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In nature, the physical development of the body that takes place in parallel to the cognitive development
of the individual has been shown to facilitate learning. This opens up the question of whether the same
principles could be applied to robots in order to accelerate the learning of controllers and, if so, how to
apply them effectively. In this line, several authors have run experiments, usually quite complex and
heterogeneous, with different levels of success. In some cases, morphological development seemed to
provide an advantage and in others it was clearly irrelevant or even detrimental. Basically, morphological
development seems to provide an advantage only under some specific conditions, which cannot be iden-
tified before running an experiment. This is due the fact that there is still no agreement on the underlying
mechanisms that lead to success or on how to design morphological development processes for specific
problems. In this paper, we address this issue through the execution of different experiments over a sim-
ple, replicable, and straightforward experimental setup that makes use of different neural network con-
trolled walkers together with a morphological development strategy based on growth. The morphological
development processes in these experiments are analyzed both in terms of the results obtained by the
different walkers and in terms of how their fitness landscapes change as the morphologies develop. By
comparing experiments where morphological development improves learning and where it does not, a
series of initial insights have been extracted on how to design morphological development processes.
� 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The joint development of the morphology and cognitive system
has been shown to facilitate learning in human beings [1,2], who
must face complex and changing domains during their lives. Tak-
ing inspiration from this fact, several researchers have addressed
the application of the developmental principles observed in nature
to robots, with the aim of creating autonomous systems able to
learn by themselves [3]. All of this work can be grouped under
the umbrella of Developmental Robotics, which has been defined
by Cangelosi as ‘‘the interdisciplinary approach to the autonomous
design of behavioral and cognitive capabilities in artificial agents
that takes direct inspiration from the developmental principles
and mechanisms observed in the natural cognitive systems of chil-
dren” [4].

Even though most published work on developmental robotics
has concentrated on cognitive development over fixed morpholo-
gies, ignoring the effect of developing morphologies, some authors
have carried out different experiments to try to ascertain what this
effect could be. The main focus of these authors was on replicating
the cognitive structures as well the morphological developments
observed in human beings rather than trying to find the underlying
principles of morphological development and how they could be
applied to robots. Among these, we can find cases in which the
application of morphological development principles seems to
improve learning [5–8], others in which the application of these
principles had no effect [9–11], and even some in which morpho-
logical development turned out to be detrimental [12,13]. In other
words, reviewing the literature it is not possible to extract a clear
notion of the effects of morphological development on the learning
abilities of robots and much less how these techniques should be
applied to be able to design successful morphological development
processes.

Additionally, the different experiments carried out within the
field present two important characteristics that hinder the study
of morphological development in robots and finding the underly-
ing principles that govern these processes: (1) As they try to mimic
human development as faithfully as possible, most experiments
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employ very complex control systems and cognitive mechanisms
[14,15], as well as often complex robotic devices. This makes it
very hard to attribute causality to the effects observed, i.e., estab-
lish what is due to morphological development and what to the
complex control systems and robotic structures. (2) The experi-
ments themselves as well as the robots used are usually very speci-
fic and heterogeneous making it very difficult to compare and
generalize results.

A representative example of this, considering the reaching task,
is the study of Gomez et al. [16]. They studied the influence of
development with an ad-hoc robot arm configuration using a com-
plex neural network based control system whose topology changes
along the robot’s developmental process. Similar experimental
characteristics are observed in Lee et al. [17] where they also tried
to learn armmotions for reaching, but considering a different hard-
ware structure and experimental configuration. Using these ad-hoc
robotic arms, and their complex cognitive structure, hinders the
task of identifying why morphological development in these cases
has helped to improve the learning performance and makes it dif-
ficult to compare and generalize results.

This heterogeneity and lack of information can also be observed
in grasping and walking examples. In the case of grasping using a
three fingered hand controlled by a Continuous Time Recurrent
Neural Network (CTRNN), Bongard [10] showed how the joint evo-
lution of the morphology and the controller could help to improve
the performance of the task. He hypothesized that morphological
changes improved performance when the task was complex
(grasping three different objects) but it seemed to be irrelevant
in simple tasks (grasping one object). However, the complexity of
the problem was given by the number of simultaneous objects to
grasp, preventing the generalization of this definition to other
non-grasping tasks.

In the case of walking, the heterogeneity becomes even more
pronounced as different morphological development strategies
such as growth or variation of the Range of Motion (ROM) have
been used. In this line, Bongard [18] presented morphological
development experiments based on these two strategies using
quadruped and hexapod robots, also controlled by CTRNNs, whose
task was to reach a source of light. He suggested that the learning
improvement was motivated by the gradual growth of the legs,
while abrupt changes in the morphology, related to the initial posi-
tion of the legs led to a reduction in performance in ROM based
development. Although he indicated that this fitness reduction
was motivated by the abrupt change in the controller due to the
sudden morphological changes that increase the ROM available,
the paper did not dwell on the reasons underpinning the success
of growth or the poor results of those abrupt changes in the
morphology.

Furthermore, he indicates that ‘‘manually clamping some
degrees of freedom in a robot with a fixed body plan, and then
gradually releasing them during learning, can accelerate behavior
acquisition”. This statement is based on the hypothesis that in
the early stages of development during growth, the movement of
the legs has relatively little impact on the robot displacement,
being the movement of the spine of the robot more relevant. Thus,
initially, only the spine motors must be controlled, reducing the
difficulty of coordinating the different robot motors.

The strategy of clamping or freezing and freeing Degrees of
Freedom (DOF), a particular case of ROM, is based on the studies
by Bernstein on human motor development [19]. He postulated
that an initial reduction of the available DOF may help to learn
motor skills. The success of this strategy is attributed to the initial
reduction of the dimensionality of the search space due to the fro-
zen DOF. This developmental strategy has been successfully
applied by Lungarella and Berthouze over a bipedal robot [20]. In
this case, starting with all the DOF reduced the likelihood of phys-
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ical entrainment that takes place between morphology, neural, and
environment dynamics, while an initial reduction of the DOF avail-
able helped to stabilize the system and to find more robust behav-
iors. However, they also found that this developmental strategy
was not enough to produce a stable behavior when a perturbation
was added to the system [21]. In this case, a single cycle of freezing
and freeing DOF led to the collapse of the system.

Vujovic et al. [22] also postulated the advantage of a develop-
mental approach while evolving and developing a morphology in
a 3D printed robot instead of simply evolving the morphology.
The authors stated that this performance improvement only hap-
pened ‘‘if the evolutionary and developmental terms are properly
adjusted”. However, the paper did not provide details on how this
adjustment could be made. As they clearly mentioned ‘‘the inter-
play between development and evolution during this process is
complex and not yet fully understood”. Furthermore, they found
that the evo-devo strategy could also be detrimental, suggesting
that this decrease in performance could be attributed to the reduc-
tion of the search space, which could in some cases remove good
choices.

Summarizing, although in the last twenty years several authors
have carried out very relevant research on the application of mor-
phological development in robots, the resulting body of research is
very inconclusive in terms of when and what type of morphologi-
cal development is useful. This is mainly due to three factors: (1)
The authors have focused on replicating human-like development
and not on extracting underlying principles that could facilitate
the design of morphological development processes for robots.
(2) Most of the experiments present very convoluted setups, with
complex controllers and ad-hoc robots, making it very difficult to
replicate the experiments or extract conclusions on what effects
are actually due to morphological development. (3) The experi-
ments were very heterogeneous, using different types of robots,
different tasks, different morphologies, different controllers, thus
making it very difficult to compare and generalize results.

Furthermore, very little is said with respect to how a morpho-
logical development process should be constructed in order to
improve learning. In general, three main hypotheses have been
proposed in the literature to explain why morphological develop-
ment could be unsuccessful in improving learning [23]: (1) The
development process is not well aligned with the nature of the task
[12]; (2) The problem is too simple and, therefore, development
does not provide any advantage [10,11]; (3) The development pro-
cess also generates perturbations that negatively affect learning
[18,21].

In this paper, we will analyze a developmental process and see
if these hypotheses hold and, more importantly, we will try to pro-
vide some initial general insights on how morphological develop-
ment processes could be constructed to improve their success.
Thus, our aim is not to replicate human-like morphological devel-
opment processes, but rather, to study morphological development
in robots and to try to extract insights on how it can be applied to
improve robot learning. Additionally, to alleviate complexity and
improve replicability, we establish a very simple and controlled
experimental framework based on standard tools and consider
clear morphological development strategies and simple con-
trollers. In fact, in this paper we only consider growth. This will
allow us to extract what effects are due to morphological develop-
ment and what effects are due to other factors in the experiments.
Finally, to homogenize the setup, we will use the same neural net-
work based controller and learning algorithm and the same family
of morphologies over the same tasks so that results can be com-
pared and generalized.

This paper is an extension of the paper we presented at the HAIS
2020 conference [24], where we began a process aimed at address-
ing these issues. Here, we take those experimental results, expand
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them with new experiments and go one step further by proposing
a formalization of morphological development. We also look into
the evolution of the fitness landscapes of the problems addressed
as development takes place in order to try to understand the
underlying factors that determine the effects of morphological
development.

To achieve these goals, the article is structured as follows: Sec-
tion 2 provides a formal definition of morphology and morpholog-
ical development as used in this paper. Given that the influence of
morphological development seems to depend on problem diffi-
culty, in Section 3 we discuss how this difficulty can be ascertained
through fitness landscape representations and through their pro-
gression during development. In this sense, fitness landscape anal-
ysis is the main tool selected to achieve the goal of understanding
how and why morphological development influences learning
under a global and homogeneous perspective. Section 4 deals with
the methodological aspects of the growth based morphological
development experiments that have been carried out. The results
of these experiments are presented in Section 5. Section 6
addresses a representation of the fitness landscapes that arise dur-
ing the developmental process for each morphology and an analy-
sis of their features. A discussion of the results obtained and how
they are related to the features of the fitness landscapes is pre-
sented in Section 7. Finally, a series of conclusions of this work con-
sisting in some insights on how to apply morphological
development and some avenues for further research are presented
in Section 8.
2. Morphological development

To provide a clear notion about what we refer to when talking
about morphological development, we are going to propose a for-
malization of robot morphology and morphological development
based on the one given by Naya-Varela et al. [23]. This formaliza-
tion will be particularized to the growth developmental strategy,
which is the developmental strategy used in the experiments of
this article.

Thus, we consider that a robot morphology is made up of a set
of l links L = {l1, l2, . . ., ll}, a set of j joints J = {j1, j2, . . ., jj}, which can
be actuated or not, and a set of s sensors S = {s1, s2, . . ., ss}. This mor-
phology runs during time t 2 ½0; T�, where t = 0 is the beginning of
its lifetime and t = T is the end. The robot has sets of properties for
the links (Lp), joints (Jp) and sensors (SP) with a cardinality of x, y
and z, respectively. These property sets can be expressed as:

LP ¼
lp11 � � � lp1l

..

. . .
. ..

.

lpx1 � � � lpxl

2
664

3
775
JP ¼
jp11 � � � jp1j

..

. . .
. ..

.

jpy1 � � � jpyj

2
664

3
775
SP ¼
sp11 � � � sp1s

..

. . .
. ..

.

spz1 � � � spzs

2
664

3
775

Therefore, a robot morphology can be defined as the set of links,
joints and sensors that make up the robot and their proper-
tiesm ¼ L; J; S; Lp; Jp; Sp

� �
. This leads to the general definition of

morphological development as a function MD(t) that describes
the evolution in time of the values for the properties in these prop-
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erty sets. Thus, morphological development can be formally
defined as a non-stationary function MD(t) that describes the val-
ues of these properties in time for the lifetime of the robot:

MD tð Þ ¼ Lt ; Jt ; Stf g 8t 2 0; T½ � ð1Þ
In this article, we are only considering morphological develop-

ment based on growth, taken as changes in the lengths of the links
(LP). Thus, the morphology of the different robots presented in this
article can be specified at the beginning of their lifetime as
Mt¼0 ¼ L; J; S; L Pt¼0;

J P; s P
� �

and by
Mt¼T ¼ L; J; S; L Pt¼0;

J P; s P
� �

at the end. That is, the values
of the properties represented by JP and SP remain constant
throughout the lifetime of the robot and the only ones that change
are those corresponding to Lp. Under these assumptions, morpho-
logical development as addressed in this article can be formally
defined as a functionMD(t) that describes the values of these prop-
erties in time for the lifetime of the robot as:

MD tð Þ ¼ LPt
� � 8t 2 0; T½ � ð2Þ

Where Lp specifies the length for each link of the robot:

Lp ¼ length0; :: ; lengthl½ � ð3Þ
In the majority of natural systems, this MD(t) function is a con-

tinuous function that describes the morphological development
path an individual has followed from birth throughout its life,
and which depends on intrinsic (genetic) and extrinsic (environ-
ment) conditions. As indicated later in the paper, for the experi-
ments that are carried out here, this function will also be
continuous and linearly growing in the length of the extremities,
however, and for the sake of simplicity, this growth will not
depend on environmental conditions.

3. Learning difficulty

One issue that always comes up when looking at different
learning strategies and their performance, is that of problem or
learning difficulty. This obviously impacts studies on morphologi-
cal development when trying to discern the relationship of differ-
ent morphological development strategies and results to the
difficulty of the learning problem that is being considered. To
address this question, it is possible to view learning as an optimiza-
tion problem, where the objective consists in finding a controller,
specified by a set of parameters, that allows the robot to optimally
perform a task.

A consequence of this perspective on learning is that the diffi-
culty of learning a task for a given parametrized controller struc-
ture acting over a particular morphology in a specific
environment can be expressed in terms of the hardness of the opti-
mization problem. In this line, there are quite a few studies that
address this issue [25,26] by making use of the features of the fit-
ness landscape to try to provide an indication of problem hardness.

A fitness value is a measure that expresses the quality or perfor-
mance of each possible controller instance that may arise during
learning [27]. This fitness value associates a numerical value to
the combination of parameter values that define a specific instance
of controller as a function of the performance of the task by the
robot morphology in its environment using this controller
instance. Thus, a fitness landscape or a landscape of possible solu-
tions can be defined as the representation of the fitness in terms of
the value for all the possible solutions available [28]. In this frame-
work, different authors address features such as number and distri-
bution of local optima with regards to global optima, and many
others, in order to specify the relative hardness of a problem. In
particular, a term that is frequently used to describe one character-
istic of the landscape is the concept of attraction basin [29]. As Caa-
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maño et al. mention ‘‘by definition an attraction basin of a local
optimum is the set of points x1. . .xk of the search space such that
a local search algorithm starting at xi (1 � i � k) ends at the local
optimum.” Using this concept of attraction basin, different land-
scape features may be considered based on the number of different
attraction basins and the width of the base of these attraction
basins [28].

Thus, based on the ideas stated above, there are a series of fea-
tures of a fitness landscape that can be used to summarize its
hardness:

� Deceptiveness. A deceptive fitness landscape means that the
majority of the landscape would steer towards a local optimum
(or more than one) that is not the global optimum. That is, the
attraction basins of one or all the local optimums are much lar-
ger than that of the global one.

� Neutrality. A neutral fitness landscape is characterized by the
lack of information about the situation of the global optimum.
As a consequence, finding the global optimum becomes a ran-
dom search process.

� Roughness. A rough fitness landscape is defined by a large num-
ber of local optima in the landscape with attraction basins that
are comparable in width to the global one. This increases the
chances of getting stuck in a local optimum for any optimiza-
tion algorithm.

� Smoothness. A smooth fitness landscape means that there are
few and shallow local optima and that the attraction basin of
the global optimum dominates the fitness landscape.

A relationship between the fitness landscape and difficulty of
the problem for a developmental stage was used by Vujovic et al.
[22] and more in detail by Lungarella and Berthouze [20]. In this
case, Lungarella and Berthouze studied the influence of changing
some configuration parameters of the experiment to study how
the fitness landscape in a developmental stage varied. However,
what we want to address in this article is neither the characteris-
tics of a fitness landscape for a specific developmental stage nor
how that landscape is modified due to changes in the parameters
of the morphology. Here we will study the evolution of the fitness
landscapes throughout the different developmental stages for dif-
ferent successful and unsuccessful growth based morphological
development experiments and try to determine how these changes
in the fitness landscapes are related to the results about the rele-
vance of growth for learning.
4. Experimental setup

To achieve the objective stated in the previous section, we have
established an experimental framework based on a walking task on
level ground using simple legged robots: a quadruped, a hexapod,
and an octopod. The task and the different morphologies have been
chosen for several reasons: (1) Due to the intrinsic stability of these
morphologies, we consider that learning to walk will not be an
overly difficult task. Thus, it will be possible to use simple con-
trollers, which allow us to focus our efforts on studying the influ-
ence of morphological development. (2) The influence of the
designer on learning how to walk is minimum compared to other
tasks, such as grasping, because there are no decisions to be made
about external factors. For example, grasping means ‘‘grasping
something” and this object to grasp must be selected by the
researcher (its shape, size, orientation, etc.), thus, biasing the pro-
cess of learning. (3) Morphological development, especially body
growth, has been successful in legged morphologies as shown by
several articles [18,22,30]. Thus, we consider that legged mor-
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phologies on a walking task are a suitable starting point for under-
standing the effects of morphological development.

In order to perform the experiments, we employed the V-REP
simulator (currently CoppeliaSim, [31]) with the Open Dynamics
Engine [32] as physical engine. The selected morphologies are, as
mentioned, a quadruped, a hexapod and an octopod (Fig. 1) and
all were modelled in the simulator. All the morphologies are based
on the same base morphology, made up of a central body and a ser-
ies of limbs attached to it, as shown in Fig. 2 left. The limbs are the
same for all morphologies. They are composed of an upper link and
a lower link and the corresponding revolute joint (Fig. 2 right). The
upper link measures 5x2.5x0.5 cm and has a mass of 250 g. The
lower link is made up of two elements, with the same dimensions
and mass as in the upper link, joined by a prismatic joint, which is
the one that allows growth. The prismatic joint can apply a maxi-
mum force of 50 N and it is controlled by a proportional controller
(P = 0.1). All the prismatic joints of the legs have a maximum stroke
of 7.5 cm, which means that the length of the lower link may vary
from 10 cm to 17.5 cm. In addition, there are two revolute joints in
each limb that join the central body and the upper link, and the
upper link and the lower link, respectively. All the revolute joints
are actuated and have a maximum range of motion of [�90, 90]
degrees. Their maximum torque is 2.5 Nm and they are also con-
trolled through a proportional controller (P = 0.1).

Thus, the only differences between the morphologies are given
by the number of limbs and the size and mass of the central body.
The morphology of the quadruped is shown in Fig. 1 left. The size of
its central body is 30x15x1 cm and its mass is 2 kg. The hexapod́s
central body dimensions are 60 � 15 � 1 cm and its mass is 4 kg
(Fig. 1 middle). The dimensions of the central body of the octopod
are 90 � 15 � 1 cm and its mass is 6 kg (Fig. 1 right). Of course, the
number of limbs available also changes, and it is obviously 4 for the
quadruped, 6 for the hexapod, and 8 for the octopod. Thus, the
quadruped presents a total of 8 DOF, the hexapod 12 DOF and
the octopod 16 DOF (we do not take the prismatic joints into
account as they are part of the lower link, only used for growth,
and they maintain the same position during each evaluation of
the controllers).

Furthermore, we have created two additional types of mor-
phologies for the quadruped: a quadruped with 16 DOF, and
another one with 24 DOF. In the 16 DOF quadruped, the original
upper link has been replaced by 3 elements of 1.3 � 2 � 3 cm
and 0.39 kg of mass and 2 extra joints, see Fig. 3 left. Regarding
the 24 DOF quadruped, the original upper link has been replaced
by elements of 0.5 � 2 � 3 cm and 0.5 � 3 � 2 cm, according to
their orientation, and four extra joints, see Fig. 3 right. The torque
of all revolute joints is 2.5 Nm.

Many locomotion studies utilize neural oscillators [20] or
CTRNNs [18,33] to generate rhythmic and periodic control signals.
Here, and for the sake of simplicity we have chosen to use Neural
Networks (NN) with sigmoidal activation functions that act over a
sinusoidal input signal to generate the appropriate periodic signals.
Sinusoidal inputs have been used by authors such as [34] to facil-
itate the generation of temporal patterns. Unlike them, in our case
we have not made use of perceptual inputs. To avoid having to
define the structure of the networks (number of hidden neurons,
layers and connections), we have decided on the use of a neuroevo-
lutionary approach for producing the appropriate network archi-
tecture and weight values. Furthermore, as we have planned to
continue the research line with different morphologies and control
signals, we have selected an ANN due to its flexible adaptation to
different scenarios. In particular, a MultiNEAT [35] implementation
of the NEAT [36] algorithmwas chosen. The NEAT algorithm causes
that the initial feedforward NN may end up including different
numbers of hidden neurons with different configurations, and even
recurrences depending how the architecture evolves (Fig. 4). Thus,



1 1https://github.com/GII/morphological_development/blob/main/publications/
2021_neurocomputing/source_code/config/evolution_config.py.

Fig. 1. Snapshots of each morphology considered in the experiments in their resting position. Left: quadruped. Middle: hexapod. Right: octopod. Each limb has three solid
segments in a chain attached to the base by two actuated revolute joints (red cylinders) and a linear joint (red rectangular cuboid), which is used for the morphological
development. The limbs in each side are equidistant from each other at a distance of 29 cm. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

Fig. 2. Left: Configuration of a base morphology (quadruped) where the different parts are displayed. Right: Detail of the lower limb and upper limb, including the lower link
and upper link respectively.

Fig. 3. Snapshots of the quadruped morphology with 16 DOF (left) and 24 DOF (right).
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outputs with small phases can be obtained thanks to the recurrent
connections, or larger phase differences (phase and anti-phase) are
obtained due to different signs in the outputs. The sinusoidal input
has an amplitude of 2 rad and an angular velocity of 10 rad/s and it
is input without any normalization to one of the two inputs to the
networks. The other input is a bias with a value of 1. The outputs of
the NN correspond to the control signals for each one of the joints
through a denormalization from the NN sigmoidal output interval
[0,1] and the range of motion of each joint [�90, 90]. Consequently,
the number of outputs depends on the number of DOF of the mor-
phology. The NEAT processes start from an initial population of
networks consisting of just the input layer and the output layer
and random weights (the weights are always in the [-10, 10] inter-
val). Initially, each neuron of the input layer is connected to all of
283
the output neurons, without any recurrence. Although the NEAT
algorithm has a large number of configuration parameters, the
most basic and relevant ones are presented on Table 1 (and all
parameters are displayed in the GitHub repository of the project
related to this article1).

Every independent run of NEAT evolves a population of 50 indi-
viduals for 300 generations. To gather statistical data, a total of 40
independent runs have been carried out for each experiment. Due
to the large number of experiments that were carried out, we have
used of a high performance cluster: CESGA [37]. The fitness of the
individual is calculated directly as the distance traveled in a

https://github.com/GII/morphological_development/blob/main/publications/2021_neurocomputing/source_code/config/evolution_config.py
https://github.com/GII/morphological_development/blob/main/publications/2021_neurocomputing/source_code/config/evolution_config.py


Fig. 4. Example of an NN topology obtained with the NEAT algorithm for the 8 DOF
quadruped. The input layer consists of a sinusoidal input and the bias, while each
neuron of the output layer controls each joint. Initially, the input layer is fully
connected with the output layer without any hidden layer. However, as the
evolution advances, NEAT adds new neurons and connections to the ANN, creating a
heterogeneous hidden layer. Blue lines represent weights with positive values and
red lines weights with negative ones and the thickness of the lines represent the
value of the weights. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Table 1
Basic configuration parameters of the MultiNEAT
algorithm.

MultiNEAT parameter Value

Population Size 50
Minimum Species Size 2
Maximum Species Size 7
Survival Rate 0.3
Crossover Rate 0.6
Mutate Weights Probability 0.5
Elite Fraction 0.02
Mutate Add Neuron Probability 0.5
Mutate Add Link Probability 0.5
Recurrent Probability 0.1
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straight line by the head of the robot. Each individual of the popu-
lation is tested for 3 s with a simulation time step of 50 ms and a
physics engine time step of 5 ms. The source code of each experi-
ment can be found in the repository2.

To study how morphological development influences learning
in different morphologies, we have carried out two kinds of exper-
iments for each morphological configuration:

1. No development experiment: This experiment is run with a fixed
morphology (the same as the final morphology for the rest of
the experiments) from the beginning to the end. The robot
starts at generation 0 with the maximum length of the lower
links and the neuro-evolutionary algorithm seeks a neural
network-based controller to achieve maximum displacement.
2 2https://github.com/GII/morphological_development/tree/main/publications/
2021_neurocomputing/source_code.
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2. Developmental experiment: The robot morphology starts with
the shortest version of the links at generation 0 (the prismatic
joints are fully contracted, with an extension of 0 cm, and there-
fore, the length of the links is 10 cm). The link length is grown
linearly and simultaneously for all the legs for a number of gen-
erations until it reaches the maximum length of 17.5 cm. Please,
note that each growth step is applied before each evaluation
starts and the robot does not grow during the evaluations. Addi-
tionally, growth takes place in a set number of generations for
each experiment. That is, the final morphology is reached at
generation 20, 40, 60, 80, 100 or 120 depending on the experi-
ment. This permits studying the relevance of the growth rate
with regards to performance.

More formally, as defined in the previous section, for t 2 ½0; T�,
where t = 0 is the beginning of the robot’s lifespan and t = T the
end (300 generations in our experiments), the quadruped under-
goes variations in its LP parameters (length of each link), in this
case linearly from no extension to full extension of the links, until
the end of development (t = s), where s is set to 20, 40, 60, 80, 100
or 120, depending on the experiment. Thus, the morphological
development function MD tð Þ is defined as:

MD tð Þ ¼ LP tð Þ; t < s
LP sð Þ; t P s

�
ð4Þ

With:

lLLl tð Þ ¼ Linit þ DL
s
� t 8l 2 1; 4½ � ð5Þ

lUL1; lUL2; lUL3;lUL4 ¼ 5 cm

Linit ¼ 10 cm

DL ¼ 7:5 cm

where ULx indicates upper link x and LLy indicates lower link y.
Also, as we are considering only one modifiable property for the
links (their length) the link properties matrix of the previous chap-
ter is presented here as a vector for simplicity.

The results obtained from each of the experiments have allowed
us to compare the differences that exist between the methods
applied to each morphology, and the differences in the results for
different designs.

5. Results

To present the results, we have split the experiments into two
different groups. The first one presents the results for the quad-
ruped with 8 DOF, the hexapod and the octopod. The second one
corresponds to the results of the three different quadrupeds (8,
16 and 24 DOF) in order to evaluate whether the number of
degrees of freedom has any bearance. An example of the best gait
obtained for each morphology and type of experiment can be
viewed in the GitHub repository.3

The results of the learning process and the statistical results for
each morphology of the first group are displayed in Fig. 5, left.
Specifically, it shows the results obtained after the learning process
through neuro-evolution for the no-development case and just one
of the growth experiments (growth up to generation 60). The solid
and dashed lines display the median of the best fitness obtained in
40 independent runs for the growth experiment and the no-
development one, respectively. The shaded areas represent the
3 3 https://github.com/GII/morphological_development/tree/main/publications/
2021_neurocomputing/videos.

https://github.com/GII/morphological_development/tree/main/publications/2021_neurocomputing/source_code
https://github.com/GII/morphological_development/tree/main/publications/2021_neurocomputing/source_code
https://github.com/GII/morphological_development/tree/main/publications/2021_neurocomputing/videos
https://github.com/GII/morphological_development/tree/main/publications/2021_neurocomputing/videos


Fig. 5. Results of the learning process (left) and the statistical analysis at the end of learning (right) for the quadruped (top), hexapod (middle) and octopod (bottom). All the
developmental experiments are compared to the no-development experiment and the p-values of the Mann-Whitney test, corrected by Bonferroni correction, have been
replaced by asterisks. The greater the number of asterisks, the greater the statistical difference as indicted in the legend. G. up to means ‘‘Growth up to”.
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areas between percentiles 75 and 25 for each experiment.
Although we have run the experiments with different growth rates,
as mentioned in section 4, for the sake of clarity in this graph, we
only display the results of the growth up to generation 60 experi-
ment as it provides the most relevant results. A statistical analysis
based on the Mann-Whitney U test [38] was carried out to test for
the statistical significance of the growth experiments. Specifically,
all the growth experiments were compared against the no-
development one. The statistical results are represented by a series
of boxplots (Fig. 5 right). Each boxplot represents the median and
the 75 and 25 quartiles in the last generation for 40 independent
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runs of each of the different types of experiments. The whiskers
are extended to 1.5 of the interquartile range (IQR). Single points
represent values that are out of the IQR. A p-value of 0.05 is taken
as the significance value for accepting or rejecting the null hypoth-
esis. All the p-values have been adjusted using the Bonferroni cor-
rection [39]. Fig. 5 displays the statistical results for the three
morphologies once this correction has been applied.

These results show that the developmental strategy based on
growth only offers better results than no development in the case
of the quadruped and only at specific growth rates. Furthermore,
growth was irrelevant for learning, but not detrimental, in the case
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of the hexapod and octopod. Analyzing the results obtained in
more detail, it can be observed that:

1. During learning, as shown in the graphs in the left column of
Fig. 5, the median fitness value of the no-development experi-
ments increases progressively and continuously from the begin-
ning to the end of learning. However, the median of the growth
experiments displays a noisy behavior during the growth phase
(t < s). These oscillations in the fitness value are motivated by
the continuous adaptation of the controller to the morphology
at each developmental stage. This obviously ends once the
growth phase ends.

2. Different growth ratios give rise to different results. The top-
right graph of Fig. 5 shows how significant statistical results
are only obtained for growth up to generations 60 (p-value
0.0002) and 80 (p-value 0.0158). Furthermore, performing a
statistical analysis at different stages of the learning process,
we can observe how growth is also relevant in the early stages
of learning and this relevance increases with the number of
generations, as displayed in Fig. 6. Thus, there exists an optimal
growth rate interval around which the best results are obtained
during learning. This fact seems to indicate that the success or
failure of a given morphological development strategy also
depends on the capacity of the learning algorithm to adapt to
the changes in morphology that take place between stages.

3. The absolute fitness value obtained by the hexapod is lower
than the fitness obtained by the quadruped, and the fitness of
the octopod is even lower. This can be motivated by the config-
uration of the control system. With a single sinusoidal input, it
is very hard to obtain an ANN that results in any other phase
behaviors than the most basic phase or anti-phase ones (with
slight variations if there is any recurrence) with respect to the
inputs. Thus, optimum phase adjustments for each joint of a
robot may not be readily available, hindering the task of finding
optimum gaits. This effect may increase with the number of
DOF of the robot and affects both the no-development and
growth cases.

Given these results, a pertinent question would be whether the
higher success of growth based morphological development in the
quadruped as compared to the hexapod and octopod is simply
related to the lower number of degrees of freedom of the morphol-
ogy (making the search space smaller) or, whether the intrinsic
characteristics of the morphology somehow play a role in this.
For example, although the joints have the same torque and the
leg design is the same for the three morphologies, the quadruped
presents both a smaller size and weight as well as a reduced num-
ber of limbs compared to the hexapod and octopod. These charac-
teristics may imply that some walking solutions for the quadruped,
Fig. 6. Statistical analysis for different growth rates at generation 100 (left), generation
Mann-Whitney test after applying the Bonferroni correction.
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such as flexible dynamic gaits, may not be available to the hexapod
and octopod.

To elucidate the relevance of the number of degrees of freedom
and the characteristics of the morphology, a series of experiments
over quadrupeds with different DOF were carried out. In these
experiments, we have analyzed and compared the results obtained
after applying growth up to generation 60 for a quadruped with 8
DOF (the one presented above), 16 DOF (as in the case of the octo-
pod), and 24 DOF. The results of these experiments are displayed in
Fig. 7. They show that growth based morphological development
improves learning compared to the no-development experiment
in the quadruped with 16 DOF (p-value of 0.0234), although to a
lesser extent than in the 8 DOF quadruped. In the case of the 24
DOF quadruped, no statistically significant improvement can be
appreciated (p-value of 0.1673). These results are especially rele-
vant in the quadruped with 16 DOF because, even though it shares
the same DOF as the octopod, unlike in the case of the octopod,
growth based morphological development actually improves
learning.

The results obtained from the experiments seem to indicate
that there are two opposing factors that influence the relevance
of growth as a morphological development strategy in these cases.
On the one hand, the intrinsic characteristics of the morphology
may provide more avenues of improvement and thus favor learn-
ing using morphological development. That is, they may make
the problem easier. This is the case of the quadruped with the same
DOF as the octopod, for which morphological development favors
learning. However, at the same time, increasing the number of
DOFs (parameters to be controlled) makes the search space larger
and thus works against learning. In fact, it can be seen that as the
number of degrees of freedom increases, the absolute fitness value
obtained decreases until a point is reached where the difficulty
induced by the large number of DOFs cancels the advantages of
the morphology and makes morphological development irrelevant,
as in the case of the quadruped with 24 DOF.
6. Fitness landscape representation

As stated in Section 3, to try to ascertain the learning difficulty
induced over a task by different morphologies as well as by differ-
ent morphological development processes in a morphology inde-
pendent representation, we will resort to studying the fitness
landscapes resulting from the different experiments. More specifi-
cally, we want to compare the fitness landscape of the quadruped
(as it represents a successful application of growth) to the fitness
landscape of the octopod (as it is the case for which the perfor-
mance difference between growth and no-development has been
the smallest, independently of the growth speed). However, this
type of analysis is not straightforward for two main reasons:
200 (middle), and generation 300 (right). The asterisks represent the p-value of the
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Fig. 7. Results of the learning process (left) and the statistical analysis at the end of learning (right) for the quadruped with 8 DOF (top), the quadruped with 16 DOF (middle)
and the quadruped with 24 DOF (bottom). The numerical values of the Mann-Whitney test have been replaced by asterisks to simplify the figure. The larger the number of
asterisks, the greater the statistical difference. Due to the comparison of only two samples for each morphology, the Bonferroni correction has not been applied here.
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1. The NEAT neuro-evolutionary algorithm optimizes both net-
work weights and the topology of the network. Thus, once the
learning process has finished, we can find individuals with dif-
ferent neural network topologies and dimensions, that is, the
number of weights in the neural network may vary from one
individual to another. This implies that we would need to com-
pare fitness landscapes of different dimensionalities.

2. The high dimensionality of the fitness landscapes obtained for
neural networks, which usually involve tens, hundreds or even
larger numbers of parameters, and thus, dimensions, makes
them very difficult analyze and understand directly.
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To overcome these problems and work with manageable fitness
landscapes, we have projected the N-dimensional parametric
spaces of the resulting neural networks into a two-dimensional
space. That is, into a space that is defined by two parameters, in
this case P1 and P2, similarly to the technique used by Koos et al.
in the transferability approach to minimize the reality gap [40]. A
description of the projection process used to perform this transfor-
mation is presented in the Appendix (see Figure A1 and A2). It is
2021_neurocomputing/videos/fitness_landscapes.

https://github.com/GII/morphological_development/tree/main/publications/2021_neurocomputing/videos/fitness_landscapes
https://github.com/GII/morphological_development/tree/main/publications/2021_neurocomputing/videos/fitness_landscapes
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obviously the case that any projection from a high dimensional
space onto a lower dimensional space will hide details on the real
configuration of the original space, especially when the differences
in dimensionality are very large. However, as we are not interested
in the precise details of these spaces, but on general features that
may be relevant to the evolution of the difficulty of the problem
in the different developmental stages, we have found these projec-
tions very informative.

To try to extract relevant information on the difficulty and vari-
ations of the fitness landscapes along the development process, the
controller for each morphology was tested at 11 developmental
stages, from the initial morphology to the final one. However,
due to space constraints, in the figures for the quadruped, hexapod,
and octopod we will only show the fitness landscape of the initial
morphology, an intermediate developmental stage and the final
one (Fig. 8).
Fig. 8. Fitness landscape of the 8DOF quadruped (left), the hexapod (middle), and the oct
and the final morphology (bottom). The color scale indicates the fitness (m). The global o
area around the optimum used to calculate the roughness.
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In this figure, we can observe and analyze the differences in the
fitness landscapes for the successful example, the quadruped, and
the unsuccessful ones, those of the octopod and hexapod in three
different developmental stages and how they develop. Thus, com-
paring the fitness landscape of the quadruped and octopod it can
be observed that:

� For the initial morphology, the fitness landscape of the quad-
ruped (Fig. 8 top-left) is smooth and non-deceptive. In this
sense, it is possible to see how the fitness value increases grad-
ually and continuously towards the optimum from the borders.
However, in the case of the octopod, its initial morphology
(Fig. 8 top-right) already presents a rough and deceptive fitness
landscape, similar to that of the intermediate morphology and
also the final one.
opod (right) for the initial morphology (top), an intermediate growth stage (middle)
ptimum for each landscape is marked as a small circle and the squares indicate the



Fig. 9. Representation of the attraction basin area of the quadruped, hexapod, and octopod landscape. These figures represent the 2D representation of the initial (top) and
final morphology (bottom) for a fixed P2 value: Left column top: P2 value of 81. Left column bottom: P2 value of 61. Middle column top: P2 value of 72. Middle column
bottom: P2 value of 57. Right column top: P2 value 69. Right column bottom: P2 value of 49.
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� These characteristics of the fitness landscape change as the
morphologies grow. In the case of the quadruped, for the inter-
mediate morphology (Fig. 8 middle-left) the fitness landscape
becomes rougher and more deceptive compared to the initial
one: there are areas with large color changes between points
that are close to one another, indicating the existence of large
fitness gradients. These fitness gradients suggest the presence
of areas around the optimum that are suboptimal solutions.
These areas can confuse the learning algorithm in its path
towards the optimum, characteristics that are more relevant
in the case of the adult morphology (Fig. 8 bottom-left). This
is probably due to the fact that longer legs make the robots
more prone to falls and leg interference during walking. For
the octopod, although the fitness landscapes are different for
each developmental stage, we cannot say that their general
characteristics change with the growth of the morphology. That
is, the roughness and deceptiveness of the landscapes is present
from the initial morphology to the final one (transition from
Fig. 8 top-right to Fig. 8 bottom-right). In other words, in terms
of general difficulty in finding a solution, there seems to be very
little difference between the initial and the final morphology.
We suspect that these similarities in the fitness landscape are
motivated by the intrinsic stability of the octopod. The effects
that growth has over the quadruped (more stability during
the early stages of development and increasing dynamicity as
growth takes place) are not present in this case due to the large
number of legs, making morphological development irrelevant.

� Finally, we can observe a clear difference in the maximum fit-
ness achieved for each morphology at each developmental
stage, which is relatively logical considering that the size of
the legs increases with development and therefore it is possible
to cover a greater distance with the same movement. For the
quadruped, the maximum median fitness reached in the initial
morphology is 1.45 m, while the maximum median fitness
achieved in the final morphology is 1.82 m (a difference of
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0.37 m, which implies an increase of 25.5% with respect to the
initial fitness achieved). However, we cannot observe such a
clear difference in the absolute fitness value achieved in the ini-
tial morphology and the final one in the octopod. The area of
optimal solutions in the final morphology is indeed larger than
in the initial one, but the difference is not as relevant as it is in
the quadruped. In this case, the maximum fitness achieved in
the initial and final morphology are 1.40 m and 1.49 m respec-
tively, which implies a difference of only of 0.09 m (which is
just an increase of 6.4% with respect to the initial fitness
achieved).

Regarding the fitness landscape characteristics of the initial,
intermediate, and final morphologies in the case of the hexapod,
they display characteristics that are between those of the octopod
and the quadruped. It is interesting to point out the difference in
the fitness value achieved between the 1.56 m of the initial mor-
phology and the 1.80 m achieved by the final one. The difference
is 0.24 m which is an intermediate value between the difference
obtained in the quadruped (0.37 m) and octopod (0.09 m) and,
although it represents a notable increase of 15.4%, the characteris-
tics of the evolution of the fitness landscapes were not enough to
provide an advantage when learning during morphological
development.

These observations are confirmed producing a slice (constant
P2) of the fitness landscape through the optimum solution for
the initial morphology (Fig. 9 top) and for the final one (Fig. 9 bot-
tom) for the three morphologies. In this representation, the differ-
ences in terms of roughness between the fitness landscapes of the
initial and final morphologies can be easily appreciated. In the case
of the quadruped, the unidimensional fitness landscape for the ini-
tial morphology is characterized by a relatively smooth line, whilst
the landscape for the adult morphology is characterized by many
local maxima and minima in the fitness value. Especially relevant
is the large decrease in the fitness observed near the optimum in



Fig. 10. Representation of the RMSH value for the reduced landscape of Fig. 7 for
several developmental stages of the quadruped, hexapod, and octopod.
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the final morphology (an example of the different gaits for P1 val-
ues of 59 and 60 can be viewed in the repository4). Furthermore, as
it was shown in Fig. 8, this roughness of the landscape arises in the
area close to the optimal solution, not so much in its periphery. This
contrasts with the characteristics of the fitness landscape of the
octopod. The landscape profile already displays a high level of rough-
ness in the initial morphology with many suboptimal solutions
where the learning algorithm can become stuck (Fig. 9, right col-
umn). Furthermore, notice the evolution of the position of the opti-
mum throughout development. The position of the optimum in the
final morphology corresponds to a minimum in the initial one. In
fact, the initial fitness landscape leads the optimization process away
from this point, representing a deceptive path for the developmental
process in its objective of reaching the optimum of the final mor-
phology. Finally, it can be observed that the hexapod presents graphs
that are in between those of the octopod and the quadruped. They
display a rougher fitness landscape than the quadruped, but they
are not as deceptive as those of the octopod.

These previous statements are supported by a numerical char-
acterization of the landscapes. The different landscapes of Fig. 8
have been characterized by the Root-Mean-Square Height (RMSH)
considering a step size of 2 [41,42]. As there are large areas of
almost cero fitness in most of the landscapes which increase in size
during development, the RMSH is practically constant throughout
development (around 0.5, 0.4 and 0.3 for the quadruped, hexapod
and octopod respectively). To discard their effect, we have consid-
ered an area around the optimum of each landscape (areas marked
by a black box in Fig. 8). Then, it can be seen that, although the final
RMSH (roughness) is similar for the three final morphologies, the
initial RMSH for the hexapod and the octopod are significantly lar-
ger than for the quadruped (Fig. 10). Consequently, the RMSH dif-
ference between the initial morphology and the final one decreases
with the number of legs of the morphology (0.236 for the quad-
ruped, 0.156 for the hexapod, which means a reduction of 33.8%
with respect to the quadruped, and 0.104 for the octopod, which
means a reduction of 55.9% with respect to the quadruped).

In addition, another factor that must be taken into account in
the case of successful morphological development processes, is
that during the development of the fitness landscapes their overall
structure is preserved. The attraction basin of the optimum in the
initial morphology is large. As the morphology increases in size,
the attraction basin is reduced becoming rougher and sometimes
fragmented. However, it preserves its initial structure. That is,
there is initially an area of better solutions and this area does not
change throughout the growth process.
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7. Discussion

We can observe a relationship between the influence of growth
for the three morphologies and how this influence is related to the
characteristics of the fitness landscapes along development. These
observations allow us to infer a relationship between problem dif-
ficulty and the relevance of growth, based on the characteristics of
the problem. First of all, we want to clarify that the adult morphol-
ogy is given by the problem. Thus, a designer of a morphological
development process can only control the initial morphologies
and how they may lead to the final one through the appropriate
configuration of the MD(t) function. And, usually, this final mor-
phology will show a rough and deceptive fitness landscape, other-
wise it would be easy to learn the controller directly over the adult
morphology and there would be no need for morphological devel-
opment. This is the case of the fitness landscapes of the three adult
morphologies we have considered: their final fitness landscapes
are rough. Consequently, this is a necessary, but not sufficient con-
dition for morphological development to make sense.

Secondly, from the results obtained, it seems that in successful
cases, the initial morphologies display smooth and non-deceptive
fitness landscapes with a wide attraction basing towards the opti-
mum that guide the learning algorithm easily to it. Furthermore,
the areas of good solutions increase their fitness value as develop-
ment advances. All of this helps to focus the learning process
towards the most promising areas of the solution space in the adult
morphology, avoiding deceptive paths during development. This is
the case of the fitness landscape of the quadruped initial morphol-
ogy, but not that of the hexapod nor octopod. Thus, we can say that
growth can improve learning by starting on a series of smoother
and less deceptive fitness landscapes than the ones of the final
morphologies. Now, depending on the morphology one considers
and the task to be carried out, smoothing the initial fitness land-
scape may imply different morphological changes.

Thirdly, in the case of successful experiments, the optimum of
the initial fitness landscapes was in the same area of the optimum
in the final fitness landscapes or a path of overlapping optimal
areas was provided from this initial optimum to that of the final
morphology, thus guiding the process towards the final optimum
through the fitness landscapes of successive stages of develop-
ment. This guidance of the learning algorithm happens neither
for the hexapod nor for the octopod. On the one hand, the initial
fitness landscapes in these cases present higher roughness and
deceptiveness characteristics, closer to those of the final morpholo-
gies, which means that the initial morphologies that were chosen
for the hexapod and the octopod did not provide as much of an
advantage in the optimization process. On the other hand, in these
cases, as the morphologies developed, this roughness and decep-
tiveness was present throughout, thus hiding any possible path
towards the final optimum. In fact, in the case of the octopod, these
fitness landscapes would even guide the learning process away
from the optimum.

At this stage, we want to point out an important difference
between morphological and cognitive development in the way
they handle the learning process. In cognitive development, the
first units of knowledge to learn are basic features, usually about
motor coordination and sensor processing, that serve as basic
knowledge structures to build more complex structures in later
stages of the learning process [43]. For example, scaffolding learn-
ing [44] is used to learn complex behaviors, like avoiding obstacles,
which are based on simpler ones, such as walking in a straight line
or steering. However, in each developmental stage of morphologi-
cal development, the cognitive structures that were created in the
previous one constitute the starting point for those that will be
applied to the new morphology. These cognitive structures are
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modified and adapted to be able to work with the physical changes
that happened during the morphological development process. The
modifications of the cognitive structures during morphological
development produce new ones, which are better adapted to the
new morphologies and improve the performance of the interaction
with the environment. This leads us to another important observa-
tion in the experiments presented in this paper: the growth rate is
relevant. That is, in the case of successful morphological develop-
ment experiments, not all growth rates led to the same results.
In fact, we have seen that there are growth rate intervals that pro-
duce much better results than others. This makes us think that any
successful morphological development strategy must involve
matching the capabilities of the learning algorithm for adapting
to changing morphologies with the speed at which these mor-
phologies change. As shown in the results, developmental speeds
that were too slow or, more importantly, too fast, did not lead to
successful results over the quadruped. In other words, morpholog-
ical development and its influence also seems to be closely related
to the capabilities of the learning algorithm used.
8. Conclusions and future work

The objective of this work was to study the influence of mor-
phological development during learning in simple controlled
experiments over the task of walking. To achieve this objective,
first, a formal definition of morphology as well as of morphological
development strategies has been provided. This definition has been
established to bring together in one formalism the variety of mor-
phological development strategies found in the literature. Under
the umbrella of such definition, a series of experiments based on
Fig. A1. Labeling of the differen
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a growth based morphological development strategy have been
carried out. These experiments correspond to a particular imple-
mentation of the MD(t) function.

We have observed that growth seems to facilitate learning in
quadrupeds, producing better results than in the no-development
case, something not observed either in the case of hexapods or
octopods. However, growth does not seem to be detrimental to
performance in any of these morphologies. In fact, the poor results
in the case of hexapods and octopods cannot be attributed only to
the fact that they present more DOFs, leading to larger search
spaces, as in the tests carried out using a quadruped morphology
with the same degrees of freedom as the octopod, the growth
MD(t) improved over the no-development case. Consequently,
the morphology itself as related to the task also has an effect.

Furthermore, through the experiments carried out and the
study of the succession of fitness landscapes corresponding to
the morphological development processes (MD(t)) constructed
for the different morphologies, we have also observed a series of
characteristics that define the influence of growth during learning
and that could potentially be used to better design growth related
morphological development processes.

As a morphological development process is usually stated in
terms of designing a MD(t) function that leads to a final morphol-
ogy (given) that must accomplish a task, we have observed that in
successful morphological development processes the MD(t) func-
tion usually starts with an initial morphology that conforms a
smooth and non-deceptive fitness landscape. This landscape
changes progressively, as the morphology develops, towards the
fitness landscape generated by the final morphology. However, this
sequence of fitness landscapes must lead the learning process
t joints for the quadruped.



M. Naya-Varela, A. Faina, A. Mallo et al. Neurocomputing 500 (2022) 279–294
(seen as an optimization problem) towards the optimum of the
final morphology, whose fitness landscape is usually rough and
deceptive. This implies that the successive fitness landscapes must
provide a path of overlapping optimum areas towards that of the
final morphology. Additionally, different growth rates lead to dif-
ferent results, some of them successful and others unsuccessful.
This hints at the need for a suitable synergy between the growth
rate and the adaptation capabilities of the learning algorithm.

These are initial results and, obviously, more work is needed in
this area. Thus, we consider that it would be interesting to check
whether growth-based morphological development can also be
successfully applied over legged robots with morphological config-
urations different from the ones presented here, as well as to real
robots, such as the one described by Nygaard et al. [45]. In addi-
tion, we are carrying out experiments using other morphological
development strategies such as variation in the range of motion
or freeing and freezing degrees of freedom and over different tasks,
as well as testing different controllers and learning algorithms, in
order to extend and generalize the results presented here.
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Appendix

This appendix describes how the projection of the n-
dimensional parameter space of the neural networks used as con-
es) described by each joint during locomotion for the quadruped.
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trollers to a two-dimensional parameter space was carried out.
This allowed representing the fitness values (f ) for the whole fit-
ness space in terms of two parameters (P1 and P2).

The transformation involved the following steps:

1. The best controller for each morphology is selected.
2. This controller is run on the morphology with the objective of

extracting the angular positions described by the robot’s links
during locomotion. These values are obtained from the output
of the neural network of the controller. Figure A-I displays the
nomenclature of the different joints of the quadruped and
Figure A-II displays the representation of these values for the
quadruped.

3. A sinusoidal function is fitted to the sequence of values corre-
sponding to each joint. This function has the form of:

Angular value ¼ A0 þ A � sin w � t þ uð Þ ðA:1Þ

4. Finally, the joint’s equations are modified to make them depen-
dent on two parameters, P1 and P2, each of them has a range of
[0,100]. These parameters modify the value of A0 and the value
of A respectively. These functions have the form:

Angular value ¼ P1 � � A0

50

� �
þ P2 � A

50

� �
� sin x � t þuð Þ ðA:2Þ

Thus, it is necessary to mention that:

� w is a constant with the same value for all joints.
� A;A0andu are also constants but different for each joint.

As a result, the controller of each morphology depends exclu-
sively on two parameters (P1, P2). At the end of the simulation
time, the distance travelled by the quadruped, which is considered
the fitness of the controller (f ), is recorded. Thus, the fitness land-
scape can be constructed representing the fitness value F as a func-
tion of P1 and P2. Formally:

F ¼ f P1; P2ð Þ ðA:3Þ
This reverse engineering sequence is repeated for each of the

morphologies to obtain the corresponding controller and then pro-
duce the low dimensional fitness landscape.
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