba, Steven Branson, and Kristin
Branson. 2013. JAABA: interactive machine learning for automatic annotation
of animal behavior. Nature Methods 10, 1 (2013), 64-67. https://doi.org/10.1038/
nmeth.2281

Benjamin Kellenberger, Devis Tuia, and Dan Morris. 2020.
AIDE: Accelerating image-based ecological surveys with inter-
active machine learning. Methods in Ecology and Evolution 11,
12 (2020), 1716-1727. https://doi.org/10.1111/2041-210X.13489
arXiv:https://besjournals.onlinelibrary.wiley.com/doi/pdf/10.1111/2041-
210X.13489

[59] Janis Klaise, Arnaud Van Looveren, Giovanni Vacanti, and Alexandru Coca. 2021.

Alibi Explain: Algorithms for Explaining Machine Learning Models. Journal

https://levity.ai/
https://www.obviously.ai/
https://www.microsoft.com/research/project/platform-for-interactive-concept-learning-picl/
https://www.microsoft.com/research/project/platform-for-interactive-concept-learning-picl/
https://bons.ai
https://rectlabel.com/
https://teachablemachine.withgoogle.com/
https://toloka.ai/
https://www.robots.ox.ac.uk/~vgg/software/via/
https://oracle.github.io/Skater/index.html
https://oracle.github.io/Skater/index.html
https://www.tensorflow.org/
https://doi.org/10.1609/aimag.v35i4.2513
http://arxiv.org/abs/cs.AI/1909.03012
http://jmlr.org/papers/v22/20-1473.html
https://doi.org/10.1016/j.inffus.2019.12.012
https://computerresearch.org/index.php/computer/article/view/568
https://computerresearch.org/index.php/computer/article/view/568
https://doi.org/10.1109/MCSE.2010.118
https://doi.org/10.1038/s41592-019-0582-9
https://doi.org/10.1038/s41592-019-0582-9
http://arxiv.org/abs/cs.CL/2005.14165
https://doi.org/10.1177/1745691610393980
https://doi.org/10.1177/1745691610393980
http://arxiv.org/abs/https://doi.org/10.1177/1745691610393980
https://doi.org/10.23915/distill.00015
https://keras.io
https://doi.org/10.1145/3185517
https://doi.org/10.1145/604045.604056
https://doi.org/10.1145/1357054.1357061
https://doi.org/10.1145/1357054.1357061
https://docs.python.org/3/tutorial/
https://docs.python.org/3/tutorial/
http://journals.rudn.ru/miph/article/view/22913
http://journals.rudn.ru/miph/article/view/22913
https://doi.org/10.1109/GCWkshps50303.2020.9367541
https://doi.org/10.1109/GCWkshps50303.2020.9367541
https://doi.org/10.1145/1656274.1656278
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1016/j.knosys.2020.106622
https://doi.org/10.1016/j.knosys.2020.106622
https://doi.org/10.1145/2598153.2598189
https://doi.org/10.1007/s10489-018-1361-5
https://doi.org/10.1007/s10489-018-1361-5
https://doi.org/10.1109/3PGCIC.2012.69
https://doi.org/10.1109/MCSE.2007.55
https://proceedings.neurips.cc/paper/2015/file/89ae0fe22c47d374bc9350ef99e01685-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/89ae0fe22c47d374bc9350ef99e01685-Paper.pdf
https://doi.org/10.1007/s12650-018-0531-1
https://doi.org/10.1038/nmeth.2281
https://doi.org/10.1038/nmeth.2281
https://doi.org/10.1111/2041-210X.13489
http://arxiv.org/abs/https://besjournals.onlinelibrary.wiley.com/doi/pdf/10.1111/2041-210X.13489
http://arxiv.org/abs/https://besjournals.onlinelibrary.wiley.com/doi/pdf/10.1111/2041-210X.13489

SAC 22, April 25-29, 2022, Virtual Event,

[60

(61

(62

o
s

=
=

(74

[75

[76

[77

[78

[79]

(80

[81

[82

(83

(84

of Machine Learning Research 22, 181 (2021), 1-7. http://jmlr.org/papers/v22/
21-0017.html

Mikhail Korobov and Konstantin Lopuhin. 2017. Explain Like I'm Five (ELI5).
https://eli5.readthedocs.io/en/latest/index.html

Nataliya Kosmyna, Franck Tarpin-Bernard, and Bertrand Rivet. 2015. Adding
Human Learning in Brain-Computer Interfaces (BCIs): Towards a Practical
Control Modality. ACM Trans. Comput.-Hum. Interact. 22, 3, Article 12 (May
2015), 37 pages. https://doi.org/10.1145/2723162

Tim Kraska. 2018. Northstar: An Interactive Data Science System. PVLDB 11,
12 (2018), 2150-2164.

Erin LeDell and Sebastien Poirier. 2020. H20 AutoML: Scalable Automatic Ma-
chine Learning. 7th ICML Workshop on Automated Machine Learning (AutoML)
(July 2020). https://www.automl.org/wp-content/uploads/2020/07/AutoML _
2020_paper_61.pdf

Martin Lindvall, Jesper Molin, and Jonas Lowgren. 2018. From Machine Learning
to Machine Teaching: The Importance of UX. Interactions 25, 6 (Oct. 2018), 52-57.
https://doi.org/10.1145/3282860

David Maulsby, Saul Greenberg, and Richard Mander. 1993. Prototyping an
Intelligent Agent Through Wizard of Oz. In Proceedings of the INTERACT ’93
and CHI °93 Conference on Human Factors in Computing Systems (CHI *93). ACM,
New York, NY, USA, 277-284. https://doi.org/10.1145/169059.169215
Microsoft. 2020. Lobe.ai. https://www.lobe.ai.

K. J. Millman and M. Aivazis. 2011. Python for Scientists and Engineers. Com-
puting in Science Engineering 13, 2 (2011), 9-12. https://doi.org/10.1109/MCSE.
2011.36

ml5. 2020. ml5.js - Friendly Machine Learning for the Web. https://learn.ml5js.
org/.

Dobrila Rancic Moogk. 2012. Minimum viable product and the importance of
experimentation in technology startups. Technology Innovation Management
Review 2, 3 (2012), 23-26.

Robert Munro. 2020. Human-in-the-Loop Machine Learning. Manning Publica-
tions.

Harsha Nori, Samuel Jenkins, Paul Koch, and Rich Caruana. 2019. In-
terpretML: A Unified Framework for Machine Learning Interpretability.
arXiv:cs.L.G/1909.09223

T. E. Oliphant. 2007. Python for Scientific Computing. Computing in Science
Engineering 9, 3 (2007), 10-20. https://doi.org/10.1109/MCSE.2007.58

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury,
et al. 2019. PyTorch: An Imperative Style, High-Performance Deep Learn-
ing Library. In Advances in Neural Information Processing Systems, H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (Eds.),
Vol. 32. Curran Associates, Inc. https://proceedings.neurips.cc/paper/2019/file/
bdbca288fee7f92f2bfa9f7012727740-Paper.pdf

Fabian Pedregosa, Gaél Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, et al. 2011. Scikit-learn: Machine Learning in Python. Journal
of Machine Learning Research 12, 85 (2011), 2825-2830. http://jmlr.org/papers/
v12/pedregosalla.html

F. Perez and B. E. Granger. 2007. IPython: A System for Interactive Scientific
Computing. Computing in Science Engineering 9, 3 (2007), 21-29. https://doi.
org/10.1109/MCSE.2007.53

Daniel Pop. 2016. Machine Learning and Cloud Computing: Survey of Dis-
tributed and Saa$S Solutions. arXiv:cs.DC/1603.08767

Reid Porter, James Theiler, and Don Hush. 2013. Interactive Machine Learning
in Data Exploitation. Computing in Science Engineering 15, 5 (2013), 12-20.
https://doi.org/10.1109/MCSE.2013.74

Gonzalo Ramos, Christopher Meek, Patrice Simard, Jina Suh, and Soroush Gho-
rashi. 2020. Interactive machine teaching: a human-centered approach to build-
ing machine-learned models. Human—Computer Interaction (2020), 1-39.
Muhammad Imran Razzak, Saeeda Naz, and Ahmad Zaib. 2018. Deep learning
for medical image processing: Overview, challenges and the future. Classification
in BioApps (2018), 323-350.

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. 2016. "Why
Should I Trust You?": Explaining the Predictions of Any Classifier.
arXiv:cs.LG/1602.04938

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. 2018. Anchors: High-
Precision Model-Agnostic Explanations. Proceedings of the AAAI Conference
on Artificial Intelligence 32, 1 (Apr. 2018). https://ojs.aaai.org/index.php/AAAI/
article/view/11491

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. 2015. U-Net: Convolutional
networks for biomedical image segmentation. In International Conference on
Medical image computing and computer-assisted intervention. Springer, 234-241.
Scott Sievert, Daniel Ross, Lalit Jain, Kevin Jamieson, Rob Nowak, and Robert
Mankoff. 2017. NEXT: A system to easily connect crowdsourcing and adaptive
data collection. In Proceedings of the 16th Python in Science Conference, Katy
Huff, David Lippa, Dillon Niederhut, and M Pacer (Eds.). 113-119. https:
//doi.org/10.25080/shinma- 7f4c6e7-010

D. Sculley, Gary Holt, Daniel Golovin, Eugene Davydov, Todd Phillips, et al. 2015.
Hidden Technical Debt in Machine Learning Systems. In Advances in Neural

1101

[85

[86

[87

[88

[89

[90

[o1

[92

[93

[94

[95
[96

[97

[98
[99

[100

[101

[102

[103

]

]

]

]

]

E. Mosqueira-Rey et al.

Information Processing Systems, C. Cortes, N. Lawrence, D. Lee, M. Sugiyama,
and R. Garnett (Eds.), Vol. 28. Curran Associates, Inc. https://proceedings.
neurips.cc/paper/2015/file/86df7dcfd896fcaf2674f757a2463eba-Paper.pdf

Burr Settles. 2009. Active learning literature survey. Technical Report. Uni-
versity of Wisconsin-Madison Department of Computer Sciences. https:
//minds.wisconsin.edu/handle/1793/60660

Burr Settles. 2011. From Theories to Queries: Active Learning in Practice. In
Active Learning and Experimental Design workshop In conjunction with AISTATS
2010 (Proceedings of Machine Learning Research), Isabelle Guyon, Gavin Cawley,
Gideon Dror, Vincent Lemaire, and Alexander Statnikov (Eds.), Vol. 16. JMLR
Workshop and Conference Proceedings, Sardinia, Italy, 1-18. http://proceedings.
mlr.press/v16/settles11a.html

Patrice Y. Simard, Saleema Amershi, David Maxwell Chickering, Alicia Edelman
Pelton, Soroush Ghorashi, Christopher Meek, Gonzalo Ramos, Jina Suh, Johan
Verwey, Mo Wang, and John Wernsing. 2017. Machine Teaching: A New Para-
digm for Building Machine Learning Systems. arXiv preprint arXiv:1707.06742
(2017). http://arxiv.org/abs/1707.06742

Séren Sonnenburg, Gunnar Rétsch, Sebastian Henschel, Christian Widmer, Jonas
Behr, Alexander Zien, Fabio de Bona, Alexander Binder, Christian Gehl, and
Vojtech Franc. 2010. The SHOGUN Machine Learning Toolbox. Journal of
Machine Learning Research 11, 60 (2010), 1799-1802. http://jmlr.org/papers/
v11/sonnenburg10a.html

I Stan¢in and A. Jovi¢. 2019. An overview and comparison of free Python
libraries for data mining and big data analysis. In 2019 42nd International Con-
vention on Information and Communication Technology, Electronics and Micro-
electronics (MIPRO). 977-982. https://doi.org/10.23919/MIPRO.2019.8757088
Jina Suh, Soroush Ghorashi, Gonzalo Ramos, Nan-Chen Chen, Steven Drucker,
Johan Verwey, and Patrice Simard. 2019. AnchorViz: Facilitating Semantic
Data Exploration and Concept Discovery for Interactive Machine Learning.
ACM Trans. Interact. Intell. Syst. 10, 1, Article 7 (Aug. 2019), 38 pages. https:
//doi.org/10.1145/3241379

Ying-Peng Tang, Guo-Xiang Li, and Sheng-Jun Huang. 2019. ALiPy: Active
Learning in Python. Technical Report. Nanjing University of Aeronautics and
Astronautics. https://github.com/NUAA-AL/ALiPy available as arXiv preprint
https://arxiv.org/abs/1901.03802.

Stefano Teso and Kristian Kersting. 2019. Explanatory Interactive Machine
Learning. In Proceedings of the 2019 AAAI/ACM Conference on Al Ethics, and
Society (AIES °19). Association for Computing Machinery, New York, NY, USA,
239-245. https://doi.org/10.1145/3306618.3314293

Philip van Allen. 2018. Prototyping Ways of Prototyping Al Interactions 25, 6
(Oct. 2018), 46-51. https://doi.org/10.1145/3274566

Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler
Reddy, David Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser,
Jonathan Bright, et al. 2020. SciPy 1.0: Fundamental Algorithms for Sci-
entific Computing in Python. Nature Methods 17 (2020), 261-272. https:
//doi.org/10.1038/541592-019-0686-2

Federico Ghelli Visi and Atau Tanaka. 2020. Interactive Machine Learning of
Musical Gesture. arXiv:cs.LG/2011.13487

Michael L. Waskom. 2021. seaborn: statistical data visualization. Journal of
Open Source Software 6, 60 (2021), 3021. https://doi.org/10.21105/j0ss.03021
Wes McKinney. 2010. Data Structures for Statistical Computing in Python. In
Proceedings of the 9th Python in Science Conference, Stéfan van der Walt and
Jarrod Millman (Eds.). 56 - 61. https://doi.org/10.25080/Majora-92bf1922-00a
Tom White. 2009. Hadoop: The Definitive Guide (1st ed.). O’Reilly Media, Inc.
Qian Yang, Alex Scuito, John Zimmerman, Jodi Forlizzi, and Aaron Steinfeld.
2018. Investigating How Experienced UX Designers Effectively Work with
Machine Learning. In Proceedings of the 2018 Designing Interactive Systems
Conference (DIS '18). ACM, New York, NY, USA, 585-596. https://doi.org/10.
1145/3196709.3196730

Yao-Yuan Yang, Shao-Chuan Lee, Yu-An Chung, Tung-En Wu, Si-An Chen, and
Hsuan-Tien Lin. 2017. libact: Pool-based Active Learning in Python. Technical
Report. National Taiwan University. https://github.com/ntucllab/libact available
as arXiv preprint https://arxiv.org/abs/1710.00379.

Matei Zaharia, Reynold S. Xin, Patrick Wendell, Tathagata Das, Michael Arm-
brust, Ankur Dave, Xiangrui Meng, Josh Rosen, Shivaram Venkataraman,
Michael J. Franklin, Ali Ghodsi, Joseph Gonzalez, Scott Shenker, and Ion Stoica.
2016. Apache Spark: A Unified Engine for Big Data Processing. Commun. ACM
59, 11 (Oct. 2016), 56-65. https://doi.org/10.1145/2934664

Michael Zbyszynski, Atau Tanaka, and Federico Visi. 2020. Interactive machine
learning: Strategies for live performance using electromyography. In Open
Source Biomedical Engineering, Hugo Silva (Ed.). Springer. http://research.gold.
ac.uk/id/eprint/28215/

Xiaojin Zhu. 2015. Machine Teaching: An Inverse Problem to Machine Learning
and an Approach Toward Optimal Education. In Proceedings of the Twenty-Ninth
AAAI Conference on Artificial Intelligence (AAAI'15). AAAI Press, 4083-4087.
http://dl.acm.org/citation.cfm?id=2888116.2888288

http://jmlr.org/papers/v22/21-0017.html
http://jmlr.org/papers/v22/21-0017.html
https://eli5.readthedocs.io/en/latest/index.html
https://doi.org/10.1145/2723162
https://www.automl.org/wp-content/uploads/2020/07/AutoML_2020_paper_61.pdf
https://www.automl.org/wp-content/uploads/2020/07/AutoML_2020_paper_61.pdf
https://doi.org/10.1145/3282860
https://doi.org/10.1145/169059.169215
https://www.lobe.ai
https://doi.org/10.1109/MCSE.2011.36
https://doi.org/10.1109/MCSE.2011.36
https://learn.ml5js.org/
https://learn.ml5js.org/
http://arxiv.org/abs/cs.LG/1909.09223
https://doi.org/10.1109/MCSE.2007.58
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
http://jmlr.org/papers/v12/pedregosa11a.html
http://jmlr.org/papers/v12/pedregosa11a.html
https://doi.org/10.1109/MCSE.2007.53
https://doi.org/10.1109/MCSE.2007.53
http://arxiv.org/abs/cs.DC/1603.08767
https://doi.org/10.1109/MCSE.2013.74
http://arxiv.org/abs/cs.LG/1602.04938
https://ojs.aaai.org/index.php/AAAI/article/view/11491
https://ojs.aaai.org/index.php/AAAI/article/view/11491
https://doi.org/10.25080/shinma-7f4c6e7-010
https://doi.org/10.25080/shinma-7f4c6e7-010
https://proceedings.neurips.cc/paper/2015/file/86df7dcfd896fcaf2674f757a2463eba-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/86df7dcfd896fcaf2674f757a2463eba-Paper.pdf
https://minds.wisconsin.edu/handle/1793/60660
https://minds.wisconsin.edu/handle/1793/60660
http://proceedings.mlr.press/v16/settles11a.html
http://proceedings.mlr.press/v16/settles11a.html
http://arxiv.org/abs/1707.06742
http://jmlr.org/papers/v11/sonnenburg10a.html
http://jmlr.org/papers/v11/sonnenburg10a.html
https://doi.org/10.23919/MIPRO.2019.8757088
https://doi.org/10.1145/3241379
https://doi.org/10.1145/3241379
https://github.com/NUAA-AL/ALiPy
https://arxiv.org/abs/1901.03802
https://doi.org/10.1145/3306618.3314293
https://doi.org/10.1145/3274566
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
http://arxiv.org/abs/cs.LG/2011.13487
https://doi.org/10.21105/joss.03021
https://doi.org/10.25080/Majora-92bf1922-00a
https://doi.org/10.1145/3196709.3196730
https://doi.org/10.1145/3196709.3196730
https://github.com/ntucllab/libact
https://arxiv.org/abs/1710.00379
https://doi.org/10.1145/2934664
http://research.gold.ac.uk/id/eprint/28215/
http://research.gold.ac.uk/id/eprint/28215/
http://dl.acm.org/citation.cfm?id=2888116.2888288

	MAIN MENU
	Go to Previous View
	Help
	Search
	Print
	Author Index
	Keyword Index
	Table of Contents

