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Background
Genome-Wide Association Studies (GWAS) analyse genetic markers to find associations 
between genetic variations and diseases. The genetic markers commonly used in GWAS 
are the Single Nucleotide Polymorphisms (SNP). A SNP identifies a specific position 
(locus) in the genome where at least 1% of the population has a genomic variation.

Traditional GWAS focused on analysing the differences between the genotype fre-
quencies from individual SNPs of case and control samples. However, epistasis inter-
actions need to be considered to find a relation between genotypes and phenotypes in 
many traits [1].

Epistasis is the interaction of genetic variation at two or more loci to produce a 
phenotype that is not explained by the additive combination of effects of the indi-
vidual loci. If epistasis involves more than two loci, it is called high-order epistasis. 
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High-order epistasis is behind complex diseases such as Alzheimer’s [2] or breast 
cancer [3].

The most common way to describe an epistasis relationship is through a penetrance 
table. A penetrance table captures the probability of expressing the phenotype to 
study given a particular allele combination. Table 1 shows an example of a penetrance 
table that considers the effects of two biallelic SNPs.

In the literature, there are simulators, such as EpiSIM [4], that allow obtaining a 
penetrance table for a previously established prevalence (P(D)) and heritability ( h2 ). 
These penetrance tables are obtained through the solution of the following system of 
equations:

where P(D|gi) = fi(x, y) is the proportion of individuals showing trait D when having the 
genotype gi , P(gi) is the population frequency of the genotype gi and fi(x, y) is the func-
tion of two variables that defines the epistasis model. Table 2 shows an example of this 
function for the second-order Marchini et al. [5] additive model.

However, as not all combinations of heritability and prevalence are possible, the 
system often is incompatible. Additionally, equations become more and more com-
plex as the interaction order increases, which also makes it difficult to find a solution 
in a reasonable time. Thus, for example, the EpiSIM simulator can only work, in prac-
tice, with second-order models and low prevalence and heritability values [6].

To overcome these limitations, in a previous work we introduced Toxo [6], a MAT-
LAB library for calculating penetrance tables of epistasis models with no limitation 
on the interaction order. To simplify the equation system shown in Eq. 1, instead of 
finding a specific combination of heritability and prevalence, the Toxo library maxi-
mizes one of the two parameters when the other is fixed. The system to solve for a 
given value of prevalence is shown in Eq. 2:

(1)

P(D) =
∑

i

P(D|gi)P(gi)

h2 =

∑

i

(

P(D|gi)− P(D)
)2
P(gi)

P(D)
(

1− P(D)
)

Table 1  Example of a penetrance table for two biallelic markers

BB Bb bb

AA 0.00031 0.00031 0.00031

Aa 0.00031 0.00231 0.01750

aa 0.00031 0.01750 1

Table 2  Second-order additive model from [5]

BB Bb bb

AA x x(1+ y) x(1+ y)2

Aa x(1+ y) x(1+ y)2 x(1+ y)3

aa x(1+ y)2 x(1+ y)3 x(1+ y)4
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Equation 3 shows the system for a fixed heritability:

Now, the likelihood of formulating an incompatible system is significantly reduced, since 
most of the models achieve individually all prevalences and heritabilities values at some 
point. Moreover, Toxo can calculate penetrance tables with prevalence and heritability 
values much higher than those observed in the state of the art. That is, Toxo provides 
researchers with a library that is able to generate more realistic penetrance tables.

Although Toxo solves several of the shortcomings of state-of-the-art simulators, it 
also has its own limitations. First, MATLAB is a commercial software and the user 
will need a license to run Toxo. In addition, Toxo is a library and thus, it requires cer-
tain programming knowledge to use it. It also presents limitations in the accuracy of 
the results, motivated by the compromise between computing time and precision that 
users are forced to make in MATLAB when selecting the number of decimals to oper-
ate with variable-precision arithmetic.

To solve all these limitations, in this work we present PyToxo, a Python tool to cal-
culate penetrance tables for high-order epistasis models. PyToxo is distributed as 
open-source software and it does not need any commercial license since Python is 
open-source itself. In addition, as we will see in the results section, PyToxo improves 
Toxo in terms of the complexity of the epistasis models that it can handle, the accu-
racy in the obtained penetrance table and the execution time needed. Finally, regard-
ing the ease of use, PyToxo includes a programmatic interface, in the form of a library, 
to be easily used in other Python programs; a Command-Line Interface (CLI) for 
advanced users, or to be able to execute the program in batch processing mode; and 
a Graphical User Interface (GUI) specially oriented for users unfamiliar with com-
mand-line runtime environments.

Implementation
PyToxo is implemented in Python. Currently, Python is one of the most widely used 
programming languages [7, 8] thanks to its simple and high-level syntax, and the large 
number of available libraries. In fact, it is one of the most frequently used options in the 
interdisciplinary field of bioinformatics, as evidenced by the Biopython project [9].

PyToxo uses multiple Python libraries in its implementation. The most important is 
SymPy [10, 11], a symbolic math library used to solve the equation systems presented 
in Eqs.  2 and  3, and to represent the numerical data. Additionally, PyToxo also uses 
mpmath [12] to tweak the precision of the floating-point arithmetic in SymPy, and Pil-
low, PySimpleGUI [13], Termcolor [14] and Colorama [15] to implement the different 
user interfaces.

(2)

∑

i

(

P(D|gi)P(gi)
)

= P(D)

max
(

P(D|gi)
)

= 1

(3)

∑

i

(

P(D|gi)− P(D)
)2
P(gi)

P(D)
(

1− P(D)
) = h2

max
(

P(D|gi)
)

= 1



Page 4 of 13González‑Seoane et al. BMC Bioinformatics          (2022) 23:117 

Method

PyToxo takes as input an epistasis model, a heritability (or prevalence) value and the 
Minor Allele Frequencies (MAFs) associated to each of the considered locus, and gener-
ates as output a penetrance table maximizing the prevalence (or heritability). Figure 1 
shows an overview of the flow of the program. fi(x, y) is the function of two variables 
that defines the epistasis model, timeout is the maximum time that the solver can spend 
trying to resolve the system, and check is a boolean variable that enables checking the 
correctness of the provided solution.

The first step consists of computing, from the MAFs, the population frequency associ-
ated to each of the genotype combinations, P(gi) . Assuming linkage equilibrium between 
the two locus, and under the Hardy-Weinberg principle, P(gi) can be calculated as the 
product of the probabilities of each allele [16].

Then, the equation system to be solved is built using Eq. 2 for a fixed prevalence or 
Eq. 3 for a fixed heritability, and taking into account that P(D|gi) = fi(x, y) . The sim-
plify() method of the SymPy library is used to simplify the mathematical expression 
of the system. It uses heuristics to determine the simplest result.

Next, the function solve() [17], from the SymPy library, is used to solve the result-
ing nonlinear system and obtain the values of x and y. It internally uses the mpmath 
library to control the accumulated error that is considered tolerable. In the case of 
PyToxo, especially when working with large models, it is possible to relax this accumula-
tive error to try to converge to a solution of the system. Thus, when using the solve() 
function, an initial attempt is made to solve the system of equations without altering any 
configuration and, only if it is not possible, the accumulative error is increased and tried 
again.

Note that the solver could not converge for some configurations. Thus, to avoid dead-
locks, a maximum time to achieve a solution is introduced through the timeout argu-
ment. If the user sets it to false, no maximum time will be established; if an integer 
is introduced, it will be interpreted as the maximum time, in seconds; and if it is set to 
true, the maximum time will be assumed heuristically taking into account the order of 
the model: timeout = 60(order + 1)2.

Once a solution to the system of equations has been found, PyToxo can verify the pre-
cision of this solution if instructed to do so through the check variable. To do so, the 
error of the solution is computed as the deviation obtained when substituting the val-
ues of x and y calculated in the previous step into Eq. 2, if the prevalence is fixed, or into 
Eq. 3, when the fixed parameter is the heritability. PyToxo uses a heuristic function to 
calculate, based on the order, the tolerable error: Etol(order) = min (10orderE0,Emax) . In 
this function, E0 represents the base error which scales with the order of the model and 
is set to 10−16 , and Emax is the maximum allowed error and is set to 10−8 . If the obtained 
error is greater than the tolerable error, the solution is considered invalid and a warning 
is generated. Thus, the solutions provided by PyToxo will have a guaranteed maximum 
deviation of 10−8 . In any case, PyToxo rarely shows deviations greater than 10−16 , as we 
will see in “Results and discussion” section.

At last, once the values of x and y have been established, they can be directly used 
in the penetrance expressions fi(x, y) to obtain the target penetrance table. The gener-
ated table can be printed on the screen or saved to a file. For both cases, the supported 
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formats are a Comma-Separated Values (CSV) file and the format used by the GAM-
ETES [18] simulator. With the latter, the tables obtained by PyToxo can be passed 
directly to it in order to simulate population data that shows the epistasis interaction 

Fig. 1  Generation of a penetrance table. Flowchart of the program
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described by the penetrance table provided. As a summary, Table 3 shows a description 
of the parameters used by PyToxo together with their default values.

Interfaces

In addition to offer an API for developers (see Fig.  2 for an example of use), Pytoxo 
includes two user interfaces: a CLI for advanced users or to be able to run the program 
in batch processing; and a GUI, especially oriented for users unfamiliar with command-
line execution environments.

Command‑Line Interface (CLI)

For the implementation of the CLI, the Argparse library [19] was used. This library is 
included in the Python serial distribution and constitutes the official recommendation 
of the Python developers to build command-line interfaces. It facilitates the creation of 
CLIs, generating help messages, and ensuring the correct use of the parameters by the 
end user.

The CLI allows calculating penetrance tables in both the GAMETES format and CSV. 
It accepts as input a CSV file containing the epistasis model to be used during the pro-
cess, as well as the specification of the rest of the numerical parameters: MAFs, and 
prevalence or heritability, depending on which parameter is maximized. For instance, 

Table 3  Input parameters of PyToxo

*Time is computed based on the order of the model

Parameter Description Compulsory Default value

P(D) (or h2) Established prevalence (or heritability) Yes –

MAFs Minor allele frequencies of each locus Yes –

fi(x , y) Function of two variables that defines the 
epistasis model

Yes –

check Boolean variable that enables checking the cor‑
rectness of the solution

No True

Timeout Maximum time to achieve a solution No True*

import pytoxo

# Introduc t ion o f the parameters

model csv = ”models / add i t i v e 2 . csv ” # Path o f the CSV f i l e

maf = [ 0 . 3 3 , 0 . 3 3 ]

prev = 0 .8

# Creation o f the model from the CVS f i l e

model = pytoxo . Model ( f i l ename=model csv )

# Generation o f the penetrance t a b l e

tab l e pen = model . f i n d max h e r i t a b i l i t y t a b l e (mafs=maf , p=prev )

# Print ing o f the t a b l e in the GAMETES format

tab l e pen . p r i n t t a b l e ( format=”gametes” )

Fig. 2  Use of PyToxo as a library in a Python program
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the next command would calculate a penetrance table for the fourth order Marchini 
et al. [5] multiplicative model, using a prevalence of 0.6 and MAFs of 0.2, 0.3, 0.3 and 0.4. 
Heritability is maximized and the output penetrance table is generated in GAMETES 
format:
pytoxo_cli multiplicative_4.csv –-max_her 0.6 0.2 0.3 0.3 

0.4 –-gametes

Graphical User Interface (GUI)

The PyToxo GUI is built on Tk. Tk is a library of basic elements to build graphical user 
interfaces. In Python, Tk is accessed from the Tkinter [20] binding, and is considered a 
standard for graphical interfaces in Python. Tk has been ported to work on most variants 
of Linux, Apple Mac OS, and Microsoft Windows. Both Tk and Tkinter are included 
in most modern Python distributions for the above platforms. This is not the case for 
some Linux distributions, where an additional package must be installed. However, 
PyToxo itself detects this lack when trying to launch the interface and suggests to the 
user to install the required package. Thus, the graphical interface of PyToxo is not only 
highly compatible but also highly distributable, not needing any requirements outside of 
Python.

Although PyToxo’s graphical interface engine is Tk, PyToxo does not use it directly 
through Tkinter but uses a third library, PySimpleGUI, which simplifies the develop-
ment of the interface. In addition, PySimpleGUI would allow changing the underlying 
Tk engine to another, such as Qt [21], with hardly any adjustments to the code, so the 
interface is also enhanced in terms of portability.

Figure 3 shows the initial screen of the GUI. The interface is very easy to use because 
it dynamically adapts to the workflow of the application. For example, we cannot use the 
“Calculate table” button until all the parameters have been filled in, and we cannot fill in 
the MAFs until we have loaded a model. The file menu is used to select the CSV file with 
the model.

Results and discussion
This section evaluates Pytoxo in terms of coverage, accuracy and execution time, com-
paring it to Toxo.

Coverage

In this first subsection we will address the coverage of PyToxo, that is, the models and 
configurations that it is able to solve.

To evaluate PyToxo we select the widely used threshold, additive and multiplicative 
models introduced by Marchini et  al. in [5] and generalized up to order 8. As for the 
rest of parameters, we considered a representative range of values: [0.1, 0.5] for the 
MAFs associated with each locus, and [0.1, 0.9] for both the heritability and prevalence. 
In total, we based our coverage experiments on 1890 different configurations, with half 
maximizing prevalence and half maximizing heritability. The results can be summarized 
as:

•	 PyToxo manages to solve all the configurations that Toxo solves except one.



Page 8 of 13González‑Seoane et al. BMC Bioinformatics          (2022) 23:117 

•	 PyToxo manages to solve 201 configurations that Toxo is not able to solve.
•	 PyToxo is able to solve threshold and additive models up to, at least, order 8.
•	 PyToxo is able to solve multiplicative models up to order 5.

Tables  4 and  5 present a sample of particular configurations that PyToxo manages to 
solve, while Toxo ends up with corrupt tables. The results of all the performed experi-
ments are available in the reports directory of the test.solubility package of the 
PyToxo repository (https://​github.​com/​bglez​seoane/​pytoxo).

The limits of the tool appear with the multiplicative model, which is the most complex. 
Up to order 5, PyToxo performs well, but from that point on, most of the configurations 
are unsolvable.

Accuracy

The accuracy of PyToxo depends on the order of the model. The error is calculated 
as the deviation between the obtained values of prevalence (or heritability) and the 

Fig. 3  PyToxo GUI initial screen

https://github.com/bglezseoane/pytoxo
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required ones. The higher the order, the greater the error, because the system of equa-
tions to be solved becomes more complex.

Table 6 shows the error of Toxo and PyToxo for the threshold, additive and multipli-
cative models and orders between two and eight. For each model and order, we have 
considered MAFs values of 0.1 and 0.4, and heritabilities of 0.1 and 0.8 for each MAF. 
Results with more MAFs, heritabilities and prevalences values have been added as 
Additional file 1. The configurations not shown in the table correspond to combina-
tions where either Toxo or PyToxo did not achieve valid solutions. PyToxo obtains a 
lower (or equal) error than Toxo in 39 out of the 50 cases shown in the table. Addi-
tionally, the average error in PyToxo is 5.74 × 10−17 versus 1.78× 10−4 in Toxo, and 

Table 4  Some configurations, maximizing prevalence, that Toxo is not able to solve and PyToxo can

Model Order MAF h2

Additive 4 0.2 0.8

Additive 5 0.1 0.9

Additive 5 0.2 0.9

Additive 5 0.3 0.4

Additive 5 0.3 0.6

Additive 5 0.4 0.7

Additive 5 0.5 0.6

Additive 6 0.1 0.8

Additive 6 0.4 0.3

Additive 6 0.5 0.6

Additive 7 0.4 0.7

Additive 7 0.5 0.3

Additive 8 0.1 0.6

Additive 8 0.1 0.7

Additive 8 0.2 0.1

Additive 8 0.2 0.1

Additive 8 0.2 0.3

Additive 8 0.2 0.4

Additive 8 0.4 0.1

Additive 8 0.4 0.5

Table 5  Some configurations, maximizing heritability, that Toxo is not able to solve and PyToxo can

Model Order MAF P

Multiplicative 6 0.10 0.30

Multiplicative 6 0.10 0.60

Multiplicative 6 0.10 0.80

Multiplicative 6 0.10 0.90

Multiplicative 6 0.20 0.30

Multiplicative 6 0.20 0.40

Multiplicative 6 0.20 0.50

Multiplicative 6 0.20 0.90

Multiplicative 6 0.40 0.20

Multiplicative 6 0.40 0.30
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Table 6  Accuracy and execution time (in seconds) of Toxo and PyToxo for threshold, additive and 
multiplicative models with orders between 2 and 8 and different values of MAFs and heritability ( h2)

Model Order MAF h2 PyToxo error Toxo error Best PyToxo Time Toxo Time Speedup

Threshold 2 0.1 0.1 2.78×10
−17 2.45×10

−8 PyToxo 0.20 0.55 2.70

Threshold 2 0.1 0.8 0 0 Same 0.18 0.23 1.22

Threshold 2 0.4 0.1 1.11×10
−16 0 Toxo 0.14 0.24 1.70

Threshold 2 0.4 0.8 1.11×10
−16 0 Toxo 0.14 0.22 1.57

Threshold 3 0.1 0.1 1.39×10
−17 1.70×10

−7 PyToxo 0.39 0.31 0.79

Threshold 3 0.1 0.8 0 3.44×10
−9 PyToxo 0.37 0.71 1.91

Threshold 3 0.4 0.1 0 0 Same 0.31 0.30 0.98

Threshold 3 0.4 0.8 1.11×10
−16 0 Toxo 0.32 0.29 0.92

Threshold 4 0.1 0.1 0 7.41×10
−7 PyToxo 0.81 0.52 0.65

Threshold 4 0.1 0.8 0 1.60×10
−8 PyToxo 0.80 0.92 1.15

Threshold 4 0.4 0.1 2.78×10
−17 0 Toxo 0.67 0.52 0.77

Threshold 4 0.4 0.8 0 0 Same 0.67 0.53 0.77

Threshold 5 0.1 0.1 0 1.41×10
−6 PyToxo 1.95 1.99 1.02

Threshold 5 0.1 0.8 1.11×10
−16 5.71×10

−8 PyToxo 2.04 2.34 1.15

Threshold 5 0.4 0.1 1.39×10
−17 0 Toxo 2.39 1.98 0.83

Threshold 5 0.4 0.8 1.11×10
−16 4.17×10

−9 PyToxo 2.43 1.94 0.80

Threshold 6 0.1 0.1 1.39×10
−17 1.95×10

−5 PyToxo 4.70 4.31 0.92

Threshold 6 0.1 0.8 2.22×10
−16 5.43×10

−8 PyToxo 4.68 4.26 0.91

Threshold 6 0.4 0.1 1.39×10
−17 0 Toxo 6.64 4.29 0.65

Threshold 6 0.4 0.8 0 5.05×10
−9 PyToxo 6.59 4.70 0.71

Threshold 7 0.1 0.1 1.39×10
−17 3.81×10

−5 PyToxo 11.69 18.27 1.56

Threshold 7 0.1 0.8 1.11×10
−16 1.58×10

−8 PyToxo 11.62 18.68 1.61

Threshold 7 0.4 0.1 4.16×10
−17 0 Toxo 18.50 18.33 0.99

Threshold 7 0.4 0.8 2.22×10
−16 0 Toxo 18.49 18.70 1.01

Threshold 8 0.1 0.1 2.78×10
−17

2.42× 10
−4 PyToxo 28.72 39.03 1.35

Threshold 8 0.1 0.8 1.11×10
−16 1.29×10

−6 PyToxo 28.70 39.23 1.37

Threshold 8 0.4 0.1 1.39×10
−17 3.51×10

−8 PyToxo 52.58 38.91 0.74

Threshold 8 0.4 0.8 1.11×10
−16 0 Toxo 52.69 38.88 0.74

Additive 3 0.1 0.1 1.39×10
−17 1.05×10

−6 PyToxo 2.13 3.04 1.43

Additive 3 0.1 0.8 2.22×10
−16 3.26×10

−5 PyToxo 1.90 1.67 0.88

Additive 3 0.4 0.1 9.71×10
−17 0 Toxo 1.81 1.53 0.85

Additive 3 0.4 0.8 1.11×10
−16 1.62×10

−7 PyToxo 1.76 1.62 0.92

Additive 4 0.1 0.1 2.78×10
−17 5.54×10

−4 PyToxo 3.04 8.72 2.87

Additive 4 0.4 0.1 1.39×10
−17 0 Toxo 3.16 4.94 1.56

Additive 4 0.4 0.8 0 0 PyToxo 3.20 4.72 1.47

Additive 5 0.4 0.1 1.39×10
−17 2.66×10

−8 PyToxo 6.14 8.80 1.43

Additive 6 0.4 0.1 1.39×10
−17 6.37×10

−7 PyToxo 13.19 22.60 1.71

Additive 7 0.4 0.1 0 4.69×10
−7 PyToxo 25.86 51.82 2.00

Multiplicative 2 0.1 0.1 0 4.16×10
−6 PyToxo 0.67 2.84 4.25

Multiplicative 2 0.1 0.8 0 1.20×10
−7 PyToxo 0.69 1.01 1.47

Multiplicative 2 0.4 0.1 0 0 Same 0.71 1.01 1.43

Multiplicative 2 0.4 0.8 0 4.88×10
−9 PyToxo 0.64 1.00 1.56

Multiplicative 3 0.1 0.1 1.25×10
−16 7.51×10

−4 PyToxo 1.62 5.88 3.62

Multiplicative 3 0.1 0.8 0 3.59×10
−6 PyToxo 1.62 3.95 2.44

Multiplicative 3 0.4 0.1 4.16×10
−17 1.63×10

−7 PyToxo 1.66 2.96 1.78
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in the few cases where Toxo obtains better accuracy results, the error introduced by 
PyToxo is also negligible (in the order of 10−16 or 10−17).

With all of this in mind, we can conclude that PyToxo significantly improves the accu-
racy of the solutions.

Execution time

This section compares the execution times of Toxo and PyToxo for the same configura-
tions as the previous section. Results with more MAF, heritability and prevalence values 
are available as Additional file 1. All the tests were executed on an Intel Core i5-9600K 
with 6 cores at 3.7 GHz, 16 GB of RAM DDR4, and Operating System Mac OS Big Sur 
11.2.1. The MATLAB version used to execute Toxo has been the R2020b. Table 6 shows 
the execution times using Toxo and Pytoxo and the speedup obtained with PyToxo.

The time needed by PyToxo to calculate a penetrance table grows with the order of the 
model to use. However, for the models tested, PyToxo is very fast, taking in all cases less 
than a minute.

With respect to Toxo, PyToxo obtains an average speedup of 1.90. However, if we focus 
on the most complex and time-consuming models, such as the fourth-order multiplica-
tive models, the speedup of PyToxo over Toxo increases above 10.

In view of the results obtained, PyToxo would become the tool of choice for obtaining 
penetrance tables, regardless of the epistatic model and input parameters considered.

Conclusions
The best way to test new algorithms or methods to detect high-order epistasis is through 
simulated data since they provide a controlled environment where the embedded epi-
static interactions are known in advance.

Although it is very common for simulators to use penetrance tables to describe epista-
sis interactions, most of them do not allow the user to generate them directly, or present 
limitations for high-order interactions and/or realistic prevalence and heritability values.

PyToxo is a Python tool to calculate penetrance tables for high-order epistasis models. 
It improves state-of-the-art tools in four different aspects: first, in terms of coverage, 
PyToxo is able to generate penetrance tables of complex epistasis models with realistic 
heritability and prevalence values; second, in terms of accuracy, its average error is in 
the order of magnitude of 10−17 , while the maximum error will never exceed the order 
of 10−8 ; third, in terms of speed, PyToxo is very fast, it is able to compute a penetrance 
table in less than one minute, even for order 8 epistasis models; fourth, in terms of ease 
of use, PyToxo can be used as a library, through a CLI or through a GUI. This last option 

Table 6  (continued)

Model Order MAF h2 PyToxo error Toxo error Best PyToxo Time Toxo Time Speedup

Multiplicative 3 0.4 0.8 1.11×10
−16 1.39×10

−8 PyToxo 1.59 3.48 2.18

Multiplicative 4 0.1 0.1 8.33×10
−17 3.29×10

−17 PyToxo 4.69 83.18 17.75

Multiplicative 4 0.1 0.8 3.33×10
−16 3.57×10

−5 PyToxo 4.34 81.94 18.88

Multiplicative 4 0.4 0.1 1.39×10
−17 1.08×10

−6 PyToxo 4.55 54.42 11.94

Multiplicative 4 0.4 0.8 1.11×10
−16 3.60×10

−8 PyToxo 4.77 51.33 10.75
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will be especially useful for those users not experts in programming or command-line 
execution environments. PyToxo is cross-platform and it was successfully tested on 
Linux Ubuntu 20, Microsoft Windows 10 and MacOS Big Sur. In addition, PyToxo is 
available through the official Python PyPI repository (https://​pypi.​org/​proje​ct/​pytoxo/) 
and it can be easily installed  with a single command: pip install pytoxo.

PyToxo is available to the whole scientific community as open-source software. The 
source code of PyToxo, detailed users guides, and all the models and code examples used 
in this paper are available in the Github repository: https://​github.​com/​bglez​seoane/​
pytoxo.

Availability and requirements
Project name: PyToxo
Project home page: https://​github.​com/​bglez​seoane/​pytoxo
Operating system(s): Platform independent
Programming language: Python
Other requirements: None
License: GPLv3
Any restrictions to use by non-academics: None

Abbreviations
CLI: Command-Line Interface; CSV: Comma-Separated Values; GUI: Graphical User Interface; GWAS: Genome-Wide Asso‑
ciation Study; MAF: Minor Allele Frequency; SNP: Single Nucleotide Polymorphism.
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