
Artificial Intelligence 308 (2022) 103712
Contents lists available at ScienceDirect

Artificial Intelligence

www.elsevier.com/locate/artint

A polynomial reduction of forks into logic programs

Felicidad Aguado a,b, Pedro Cabalar a,∗, Jorge Fandinno c, David Pearce d,
Gilberto Pérez a,b, Concepción Vidal a,b

a University of A Coruña, Spain
b CITIC Research Center, A Coruña, Spain
c University of Nebraska, Omaha, NE, USA
d Universidad Politécnica de Madrid, Spain

a r t i c l e i n f o a b s t r a c t

Article history:
Received 13 March 2021
Received in revised form 22 February 2022
Accepted 24 March 2022
Available online 29 March 2022

Keywords:
Answer set programming
Non-monotonic reasoning
Equilibrium logic
Denotational semantics
Forgetting
Strong equivalence

In this research note we present additional results for an earlier published paper [1]. There,
we studied the problem of projective strong equivalence (PSE) of logic programs, that is,
checking whether two logic programs (or propositional formulas) have the same behaviour
(under the stable model semantics) regardless of a common context and ignoring the
effect of local auxiliary atoms. PSE is related to another problem called strongly persistent
forgetting that consists in keeping a program’s behaviour after removing its auxiliary atoms,
something that is known to be not always possible in Answer Set Programming. In [1], we
introduced a new connective ‘|’ called fork and proved that, in this extended language,
it is always possible to forget auxiliary atoms, but at the price of obtaining a result
containing forks. We also proved that forks can be translated back to logic programs
introducing new hidden auxiliary atoms, but this translation was exponential in the worst
case. In this note we provide a new polynomial translation of arbitrary forks into regular
programs that allows us to prove that brave and cautious reasoning with forks has the
same complexity as that of ordinary (disjunctive) logic programs and paves the way for
an efficient implementation of forks. To this aim, we rely on a pair of new PSE invariance
properties.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the
CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Nowadays, Answer Set Programming (ASP) [2] is one of the most popular paradigms for practical knowledge representation,
reasoning and problem solving. An important part of this success relies on its solid theoretical foundations, rooted in the
stable model [3] semantics together with its logical formalisations. Among the latter, a prominent approach is the use of
Equilibrium Logic [4] and its monotonic basis, the intermediate logic of Here-and-There (HT), which has been successfully
applied to define many different extensions of the stable models semantics. Despite its expressiveness, a result proved
in [5] has shown that Equilibrium Logic has limitations in capturing the representational power of auxiliary atoms, which
cannot always be forgotten. To illustrate this point, take the following two logic programs from [1]:

* Corresponding author.
E-mail addresses: aguado@udc.es (F. Aguado), cabalar@udc.es (P. Cabalar), jfandinno@unomaha.edu, fandinno@uni-potsdam.de (J. Fandinno),

david.pearce@upm.es (D. Pearce), gilberto.pvega@udc.es (G. Pérez), concepcion.vidalm@udc.es (C. Vidal).
https://doi.org/10.1016/j.artint.2022.103712
0004-3702/© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

https://doi.org/10.1016/j.artint.2022.103712
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/artint
http://crossmark.crossref.org/dialog/?doi=10.1016/j.artint.2022.103712&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:aguado@udc.es
mailto:cabalar@udc.es
mailto:jfandinno@unomaha.edu
mailto:fandinno@uni-potsdam.de
mailto:david.pearce@upm.es
mailto:gilberto.pvega@udc.es
mailto:concepcion.vidalm@udc.es
https://doi.org/10.1016/j.artint.2022.103712
http://creativecommons.org/licenses/by-nc-nd/4.0/

F. Aguado, P. Cabalar, J. Fandinno et al. Artificial Intelligence 308 (2022) 103712
ma ∨mb a ←ma b ←mb (Pm)

fa∨ fb a ← fa b ← fb (P f)

Each program, Pm and P f , is encoding a choice for adding atoms a or b to the respective stable models. To this aim, each
program uses its own pair of auxiliary atoms (ma, mb for Pm , and fa, fb for P f) that allow their respective choices to act
independently even if the programs are combined together1 Pm ∧ P f . A natural question is whether Pm ∧ P f can be replaced
by another program P1 only in terms of atoms a, b, that is, forgetting the auxiliary atoms ma, mf , fa and fb, in a way that is
“essentially equivalent.” More precisely, the kind of equivalence we need would first require that we obtain the same stable
models even if we include both programs in a larger arbitrary context Q , that is, we compare Pm ∧ P f ∧ Q and P1 ∧ Q
for any Q – this is called strong equivalence [6]. Moreover, we further need to strengthen strong equivalence by removing
auxiliary atoms from the stable models to be compared and forbid their occurrence in the public context Q . This stronger
definition corresponds to one of the variants of strong equivalence defined in [7] and it was named in [1] as Projective Strong
Equivalence (PSE) with respect to some public vocabulary V (or just V -strongly equivalent for short). If we take V = {a, b},
program Pm ∧ P f is indeed V -strongly equivalent to the program:

a ∨ ¬a b ∨ ¬b ⊥ ← ¬a ∧ ¬b (P1)

However, if we take any of the components separately, say just Pm on its own, there is no possible way to forget its auxiliary
atoms [5] to obtain a program V -strongly equivalent to Pm . Program P1, for instance, does not work any more: it has a
stable model {a, b} that cannot be obtained from any of the two stable models, {ma, a} and {mb, b} of Pm after removing
auxiliary atoms. In practice, this impossibility means that auxiliary atoms are more than ‘just’ auxiliary, as they allow the
representation of problems that cannot be captured without them.

In [1], we considered an extension of ASP to cover this lack of expressiveness, introducing a new construct ‘ | ’ called
fork. Intuitively, the stable models of (P | P ′) correspond to the union of stable models from P and P ′ in any context Q ,
that is SM[(P | P ′) ∧ Q] = SM[P ∧ Q] ∪ SM[P ′ ∧ Q]. In this extended language, it is always possible to forget auxiliary
atoms: for instance, we can represent both Pm and P f as the V -strongly equivalent fork (a | b). As a result, if we forget all
auxiliary atoms in Pm ∧ P f we obtain (a | b) ∧ (a | b) revealing that the conjunction of forks is not idempotent. In fact, this
fork actually amounts to (a | b | a ∧b) and has stable models {a}, {b} and {a, b}. In [1], we provided a denotational semantics
that allows one to prove that forgetting is always possible in forks, but some of them, such as (a | b), cannot be represented
in Equilibrium Logic. We also used this denotational semantics to capture PSE and to characterise those forks that can be
equivalently represented as regular formulas.

An open question that remained unanswered in [1] has to do with the complexity of reasoning about forks. In that paper,
we showed that there exists a normal form, unnested forks (UF), in which fork connectives are not in the scope of another
connective. We also provided a polynomial translation from forks in UF normal form into logic programs (adding new fresh
auxiliary atoms). As a result, we could prove that the complexity of brave and cautious reasoning for forks in UF normal form
was the same as in disjunctive logic programs, that is, �P

2 and �P
2 -complete, respectively. For arbitrary forks, however, this

complexity assessment remained open, since the reduction into UF normal form may cause an exponential blow up due to
distributivity laws.

In this research note, we extend the results from [1] by presenting a pair of additional invariance results for PSE that
allow us to obtain a polynomial translation of arbitrary forks into regular programs.2 This new translation is important
not only for a future implementation of fork logic programs, but also for proving that brave and cautious reasoning with
arbitrary forks has the same complexity as that of ordinary (disjunctive) logic programs.

The rest of the paper is organised as follows. The next section recalls the basic definitions from [1] required to prove
the new results, including a revised version of the forks syntax (more comfortable for inductive proofs) together with their
denotational semantics. Section 3 revisits the definition of PSE and provides several useful invariance results that will be
used for the reduction to logic programs. In Section 4 we present the new reduction and, finally, Section 5 concludes this
note.

2. Background

We begin by recalling some basic definitions from the logic of Here-and-There [8] (HT). Let At be a finite set of atoms
called the (propositional) signature. A (propositional) formula ϕ is defined using the grammar:

ϕ ::= ⊥ ∣∣∣∣∣∣ p
∣∣∣∣∣∣ ϕ ∧ ϕ

∣∣∣∣∣∣ ϕ → ϕ

where p is an atom p ∈ At . We will use Greek letters ϕ, ψ, γ and their variants to stand for formulas. We define the derived
operators ¬ϕ

def= (ϕ → ⊥), � def= ¬⊥ and ϕ ↔ ψ
def= (ϕ → ψ) ∧(ψ → ϕ). In [1], we also included disjunction as an elementary

1 For simplicity, we understand programs as the conjunction of their rules.
2 As suggested, and partly conjectured, by the AIJ reviewers for [1].
2

F. Aguado, P. Cabalar, J. Fandinno et al. Artificial Intelligence 308 (2022) 103712
connective, something usual in intuitionistic and intermediate logics. For the current work, however, we are interested in
reducing the number of connectives in proofs, so we use the fact that disjunction in the logic HT can be defined [9] as
follows:

ϕ ∨ ψ
def= ((ϕ → ψ) → ψ) ∧ ((ψ → ϕ) → ϕ) (1)

Given a formula ϕ , by At(ϕ) ⊆ At we denote the set of atoms occurring in ϕ . A literal is an atom p or its negation ¬p. A
(logic) program is a set of implications of the form α → β where α is a conjunction of literals and β a disjunction of literals.
A theory is a set of formulas. For simplicity, we consider finite theories understood as the conjunction of their formulas. The
extension to infinite theories is straightforward.

A classical interpretation T is a set of atoms T ⊆ At . We write T |= ϕ to stand for the usual classical satisfaction of a for-
mula ϕ . An HT-interpretation is a pair 〈H, T 〉 (respectively called “here” and “there”) of sets of atoms satisfying H ⊆ T ⊆ At;
it is said to be total when H = T . The fact that an interpretation 〈H, T 〉 satisfies a formula ϕ , written 〈H, T 〉 |= ϕ , is recur-
sively defined as follows:

• 〈H, T 〉 �|= ⊥;
• 〈H, T 〉 |= p if p ∈ H;
• 〈H, T 〉 |= ϕ ∧ ψ if 〈H, T 〉 |= ϕ and 〈H, T 〉 |= ψ;
• 〈H, T 〉 |= ϕ → ψ if both: (i) T |= ϕ → ψ and

(ii) 〈H, T 〉 �|= ϕ or 〈H, T 〉 |= ψ.

It can be checked that the interpretation for disjunction when defined as (1) amounts to:

• 〈H, T 〉 |= ϕ ∨ ψ if 〈H, T 〉 |= ϕ or 〈H, T 〉 |= ψ .

We proceed now to recall the definitions introduced in [1] that will be used for the main results.

Definition 1 (T -support). Given a set T of atoms, a T -support H is a set of subsets of T , that is H ⊆ 2T , satisfying T ∈H if
H �= ∅. We write HT to stand for the set of all possible T -supports.

To increase the readability of examples, we write a support as a sequence of interpretations between square brackets.
For instance, three examples of supports of T = {a, b} are [{a, b} {a}], [{a, b} {b} ∅] or the empty support [].

Definition 2. Given a set T ⊆ At of atoms and two T -supports H and H′ we write H �T H′ iff either H = [] or H ⊇H′ �=
[].

As shown in [1, Proposition 4], the relation �T constitutes a partial order on HT with [] and [T] its bottom and top
elements, respectively. We usually write H �H′ instead of H �T H′ when clear from the context.

Given a T -support H, we define its complementary support H as:

H def=
{ [] ifH = 2T

[T] ∪ {H ⊆ T | H /∈ H} otherwise

The relation between T -supports and formulas is given by the following definition.

Definition 3 (T -denotation). Let T ⊆ At . The T -denotation of a formula ϕ , written � ϕ �T , is a T -support recursively defined
as follows:

�⊥ �T
def= []

� p �T
def= {H ⊆ T | p ∈ H}

�ϕ ∧ ψ �T
def= �ϕ �T ∩ �ψ �T

�ϕ → ψ �T
def=

{ [] if �ϕ �T �= [] and �ψ �T = []
�ϕ �T ∪ �ψ �T otherwise

Using this definition and Proposition 6 from [1], we obtain the following derived denotations for disjunction and negation:

�ϕ ∨ ψ �T = �ϕ �T ∪ �ψ �T �¬ϕ �T =
{ [] if �ϕ �T �= []
2T otherwise

Propositional formulas (and logic programs) seen so far were extended in [1] to include a new connective ‘|’, forming
new expressions called forks. A fork F is defined by the grammar:
3

F. Aguado, P. Cabalar, J. Fandinno et al. Artificial Intelligence 308 (2022) 103712
F ::= ⊥ ∣∣∣∣∣∣ p
∣∣∣∣∣∣ (F | F)

∣∣∣∣∣∣ F ∧ F
∣∣∣∣∣∣ ϕ ∨ ϕ

∣∣∣∣∣∣ ϕ → F

where ϕ is a propositional formula and p ∈ At is an atom. We refer to the language formed by all forks for signature At
as LAt . Notice that the fork operator ‘|’ cannot occur in the scope of negation, since ¬F stands for F → ⊥ and implications
do not allow ‘|’ in the antecedent. For the same reason, the fork ‘|’ cannot occur in a disjunction either, since (1) would
require using that operator in the antecedent of an implication. In the current document, to make inductive proofs simpler,
we introduce an alternative definition of LAt based on a partition of sublanguages Li

At with respect to some degree i ≥ 0
for connective nesting. In what follows, we will use the function δ(F) (the degree of fork F) to be defined as value i when
F ∈Li

At has been already defined.

Definition 4 (Well formed fork). Given a set of propositional atoms At , we define the set of well formed forks for some degree
i ≥ 0, denoted as Li

At , inductively as follows:

L0
At

def= the set of propositional formulas for At

Li+1
At

def= {
(F1 | . . . | Fm)

∣∣ m > 1, max{δ(F1), . . . , δ(Fm)} = i
}

∪ {
(F1 ∧ · · · ∧ Fm)

∣∣ m > 1, max{δ(F1), . . . , δ(Fm)} = i > 0
}

∪ {
(ϕ → F)

∣∣ δ(ϕ) = 0, δ(F) = i > 0
}

The set of all well formed forks for At is defined as LAt
def= ⋃

i≥0Li
At .

Apart from partitioning the language by degrees, Definition 4 also introduces another minor variation with respect to
the syntax in [1]: conjunction and ‘|’ are defined here as m-ary operators, for an arbitrary m > 1, rather than as binary
connectives. Given that these connectives are associative, this avoids their unnecessary nesting when repeated, producing a
more economic and readable translation of forks into logic programs, as we will see later on. As an example to illustrate the
definition of fork degree, the conjunction p ∧ q has degree δ(p ∧ q) = 0 because it is a propositional formula, but cannot be
understood as a conjunction of forks F ∧ G of some degree i + 1 because, as we see in Definition 4, this requires that either
F or G (or both) have non-zero degrees. On the other hand, fork (p | q) has a degree 1, since both p and q have degree 0
but the fork connective increases the degree by one. For a larger example, fork s → (((p | q) | r) ∧ (p | q)) has a degree of
4 because the degree of an implication is the degree of its consequent plus one, and the latter is constructively explained
below:

((

max{0,0}+1=1︷ ︸︸ ︷
(p | q) | r)︸ ︷︷ ︸

max{1,0}+1=2

∧ (p | q)︸ ︷︷ ︸
max{0,0}+1=1

)

︸ ︷︷ ︸
max{2,1}+1=3

Note that since ‘ | ’ is associative (see Proposition 2 below), these forks can be rewritten as s → ((p | q | r) ∧ (p | q)). This
fork makes use of the m-ary operations of Definition 4 and it is strongly equivalent to the former. However, it has degree 3
rather than 4. We define the size of a fork F , written |F |, as the number of connectives and atom occurrences in F . For
instance, | s → ((p | q | r) ∧ (p | q)) | = 11.

The semantics of forks is defined in terms of sets of T -supports that we call T -views. Given a T -support H we define
the set of (non-empty) �-smaller supports ↓H = {H′ | H′ � H} \ { [] }. This is usually called the ideal of H. Note that, the
empty support [] is not included in the ideal. As a result, ↓[] = ∅. We extend this notation to any set of supports
 so
that:

↓

def=

⋃
H∈

↓H = { H′ ∣∣ H′ � H,H ∈
 } \ { [] }

Definition 5 (T -view). A T -view is a set of T -supports
 ⊆ HT that is �-closed, i.e., ↓
 =
.

If
 is a T -view and the �-greatest T -support [T] is included in
, then
 is precisely ↓[T]. We proceed next to
define the semantics of forks in terms of T -views.

Definition 6 (T -denotation of a fork). Let At be a propositional signature and T ⊆ At a set of atoms. The T -denotation of a
fork F , written 〈 〈 F 〉 〉T , is a T -view recursively defined as follows:
4

F. Aguado, P. Cabalar, J. Fandinno et al. Artificial Intelligence 308 (2022) 103712
〈〈 F 〉〉T def= ↓� F �T if δ(F) = 0

〈〈G1 ∧ . . . ∧ Gm 〉〉T def= ↓{H1 ∩ . . . ∩Hm |
for each 〈H1, . . . ,Hm〉 ∈ 〈〈G1 〉〉T × · · · × 〈〈Gm 〉〉T }

〈〈G1 | . . . | Gm 〉〉T def= 〈〈G1 〉〉T ∪ . . . ∪ 〈〈Gm 〉〉T

〈〈ϕ → G 〉〉T def=
{ {2T } if �ϕ �T = []

↓{ �ϕ �T ∪H
∣∣ H ∈ 〈〈G 〉〉T } otherwise

In the last three cases, we assume δ(F) > 0.

Finally, we reproduce the definition of the stable models of a fork from [1].

Definition 7. Given a fork F , we say that T ⊆ At is a stable model of F iff 〈 〈 F 〉 〉T = ↓[T] or, equivalently, [T] ∈ 〈 〈 F 〉 〉T .
SM[F] denotes the set of stable models of F .

3. Invariance results for projective strong equivalence

In this section we revisit the definition of Projective Strong Equivalence (PSE) from [1] and provide several useful invari-
ance results that will be used later on in our reduction to logic programs. As explained before, the main idea of PSE is that
only a subset of atoms V ⊆ At is considered public, whereas At \ V are hidden. Given a set of sets of atoms A ⊆ 2At , we
denote its projection onto some vocabulary V ⊆ At as AV

def= { X ∩ V
∣∣ X ∈ A }.

Definition 8 (projective strong entailment/equivalence of forks). Let F and G be two forks and V ⊆ At some vocabulary (set
of atoms). We say that F V -strongly entails G , written F |∼V G , if SMV [F ∧ L] ⊆ SMV [G ∧ L] for any fork L ∈LV . We further
say that F and G are V -strongly equivalent, written F ∼=V G , if both F |∼V G and G |∼V F , that is, SMV [F ∧ L] = SMV [G ∧ L]
for any fork L ∈LV .

When V ⊇ At(F) ∪ At(G) we just remove the V and simply talk about (the non-projective versions of) strong entailment ‘|∼’
and strong equivalence ‘∼=’.

A particular application of ∼=V is the case where we consider F to be the “original” expression and G the result of some
transformation t(F) on F . We say that a transformation t(F) is strongly faithful (adapted from [10]) with respect to F when
F ∼=V t(F) fixing the public vocabulary to V = At(F).

The following result shows that |∼ and ∼= have a simple characterisation in terms of denotations.

Proposition 1 (Proposition 11 in [1]). For any pair of forks F , G the following hold:

(i) F |∼ G iff for every set T ⊆ At, 〈 〈 F 〉 〉T ⊆ 〈 〈 G 〉 〉T ,
(ii) F ∼= G iff for every set T ⊆ At, 〈 〈 F 〉 〉T = 〈 〈 G 〉 〉T .

We begin introducing several useful equivalences among forks, proving that their versions for binary connectives ‘∧’ and
‘|’ in [1] also apply to the m-ary case.

Proposition 2. Let F1, . . . , Fm be arbitrary forks with m > 2. Then:

F1 | . . . | Fm ∼= F1 | (F2 | . . . | Fm) ∼= (F1 | . . . | Fm−1) | Fm
F1 ∧ . . . ∧ Fm ∼= F1 ∧ (F2 ∧ . . . ∧ Fm) ∼= (F1 ∧ . . . ∧ Fm−1) ∧ Fm

Proof. Let T ⊆ At . Then, by definition, we get:

〈〈 F1 | . . . | Fm 〉〉T =
m⋃
i=1

〈〈 Fi 〉〉T = 〈〈 (F1 | . . . | Fm−1) | Fm 〉〉T

= 〈〈 F1 | (F2 | . . . | Fm) 〉〉T
For the case of conjunction, given Hi ∈ 〈 〈 Fi 〉 〉T for i = 1, . . . , m, we know:

H1 ∩H2 ∩ . . . ∩Hm = H1 ∩ (H2 ∩ . . . ∩Hm) = (H1 ∩ . . . ∩Hm−1) ∩Hm,
5

F. Aguado, P. Cabalar, J. Fandinno et al. Artificial Intelligence 308 (2022) 103712
because set intersection is associative. Since H2 ∩ . . . ∩Hm ∈ 〈 〈 F2 ∧ . . . ∧ Fm 〉 〉T and H1 ∩ . . . ∩Hm−1 ∈ 〈 〈 F1 ∧ . . . ∧ Fm−1 〉 〉T
we obtain the result for m-ary conjunctions. �

Proposition 2 can be immediately applied to Proposition 12 in [1] to obtain the next useful equivalences

Corollary 1. Let F1, . . . , Fm and G be arbitrary forks and ϕ and ψ be formulas. Then:

(F1 | . . . | Fm) ∧ G ∼= (F1 ∧ G) | . . . | (Fm ∧ G) (2)

ϕ → (F1 | . . . | Fm) ∼= (ϕ → F1) | . . . | (ϕ → Fm) (3)

ϕ → (F1 ∧ . . . ∧ Fm) ∼= (ϕ → F1) ∧ . . . ∧ (ϕ → Fm) (4)

ϕ → (ψ → F) ∼= ϕ ∧ ψ → F (5)

� → F ∼= F (6)

The denotational characterisation of PSE relies on the following definition: we say that a T -support H is V -unfeasible3

iff there is some H ⊂ T in H satisfying H ∩ V = T ∩ V ; we call it V -feasible otherwise.

Definition 9. Let V ⊆ At be a vocabulary and T ⊆ V be a set of atoms. Then, the V -T -denotation of a fork F is a T -view
defined as follows:

〈〈 F 〉〉TV def= ↓{ HV
∣∣ H ∈ 〈〈 F 〉〉T ′

s.t. T ′ ∩ V = T and H is V -feasible }

In other words, we collect all the feasible supports H that belong to any T ′-denotation 〈 〈 F 〉 〉T ′
such that T ′ coincides with

T for atoms in V , and then we project the supports taking HV . In doing so, we can just consider maximal H’s in 〈 〈 F 〉 〉T ′
.

It has been proved in [1] that, for any V ⊆ At , the projected versions |∼V and ∼=V have simple characterisations in terms of
V -T -denotations:

Proposition 3 (Theorem 2 in [1]). For any vocabulary V ⊆ At, forks F , G, the following hold:

(i) F |∼V G iff for every set T ⊆ V of atoms, 〈 〈 F 〉 〉TV ⊆ 〈 〈 G 〉 〉TV , and
(ii) F ∼=V G iff for every set T ⊆ V of atoms, 〈 〈 F 〉 〉TV = 〈 〈 G 〉 〉TV .

As might be expected, projecting the T -denotation of a fork F on a superset V ⊇ At(F) of its atoms produces no effect.

Proposition 4 (Proposition 13 in [1]). For any vocabulary V ⊆ At, fork F with At(F) ⊆ V and set T ⊆ V of atoms, 〈 〈 F 〉 〉TV = 〈 〈 F 〉 〉T .

The following theorem from [1] guarantees that V -strong entailment (and so, V -strong equivalence too) is unaffected by
any atom a not occurring in F or G .

Theorem 1 (Free Atom Invariance, Theorem 3 in [1]). Let F and G be two forks and let At be a signature such that At ⊃ At(F) ∪ At(G)

and a ∈ At \ (At(F) ∪ At(G)), for some atom a. For any V ⊆ At we have: F |∼V G for signature At iff F |∼V ′ G for signature At′ =
At \ {a} and V ′ = V \ {a}.

We state next another pair of useful invariance properties about projective strong equivalence: Reduced Vocabulary
(Proposition 5) and Public Context (Proposition 6). The first proposition guarantees that F |∼V G is preserved if we replace
V by any smaller vocabulary V ′ ⊆ V . To prove that result, we rely on the following lemma.

Lemma 1. Let A, B ⊆ 2At and let V ′ ⊆ V and, AV ⊆ BV . Then, AV ′ ⊆ BV ′ .

Proof. Suppose T ∈ AV ′ , that is, T = T1 ∩ V ′ for some T1 ∈ A. Then, (T1 ∩ V) ∈ AV ⊆ BV . As (T1 ∩ V) ∈ BV , there exists
T2 ∈ B such that (T2 ∩ V) = (T1 ∩ V). Given V ′ ⊆ V , we conclude (T2 ∩ V ′) = (T1 ∩ V ′) = T . Finally, T2 ∈ B implies T =
(T2 ∩ V ′) ∈ BV ′ . �
Proposition 5 (Reduced Vocabulary Invariance). Let F , G be a pair of forks satisfying F |∼V G and let V ′ ⊆ V . Then F |∼V ′ G.

3 This notion is analogous to condition ii) in the definition of V -SE-models that characterises relativised strong equivalence [11].
6

F. Aguado, P. Cabalar, J. Fandinno et al. Artificial Intelligence 308 (2022) 103712
Proof. If F |∼V G then SMV [F ∧ L] ⊆ SMV [G ∧ L] for all L ∈ LV . From V ′ ⊆ V and Lemma 1 we conclude SMV ′ [F ∧ L] ⊆
SMV ′ [G ∧ L] for all L ∈LV ⊇LV ′ , and so F |∼V ′ G . �

Strong (Addition) Invariance corresponds to a property of forgetting operators first identified by Wong in [12] and later
dubbed with that name in [13]. In the case of forgetting, if this property holds, it means that if we add any program
fragment without the forgotten atoms, we can do it before or after forgetting and the results in both cases are strongly
equivalent. In the case of F |∼V G , a somehow similar property, we call Public Context Invariance (PCI), determines that we
can always add any context C over vocabulary V to both F and G and the strong entailment relation is preserved.

Proposition 6 (Public Context Invariance, PCI). Let F , G be a pair of forks satisfying F |∼V G and let C ∈LV . Then, F ∧ C |∼V G ∧ C.

Proof. We prove that F ∧ C /|∼V G ∧ C implies F /|∼V G . Assume F ∧ C /|∼V G ∧ C . Then, there is some fork L ∈LV s.t. SMV [(F ∧
C) ∧ L] � SMV [(G ∧C) ∧ L]. Now, the fork L′ = (C∧ L) is also in LV and, since conjunction is associative, we get SMV [F ∧ L′] �
SMV [G ∧ L′]. Hence, F /|∼V G . �

To conclude this section, we further generalise PCI by showing that it still holds when C contains other atoms not in V ,
but does not use the “hidden” atoms in F and G . In other words, any atom in C occurring in F or G must belong to the
public vocabulary V .

Theorem 2 (Hidden Atoms Invariance). Let F , G be two forks such that F ∼=V G. Then F ∧ C ∼=V G ∧ C for any fork C satisfying
At(C) ∩ (At(F) ∪ At(G)) ⊆ V .

Proof. Atoms in At(C) \V do not belong to At(F) ∪ At(G), so they are free atoms with respect to F ∼=V G . We can incremen-
tally apply free atom invariance (Theorem 1) on atoms in At(C) \ V , eventually adding all of them to V to conclude F ∼=V ′ G
for V ′ = V ∪ At(C). Now, since At(C) ⊆ V ′ , by Proposition 6, F ∼=V ′ G implies F ∧ C ∼=V ′ G ∧ C . Finally, by Proposition 5 and
V ⊆ V ′ we conclude F ∧ C ∼=V G ∧ C . �

To illustrate the utility of these results, take program Pm and assume that the public vocabulary is V = {a, b}, so its local
atoms are {ma, mb}. As we explained in the introduction4 both Pm ∼=V (a | b) and P f

∼=V (a | b). Suppose we take F = Pm ,
G = (a | b) and C = P f . Note that C = P f has atoms {fa, fb} not in V , but these atoms do not occur in F or G . Therefore, we
can apply Hidden Atoms Invariance to conclude F ∧ C ∼=V G ∧ C , that is,

Pm ∧ P f
∼=V (a | b) ∧ P f (7)

But now, we can replace P f on the right hand side above by another fork as follows. Take F = P f , G = (a | b) and C = (a | b).
In this case all atoms in C are public and, by PCI (Proposition 6), we conclude F ∧ C ∼=V G ∧ C , that is:

P f ∧ (a | b) ∼=V (a | b) ∧ (a | b) (8)

Since ∧ is symmetric and ∼=V is transitive, from (7) and (8) we can finally conclude Pm ∧ P f
∼=V (a | b) ∧ (a | b).

4. Reduction to propositional formulas and logic programs

We are now ready to introduce the new polynomial reduction of any fork F into a propositional formula pf (F) that may
introduce auxiliary atoms, but is At(F)-strongly equivalent to F . In fact, the propositional formula we obtain ϕ = pf (F) is
not necessarily in the form of a logic program, but it can be further reduced to that form using the polynomial method
in [14], that introduces again auxiliary variables, being strongly faithful (i.e. keeping PSE for the original alphabet). To
define pf (F), we introduce first a recursive transformation im(·) that exclusively operates on forks that have the form of an
implication ϕ → F .

4 See Example 8 in [1] for more details.
7

F. Aguado, P. Cabalar, J. Fandinno et al. Artificial Intelligence 308 (2022) 103712
Definition 10. Given a fork of the form ϕ → F by im(ϕ → F) we denote the following recursive rewriting:

im(ϕ → F)
def= ϕ → F if F is a propositional formula

im(ϕ → (F1 | . . . | Fm))
def= (

ϕ → (a1 ∨ . . . ∨ am)
) ∧ ∧m

i=1 im(ai → Fi)
where each ai is a fresh atom

im(ϕ → (F1 ∧ . . . ∧ Fm))
def= (ϕ → a) ∧ ∧m

i=1 im(a → Fi)
if F1 ∧ . . . ∧ Fm is not a formula and
a is a fresh atom

im(ϕ → (ψ → F))
def= im(ϕ ∧ ψ → F) if F is not a formula �

As we will prove later, it is not difficult to see that im(ϕ → F) is indeed a propositional formula, but its application
is limited to forks of the form ϕ → F . Fortunately, if the original fork F is not in that form, we can always replace it by
� → F and then apply im(� → F). The general transformation pf (F) is then defined as follows.

Definition 11 (The pf (·) reduction). For any fork F we define:

pf (F)
def= F if F is a propositional formula

pf (F)
def= im(ϕ → G) if F = ϕ → G and δ(G) > 0

pf (F)
def= im(� → F) otherwise

Now, the properties of this reduction are captured by the main theorem below, whose detailed proof will be provided in
the rest of the section.

Main Theorem. For any fork F , the following statements hold:

1. pf (F) is a propositional formula,
2. p f (F) ∼=At(F) F ,
3. |pf (F)| ≤ 3 |F |2 , and
4. pf (·) can be computed in polynomial time. �
To illustrate the application of this transformation, let F1 be the fork:

(p | ¬r) ∧
(

¬p → (
(q → (p | r)) ∧ (¬q → (r | s))))

We start with pf (F1) = im(� → F1). Then, we introduce a0 to replace the (conjunctive) F1 in the consequent, leading to
(� → a0) ∧ im(a0 → (p | ¬r)) ∧ im(a0 → (¬p → G)) where we write G to abbreviate the consequent of the second conjunct
in F1. The application im(a0 → (p | ¬r)) introduces two new auxiliary atoms leading to (a0 → a1 ∨ a2) ∧ (a1 → p) ∧ (a2 →
¬r). On the other hand, im(a0 → (¬p → G)) = im(a0 ∧ ¬p → G). We proceed similarly with G and eventually obtain pf (F1)
as the conjunction of:

� → a0 a0 ∧ ¬p → a3 a3 ∧ ¬q → a6 ∨ a7
a0 → a1 ∨ a2 a3 ∧ q → a4 ∨ a5 a6 → r
a1 → p a4 → p a7 → s
a2 → ¬r a5 → r

that, in this case, it already has the form of a logic program, not requiring the further reduction in [14]. The newly intro-
duced atoms a0, . . . , a7 are auxiliary. The Main Theorem guarantees that the resulting program is V -strongly equivalent to
F1, where V = At(F1) = {p, q, r, s}. Moreover, by Theorem 1 (Free Atom Invariance), we know that V ′-strong equivalence
still holds for any extended public vocabulary V ′ ⊇ V that does not contain the hidden atoms a0, . . . , a7. Finally, the Main
Theorem also states that, in the worst case, the size of the reduction pf (F) remains quadratic.

Before we proceed to prove the Main Theorem, we start identifying a particular kind of T -support whose singularity will
be exploited later on.

Definition 12 (V -respectful support). Let T , V ⊆ At be two sets of atoms. We say that a T -support H is V -respectful, if any
H, H ′ ⊆ T such that H ∩ V = H ′ ∩ V satisfies H ∈H iff H ′ ∈H.

To start with the proof, we provide a pair of basic transformations, γ and λ, that allow removing fork connectives in the
consequent of an implication, but at the cost of introducing auxiliary atoms. Some parts of the proof for their PSE make use
of Lemmata 5 and 6 from [1].
8

F. Aguado, P. Cabalar, J. Fandinno et al. Artificial Intelligence 308 (2022) 103712
Lemma 2. Let F = ϕ → (F1 | · · · | Fn) be a fork, V = At(F) and let

γ (F)
def= (a1 ∨ · · · ∨ an) ∧ (a1 ∧ ϕ → F1) ∧ · · · ∧ (an ∧ ϕ → Fn)

λ(F)
def= [ϕ → (a1 ∨ · · · ∨ an)] ∧ (a1 → F1) ∧ · · · ∧ (an → Fn)

where ai /∈ V for all 1 ≤ i ≤ n. Then, F ∼=V γ (F) ∼=V λ(F).

Proof. Taking into account Proposition 3, we have to prove:

〈〈 F 〉〉TV = 〈〈γ (F) 〉〉TV = 〈〈λ(F) 〉〉TV
for any T ⊆ V . On the other hand, Proposition 4 and (3) guarantee:

〈〈 F 〉〉TV = 〈〈 F 〉〉T = 〈〈ϕ → (F1 | · · · | Fn) 〉〉T =
n⋃

i=1

〈〈ϕ → Fi 〉〉T

So, in the end, what we have to prove is:
n⋃

i=1

〈〈ϕ → Fi 〉〉T = 〈〈γ (F) 〉〉TV = 〈〈λ(F) 〉〉TV

We decompose this equality into a chain of three inclusion relations.

First inclusion:
⋃n

i=1〈 〈 ϕ → Fi 〉 〉T ⊆ 〈 〈 γ (F) 〉 〉TV .
Take 1 ≤ i ≤ n and H ∈ 〈 〈 ϕ → Fi 〉 〉T . We distinguish two cases depending on whether T |= ϕ or not. Suppose first that
T �|= ϕ . Then H = 2T and, because of Lemma 5 from [1], if S = T ∪ {ai}, then S �|= ϕ . Notice that {2S } = 〈 〈 ϕ ∧ a j → F j 〉 〉S for
any 1 ≤ j ≤ n. Then:

2T = �a1 ∨ · · · ∨ an �SV

=
(
�a1 ∨ · · · ∨ an �S ∩ 2S ∩ · · · ∩ 2S

)
V

∈ 〈〈γ (F) 〉〉TV .

In the second case, if T |= ϕ , H� �ϕ �T ∪H′ with H′ ∈ 〈 〈 Fi 〉 〉T maximal. We define H′ ∪ {ai} := {H ∪{ai} ; H ∈H′} which
is an S-support if S = T ∪ {ai}. Notice that

�a1 ∨ · · · ∨ an �S ∩ [�ϕ ∧ ai �S ∪ (H′ ∪ {ai})]
= {X ⊆ S ; ai ∈ X and 〈X, S〉 �|= ϕ}

∪ {X ⊆ S ; ai ∈ X and X \ {ai} ∈ H′}
but this implies:

�ϕ �T ∪H′ =
(
�a1 ∨ · · · ∨ an �S ∩ [�ϕ ∧ ai �S ∪ (H′ ∪ {ai})]

)
V

and the latter belongs to 〈 〈 γ (F) 〉 〉TV since 〈 〈 ϕ ∧a j → F j 〉 〉S = {2S } for any j �= i, � a1 ∨· · ·∨an �S is V -feasible5 and H∪{ai} ∈
〈 〈 Fi 〉 〉S (by Lemma 20 from [1]). The fact that H′ is V -respectful (because of Lemma 6 from [1]) implies that, for any X ⊆ S ,
X ∈H′ if, and only if, X ∪ {ai} ∈H′ since X ∩ V = (X ∪ {ai}) ∩ V .

Second inclusion: 〈 〈 γ (F) 〉 〉TV ⊆ 〈 〈 λ(F) 〉 〉TV .
For this inclusion, if we suppose that HV ∈ 〈 〈 γ (F) 〉 〉TV for some H ∈ 〈 〈 γ (F) 〉 〉S such that S ∩ V = T and with H being
V -feasible, we can suppose that S �= T since 〈 〈 γ (F) 〉 〉T = ∅. Moreover, if T ∪ {ai} ⊂ S , any H ∈ 〈 〈 γ (F) 〉 〉S is going to be V -
unfeasible. For any such H, we know that there exist Hk ∈ 〈 〈 ϕ ∧ ak → Fk 〉 〉S (with 1 ≤ k ≤ n) and Hn+1 ∈ 〈 〈 a1 ∨ · · · ∨ an 〉 〉S
such that H � ⋂n

k=1Hk ∩Hn+1. We are going to use afterwards the fact that Hi � �ϕ ∧ ai �S ∪H′
i for some H′

i maximal in
〈 〈 Fi 〉 〉S . Since H′

i is V -respectful (by applying Lemma 6 from [1]) and S ∈H′
i , we have T ∪ {ai} ∈H′

i ⊆Hi .
If T �|= ϕ , then Hk = 2S for any 1 ≤ k ≤ n and T ∪ {ai} ∈ � a1 ∨ · · · ∨ an �S ⊆Hn+1 that implies

T ∪ {ai} ∈ Hn+1 ∩
n⋂

k=1

Hk ⊆ H

so H is V - unfeasible. On the other hand, if T |= ϕ , then T ∪ {ai} ∈H′
i ⊆Hi and T ∪ {ai} ∈ �ϕ ∧ ak �S ⊆Hk . If k �= i then

5 By Lemma 10 from [1], if H is V -feasible, then H ∩H′ is also V -feasible, for any H′ .
9

F. Aguado, P. Cabalar, J. Fandinno et al. Artificial Intelligence 308 (2022) 103712
T ∪ {ai} ∈ Hn+1 ∩
n⋂

k=1

Hk ⊆ H

so H is again V -unfeasible. Now take HV ∈ 〈 〈 γ (F) 〉 〉TV with H ∈ 〈 〈 γ (F) 〉 〉S being S = T ∪ {ai}, for some 1 ≤ i ≤ n and such
that H is V -feasible. As we said above, there exist Hk ∈ 〈 〈 ϕ ∧ak → Fk 〉 〉S (with 1 ≤ k ≤ n) and Hn+1 ∈ 〈 〈 a1 ∨· · ·∨an 〉 〉S such
that H � ⋂n

k=1Hk ∩ Hn+1. We can actually divide the proof in two cases, depending on whether T |= ϕ or not. Suppose
first that T �|= ϕ . Then, we obtain Hk = 2S for any 1 ≤ k ≤ n, so:

HV �
(
Hn+1 ∩

n⋂
k=1

Hk

)
V

� �a1 ∨ · · · ∨ an �SV = 2T ∈ 〈〈λ(F) 〉〉T ⊆ 〈〈λ(F) 〉〉TV ,

because 〈 〈 ϕ → (a1 ∨ · · ·∨an) 〉 〉T = {2T } = 〈 〈 ai → Fi 〉 〉T for any i = 1, . . . , n. Now, for the second case, if T |= ϕ , then Hk = 2S

for any k �= i and:

HV �
(
Hn+1 ∩

n⋂
k=1

Hk

)
V

= (Hn+1 ∩Hi)V �
(
Hn+1 ∩ (�ϕ ∧ ai �S ∪H′

i)
)
V

with H′
i ∈ 〈 〈 Fi 〉 〉S . Then:
HV �

(
�a1 ∨ · · · ∨ an �S ∩ (�ϕ ∧ ai �S ∪H′

i)
)
V

=
(
{ X ∪ {ai}

∣∣ X ∈ �ϕ �T or X ∈ H′
i }

)
V

= �ϕ �T ∪ (H′
i)V

Now, take into account that: �ϕ �T ∪ (H′
i)V is equal to:[(

�ϕ �S ∪ �a1 ∨ · · · ∨ an �S
)

∩
(
�ai �S ∪H′

i

)]
V

∈ 〈〈λ(F) 〉〉TV ,

because: [(
�ϕ �S ∪ �a1 ∨ · · · ∨ an �S

)
∩

(
�ai �S ∪H′

i

)]
= { X ⊆ T

∣∣ 〈X, T 〉 �|= ϕ } ∪ { X ∈ H′
i

∣∣ 〈X, S〉 �|= ϕ or ai ∈ X }
Third inclusion: 〈 〈 λ(F) 〉 〉TV ⊆ ⋃n

i=1〈 〈 ϕ → Fi 〉 〉T
In this case, if we suppose that HV ∈ 〈 〈 λ(F) 〉 〉TV for some H �= [] ∈ 〈 〈 λ(F) 〉 〉S such that S ∩ V = T and with H being V -
feasible, we can prove, in a similar way as we have done for 〈 〈 γ (F) 〉 〉TV , that S = T and T �|= ϕ (since 〈 〈 λ(F) 〉 〉T = ∅ if T |= ϕ)
or S = T ∪ {ai} for some ai .

• If S = T and T �|= ϕ , then H = 2T and HV = 2T ∈ ⋃n
i=1〈 〈 ϕ → Fi 〉 〉T .

• When S = T ∪ {ai} and T �|= ϕ , we can say that there exists Hi ∈ 〈 〈 Fi 〉 〉S such that H � 2S ∩
(
�ai �S ∪Hi

)
� �ai �S . So

HV � (�ai �S)V = 2T ∈ ⋃n
i=1〈 〈 ϕ → Fi 〉 〉T .

• If S = T ∪ {ai} and T |= ϕ , then, there exists Hi ∈ 〈 〈 Fi 〉 〉S maximal such that:

H �
(
�ϕ �S ∪ �a1 ∨ · · · ∨ an �S

)
∩

(
�ai �S ∪Hi

)
= { X ⊆ T

∣∣ 〈X, T 〉 �|= ϕ } ∪ { X ∈ Hi
∣∣ ai ∈ X or 〈X, S〉 �|= ϕ }

Finally, we obtain:

HV �
[(

�ϕ �S ∪ �a1 ∨ · · · ∨ an �S
)

∩
(
�ai �S ∪Hi

)]
V

= �ϕ �T ∪ (Hi)V ∈ 〈〈ϕ → Fi 〉〉T . �
Lemma 3. Let F be a fork and ϕ a formula such that At(F) ∪ At(ϕ) ⊆ V ⊆ At. Then, for any a /∈ V , we get:

(ϕ → F) ∼=V (ϕ → a) ∧ (a → F).
10

F. Aguado, P. Cabalar, J. Fandinno et al. Artificial Intelligence 308 (2022) 103712
Proof. For any T ⊆ V , we have to prove:

〈〈ϕ → F 〉〉T = 〈〈ϕ → F 〉〉TV = 〈〈 (ϕ → a) ∧ (a → F) 〉〉TV
1. First of all, if we take H ∈ 〈 〈 (ϕ → a) ∧ (a → F) 〉 〉S with S∩ V = T and H being V -feasible, we can show that S = T ∪{a}.

• When T �|= ϕ , then 〈 〈 ϕ → a 〉 〉S = {2S } and there exists H′ ∈ 〈 〈 F 〉 〉S maximal (and then V -respectful) such that H �
�a �S ∪H′ . Since T ∪ {a} ∈H′ ⊆H, we deduce that S = T ∪ {a}.

• Suppose that T |= ϕ and a /∈ S . Then 〈 〈 a → F 〉 〉S = {2S } and H � �ϕ �S ∪ � a �S , so we can say that T ∪ {a} ∈ � a �S ⊆H
and S = T ∪ {a}.

• Finally, suppose that T |= ϕ and a ∈ S . We know that there exists H′ ∈ 〈 〈 F 〉 〉S maximal such that:

H � (�ϕ �S ∪ �a �S) ∩ (�a �S ∪H′)
which implies that T ∪ {a} ∈H and S = T ∪ {a}.

2. Suppose that T �|= ϕ . In this case

〈〈ϕ → F 〉〉T ⊆ 〈〈 (ϕ → a) ∧ (a → F) 〉〉TV
since 〈 〈 ϕ → F 〉 〉T = {2T } = 〈 〈 ϕ → a 〉 〉T = 〈 〈 a → F 〉 〉T .
For the other inclusion, if [] �= H ∈ 〈 〈 (ϕ → a) ∧ (a → F) 〉 〉S , with S ∩ V = T and H being V -feasible, then we already
know that S = T ∪ {a} and H � �a �S ∪H′ with H′ ∈ 〈 〈 F 〉 〉S . Then, H � �a �S which implies that HV � (�a �S)V = 2T ∈
〈 〈 ϕ → F 〉 〉T .

3. Now, let’s assume that T |= ϕ .
• Take �ϕ �T ∪ H ∈ 〈 〈 ϕ → F 〉 〉T for some H ∈ 〈 〈 F 〉 〉T maximal. If S = T ∪ {a}, the support H ∪ {a} = { H ∪ {a} ∣∣ H ∈
H } ∈ 〈 〈 F 〉 〉S (from Lemma 20 in [1]) and:

�ϕ → a �S ∩ (�a �S ∪H∪ {a}) = (�ϕ �T ∪ (H∪ {a})
which implies that

�ϕ �T ∪H = [�ϕ → a �S ∩ (�a �S ∪H∪ {a})]V
so 〈 〈 ϕ → F 〉 〉T ⊆ 〈 〈 (ϕ → a) ∧ (a → F) 〉 〉TV .

• Now suppose that H ∈ 〈 〈 (ϕ → a) ∧ (a → F) 〉 〉S , with S ∩ V = T and H being V -feasible. We have already proved that
S = T ∪ {a}. Take H′ ∈ 〈 〈 F 〉 〉S such that:

H � (�ϕ �S ∪ �a �S) ∩ (�a �S ∪H′)

= (�ϕ �S ∩ �a �S) ∪ (�ϕ �S ∩H′) ∪ (�a �S ∩H′ ∩ �ϕ �S)

= �ϕ �T ∪ (�ϕ �S ∩H′) ∪ (�a �S ∩H′ ∩ �ϕ �S)

Finally: HV � �ϕ �T ∪H′
V ∈ 〈 〈 ϕ → F 〉 〉T . �

Lemmata 2 and 3 allow us to prove a similar result to the Main Theorem, but for the transformation im(ϕ → F) that
only applies to implications.

Theorem 3. For any fork of the form ϕ → F , the following statements hold:

1. im(ϕ → F) is a propositional formula,
2. (ϕ → F) ∼=At(ϕ→F) im(ϕ → F),
3. |im(ϕ → F)| ≤ |ϕ → F |2 , and
4. im(ϕ → F) can be computed in polynomial time.

Proof. We proceed by induction on the degree of ϕ → F . If ϕ → F is a propositional formula, we have nothing to prove
since im(ϕ → F) = ϕ → F . Now, suppose that δ(ϕ → F) > 0.

• If F = (ϕ → F1 | . . . | Fm), then we get F ∼= (ϕ → F1) | . . . | (ϕ → Fm) from (3) and, from Lemma 2, we further obtain:

F ∼=At(F) (ϕ → (a1 ∨ . . . ∨ am)) ∧
m∧
i=1

(ai → Fi)

Moreover,
11

F. Aguado, P. Cabalar, J. Fandinno et al. Artificial Intelligence 308 (2022) 103712
δ(ai → Fi) = 1+ δ(Fi) < δ(F) = 2+max{δ(Fi) | 1 ≤ i ≤m}
and, by the induction hypothesis, we get (ai → Fi) ∼=At(Fi) im(ai → Fi). Note that atoms in At(F) \ At(ai → Fi) do not
occur in im(ai → Fi) because the latter adds new fresh atoms to At(Fi). Therefore, by Theorem 1, we can extend (ai →
Fi) ∼=At(Fi) im(ai → Fi) to a larger vocabulary and obtain (ai → Fi) ∼=At(F) im(ai → Fi). As a result, we get F ∼=At(F) im(F).
With respect to size, we have:

|im(F)| = |ϕ| + 3m + ∑m
i=1 |im(ai → Fi)|

≤ |ϕ| + 3m + ∑m
i=1 |ai → Fi |2

= |ϕ| + 3m + ∑m
i=1

(
2+ |Fi |

)2
≤ |ϕ|2︸︷︷︸

≥|ϕ|
+3m + 4m + ∑m

i=1 2m︸︷︷︸
≥4

|Fi | + ∑m
i=1 |Fi |2

≤ |ϕ|2 +m2 − 2m︸ ︷︷ ︸
≥0

+7m + ∑m
i=1 2m|Fi | + ∑m

i=1 |Fi |2

≤ |ϕ|2 +m2 + 2m + ∑m
i=1 2m|Fi| + ∑m

i=1 |Fi |2 +m + 2m
≤ |ϕ|2 +m2 + 2m|ϕ| + ∑m

i=1 2m|Fi | + ∑m
i=1 |Fi |2

+2
∑

1≤ j<i≤m

|F j||Fi |
︸ ︷︷ ︸
≥2 (m (m−1)/2) ≥m

+
m∑
i=1

2|ϕ||Fi|
︸ ︷︷ ︸

≥2m

= |ϕ|2 +m2 + (∑m
i=1 |Fi |

)2
+2m|ϕ| + ∑m

i=1 2m|Fi | + ∑m
i=1 2|ϕ||Fi|

= (|ϕ| +m + ∑m
i=1 |Fi |

)2
= |F |2

Note that |ϕ| ≥ 1, |Fi| ≥ 1 and m ≥ 2.
• In case F = ϕ → (F1 ∧ . . .∧ Fm), we get F ∼= (ϕ → F1) ∧ . . .∧ (ϕ → Fm) by (4). Furthermore, from Lemma 3, we get that

(ϕ → Fi) ∼=V (ϕ → a) ∧ (a → Fi)

for any set of atoms V such that a /∈ V . Therefore, we can say that

F ∼=At(F) (ϕ → a) ∧ (a → F1) ∧ . . . ∧ (a → Fm)

We also have δ(a → Fi) < δ(F), and, thus, the result follows by the induction hypothesis. As for the size, note that

|im(F)|
= |ϕ| + 2+m + ∑m

i=1 |im(a → Fi)|
≤ |ϕ| + 2+m + ∑m

i=1 |a → Fi |2
= |ϕ| + 2+ ∑m

i=1

(|Fi | + 2
)2 +m

= |ϕ| + 2+ ∑m
i=1

(|Fi |2 + 4|Fi | + 4
) +m

= |ϕ| + 2+ ∑m
i=1 |Fi |2 + 4

∑m
i=1 |Fi | + 4m +m

≤ |ϕ|2︸︷︷︸
≥|ϕ|

+ m2︸︷︷︸
≥m≥2

+∑m
i=1 |Fi |2 + 2m︸︷︷︸

≥4

∑m
i=1 |Fi |

+2|ϕ|m︸ ︷︷ ︸
≥2m

+2|ϕ|
m∑
i=1

|Fi |
︸ ︷︷ ︸

≥2m

+2
∑

1≤ j<i≤m

|F j||Fi |
︸ ︷︷ ︸
≥2 (m (m−1)/2) ≥m

= |ϕ|2 +m2 + (∑m
i=1 |Fi |

)2 + 2|ϕ|m + 2m
∑m

i=1 |Fi | + 2|ϕ|∑m
i=1 |Fi |

= (|ϕ| +m + ∑m
i=1 |Fi |

)2
= |F |2

• If F = (ϕ → (ψ → G)), by (5), we get F ∼= ψ ∧ ϕ → G . Furthermore,

δ(ψ ∧ ϕ → G) = 1+ δ(G) < δ(F) = 2+ δ(G)

The size does not increase because |im(ϕ → (ψ → G))| is equal to:
|im(ϕ ∧ ψ → G)| ≤ |(ϕ ∧ ψ → G)|2 = |(ϕ → (ψ → G))|2.
12

F. Aguado, P. Cabalar, J. Fandinno et al. Artificial Intelligence 308 (2022) 103712
Finally, it is easy to see that every recursive step can be computed in polynomial time and that the number of recursive
calls is bounded by the size of the fork. �

Once the main properties have been guaranteed for im(·), the proof for pf (·) follows almost immediately.

Proof of the Main Theorem. The cases where F is a propositional formula or F = ϕ → G directly follow from the previous
Theorem 3. Otherwise, we get |F | ≥ 3 (because F is not a propositional formula). Furthermore, F �= (ϕ → G) implies pf (F) =
im(� → F) ∼=V (� → F) ∼= F by (6). Finally:

|pf (F)| = |im(� → F)| ≤ |� → F |2 = (2+ |F |)2 ≤ 3|F |2
since |F | ≥ 3. �

As mentioned above, pf (F) does not always produce a logic program: to see why, it suffices to observe that pf (ϕ) = ϕ for
any arbitrary propositional formula like, say, pf ((p → q) ∨ r) = (p → q) ∨ r. There exist several methods in the literature for
reducing propositional formulas to (disjunctive) logic programs under the stable model semantics. In particular, the already
mentioned reduction in [14] is polynomial and strongly faithful.6 Given that the complexity for brave and cautious reasoning
for disjunctive programs are �P

2 and �P
2-complete, respectively [15], we immediately conclude:

Corollary 2. Brave and cautions reasoning for (arbitrary) forks are �P
2 and �P

2-complete, respectively. �
5. Conclusions

This research note extends an earlier published paper [1], where we studied projective strong equivalence (PSE) of logic
programs and introduced a new logical connective called “fork.” Although forgetting auxiliary atoms is not always possible
in ASP [5], we proved that this impossibility is removed when we admit programs with forks. This result justified the
theoretical interest of this new connective, but its practical application was somehow limited by the fact that the translation
to implement forks back as regular logic programs (adding new fresh auxiliary atoms) presented in [1] had exponential size
in the worst case. In this note, we have provided a new translation that satisfies PSE and has, at most, a quadratic size.
This allowed us to prove that brave and cautious reasoning with forks has the same complexity that of disjunctive logic
programs. Besides, it paves the way for an efficient implementation of the fork connective using ASP solvers.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Acknowledgements

We wish to thank the anonymous reviewers for their useful suggestions that have helped to improve the paper. This
work was partially supported by MICINN, Spain, grant PID2020-116201GB-I00, Xunta de Galicia, Spain, grant GPC ED431B
2019/03, Universidade da Coruña/CISUG, Spain, (funding for open access charge) and National Science Foundation, USA,
grant NSF Nebraska EPSCoR 95-3101-0060-402.

References

[1] F. Aguado, P. Cabalar, J. Fandinno, D. Pearce, G. Pérez, C. Vidal, Forgetting auxiliary atoms in forks, Artif. Intell. 275 (2019) 575–601.
[2] C. Baral, Knowledge Representation, Reasoning and Declarative Problem Solving, Cambridge University Press, 2003.
[3] M. Gelfond, V. Lifschitz, The stable model semantics for logic programming, in: R. Kowalski, K. Bowen (Eds.), Proceedings of the 19th International

Conference and Symposium of Logic Programming (ICLP’88), MIT Press, 1988, pp. 1070–1080.
[4] D. Pearce, A new logical characterisation of stable models and answer sets, in: J. Dix, L.M. Pereira, T.C. Przymusinski (Eds.), Selected Papers from the

Non-Monotonic Extensions of Logic Programming (NMELP’96), in: Lecture Notes in Artificial Intelligence, vol. 1216, Springer-Verlag, 1996, pp. 57–70.
[5] R. Gonçalves, M. Knorr, J. Leite, You can’t always forget what you want: on the limits of forgetting in answer set programming, in: G.A. Kaminka,

M. Fox, P. Bouquet, E. Hüllermeier, V. Dignum, F. Dignum, F. van Harmelen (Eds.), Proceedings of 22nd European Conference on Artificial Intelligence
(ECAI’16), in: Frontiers in Artificial Intelligence and Applications, vol. 285, IOS Press, 2016, pp. 957–965.

[6] V. Lifschitz, D. Pearce, A. Valverde, Strongly equivalent logic programs, ACM Trans. Comput. Log. 2 (4) (2001) 526–541.
[7] T. Eiter, H. Tompits, S. Woltran, On solution correspondences in answer-set programming, in: L.P. Kaelbling, A. Saffiotti (Eds.), Proceedings of the

Nineteenth International Joint Conference on Artificial Intelligence (IJCAI’05), Professional Book Center, 2005, pp. 97–102.

6 To be precise, this reduction obtains disjunctive programs with negation in the head, but the latter can be, in its turn, replaced by auxiliary atoms in
linear time.
13

http://refhub.elsevier.com/S0004-3702(22)00052-2/bibE0B97620F7B9E3596C5D4AFA5EC311ECs1
http://refhub.elsevier.com/S0004-3702(22)00052-2/bib873A407ED87D2F0DEE60C46ACE5659BAs1
http://refhub.elsevier.com/S0004-3702(22)00052-2/bib120AD64F140CF5102CDEDD7B28673C14s1
http://refhub.elsevier.com/S0004-3702(22)00052-2/bib120AD64F140CF5102CDEDD7B28673C14s1
http://refhub.elsevier.com/S0004-3702(22)00052-2/bibA3E0CE4F23D1917CA2F21BA7A40B114As1
http://refhub.elsevier.com/S0004-3702(22)00052-2/bibA3E0CE4F23D1917CA2F21BA7A40B114As1
http://refhub.elsevier.com/S0004-3702(22)00052-2/bibB9F5BEF9F929DD0889154B47EB66ACAAs1
http://refhub.elsevier.com/S0004-3702(22)00052-2/bibB9F5BEF9F929DD0889154B47EB66ACAAs1
http://refhub.elsevier.com/S0004-3702(22)00052-2/bibB9F5BEF9F929DD0889154B47EB66ACAAs1
http://refhub.elsevier.com/S0004-3702(22)00052-2/bib951BCE61878FF048BBD8E590C0AAD3F6s1
http://refhub.elsevier.com/S0004-3702(22)00052-2/bib3741DF32D4AE62DD1F7C6FFF111E02E3s1
http://refhub.elsevier.com/S0004-3702(22)00052-2/bib3741DF32D4AE62DD1F7C6FFF111E02E3s1

F. Aguado, P. Cabalar, J. Fandinno et al. Artificial Intelligence 308 (2022) 103712
[8] A. Heyting, Die formalen Regeln der intuitionistischen Logik, Sitzungsberichte der Preussischen Akademie der Wissenschaften, Physikalisch-
mathematische Klasse, 1930, pp. 42–56.

[9] J. Łukasiewicz, Die logik und das grundlagenproblem, Institut International de Cooperation Intellectuelle, 1941.
[10] D. Pearce, V. Sarsakov, T. Schaub, H. Tompits, S. Woltran, A polynomial translation of logic programs with nested expressions into disjunctive logic

programs: preliminary report, in: P.J. Stuckey (Ed.), Proc. of the 18th Intl. Conf. of Logic Programming, ICLP 2002, Copenhagen, Denmark, July 29 -
August 1, 2002, Proceedings, in: Lecture Notes in Computer Science, vol. 2401, Springer, 2002, pp. 405–420.

[11] T. Eiter, M. Fink, S. Woltran, Semantical characterizations and complexity of equivalences in answer set programming, ACM Trans. Comput. Log. 8 (3)
(2007) 17.

[12] K.S. Wong, Forgetting in logic programs, Ph.D. thesis, The University of New South Wales, 2009.
[13] R. Gonçalves, M. Knorr, J. Leite, The ultimate guide to forgetting in answer set programming, in: Proc. of the 15th Intl. Conf. on Principles of Knowledge

Representation and Reasoning (KR’16), AAAI Press, 2016, pp. 135–144.
[14] P. Cabalar, D. Pearce, A. Valverde, Reducing propositional theories in equilibrium logic to logic programs, in: C. Bento, A. Cardoso, G. Dias (Eds.),

Proceedings of the 12th Portuguese Conference on Progress in Artificial Intelligence (EPIA’05), in: Lecture Notes in Computer Science, vol. 3808,
Springer, 2005, pp. 4–17.

[15] T. Eiter, G. Gottlob, H. Mannila, Expressive power and complexity of disjunctive datalog under the stable model semantics, in: K. von Luck, H. Marburger
(Eds.), Management and Processing of Complex Data Structures, Third Workshop on Information Systems and Artificial Intelligence, Hamburg, Germany,
February 28 - March 2, 1994, Proceedings, in: Lecture Notes in Computer Science, vol. 777, Springer, 1994, pp. 83–103.
14

http://refhub.elsevier.com/S0004-3702(22)00052-2/bibD4F9987E04DACE26682F202959FF2325s1
http://refhub.elsevier.com/S0004-3702(22)00052-2/bibD4F9987E04DACE26682F202959FF2325s1
http://refhub.elsevier.com/S0004-3702(22)00052-2/bib1D028378E12CA6BDAFA3B8B21BC5A9EAs1
http://refhub.elsevier.com/S0004-3702(22)00052-2/bib0C18C3DD98F0CE9EAA1F8A31AA512EACs1
http://refhub.elsevier.com/S0004-3702(22)00052-2/bib0C18C3DD98F0CE9EAA1F8A31AA512EACs1
http://refhub.elsevier.com/S0004-3702(22)00052-2/bib0C18C3DD98F0CE9EAA1F8A31AA512EACs1
http://refhub.elsevier.com/S0004-3702(22)00052-2/bib7B8B172FD295A3857DCC72E1BAE471E7s1
http://refhub.elsevier.com/S0004-3702(22)00052-2/bib7B8B172FD295A3857DCC72E1BAE471E7s1
http://refhub.elsevier.com/S0004-3702(22)00052-2/bibB4EAF55CF76604F11D600CC7D038022Es1
http://refhub.elsevier.com/S0004-3702(22)00052-2/bib66F43C8A6830446C1B5B932BEA717C32s1
http://refhub.elsevier.com/S0004-3702(22)00052-2/bib66F43C8A6830446C1B5B932BEA717C32s1
http://refhub.elsevier.com/S0004-3702(22)00052-2/bib84AC4888B56A20C8FC571D1FF135B85Bs1
http://refhub.elsevier.com/S0004-3702(22)00052-2/bib84AC4888B56A20C8FC571D1FF135B85Bs1
http://refhub.elsevier.com/S0004-3702(22)00052-2/bib84AC4888B56A20C8FC571D1FF135B85Bs1
http://refhub.elsevier.com/S0004-3702(22)00052-2/bibC6AE714F2BBA1AAF7470DB92AE7CF06Bs1
http://refhub.elsevier.com/S0004-3702(22)00052-2/bibC6AE714F2BBA1AAF7470DB92AE7CF06Bs1
http://refhub.elsevier.com/S0004-3702(22)00052-2/bibC6AE714F2BBA1AAF7470DB92AE7CF06Bs1

	A polynomial reduction of forks into logic programs
	1 Introduction
	2 Background
	3 Invariance results for projective strong equivalence
	4 Reduction to propositional formulas and logic programs
	5 Conclusions
	Declaration of competing interest
	Acknowledgements
	References

