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Abstract

Background: The health crisis resulting from the global COVID-19 pandemic highlighted more than ever the need
for rapid, reliable and safe methods of diagnosis and monitoring of respiratory diseases. To study pulmonary
involvement in detail, one of the most common resources is the use of different lung imaging modalities (like chest
radiography) to explore the possible affected areas.

Methods: The study of patient characteristics like sex and age in pathologies of this type is crucial for gaining
knowledge of the disease and for avoiding biases due to the clear scarcity of data when developing representative
systems. In this work, we performed an analysis of these factors in chest X-ray images to identify biases. Specifically, 11
imbalance scenarios were defined with female and male COVID-19 patients present in different proportions for the
sex analysis, and 6 scenarios where only one specific age range was used for training for the age factor. In each study,
3 different approaches for automatic COVID-19 screening were used: Normal vs COVID-19, Pneumonia vs COVID-19
and Non-COVID-19 vs COVID-19. The study was validated using two public chest X-ray datasets, allowing a reliable
analysis to support the clinical decision-making process.

Results: The results for the sex-related analysis indicate this factor slightly affects the system in the Normal VS
COVID-19 and Pneumonia VS COVID-19 approaches, although the identified differences are not relevant enough to
worsen considerably the system. Regarding the age-related analysis, this factor was observed to be influencing the
system in a more consistent way than the sex factor, as it was present in all considered scenarios. However, this
worsening does not represent a major factor, as it is not of great magnitude.

Conclusions: Multiple studies have been conducted in other fields in order to determine if certain patient
characteristics such as sex or age influenced these deep learning systems. However, to the best of our knowledge, this
study has not been done for COVID-19 despite the urgency and lack of COVID-19 chest x-ray images. The presented
results evidenced that the proposed methodology and tested approaches allow a robust and reliable analysis to
support the clinical decision-making process in this pandemic scenario.

Keywords: CAD system, Chest X-ray, COVID-19 screening, Data analysis, Deep learning

*Correspondence: joaquim.demoura@udc.es
1Centro de Investigación CITIC, Universidade da Coruña, Campus de Elviña,
15071 A Coruña, Spain
Full list of author information is available at the end of the article

© The Author(s). 2022 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were
made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative
Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made
available in this article, unless otherwise stated in a credit line to the data.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12874-022-01578-w&domain=pdf
mailto: joaquim.demoura@udc.es
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Álvarez-Rodríguez et al. BMCMedical ResearchMethodology          (2022) 22:125 Page 2 of 17

Background
In March 2020, the World Health Organization (WHO)
declared the COVID-19 outbreak a pandemic. This highly
contagious disease caused by the Severe Acute Res-
piratory Syndrome Coronavirus 2 (SARS-CoV-2) over-
whelmed the healthcare system of many countries, forc-
ing them to take drastic measurements to control the
incessant flow of infected patients such as lockdown and
curfew, among others health measures. This health cri-
sis resulting from the global COVID-19 pandemic caused
more than 346 million confirmed cases and more than 5.5
million deaths worldwide cite[1], highlighting more than
ever the necessity of rapid, reliable and safe methods of
diagnosing and monitoring respiratory diseases. COVID-
19 is a demonstration of the impact that these diseases can
have on society, with direct repercussions on public health
and the global economy. Due to its particularities, these
diseases present a very high transmission rate, as they can
be easily transmitted by air. In this context, early detec-
tion and assessment of the evolution of patients with these
diseases is vital, since many of them in their most severe
phases, can lead to symptoms including acute respiratory
failure, requiring the use of assisted breathing systems or
admission to an intensive care unit (ICU).
Efforts in the deep learning domain have been devoted

to improving COVID diagnostics in several fronts, like by
combining RT-PCR and pseudo-convolutional machines
to characterize virus sequences cite[2]. In order to study
lung involvement in detail, one of the most common
resources is to use different lung imaging modalities (such
as chest X-ray) to explore the possible affected areas. This
requires a detailed analysis to identify and characterize
the different pathological structures on the chest X-ray
image, which should be performed by a professional with
many years of experience. In this sense, the need to have
a set of computational methodologies that allow detailed
analysis of a chest X-ray image for diagnostic purposes is
critical, especially in the current pandemic scenario. As
reference, Fig. 1 shows 3 representative examples of chest
X-ray images for 3 different scenarios: normal (patient
without pulmonary conditions), patient with pneumonia
(others than COVID-19) and patient with COVID-19.
Given the great relevance of this topic, different authors

have developed methodologies to support the diagnosis
of COVID-19 using X-ray imaging [3, 4]. As reference,
Wang et al. [5] developed an open access customized con-
volutional neural network (CNN) that detects COVID-19
signs in chest X-ray images. Along with this system, they
also provided a public dataset named COVIDx that com-
bines images from the main COVID-19 public datasets.
In the work of Hammoudi et al. [6], the author proposed
a deep learning system that distinguished bacterial pneu-
monia from viral pneumonia which could be caused by
COVID-19. COVIDX-Net is a framework presented by

Hemdan et al. [7] whose purpose is organizing seven dif-
ferent chest X-ray classifiers in order to diagnose COVID-
19. In the work of Zhang et al. [8], the authors used
Confidence Aware Anomaly Detection (CAAD) models
to differentiate viral pneumonia from non-viral pneumo-
nia and non-infected patients. Ozturk et al. [9] designed
the DarkCovidNet, a deep learning architecture based on
DarkNet, and their work was validated by a radiologist
who reviewed heatmaps that showed where their system
was identifying anomalies related to COVID-19. Gomes et
al. cite[10] created IKONOS, a tool to support diagnosis of
COVID-19 by texture analysis of X-ray images. Ismael et
al. cite[11] used multiresolution approaches, like Wavelet,
Shearlet and Contourlet transforms, for feature extrac-
tion for chest X-ray image based COVID-19 detection to
prove these traditional methods are still effective. Shelke
et al. [12] proposed a methodology that classified chest X-
ray into normal, pneumonia, tuberculosis and COVID-19
classes, being able to rate severity. Yoo et al. [13] pro-
posed a methodology based on classification trees that
categorized X-ray images between normal and anomalies,
and COVID-19 and non-COVID-19, respectively. Ismael
et al. cite[14] considered deep feature extraction from pre-
trained deep networks, fine-tuning of a pretrained CNN
model, and end-to-end training of a CNN model to clas-
sify chest X-rays into NORMAL and COVID-19 classes.
In the work of Li et al. [15], the authors made predictions
about a COVID-19 infected patient outcome by using a
Siamese convolutional neural network [16] to estimate the
disease severity. They used chest X-ray images to prog-
nosticate patient’s intubation or death, which is a useful
resource for hospital resources management. De Moura
et al. [17] presented 3 complementary approaches based
on Dense Convolutional Network architectures specifi-
cally designed for the classification of chest X-ray images
into normal, pathological and COVID-19. Waheed et al.
[18] addressed the lack of COVID-19 chest X-ray and
they tried to solve this by developing CovidGAN, a model
based on Auxiliary Classifier Generative Adversarial Net-
work that generates synthetic COVID-19 images. In the
work of Morís et al. [19], the authors proposed a strategy
to improve the performance of COVID-19 screening [20]
by using 3 CycleGAN architectures to generate synthetic
images from portable chest X-ray devices.
Nowadays, there is no doubt that deep learningmethods

are useful resources in the field of medical image analysis.
However, these methods require a large amount of data
for the developed systems to be used in a real scenario.
This problem is known as data scarcity and exists even
for more researched and common diseases, such as can-
cer or pneumonia, whose public datasets are scarce and,
some of them, unbalanced, containing only certain types
of patients. For instance, the Kaggle Pneumonia dataset
[21] that was widely used in the development of different
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Fig. 1 Representative examples of chest X-ray images of normal (patient without pulmonary conditions), patient with pneumonia (others than
COVID-19) and patient with COVID-19

systems for automatic COVID-19 screening only contains
pediatric chest X-ray images. This problem was com-
mented by Cirillo et al. [22] in their work, as they describe
how biased systems produce discriminatory results in the
medical field. They focus on the sex and gender factors, as
they consider these aspects to affect diseases, risks, treat-
ments, symptoms, etc. In the work of Larrazabal et al.
[23], the authors analysed how imbalance related to gen-
der slightly biases deep learning systems when diagnosing
some lung pathologies and abnormalities through chest
X-ray images, even though observed worsening was not
large. In the work of Vidal et al. [24], the authors pro-
posed a methodology that attempts to alleviate this data
scarcity problem in the COVID-19 domain by a two-step
knowledge transfer to obtain a robust system able to seg-
ment lung regions from portable X-ray devices despite the
scarcity of samples and lesser quality. However, to date, to
the best of our knowledge, no such study, specifically for
sex and age, has been performed for COVID-19 despite all
the advances, number of articles and studies, the urgency
and lack of COVID-19 chest-x ray images.
Therefore, in this work, we performed a comprehensive

analysis of sex and age factors in the COVID-19 datasets.
Asmentioned above, these characteristicsmight influence
the diagnosis of a disease of this type, where there is a clear
problem of data scarcity, which may take us away from
the goal of having systems that are as representative as
possible and gaining more knowledge about the pathology
itself. By thoroughly studying these patient characteristics,
we made sure to answer the question of whether these
factors produce bias in COVID-19 deep learning-based
systems. For this purpose, we analyzed 3 different compu-
tational approaches for COVID-19 screening using chest
X-ray images: (I) Normal vs COVID-19, (II) Pneumonia vs
COVID-19 and (III) Non-COVID-19 vs COVID-19. The
proposed study was validated using two state-of-the-art
datasets publicly available to the scientific community.
This paper is organized as follows: “Methods” section

describes the resources and deep learning approaches
employed for the analysis of sex and age factors

in the COVID-19 datasets; “Results” section presents
the obtained results; and finally, “Discussion” and
“Conclusions” sections conclude the manuscript, dis-
cussing the results and their impact in relation to the state
of the art.

Methods
Datasets
In this section, we describe the 2 public chest X-ray
datasets used for this research: (I) HM Hospitals COVID-
19 dataset “Covid data saves lives” and (II) RSNA Pneu-
monia Challenge dataset. Both are described in detail
below.

HMhospitals COVID-19 dataset
HM Hospitals made available to the scientific commu-
nity an anonymous dataset with all clinical information
of patients treated in their hospitals by the COVID-19
virus [25]. This dataset is available upon request and must
be approved by the HM Hospitals Research Ethics Com-
mittee. It consists of 2,310 patients with a diagnosis of
“COVID-19 positive” or “COVID-19 pending” admitted
to HM Hospitals. Chest X-rays are available for some of
the patients, and these were taken during the time they
were hospitalized. In this sense, we used 5,493 posteroan-
terior chest X-ray images from 1,832 different patients
whose age and sex are distributed as indicated in Fig. 2 for
our COVID-19 class.

RSNANormal/Pneumonia dataset
The RSNA Pneumonia Challenge dataset [26] is a sub-
set of the ChestX-ray8 dataset [27] created for the Kaggle
challenge on the MD.ai platform in collaboration with
the Radiological Society of North America (RSNA). This
dataset consists of 16,248 X-ray images, considering only
the posteroanterior chest view, resulting in 9,452 images
for normal cases and 6,796 images for patients diagnosed
with pneumonia. In this dataset, we also have information
about the age and sex of the patients. These characteris-
tics are distributed in our subset as indicated in Fig. 3 for
normal and pneumonia cases.
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Fig. 2 Age and sex distribution for chest X-ray images of the HM Hospitals COVID-19 dataset

Fig. 3 Age and sex distribution for chest X-ray images of the RSNA dataset
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Software and hardware resources
In this work, we used Python (version 3.6.6) for the imple-
mentation of the conducted studies and machine learning
libraries PyTorch (version 0.4.1) and Scikit-learn (version
0.24.2) were used to train, validation and test the obtained
models, as well as to get themetrics of their performances.
In addition, in order to facilitate the replication of our

studies, we present in Table 1 the main specifications of
the hardware used to perform the experiments.

Architecture
In this work, we exploited the potential of the DenseNet-
161 architecture [28]. This architecture is composed of
dense blocks linked by transition layers, which in turn are
formed by convolution and pooling layers. These dense
blocks have layers with their own feature maps which con-
sists of a batch normalisation operation, a ReLu operation
and a 3 x 3 convolution with k filters, where k is the growth
rate. Each of them receives the feature maps of all the pre-
vious layers, so that the collective knowledge of all the
predecessor layers is preserved. In our case, this growth
ratio k is 48, and the depth of the architecture L is 161.
However, we modified its original structure to support the
binary output defined in our computational approaches,
as depicted in Table 2. This architecture provided satis-
factory results in similar works aimed at classifying chest
X-rays of patients with COVID-19 [17, 19, 20], which led
us to choose it for this work.

Computational approaches for screening tasks
As illustrated in Fig. 4, we present 3 different approaches
which classify X-ray images into 2 categories to differen-
tiate COVID-19 patients from certain types of patients,
as normal and pneumonia ones. Each of these approaches
will be explained in more detail below, but in general these
3 different approaches cover a wide range of scenarios in

Table 1 Specifications of the equipment used throughout the
project to carry out the experiments

Name Description

OS DEBIAN GNU/Linux 10

Kernel Linux 4.18.0-2-amd64

Architecture x86-64

CPU Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz

Motherboard Lenovo NeXtScale nx360 M5

RAM 16 GB de RAM GDDR5

HDD IBM ServeRAID M5210 930 GB

GPU NVIDIA Tesla P100

Driver Version 396.44

CUDA Version 9.2

Table 2 DenseNet-161 adapted structure

Layers Output size DenseNet-161

Convolution 112 x 112 Conv. 7 x 7, stride 2

Pooling 56 x 56 Max pool 3 x 3, stride 2

Dense block (1) 56 x 56 [ 1 × 1 conv. 3 × 3 conv.] x 6

Transition layer (1) 56 x 56 Conv. 1 x 1

28 x 28 2 x 2 average pool, stride 2

Dense block (2) 28 x 28 [ 1 × 1 conv. 3 × 3 conv.] x 12

Transition layer (2) 28 x 28 Conv. 1 x 1

14 x 14 2 x 2 average pool, stride 2

Dense block (3) 14 x 14 [ 1 × 1 conv. 3 × 3 conv.] x 36

Transition layer (3) 14 x 14 Conv. 1 x 1

7 x 7 2 x 2 average pool, stride 2

Dense block (4) 7 x 7 [ 1 × 1 conv. 3 × 3 conv.] x 24

Classification layer 1 x 1 7 x 7 global average pool

2D fully-connected, softmax

which we can study in depth how gender and age fac-
tors affect the diagnosis of COVID-19 in deep learning
systems. In this way, we will be able to draw more solid
and contrasted conclusions, as most of the cases where
a COVID-19 screening task is performed are taken into
account and a bias could be more clearly detected.

1st approach: Normal vs. COVID-19
In this first scenario, we trained a model to obtain a con-
solidated approach to distinguish between normal cases
(control patients without lung conditions but who may
have other systemic pathologies) and COVID-19.We con-
sider this scenario to be very useful as it is realistic and
complex, as it is more difficult than distinguishing only
between healthy patients and COVID-19. Moreover, this
approach is present in the literature [29]. Both the fact
that it is a situation that can occur in a clinical context and
that it is a case that can be widely found in the state of the
art make the casuistry present in this approach interesting
when studying the influence of our target factors.

2nd approach: pneumonia vs. COVID-19
Given the similarities between COVID-19 and both viral
and bacterial pneumonia, this second approach aims
to differentiate between patients with COVID-19 and
patients with pneumonia not caused by COVID-19.
Thus, 2 different categories are predicted: pneumonia
and COVID-19. Similar approaches have been studied in
related works [12, 30]. Again, this is a complex situa-
tion that could be found in a real screening task and it is
broadly studied in the state of art as well, so we find here
a number of interesting cases where to explore the impact
that sex and age could have.



Álvarez-Rodríguez et al. BMCMedical ResearchMethodology          (2022) 22:125 Page 6 of 17

System

Normal

COVID-19

Normal

COVID-19

System

Pneumonia

COVID-19

Pneumonia

COVID-19

System

Non-COVID-19

COVID-19

Normal

COVID-19

P
ne

um
on

ia

1s
t a

pp
ro

ac
h

2n
d 

ap
pr

oa
ch

3r
d 

ap
pr

oa
ch

Fig. 4 Schematic representation of computational approaches for COVID-19 screening using X-ray images

3rd approach: non-COVID-19 vs. COVID-19
In this third approach, two categories are considered:
one that has normal and pneumonia patients, named
Non-COVID-19, and another one that has only COVID-
19 patients. In this way, we can analyse the degree of
separability between COVID-19 patients from all other
cases. This kind of approach is common in related works
[5, 7, 31]. Thus, this approach allows us, again, to investi-
gate how our target factors could affect a wide number of
real and complex cases taken into account here.

Training details
The final dataset for each experiment where we will study
the sex and age factors was divided intomutually exclusive
subsets, being (60%, 20%, and 20%) for training, valida-
tion, and testing, respectively. Regarding the training, we
started from the DenseNet-161 model pre-trained with
the ImageNet [32] dataset, making use of the transfer

learning strategy, but modifying the output layer to adapt
it to our specific classification problem. In this way, the
training process will be more efficient due to the faster
convergence of the training and validation curves. It also
reduces the number of labeled images necessary for the
process to be adequate [24]. On the other hand, a cross-
entropy loss function is performed on the output class and
the ground truth for the target X-ray image. The optimiza-
tion during the training is carried out by Stochastic Gra-
dient Descent (SGD) [33] with a learning rate constant of
0.01, a mini-batch size of 4, and a first-order momentum
of 0.9, all of them obtained by exhaustive experimentation.
This optimiser has proven to be very efficient, despite
its simplicity, for the discriminative learning of classifiers
under convex loss functions, defined as follows, where Y
represents the ground truth values and Ŷ represents the
estimated values for each identified category:

L = −Y · log(Ŷ ) (1)
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A complete training epoch includes a run through all the
samples of the training set. Each training process had
200 epochs, since a larger number of epochs would not
produce of epochs did not produce significant improve-
ments neither in the loss function nor in the accuracy
metrics. In addition, to ensure the generalization capa-
bility of the approaches presented, each experiment was
repeated 5 times independently of each other with ran-
dom sample selection, so it was necessary to calculate the
means of these repetitions to evaluate the overall global
performance. To compensate for the lack of available X-
ray images and thus avoid problems of overfitting and to
increase the generalization capacity, data augmentation
was performed to obtain more robust and stable mod-
els. Thus, scaling and horizontal rotation operations were
performed, which are appropriated given the symmetrical
nature of the chest X-ray image, so the variability of the
data used was increased. We consider this configuration
to be suitable enough for our sex and age study, as it has
provided satisfactory results in similar works [17, 19, 20].

Evaluation
The performance of the presented computational
approaches was evaluated by comparing the predictions
provided by the models with the ground truth labels
annotated in the X-ray image datasets. Then, the values
of True Positives (TP), True Negatives (TN), False Pos-
itives (FP) and False Negatives (FN) were considered to
calculate different metrics that are commonly used in the
literature [17, 19, 20] to assess the stability of computa-
tional methods for medical imaging problems. Following
the reference of these similar works, we also decided
to use these metrics for our analysis of the sex and age
factors. Thus, Precision, Recall, F1-score, and Accuracy
were calculated for each approach as follows.

Precision = TP
TP + FP

(2)

Recall = TP
TP + FN

(3)

F1 − score = 2 ∗ Precision ∗ Recall
Precision + Recall

(4)

Accuracy = TP + TN
TP + TN + FP + FN

(5)

Results
In this section, we present the experimental results of the
proposed computational approaches for the classification
of COVID-19 in chest X-ray images, covering a wide range
of cases that will allow us to draw more contrasted and
solid conclusions regarding the studied factors of sex and
age. In particular, we perform two different and comple-
mentary studies on the COVID-19 dataset. The first one
analyses the influence of the sex factor for each of the
3 approaches: (I) Normal VS COVID-19, (II) Pneumonia
VS COVID-19 and (III) Non-COVID-19 VS COVID-19.
The second one performs a similar analysis, but in this
case considering patients by age ranges. Both studies are
described below.

Sex-related imbalance analysis
One of the main characteristics of a patient that can influ-
ence a diagnostic system is sex [22, 23]. Especially in
chest x-rays, we might think that differences in size, in
addition to other typical sex characteristics such as the
presence of breasts, could imply taking the images in dif-
ferent postures or certain abnormalities in the samples
that could be mistaken for signs of a pathology, in this
case this being COVID-19 [34]. In Fig. 5, we exemplify
these differences with 2 patients of different sexes who
have COVID-19. Considering how important is to iden-
tify a bias related to the sex of the patient, we designed the
following study in order to test whether this characteristic
influences diagnosing COVID-19.
In this first analysis, we explored intermediate imbal-

ance scenarios in which female and male patients diag-
nosed with COVID-19 were analysed in different propor-
tions with 10% intervals, ranging from 0% male patients
and 100% female patients to 100% male patients and 0%
female patients. Thus, we conducted a comprehensive

Fig. 5 Example of two representative chest X-ray images of male and female patients diagnosed with COVID-19



Álvarez-Rodríguez et al. BMCMedical ResearchMethodology          (2022) 22:125 Page 8 of 17

Table 3 Distribution of randomly selected X-ray images for each
computational approach in the sex-related imbalance analysis

Approach Normal Pneumonia

Normal VS COVID-19 350 M + 350 F 0

Pneumonia VS COVID-19 0 350 M + 350 F

Non-COVID-19 VS COVID-19 175 M + 175 F 175 M + 175 F

analysis with 11 different configurations for each com-
putational approach. For each imbalance case, we get a
model that is then tested using the remaining images not
used during training. Afterwards, we compare the results
obtained for each scenario with our baseline (50% female
and 50% male). Regarding the amount of images consid-
ered for each approach, we used 700 COVID-19 images
from 700 different patients. Although the dataset consid-
ered in this study consists of 5,493 COVID-19 images,
it includes several COVID-19 images obtained from the
same patient over time. Furthermore, in terms of gender,
the dataset is composed of 1,132 male and 730 female
patients. Finally, we have discarded 30 female patients

because they did not have a chest X-ray image but another
type of medical image, such as a lung CT scan. Therefore,
in order to perform a more honest and unbiased analysis,
we only have 700 patients in sex-related imbalance anal-
ysis. To maintain balance between this COVID-19 class
and the other classes, 700 X-ray images were randomly
selected and divided according to the sex of the patient, as
indicated in Table 3. Therefore, each of the 11 experiments
was performed using 1400 chest X-ray images.

Analysis of the 1st approach: Normal vs. COVID-19
In Table 4 we present a comparative analysis of the per-
formance at the test stage using precision, recall, and
F1-score measures, where we highlight our baseline as
we are going to use it to compare our metrics. As for
the mean accuracy obtained at each scenario, our val-
ues ranged from 0.9757± 0.0105 at the 40%M 60%F case,
to 0.9835± 0.0105 at the 90%M 10%F case. The standard
deviation of these metrics was always below 2.1%, being
the highest at the 60%M 40%F case, and the lowest at
30%M 70%F with 0.58%. In general, it can be observed

Table 4 Mean ± standard deviation of the results obtained in the test stage for the classification of chest X-ray images between
Normal VS COVID-19 after 5 independent repetitions. The baseline is highlighted in grey

Experiment Class Precision Recall F1-Score

0%M 100%F Normal 0.9872± 0.0076 0.9831± 0.0124 0.9851± 0.0090

COVID-19 0.9827± 0.0132 0.9869± 0.0080 0.9848± 0.0095

10%M 90%F Normal 0.9827± 0.0185 0.9882± 0.0082 0.9854± 0.0092

COVID-19 0.9888± 0.0079 0.9833± 0.0181 0.9859± 0.0090

20%M 80%F Normal 0.9957± 0.0063 0.9821± 0.0139 0.9888± 0.0078

COVID-19 0.9810± 0.0154 0.9956± 0.0065 0.9882± 0.0085

30%M 70%F Normal 0.9830± 0.0113 0.9800± 0.0112 0.9814± 0.0053

COVID-19 0.9800± 0.0117 0.9827± 0.0121 0.9813± 0.0063

40%M 60%F Normal 0.9839± 0.0120 0.9670± 0.0121 0.9754± 0.0108

COVID-19 0.9677± 0.0115 0.9843± 0.0115 0.9759± 0.0102

Normal 0.9902± 0.0104 0.9817± 0.0095 0.9859± 0.0077

50%M 50%F COVID-19 0.9813± 0.0093 0.9896± 0.0112 0.9854± 0.0082

60%M 40%F Normal 0.9818± 0.0198 0.9874± 0.0240 0.9846± 0.0208

COVID-19 0.9868± 0.0257 0.9811± 0.0213 0.9839± 0.0224

70%M 30%F Normal 0.9928± 0.0100 0.9803± 0.0175 0.9865± 0.0130

COVID-19 0.9800± 0.0188 0.9927± 0.0103 0.9863± 0.0139

80%M 20%F Normal 0.9843± 0.0135 0.9843± 0.0128 0.9842± 0.0083

COVID-19 0.9843± 0.0123 0.9843± 0.0135 0.9842± 0.0081

90%M 10%F Normal 0.9843± 0.0135 0.9957± 0.0063 0.9899± 0.0090

COVID-19 0.9955± 0.0065 0.9845± 0.0136 0.9899± 0.0094

100%M 0%F Normal 0.9826± 0.0139 0.9840± 0.0091 0.9833± 0.0104

COVID-19 0.9844± 0.0095 0.9831± 0.0138 0.9837± 0.0107
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that the differences between the metrics are small when
compared to our baseline and their values are maintained
regardless of the studied scenario.

Analysis of the 2nd approach: pneumonia vs. COVID-19
The second group of experiments deals with the analy-
sis of sex-related imbalance in the second approach. In
this line, Table 5 show a comparative analysis of the
performance at the test stage using precision, recall, and
F1-score measures. Here, we highlight our baseline as we
are going to use it to compare our metrics. As we can see,
the results show a similar tendency to the previous set
of experiments of the first approach, with values for the
mean accuracy ranged from 0.9721± 0.0187 at the 0%M
100%F case, to 0.9892± 0.0091 at the 100%M 0%F case.
The standard deviation of these metrics was always below
1.8%, being the highest at the 0%M 100%F case, and the
lowest at 10%M 90%F with 0.86%.

Analysis of the 3rd approach: non-COVID-19 vs. COVID-19
In this third set of experiments, we analyzed the behavior
of the sex factor imbalance in the data on separabil-

ity between the Non-COVID-19 vs. COVID-19 classes.
Table 6 shows the results of the test stage in terms of pre-
cision, recall and F1-Score for each class, after performing
the proposed experiments, and we highlighted our base-
line as we are going to use it to compare our metrics.
As we can see, these results reflect that all models are
able to accurately separate samples from both classes. As
for the mean accuracy obtained at each scenario, our val-
ues ranged from 0.9700± 0.0117 at the 40%M 60%F case,
to 0.9857± 0.0035 at the 100%M 0%F case. The standard
deviation of these metrics was always below 1.3%, being
the highest at the 60%M 40%F case, and the lowest at
100%M 0%F with 0.35%.

Age-related imbalance analysis
Age-related deterioration of both the skeleton and the
musculature of the body is visible on chest X-rays, which
may affect the diagnosis obtained from them [22, 35]. In
addition, older COVID-19 patients often require more
medical equipment that appears on chest X-ray images,
such as intravenous lines, ventilators, pacemakers, and so
on, which may again affect the diagnosis obtained from

Table 5 Mean ± standard deviation of the results obtained in the test stage for the classification of chest X-ray images between
Pneumonia VS COVID-19 after 5 independent repetitions. The baseline is highlighted in grey

Experiment Class Precision Recall F1-Score

0%M 100%F Pneumonia 0.9769± 0.0174 0.9675± 0.0224 0.9721± 0.0191

COVID-19 0.9671± 0.0220 0.9771± 0.0167 0.9720± 0.0184

10%M 90%F Pneumonia 0.9838± 0.0166 0.9756± 0.0116 0.9796± 0.0090

COVID-19 0.9761± 0.0118 0.9848± 0.0155 0.9803± 0.0082

20%M 80%F Pneumonia 0.9830± 0.0216 0.9898± 0.0110 0.9864± 0.0157

COVID-19 0.9899± 0.0109 0.9829± 0.0214 0.9864± 0.0155

30%M 70%F Pneumonia 0.9815± 0.0089 0.9815± 0.0125 0.9815± 0.0096

COVID-19 0.9813± 0.0133 0.9812± 0.0102 0.9812± 0.0108

40%M 60%F Pneumonia 0.9897± 0.0065 0.9854± 0.0116 0.9875± 0.0076

COVID-19 0.9860± 0.0108 0.9902± 0.0062 0.9881± 0.0071

Pneumonia 0.9830± 0.0107 0.9766± 0.0206 0.9797± 0.0135

50%M 50%F COVID-19 0.9751± 0.0223 0.9825± 0.0109 0.9787± 0.0143

60%M 40%F Pneumonia 0.9856± 0.0088 0.9779± 0.0191 0.9817± 0.0119

COVID-19 0.9766± 0.0212 0.9855± 0.0086 0.9810± 0.0131

70%M 30%F Pneumonia 0.9868± 0.0121 0.9854± 0.0145 0.9861± 0.0130

COVID-19 0.9859± 0.0140 0.9874± 0.0114 0.9866± 0.0124

80%M 20%F Pneumonia 0.9816± 0.0094 0.9778± 0.0151 0.9797± 0.0094

COVID-19 0.9766± 0.0170 0.9811± 0.0095 0.9788± 0.0104

90%M 10%F Pneumonia 0.9769± 0.0174 0.9675± 0.0224 0.9721± 0.0191

COVID-19 0.9671± 0.0220 0.9771± 0.0167 0.9720± 0.0184

100%M 0%F Pneumonia 0.9769± 0.0174 0.9675± 0.0224 0.9721± 0.0191

COVID-19 0.9671± 0.0220 0.9771± 0.0167 0.9720± 0.0184
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Table 6 Mean ± standard deviation of the results obtained in the test stage for the classification of chest X-ray images between
Non-COVID-19 VS COVID-19 after 5 independent repetitions. The baseline is highlighted in grey

Experiment Class Precision Recall F1-Score

0%M 100%F Non-COVID-19 0.9813± 0.0103 0.9826± 0.0167 0.9819± 0.0090

COVID-19 0.9832± 0.0156 0.9815± 0.0108 0.9823± 0.0084

10%M 90%F Non-COVID-19 0.9767± 0.0093 0.9795± 0.0196 0.9781± 0.0125

COVID-19 0.9805± 0.0182 0.9775± 0.0092 0.9790± 0.0117

20%M 80%F Non-COVID-19 0.9814± 0.0228 0.9900± 0.0121 0.9855± 0.0124

COVID-19 0.9899± 0.0117 0.9819± 0.0217 0.9858± 0.0117

30%M 70%F Non-COVID-19 0.9854± 0.0106 0.9838± 0.0150 0.9846± 0.0121

COVID-19 0.9847± 0.0142 0.9859± 0.0096 0.9853± 0.0112

40%M 60%F Non-COVID-19 0.9680± 0.0093 0.9707± 0.0213 0.9692± 0.0122

COVID-19 0.9722± 0.0196 0.9692± 0.0095 0.9706± 0.0112

Non-COVID-19 0.9902± 0.0093 0.9885± 0.0121 0.9893± 0.0051

50%M 50%F COVID-19 0.9777± 0.0222 0.9793± 0.0197 0.9782± 0.0099

60%M 40%F Non-COVID-19 0.9813± 0.0183 0.9785± 0.0108 0.9798± 0.0126

COVID-19 0.9786± 0.0116 0.9816± 0.0188 0.9800± 0.0134

70%M 30%F Non-COVID-19 0.9782± 0.0150 0.9896± 0.0084 0.9838± 0.0062

COVID-19 0.9903± 0.0077 0.9792± 0.0146 0.9846± 0.0057

80%M 20%F Non-COVID-19 0.9818± 0.0218 0.9707± 0.0148 0.9760± 0.0106

COVID-19 0.9698± 0.0153 0.9812± 0.0230 0.9753± 0.0110

90%M 10%F Non-COVID-19 0.9813± 0.0103 0.9826± 0.0167 0.9819± 0.0090

COVID-19 0.9832± 0.0156 0.9815± 0.0108 0.9823± 0.0084

100%M 0%F Non-COVID-19 0.9813± 0.0103 0.9826± 0.0167 0.9819± 0.0090

COVID-19 0.9832± 0.0156 0.9815± 0.0108 0.9823± 0.0084

the X-rays [34]. To illustrate these characteristics asso-
ciated with different ages, Fig. 6 shows representative
examples of different COVID-19 patients ranging in age
from 47 to 93 years old. These differences raise the need
for a detailed study of how the patient age affects the
diagnosis of COVID-19. Therefore, we describe below the
analysis we have carried out for this purpose.
For the age-related imbalance study, we defined 6 differ-

ent age ranges: 0-40, 40-50, 50-60, 60-70, 70-80, ≥ 80. For
each range, we used only images from patients in that age
spectrum for training and then tested it with the remain-
ing images. We analysed the differences between the age
group used for training, which acts as our baseline, and
all other ages. Regarding the exact number of samples
used for each class in our 3 computational approaches, we
present our distribution in Table 7. Using this amount of
images of each class, we sought to emphasise the older
age groups, who suffer more from the disease and have
to go through a more critical diagnostic process, but also
adapting to the number of samples we had available from

the studied Normal, Pneumonia and COVID-19 classes of
interest.
In the following sections, we will show the results of

our six baselines (one per age range) for each approach.
However, the details of how these baselines responded to
the different age groups will be discussed in the Discus-
sion section in order to simplify this section and facilitate
understanding.

Analysis of the 1st approach: Normal vs. COVID-19
For this first approach, we present in Table 8 precision,
recall and F1-score means and their standard deviation
obtained at test for each experiment training with only
one age group. These results for our six baselines were
satisfactory and mainly stable, as the metrics were over
90% in most cases and standard deviation was under
8%. Regarding the mean accuracy obtained for each
one of these baselines, we obtained the following val-
ues: 0.9587± 0.0298, 0.9748± 0.0012, 0.9877± 0.0001,
0.9876± 0.0001, 0.9808± 0.0004 and 0.9429± 0.0086,
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Fig. 6 Example of four representative chest X-ray images of patients of different ages diagnosed with COVID-19

ordering them from the youngest to the oldest age group.
In general, this indicates that our baselines are acceptable
and stable, since the accuracy was above 94% and the
standard deviation kept under 8.6%.

Analysis of the 2nd approach: pneumonia vs. COVID-19
For our second set of experiments, we summarized in
Table 9 the metrics and their standard deviation obtained
for our baseline models at the test stage for each exper-
iment training with only one age group. Again, these
models had acceptable results, as they were above 90%
in nearly all cases and its standard deviations were below

Table 7 Number of samples of each class considered per
approach

Age Normal VS
COVID-19

Pneumonia VS
COVID-19

Non-COVID-19
VS COVID-19

<40 154 vs 154 154 vs 154 (77+77) vs 154

40-50 436 vs 436 436 vs 436 (218+218) vs 436

50-60 772 vs 772 772 vs 772 (386 + 386) vs 772

60-70 1,496 vs 1,496 1,215 vs 1,215 (748+748) vs
1,496

70-80 625 vs 625 392 vs 392 (392+392) vs 784

≥ 80 105 vs 105 58 vs 58 (58+58) vs 116

10%. As for the mean accuracy obtained for each one
of these baselines, we obtained these values for every
baseline ordered by age: 0.9396± 0.0027, 0.9760± 0.0004,
0.9800± 0.0005, 0.9919± 0.0001, 0.9772± 0.0004 and
0.9083± 0.043. Overall, these metrics are satisfactory and
Table 8 Mean ± standard deviation of the results obtained in
the test stage for the classification of chest X-ray images between
Normal VS COVID-19 after 5 independent repetitions

Exp. Class Precision Recall F1-Score

<40 Normal 0.9453± 0.0514 0.9749± 0.0349 0.9588± 0.0277

COVID-19 0.9742± 0.0355 0.9438± 0.0588 0.9573± 0.0276

40-50 Normal 0.9673± 0.0288 0.9814± 0.0141 0.9742± 0.0193

COVID-19 0.9816± 0.0125 0.9693± 0.0250 0.9753± 0.0156

50-60 Normal 0.9911± 0.0057 0.9846± 0.0080 0.9878± 0.0053

COVID-19 0.9844± 0.0066 0.9907± 0.0058 0.9875± 0.0043

60-70 Normal 0.9925± 0.0055 0.9826± 0.0062 0.9875± 0.0053

COVID-19 0.9828± 0.0064 0.9926± 0.0055 0.9877± 0.0054

70-80 Normal 0.9780± 0.0171 0.9846± 0.0086 0.9812± 0.0102

COVID-19 0.9832± 0.0111 0.9774± 0.0173 0.9802± 0.0115

≥ 80 Normal 0.9373± 0.0691 0.8912± 0.0849 0.9125± 0.0690

COVID-19 0.8859± 0.0805 0.9255± 0.0800 0.9043± 0.0734
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Table 9 Mean ± standard deviation of the results obtained in
the test stage for the classification of chest X-ray images between
Pneumonia VS COVID-19 after 5 independent repetitions

Exp. Class Precision Recall F1-Score

<40 Pneumonia 0.9603± 0.0440 0.9292± 0.0241 0.9438± 0.0188

COVID-19 0.9199± 0.0303 0.9498± 0.0625 0.9336± 0.0356

40-50 Pneumonia 0.9811± 0.0177 0.9717± 0.0161 0.9762± 0.0105

COVID-19 0.9689± 0.0219 0.9821± 0.0172 0.9752± 0.0122

50-60 Pneumonia 0.9802± 0.0118 0.9815± 0.0116 0.9808± 0.0112

COVID-19 0.9796± 0.0126 0.9784± 0.0129 0.9790± 0.0122

60-70 Pneumonia 0.9942± 0.0046 0.9895± 0.0036 0.9918± 0.0036

COVID-19 0.9893± 0.0040 0.9944± 0.0045 0.9919± 0.0035

70-80 Pneumonia 0.9869± 0.0132 0.9678± 0.0101 0.9772± 0.0097

COVID-19 0.9668± 0.0123 0.9874± 0.0122 0.9770± 0.0097

≥ 80 Pneumonia 0.8850± 0.1117 0.9000± 0.1732 0.8893± 0.1380

COVID-19 0.9346± 0.1084 0.9095± 0.0831 0.9195± 0.0840

steady, being above 90% and with a standard deviation
under 4.3%.

Analysis of the 3rd approach: non-COVID-19 vs. COVID-19
Finally for this third approach, we show in Table 10
precision, recall and F1-score means and their standard
deviation obtained at test for each experiment train-
ing with only one age group. Following the trend that
we have already seen in the two previous approaches,
our baseline models had adequate metrics, as they were
above 90% in all scenarios and the corresponding stan-
dard deviation was below 6%. The results obtained for
the mean accuracy from the youngest to the oldest base-

Table 10 Mean ± standard deviation of the results obtained in
the test stage for the classification of chest X-ray images between
Non-COVID-19 VS COVID-19 after 5 independent repetitions

Exp. Class Precision Recall F1-Score

<40 Non-COVID-19 0.9754± 0.0141 0.9625± 0.0344 0.9688± 0.0231

COVID-19 0.9617± 0.0352 0.9725± 0.0157 0.9669± 0.0226

40-50 Non-COVID-19 0.9707± 0.0155 0.9821± 0.0154 0.9762± 0.0059

COVID-19 0.9812± 0.0189 0.9701± 0.0184 0.9754± 0.0093

50-60 Non-COVID-19 0.9849± 0.0096 0.9802± 0.0105 0.9825± 0.0078

COVID-19 0.9785± 0.0123 0.9840± 0.0096 0.9812± 0.0084

60-70 Non-COVID-19 0.9925± 0.0043 0.9898± 0.0041 0.9911± 0.0016

COVID-19 0.9901± 0.0039 0.9927± 0.0043 0.9914± 0.0011

70-80 Non-COVID-19 0.9950± 0.0052 0.9850± 0.0069 0.9900± 0.0046

COVID-19 0.9846± 0.0072 0.9947± 0.0053 0.9896± 0.0047

≥ 80 Non-COVID-19 0.9429± 0.0547 0.9107± 0.0633 0.9250± 0.0426

COVID-19 0.9068± 0.0573 0.9380± 0.0695 0.9206± 0.0480

line were the following: 0.9683± 0.0020, 0.9760± 0.0002,
0.9819± 0.0002, 0.9913±0.8 × 10−5, 0.9898±0.8 × 10−4

and 0.9234± 0.0077. As we can see, all baselines remained
above 96% and their standard deviation was under 7.7%,
which make these metrics satisfactory and mainly stable.

Discussion
Regarding the sex-related imbalance analysis, the pre-
cision, recall and F1-score measures shown in Results
section were in every experiment in all the approaches
above 96%, which is a satisfactory result. As for accuracy,
we summarized the obtained measures for every experi-
ment for each approach in Fig. 7. We can see here how
there are no extreme peaks in either the accuracy or its
standard deviation in none of the approaches, and differ-
ences between experiments and approaches are around
5%. Although the Normal VS COVID-19 approach has a
bigger standard deviation peak at the 60% male and 40%
female experiment, all values remain closer and similar
to our baseline. The same occurs for the Pneumonia VS
COVID-19 approach, as accuracy continues to be stable
and alike our baseline. In the Non-COVID-19 VS COVID-
19 approach we have a slightly different scenario, since
most of the obtained values are under our baseline, espe-
cially in experiments 40% male and 60% female, and 80%
male and 20% female. Despite these differences, we can
observe how accuracy remains stable and similar to other
approaches. All these satisfactory results, together with
the stability observed in all the scenarios considered in
each of our approaches, indicate that this factor has not
clearly affected the diagnosis offered by our system. If it
had, we would have seen graphs with more evident differ-
ences between each of the different sex ratios with which
we experimented. Thereby, no influence caused by the sex
factor was observed. Although male and female patients
may have differentiating features that allow us to identify
their sex on chest x-rays, such as breasts, differences in
shape and size, etc., these typically sex-associated features
do not influence their COVID-19 diagnosis and do not
favour one sex over the other, as they do not interfere with
the lung assessment. For example, differences in shape and
size do not difficult the finding of suspicious densities in
the lung itself, and those densities related to themammary
glands are easily discarded, as they are present in most
female patients and do not usually obscure COVID-19
related findings.
Regarding the age-related imbalance analysis, the pre-

cision, recall and F1-score measures shown in Results
section were in every experiment in all approaches above
96%, which is a satisfactory result. As for accuracy, we
summarized the obtained results for each approach in
Fig. 8, taking as a reference the baselines metrics shown
in the Results section. In this accuracy comparative across
all six age ranges it is presented how its standard devia-
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Fig. 7Mean ± standard deviation test accuracy obtained for every studied scenario in every approach
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Fig. 8Mean ± standard deviation test accuracy obtained for every studied age range in every approach
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tion increases as baseline patients get older than 70. The
worst instability peaks are in the 70-80 range in the Nor-
mal VS COVID-19 approach and the ≥ 80 range in the
Pneumonia VS COVID-19 approach, but these increases
only represent a worsening of 10%. This behaviour is not
as clearly observed for the Non-COVID-19 VS COVID-
19 approach, since its standard deviations rises at the≥ 80
range, but not as noticeably as in other approaches. In
relation to the accuracy metric itself, it is observed how
the closer to the baseline age the tested age range gets, the
better accuracies are obtained. However, these differences
are not of great magnitude. In general, the third approach
seems like the best and most stable of the three ones con-
sidered, since its accuracy is consistently good enough at
every age range, and its standard deviation has a smaller
peak at the older ages. Nevertheless, both the worsening
in the obtained accuracy and the its instability are not of
great magnitude in any approach. Thus, we can clearly
observe in these graphs the clear tendency of the diagno-
sis offered to be influenced by age, regardless of the age
group studied or the used computational approach. More-
over, it is noteworthy that this worsening is more or less
present in all the cases studied, but is more pronounced
in the older age groups, which is consistent given that
the most critical cases of COVID-19 are more frequent in
this group, resulting in a greater variability of pathologi-
cal affectations in the lungs. For example, older patients
are usually easily recognized by the wide range of dif-
ferent damaged ribcages they might present, being these
caused by diseases or by the passing of time. In this situa-
tion, these patients are typically weaker in the face of such
an aggressive disease as COVID-19, so different types of
medical equipment, such as pathways or thoracostomy
tubes, among other cardiac and pulmonary devices, are
more present in these X-rays. All of these elements can
appear on these images, obscuring lung densities typical
of COVID-19 or leading our systems to recognise these
patients more by the irregularity of their X-rays than by
the signs of disease they may manifest, both affecting
their COVID-19 diagnosis. However, these characteris-
tics do not appear as frequently in the chest X-rays of
younger patients, who typically have images where abnor-
malities are more easily observed and their association
to COVID-19 is more straightforward, because they do
not have other pathologies that may cause the presence of
irregularities in their images. Hence, these reasons could
justify the presence of this bias. In this work, we have per-
formed a comprehensive analysis of sex and age factors
in the chest Xray images. Accordingly, we have generated
615 ROC curves from the experiments (see supplemen-
tary material available at https://doi.org/10.1186/s12874-
022-01578-w).

Conclusions
In this work, we have proposed the first study to ana-
lyze whether imbalance in chest X-ray datasets produces
biased deep learning approaches for COVID-19 screening
with respect to the studied sex and age factors. For this
purpose, 3 computational approaches using deep learn-
ing strategies that allowed us to carry out these studies of
these factors in a detailed and comprehensive manner are
presented and evaluated. To demonstrate the capabilities
of our proposal, we perform several experiments on differ-
ent public image datasets, including Normal, Pneumonia
and COVID-19 cases. The presented results evidenced
that the proposed methodology and tested approaches
allow a robust and reliable analysis to support the clinical
decision-making process in this pandemic scenario. Given
the effort made to consider as many cases as possible and
to make these studies as comprehensive as possible, we
believe that the conclusions presented below are robust
and reliable.
Regarding the sex-related imbalance analysis, we

observed that this characteristic did not significantly
affect the performance of our system. Whatever the sex
ratio, the system performed well and provided satisfac-
tory and stable results in all analyzed approaches. Since
we performed a thorough study where we examined many
different scenarios and explored different sex propor-
tions, we can conclude that our system was not biased
by this characteristic. Therefore, any difference observed
between male and female patients from our dataset was
not big enough to influence the system. On the other
hand, regarding the age-related imbalance analysis, we
observed that this characteristic did affect the perfor-
mance of our system. It was clearly seen in every approach
how the age used for training biased the system making it
perform better for those with closer ages to the training
phase one. Although obtained accuracy was good enough
in every scenario as it was above 90% for most of the cases,
age bias was consistent across all approaches. Again, since
this analysis was conducted in a comprehensive manner,
we can reliably conclude that the system was affected by
the age of the patient. This could be caused by many
reasons. For example, older patients have more irregular
chest X-rays than younger people, since they can manifest
different bone or cardiac pathologies. These differences
might explain separability between the age ranges studied
and their different results. Despite the fact a clear cause for
this behaviour was not found, it is not necessary to empha-
size how much it is needed to review the datasets being
used for COVID-19 screening and identify possible bias
related to the patient’s age in them, since it was checked by
our experiments that this factor’s imbalance might affect
the performance of the developed system.

https://doi.org/10.1186/s12874-022-01578-w
https://doi.org/10.1186/s12874-022-01578-w
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As future work, it would be interesting to extend our
study with patients diagnosed with other pulmonary dis-
orders, such as emphysema, bronchitis and tuberculosis,
among others. On the one hand, common pathologies
affecting the lungs could represent a more challenging
scenario of interest. On the other hand, expanding the
dataset is of great interest to validate more completely the
proposed methodologies. Other interesting future work
would be to extend this analysis to other types of medical
imaging modalities and correlate the results in a multi-
modal context to identify more precisely the influence of
sex and age factors in COVID-19 screening systems. From
amore technical point of view, in this work, we choose the
input image size that is commonly used in the state of the
art in similar problems. However, analyzing the relevance
of this factor would ensure that important details are not
being overlooked by reducing the image so much. In this
sense, a more complete study could be done, testing with
different input sizes. In addition, to facilitate the detection
of biases of this type in related works, it would be inter-
esting to implement a graphical user interface in order to
make it easier for other users to test ourmethodology with
different datasets.
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