
Journal of Computational Science 62 (2022) 101682

A
1
n

Contents lists available at ScienceDirect

Journal of Computational Science

journal homepage: www.elsevier.com/locate/jocs

An open-source framework for aircraft damage simulation in engine failure
events✩

Clara Cid ∗, Aitor Baldomir, Miguel Rodríguez-Segade, Santiago Hernández
Structural Mechanics Group, School of Civil Engineering, Universidade da Coruña, 15071, Spain

A R T I C L E I N F O

Keywords:
Fail-safe
Damage
Uncontained engine rotor failure
Propeller blade failure
Debris

A B S T R A C T

The aerospace industry demands designs capable of withstanding the simultaneous collapse of several structural
elements. Examples of this failure scenario are propeller blade or uncontained engine rotor failures, where the
structural integrity of the aircraft may be compromised by flying debris. To assess aircraft survivability, reliable
simulation of accidental damage scenarios using physics-based models is required. Due to the complexity of
characterizing these events, practitioners and researchers have traditionally assumed conservative damage
envelopes, restraining potential design improvements. This research presents an object-oriented framework
to automatically generate any number of damaged aircraft meshes in a realistic manner, taking into account
the randomness of the event. Due to the flexibility in the software design, both random and deterministic
input parameters are allowed, such as debris origin, impact orientation, number of impacts, debris size, debris
velocity, spread angles and ballistic penetration equations. The tool is applied to a commercial narrow-body
aircraft in which real failure scenarios are simulated.
1. Introduction

The term ‘‘damage’’ has been widely used in the aerospace commu-
nity to refer to different situations affecting structural integrity. The
first can be understood as the progressive loss of structural capacity of
the material (usually due to fatigue or corrosion). The second refers to
the complete removal of a chunk of material of a given size (usually
due to accidental collision). This paper deals with the latter definition
of damage, particularly accidental collision caused by engine debris.

After the introduction of turbine engines in commercial aviation
in the mid-1950s, there were several accidents related to failures of
different engine components. These failures often result in high-energy
debris perforating the engine case and striking the aircraft structure,
leading to a catastrophic outcome if not accounted for in the design
process. Accordingly, aircraft must be designed to withstand such dam-
age, hence ensuring passengers safety. Depending on the location of the
rotating element inside or outside the nacelle, the accidental situation
can be classified into blade release or uncontained engine rotor failure
(UERF). A blade release occurs when bare engine blades, such as those
in turboprop aircraft, become detached and pose potential hazard to
the aircraft. A UERF occurs when fragments of rotating engine parts
perforate the nacelle.

✩ Source code available online at https://github.com/claracbengoa/damagecreator.
∗ Corresponding author.
E-mail addresses: clara.cid.bengoa@udc.es (C. Cid), abaldomir@udc.es (A. Baldomir), miguel.alonso1@udc.es (M. Rodríguez-Segade), hernandez@udc.es

(S. Hernández).

Accidentals collisions can be addressed through the fail-safe design
philosophy, which allows aircraft to withstand significant structural
damage during flight without incurring a catastrophic event and land
safely. This can be accomplished through a design that contemplates
redundant load paths, which provide alternative resistant structural
schemes to sustain the stresses in case any material is lost, redistribut-
ing the internal forces on the remaining structure. Several investiga-
tions have been carried out in recent years that combine optimization
techniques with the fail-safe strategy. Several investigations have ana-
lyzed the local failure in topology optimization for truss structures [1–
6], where local failure can be modeled straightforwardly by removing
one bar from the truss, since there is a clear definition of structural
members. In contrast, other authors [7–12] addressed local failure in
continuum topology optimization, where there is no real notion of a
structural member and holes of varying shape and size can occur. In
these approaches, damage was limited to a small rectangular subset of
the design domain where all material was removed. From a different
perspective, recent research focused on fail-safe size optimization needs
to consider finite element models of the intact structure and a set of
possible partial collapses in the optimization process. Fail-safe size op-
timization was firstly applied to shell structures by Baldomir et al. [13].
This multi-model approach aimed to obtain a minimum penalty weight
vailable online 12 May 2022
877-7503/© 2022 The Author(s). Published by Elsevier B.V. This is an open access ar
c-nd/4.0/).

https://doi.org/10.1016/j.jocs.2022.101682
Received 1 October 2021; Received in revised form 15 March 2022; Accepted 15 A
ticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

pril 2022

http://www.elsevier.com/locate/jocs
http://www.elsevier.com/locate/jocs
https://github.com/claracbengoa/damagecreator
mailto:clara.cid.bengoa@udc.es
mailto:abaldomir@udc.es
mailto:miguel.alonso1@udc.es
mailto:hernandez@udc.es
https://doi.org/10.1016/j.jocs.2022.101682
https://doi.org/10.1016/j.jocs.2022.101682
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jocs.2022.101682&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Journal of Computational Science 62 (2022) 101682C. Cid et al.
on the intact structure, while simultaneously fulfilling the limit-states
in both the intact and damaged configurations. Subsequently, several
methodologies emerged to contemplate several sources of uncertainty
into the design process [14–18]. An important aspect to mention that
differs from the way damaged scenarios are addressed in fail-safe
topology optimization, is that fail-safe size optimization techniques re-
quire imposing design constraints on the set of damaged finite element
models, which must exist prior to initiating the optimization process.
In these works, the damaged models were generated manually, which
could be extremely cumbersome and imprecise due to the inherent
uncertainty of the event. Therefore, a reliable way to simulate these
events is needed in the aerospace community to adequately address
the fail-safe optimization problem. This is the genesis of the present
research and the main driver of the work.

The methodologies described above are intended to provide a means
to meet regulatory requirements for discrete source damage while
obtaining lightweight designs. For this reason, it is necessary to ap-
ply them to industrial problems with a real-world application, such
as complex aircraft finite element models. To perform fail-safe size
optimization, a set of damaged configurations needs to be generated
from the intact finite element model. In this regard, regulatory agen-
cies state that the aircraft must withstand discrete source damage
events, such as bird, blade and engine strikes. Examples include FAR
25.571(e) [19], FAR 25.905(d) [20] and FAR 25.903(d)(1) [21]. Al-
though several Advisory Circulars provide guidelines for the application
of these regulations, (AC 25.571-1D [22], AC 25.905-1 [23] and AC
20–128 A [24]) there are no specific instructions on how to deal with
these remote but critical damage scenarios. As a first approach, the
Federal Aviation Administration developed the Uncontained Engine
Debris Damage Assessment Model (UEDDAM) [25], a CAD-based tool
for system level hazard assessment in uncontained engine rotor failure
analysis. The objective was to determine the probability of catastrophic
hazard (𝑃𝐻𝐴𝑍 ) given an uncontained engine event, determine the major
contributors to the 𝑃𝐻𝐴𝑍 and perform trade studies to minimize the
contributions of those components. This was done taking into account
the debris characteristics and fragment penetration. Although useful,
the main drawback of UEDDAM is the absence of physical models to
assess the residual strength of the damaged aircraft. Therefore, there is
a need in the aircraft industry for a CAD and CAE-based tool that can
generate damaged meshes from aircraft FEMs, thus providing a deeper
insight into the structural capacity against these events.

Traditionally, damage envelopes were often adopted to represent
the accidental scenario due to the difficulties in characterizing the dam-
aged configuration, eliminating entire panels of the aircraft structure.
2

That strategy led to more conservative designs, since a larger-than-
necessary area of the structure was removed. An example of a generic
damage envelope in an aircraft is presented in Fig. 1, where the
disproportionate size of the holes adopted in the industry is illustrated.
Regarding fail-safe optimization strategies, the standard approach is
to manually generate holes in the FEMs, with the main drawback of
being an extremely tedious, subjective and inaccurate task for various
reasons. The randomness of the event, including the number of debris
hitting the structure, hole location, size, orientation, impact area or
velocity, give rise to infinite possibilities of damaged configurations.
Thus, the main question arises: How can we generate a representative
sample of damaged scenarios that is sufficiently reliable?

In this research, a tool called DamageCreator is proposed to ad-
dress the need for an adequate characterization of damage scenarios.
Subsequently, the damaged models can be used in conjunction with
existent fail-safe optimization strategies to meet current regulations on
aircraft survivability to discrete source damage, inevitably leading to
more competitive designs. It consists of an open-source, object-oriented
framework to automatically generate any number of damaged meshes
from aircraft models given an uncontained engine rotor or a propeller
blade failure, with a minimum computational cost. Due to the flexibility
in the software design, both random and deterministic input parameters
are allowed. These input parameters (debris origin, impact orientation,
number of impacts, debris size, debris velocity, spread angles and
ballistic penetration equations) can be based on real accident databases
or come from experimental studies or tests of different failed engine
components.

The authors presented a preliminary version of the tool as a confer-
ence paper [26] to introduce the concept to the aerospace community.
In the current work, the complete definition of the software function-
alities is included. Among all the improvements, the code has been
completely parameterized and the internal processes are explained in
detail, illustrated with figures supporting the implementation proce-
dures. In addition, an in-depth explanation of the relationship between
the main classes and methods is provided. Several conservative as-
sumptions specified in the AC 20–128 A [24] are considered. A crucial
statement is that ‘‘the fragment is considered to possess infinite energy,
and therefore to be capable of severing lines, wiring, cables and unprotected
structure in its path, and to be undeflected from its original trajectory
unless deflection shields are fitted’’. Therefore, this work does not attempt
to accurately model impact simulations using explicit computational
techniques. The strength of the tool is to predict debris trajectories
and sizes within the vulnerable impact area, generating holes in the
fuselage assuming that the debris has infinite energy, i.e., removing all
the material in its path. Nevertheless, the ballistic curves functionality
Fig. 1. Example of a damaged model based on the damage envelope approach.



Journal of Computational Science 62 (2022) 101682C. Cid et al.
was included in the software architecture, so that further physical
knowledge can be incorporated into the simulation process.

This document is structured in the following sections. Section 2
summarizes the engine components that can fail and the types of debris
released. In Section 3 an overview of the software is first presented,
explaining the main concepts, such as the vulnerable impact area
and the spread and translational risk angles. Then, the input param-
eters of the software are stated, followed by a simple example of the
run python script. After that, the detailed description of the software
implementation is discussed, including conceptual explanations and
the main functions, classes and methods. An example of a narrow-
body fuselage-wing assembly is presented in Section 4, where several
damaged configurations are generated. Section 5 provides concluding
remarks and suggests topics for future study.

2. Events and debris characterization

As stated in the introduction, AC 20–128 A [24] was issued to
quantitatively assess the risk of a catastrophic failure in a UERF,
defining as a first approximation the general types of fragments to be
considered. Released fragments have a wide range of size and shapes,
which could result in holes of varying magnitude. As part of the Aircraft
Catastrophic Failure Prevention Research Program [27], the Society
of Automotive Engineers (SAE) produced Aerospace Information Re-
ports categorizing UERFs between 1976 to 1983 [28] and 1984 to
1989 [29]. Through this documentation, the FAA published reports
to define the characteristics of large engine uncontained debris [30]
and small engine uncontained debris [31], by gathering historical data
from actual accidents and establishing values for the debris sizes,
weights, exit velocities, and trajectories associated with each event that
can be used to update AC 20–128 A. As a next step, the UEDDAM
project [25] improved the fragment characterization conducted so far.
In that report, the fragment size is based on the damage (hole) size
made in the aircraft. The hole dimensions were normalized to the
dimensions of the engine component. For blade or disk fragments, the
normalized size is the fragment size divided by the blade length or disk

Fig. 2. Engine components (fan, compressor and turbine) whose failure can originate
a UERF.
3

diameter, respectively. This normalization process allows the damage
size to be scaled, so it is applicable to other aircraft models when the
dimensions of the engine component change.

UERFs can occur due to the failure of different engine components.
The main rotating elements are the fan, high and low pressure com-
pressor (HPC and LPC), and high and low pressure turbine (HPT and
LPT), as presented in Fig. 2. These rotors consist of a central disk and
blades, which can be connected by a rim or spacer. The rupture of any
of these elements may cause the engine to fail, releasing debris that
could hit the aircraft structure.

Table 1 presents a summary of the failure type and released frag-
ments in a HBPR turbofan engine, created from data in the aforemen-
tioned reports. It is important to note that each failure event produces
different type of fragments. For instance, if a blade of the fan fails,
blades of different sizes are detached. On the other hand, if a disk of
the fan fails, both blades and disks are released.

Fig. 3 shows the three types of released fragments. Although each
fragment has an irregular 3D shape, it is approximated by the en-
closing bounding box, whose dimensions are length (L), width (W)
and thickness (T). The impact is simplified to the collision of one of
the faces of the bounding box, as presented in Fig. 3. This 3D–2D
mapping criterion is based on data provided by the Federal Aviation
Administration reports on the analysis of large engine uncontained
debris [25,30], containing historical information on accidents in which
disks, rims or blades were released. Given the rotational speed of the
engine component before being released, the debris projection is chosen
according to the most likely striking face, which corresponds to a
projection orthogonal to the exit velocity vector. Thus, the projection
parallel to the plane of rotation is less probable to occur. The as-
sumption of the most likely rectangular projection is more conservative
than alternative shapes, since the debris fragment is fully contained in
the bounding box. A graphical representation of the 3D–2D mapping
criterion is shown in Fig. 4.

3. Software architecture

3.1. General overview

This section introduces the DamageCreator tool, presenting its over-
all approach. The aim is to generate a set of damaged FE meshes of an
aircraft model, resulting from accidental engine failure events, where
debris violently strikes the fuselage. To study the effect of debris colli-
sion within the airframe, it is necessary to define the vulnerable impact
area. It is that zone of the airplane likely to be impacted by uncontained
fragments generated during a rotor failure. This zone is highlighted
in red color in Fig. 5. Thus, to fully define the characteristics of the
vulnerable impact area, it is necessary to define a set of geometric
parameters.

The debris origin is the point on the engine shaft at which the
failure occurs and from which the debris fragments break off. This
point corresponds to the location of the fan, compressor or turbine,
Table 1
Classification of HBPR turbofan engine failure events.

Engine Failure Released Engine Failure Released
component type fragments component type fragments

Fan Blade Event Blades HP Turbine Blade Event Blades
Disk Event Blades Spacer-Rim Event Blades

Disks Rim
Compressor Blade Event Blades Spacer

Spacer-Rim Event Blades Disk Event Blades
Rim Disk

Disk Event Blades LP Turbine Blade Event Blades
Disk (Large Fragment) Blade Event Last Stage Blades
Disk (Intermediate Fragment) Spacer-Rim Event Blades

Rim
Disk Event Blades

Disk



Journal of Computational Science 62 (2022) 101682C. Cid et al.
Fig. 3. Debris fragments vs. Debris elements (2D simplification of the debris fragment).
Fig. 4. Graphical representation of the 3D–2D mapping criterion.
Fig. 5. Example of impact area due to an uncontained engine failure.
depending on the failed component. The plane passing through the
debris origin and orthogonal to the longitudinal axis of the aircraft
is called the rotating plane. The plane passing through the debris
4

origin and orthogonal to the vertical axis is called the base plane. The
intersection of these two planes results in the engine-fuselage vector,
which is the reference axis from which the debris scattering angles



Journal of Computational Science 62 (2022) 101682C. Cid et al.
Fig. 6. Definition of the local axis of the scattering prism, spread and translational risk angles.
are measured. Horizontally (contained in the base plane) the debris
trajectory is bounded between the spread risk angle. Measured from
the engine-fuselage vector, these angles are called forward (fwd) and
after (aft) spread angles. Vertically (contained in the rotating plane)
the translational release angle is uniformly distributed from 0 to 360
degrees due to the cylindrical symmetry of the rotors. The part of this
angle at which the debris may collide is known as the translational
risk angle. Measured from the engine-fuselage vector, the bounds are
denoted as top and bottom (btm) translational angles. The volume
enclosed by these angles gives rise to the scattering prism, which
bounds the debris trajectories. The intersection of the scattering prism
with the aircraft delimits the impact area, as shown in Fig. 5.

Fig. 6 presents a simple case to explain the references used in the
software. The first premise to be met is that the longitudinal axis of
the fuselage coincides with one of the three coordinate axes. Thus, the
rotating plane will be parallel to a coordinate plane and the engine-
fuselage vector will be contained in this plane. In addition, the aircraft
nose can point in either the positive or negative direction of the
coordinate axis.

This simple graphical example simulates an aircraft fuselage
through a cylindrical barrel contained in its bounding box. The 𝑧-axis
corresponds to the longitudinal axis of the aircraft, with increasing
direction towards the aircraft nose, the rotating plane is the xy-plane,
and the engine-fuselage vector corresponds to the local x’ axis. It can be
seen how the spread and translational risk angles are measured taking
as reference the engine-fuselage vector as well as the base and rotating
plane. Spread risk angles (𝜃fwd, 𝜃aft) are shown in the base plane in
magenta and translational risk angles (𝜑top, 𝜑btm) are measured in the
rotating plane in yellow color.

3.2. Input parameters

The DamageCreator interface requires several input parameters to
generate the damaged configurations. The software API allows flexi-
bility in the nature of the input parameters, which can be defined as
random or deterministic. Therefore, probability distribution functions
can be used to define the debris characteristics, either by using dis-
crete probability distribution functions obtained from databases of real
5

events and experimental tests or by approximating them to a known
distribution. In addition, some parameters may depend on others,
(e.g. weight and velocity of a specific debris size, the ratio in the debris
dimensions, etc.). The list of input parameters is presented below:

• Mesh file (NameFile): aircraft mesh with elements IDs, node
coordinates and connectivity information

• Number of damaged configurations (nDamagedConfigs):
Number of finite element meshes to be generated

• Aircraft forward direction (fwdDirection): vector parallel to
the aircraft’s longitudinal axis (origin: tail cone; end: nose of the
aircraft)

• Debris origin (origin): coordinates of the failed engine com-
ponent (release point)

• Rotating plane (rotatingPlane): the plane passing through
the debris origin and perpendicular to the longitudinal axis of the
aircraft (Fig. 5)

• Engine-fuselage vector (orientation3D): vector defined
through the intersection of the base plane and rotating plane, at
the debris origin. It is the vector that defines orientation of the
scattering prism (Fig. 5)

• Number of impacts (nImpactLines): number of released frag-
ments that will strike the aircraft structure

• Fwd and Aft spread angles (spreadAngles): forward and
after spread angles (Fig. 6)

• Debris size (a,b): fragment dimensions specified in Fig. 3
• Debris velocity (velocity): fragment velocity when released

from the engine
• Ballistic penetration equation (ballisticEq): equation to

establish whether the debris element perforates the aircraft struc-
ture. DamageCreator assumes that after each impact a new re-
duced residual velocity has to be considered. To calculate this
new velocity value, ballistic penetration data must be supplied as
a function of the impact vs. exit velocity. The fragment may not
penetrate, produce only one entry hole or generate multiple holes
along its trajectory. Ballistic penetration equations simultaneously
depend on many factors: debris mass, debris size, aircraft material



Journal of Computational Science 62 (2022) 101682C. Cid et al.
Fig. 7. Run script for a simple example.
and plate thickness of the aircraft structure, as stated by López-
Puente et al. [32]. It is an ongoing work to incorporate mass
properties and experimental curves into the software to associate
a ballistic curve to each hole from a debris element.

A simple example of the run script is presented in Fig. 7. For
code simplicity, all input parameters (number of impacts, fwd and aft
spread angles, debris size and velocity) were taken in the run script as
deterministic values. Nevertheless, there are three internal parameters
that are always considered as random variables: the debris trajectory,
roll and pitch angles. By default, the debris trajectory is uniformly
distributed within the scattering prism, bounded by the translational
risk angle and the spread risk angle. However, as the debris trajectory
could follow a different probability distribution, the software supports
as input parameter any distribution function within this angles. Frag-
ment roll(𝛼) and pitch (𝛽) are uniformly distributed between 0 and 360
degrees and −45 and 45 degrees, respectively. The definition of these
angles is further discussed in Fig. 12.

3.3. Software implementation

As mentioned in the previous sections, DamageCreator generates
partial collapses in aircraft finite element models as a consequence of
6

uncontained engine rotor or propeller blade failures. For this purpose,
the tool is designed based on the interaction of the finite element mesh
of an aircraft model with a debris element. Each debris element will be
associated with an origin and a trajectory, as well as size and velocity
characteristics.

We chose the Python programming language to develop Damage-
Creator due to the advantages of the object-oriented programming
paradigm and an object composition design pattern. We employ the
Salome platform API because it allows us to handle complex meshes
and geometric operations on those meshes.

The full cycle of DamageCreator comprises interaction between
several software environments. To illustrate this idea, the flowchart
corresponding for the generation of a single damaged mesh from the
entire set of configurations required in the code (nDamagedConfigs)
is presented in Fig. 8. In addition, a summary of the implementation
procedure is presented in Fig. 9, showing the relationship between the
main classes and methods.

The blue boxes contain the class name and instance generated,
whereas the pink boxes refer to the relevant methods and attributes
in the corresponding instance. Nested boxes represent the call-stack
hierarchy. In addition, the arrows indicate input/output relationship
and the double dashed lines show instance relationship.

A detailed explanation of the software implementation is provided
below, focusing on the sequential description of the main classes,

methods and attributes presented in the diagram of Fig. 9. The steps



Journal of Computational Science 62 (2022) 101682C. Cid et al.
Fig. 8. Flowchart of the DamageCreator.
carried out to generate a damaged configuration can be summarized in
the following ideas:

• Aircraft FEM import
• Definition of input parameters
• Determination of vulnerable impact area
• Generation of the geometry of the debris element, impact line and

velocity
• Definition of damage criteria (ballistic curves)
• Meshing of the debris element, generation of shotlines and inter-

section with the aircraft mesh
• Clustering elements and sorting by proximity to the debris origin
• Application of damage criteria to define number of holes
• Deletion of elements from the original mesh

3.3.1. Aircraft FEM import
Initially, the mesh must be converted to a readable format (.med)

by the Salome platform.

3.3.2. Definition of input parameters
Then, the input parameters are defined. They are classified into

forward direction, prism parameters (debris origin, engine-fuselage
vector and rotating plane) and debris database (forward and spread
angle, number of impacts, debris dimensions and debris velocity).
7

3.3.3. Determination of vulnerable impact area
The first step is to define and calculate the spread and translational

risk angles. As explained in Fig. 6, these angles are defined relative to
the engine-fuselage vector (x’), the base plane and the rotating plane.

The forward and after spread angles (𝜃fwd, 𝜃aft) are measured from
the engine-fuselage vector (orientation3D) and are contained in
the base plane, considering that the nose of the aircraft points in
the upward direction of the aircraft longitudinal axis. Otherwise, the
parameter fwdDirection has to be entered as a vector parallel to the
longitudinal axis and of negative sign to update the sign of the spread
angles.

The top and bottom translational risk angles (𝜑top, 𝜑btm) are mea-
sured from the engine-fuselage vector and are contained in the rotating
plane, with the tangent lines to the structure passing through the
debris origin. The process of calculating the tangent lines is illustrated
graphically in Figs. 10 and 11. Using the scattering prism parame-
ters (origin, orientation3D and rotatingPlane), the method
getTranslationalRiskAngle is applied to the fuselage object
to calculate the top and bottom translational risk angles. The boundary
vertices (𝑣1,near, 𝑣1,far, 𝑣2,near, 𝑣2,far) are computed using the method
getBoundVertices.

First, the boundary planes of the bounding box are defined. After
the intersection the boundary planes with the rotating plane, the co-
ordinates of the boundary points are obtained extracting the vertices
of the boundary lines, as illustrated in Fig. 10. Then, the method



Journal of Computational Science 62 (2022) 101682C. Cid et al.
Fig. 9. Flowchart showing the relationship between main classes and methods of DamageCreator.
getTangentToMesh computes the lines tangent to the mesh, using
the debris origin and the boundary vertices. This process is based on
the bisection method, and it is explained graphically in Fig. 11 for the
tangent point Ttop. A series of intervals [L𝑖, U𝑖] are updated recursively
depending on whether a line passing from the origin to each boundary
intersects the mesh. The interval is divided in half to obtain a new
point and check whether the line passing through it intersects the mesh.
8

If it does, the nearest half is taken as the new interval. Otherwise,
the farthest part is chosen. The process is repeated until the length of
the interval reaches a given tolerance. Finally, the translational risk
angles are calculated as the angle between the tangent line and the
engine-fuselage vector, using the method getAngleWithVector.
The translational risk angles (𝜑 , 𝜑 ) are shown in Fig. 11.
top btm



Journal of Computational Science 62 (2022) 101682C. Cid et al.

t
i

(
3

Fig. 10. Determination of boundary vertices to calculate the translational risk angles.
Fig. 11. Determination of tangent points, Ttop and Tbtm, for the calculation of translational risk angles.
a
d
p
t
p
r
p
s
s

Using the after and forward spread angles, and top and bottom
ranslational risk angles, the scattering prism of the debris fragment
s defined, generating an instance of the class ScatteringPrism.

3.3.4. Generation of the geometry of the debris element, impact line and
velocity

The next step is to define the debris object, which includes the
generation of its equivalent geometric surface, its impact line and
velocity inside the scattering prism.

To this end, a 2D surface is defined perpendicular to the debris
trajectory vector, with length a and width b, and two angles are
considered for orientating the element: fragment roll(𝛼) and pitch
𝛽), defined as random variables uniformly distributed between 0 and
60 degrees and 45 and −45 degrees, respectively. These angles are
9

t

graphically represented in Fig. 12. In addition, the debris trajectory
is also a random variable, uniformly distributed within the scattering
prism, bounded by the translational risk angle and the spread risk angle
defined in Fig. 5.

For the software implementation, the method generateDebris is
pplied to the scatteringPrism object. First, the method getRan-
omLines is used to generate nImpactLines inside the scattering
rism. For each line, the method getLineInsidePrism calculates
he vector that defines the impact line in the local axes (x′y′z′), as
resented in Fig. 6. Then, this vector is transformed into the global
eference system (xyz) and the coordinates of the point inside the
rism are obtained. This is done through the methods getPointIn-
idePrism_local and getPointInsidePrism_global. Sub-
equently, the line that defines the debris trajectory is generated

hrough the Line class.



Journal of Computational Science 62 (2022) 101682C. Cid et al.
Fig. 12. Orientation of the debris element in the 3D space according to the debris trajectory.
Fig. 13. Simplification of the ballistic penetration curve.

The debris object (2D rectangular shape) is defined perpendic-
ularly to the impact line, generating its geometry and orientation
according to its length (a), width (b), roll and pitch angles. Both
the line object and the velocity become attributes of the debris
object. By repeating the process for each debris, the list of debris objects
is obtained.

3.3.5. Definition of damage criteria (ballistic equation)
At this stage, all the ballistic curves must be imported. To do so,

the damageCriteria object is defined as an instance of the class
DamageCriteria, which includes the ballistic penetration equations
(ballisticEq) and the threshold velocity (vThreshold). This ob-
ject will be used to determine whether or not the debris perforates
the structural elements reached. A graphical view of a simple ballistic
equation is presented in Fig. 13.

The characterization of ballistic penetration equations is a complex
issue that depends simultaneously on many factors, such as the mass,
size and material of the debris, as well as the characteristics of the
aircraft surface hit (only skin, skin and frames, skin and stringers or
a complex union). As mentioned in Section 1, a conservative simpli-
fication of this phenomenon can be adopted, assuming that the debris
possesses infinite energy and all the material in its path is removed.

3.3.6. Meshing of the debris element, generation of shotlines and intersec-
tion with the aircraft mesh

The first step is to apply the method getMeshFromDebris to ob-
tain the mesh of possible finite elements of the structure that the debris
could hit in its path. To do so, a discretization of the debris fragment
with an appropriate mesh size is needed, which is calculated propor-
tionally to the size of the smallest finite element in the aircraft model.
10
This is implemented by applying the method generateDebrisMesh
to the debris object. After meshing the debris, the coordinates of the
nodes of each finite element are calculated and lines parallel to the im-
pact line are generated for each node. We will call these lines shotlines.
This is implemented using the methods getNodeCoordinates and
translateLineToCoords. Then, each shotline is intersected with
the aircraft mesh and the set of finite elements to be removed from the
aircraft mesh is obtained. The process is carried out using the method
getMeshFromGroupOfLines. This idea is illustrated in Fig. 14.

To select the elements, a radial tolerance is calculated around each
line according to the minimum element size previously calculated. To
obtain the set of possible finite elements to eliminate, it is necessary to
define the selection method (selectionMethod). Two possibilities
have been defined: If all the nodes of the finite element are within the
radial tolerance defined by the user (AllNodes) or if only one of the
element is within the tolerance to be considered as a damaged element
(OneNode). The concept is explained in detail in Fig. 15, where the
meshes of the debris element and the structural model are presented.
It can be seen how when using the OneNode option, the elements
selected correspond to a larger affected area than with the AllNodes
option, hence, being OneNode more conservative from the structural
analysis point of view. However, it is important to mention that the
choice of one method or the other is irrelevant as the mesh becomes
finer because they will converge to the same selected elements.

Once we have the list of possible finite elements of the aircraft that
the debris could strike, the method getHoleMeshkeepingOrigi-
nalIds is applied so that the IDs of the elements remain unchanged
with respect to the IDs of the aircraft mesh.

3.3.7. Clustering elements and sorting by proximity to the debris origin
The next step consists in grouping those elements associated to

the same impact. To do so, the DBSCAN clustering algorithm from
the sklearn package [33] divides the list of elements into groups. The
DBSCAN algorithm views clusters as areas of high density separated
by areas of low density. Thus, using as input points the center of
gravity of the mesh elements and a distance threshold equal to the
maximum minimum-distance between any two points, the clusters of
elements associated with each possible hole are identified. This is
done with the method separateHolesOnImpacts, which in turn
uses the methods getElementsCoG, clusteringAlgorithm and
getHoleMeshFromIds.

After that, the clusters must be sorted by the distance to the debris
origin in order to apply the damageCriteria previously defined.

3.3.8. Application of damage criteria to define number of holes
Finally, the ballistic curves are applied to determine which clusters

must be removed from the original mesh. The debris element was
released at an initial velocity and will reach the nearest cluster of



Journal of Computational Science 62 (2022) 101682C. Cid et al.
Fig. 14. Finite elements to be removed from the model.
Fig. 15. Selection method that determines if an element must be selected to be removed from the aircraft mesh.
elements first. Using this velocity as input, we use the curve in Fig. 13
that returns the residual velocity as output. If the initial debris velocity
is greater than the threshold velocity, the residual velocity is used as the
new impact velocity for the second cluster reached, and so on. When
the initial debris velocity, or any residual velocities is less than the
threshold velocity, the advance of the debris ends and the remaining
clusters will not be removed from the mesh. The clusters to be removed
are stored in the holesFromDebris object.

3.3.9. Remove mesh elements from the original mesh
Once the holesFromDebris object is obtained for all the im-

pact lines, the list holesFromDebrisList is obtained. Then, these
meshes are removed by applying to the fuselage object the method Re-
moveElements. As a result, the damagedConfiguration object is
generated.

4. Application example

This example corresponds to a narrow-body aircraft such as the
Boeing 737 or Airbus 320. The FEM model was taken from the database
of examples available in the Hypersizer software [34]. Modifications
were made on this model to generate the complete barrel section,
as well as a mesh refinement to obtain a model suitable for the
DamageCreator application. The aircraft dimensions are summarized in
the sketch presented in Fig. 16. The fuselage section is 23.80 m long,
3.75 m wide and 4 m high, and the wing span is 33.25 m. Attending
to the model mesh, the frames, ribs, spars, keel beam and floor beams
are defined as shell elements, while the stringers are defined as beam
elements, resulting in 92,576 1D and 428,460 2D elements. The origin
of the coordinate system simulates the location of the aircraft nose,
11
7.5 m from the forward section of the model, as shown in Fig. 17. It is
assumed that an uncontained engine failure occurs and rotor fragments
are released, striking the fuselage. The engine coordinates of the left
wing engine correspond to [17, −5.75, −1.75] m, which is considered
to be the debris origin. As a result, the rotating plane corresponds to a
plane parallel to the YZ plane containing the debris origin.

As stated above, a ballistic curve is needed to characterize the
residual velocity of each fragment, which requires a large number of
complex FE simulations. Therefore, as indicated in the AC20.128 A
[24], we adopt the conservative estimate that the debris possesses
infinite energy and all the material in its path is removed.

The uncontained engine rotor failure presented in this example
simulates a fan disk event in a High-Bypass Ratio turbofan engine, using
the debris database defined in the UEDDAM report [25]. The fragment
characterization table is summarized in Table 2. Thus, this case sim-
ulates a real accidental scenario in which debris of different sizes hit
the fuselage, based on previous historical accidents. To calculate the
debris dimensions related to the normalized sizes, blades 812.8 mm
long and 203.2 mm wide were considered, as well as disks 655.32 mm
in diameter and 170.18 mm thick. Combining this information with the
fragment characterization, the discrete random distribution functions of
normalized sizes for blades and disks can be obtained.

For each damaged configuration, the number of blades and disks
impacts was randomly defined as N(𝜇=27, 𝜎 = 0.05𝜇) and N(𝜇=3,
𝜎 = 0.2𝜇), respectively. Then, using the discrete random distribution
function in Table 2, blade and disk impacts were generated accord-
ingly. It is important to note that a different scattering prism needs to be
defined associated with each debris size, since they have different after
and forward angle. Figs. 18, 19, 20 and 21 show four different damaged
configurations generated with DamageCreator software. Two types of



Journal of Computational Science 62 (2022) 101682C. Cid et al.
Fig. 16. Fuselage-wing dimensions.
Fig. 17. General layout of the fuselage-wing model. Zoom views of the refined FE mesh.
Table 2
Fragment characterization in a fan disk event for a High-Bypass Ratio turbofan engine.

Debris Number of fragments Normalized Velocity Spread angle Discrete random distribution

released (Average/Event) size (ft/sec) (degrees) a (mm) b (mm) Probability

Length Width
Blades 27

10 10% 935 +10 to −30 81.28 81.28 10/27
9 20% 928 +15 to −25 162.56 162.56 9/27
2 30% 894 +10 to −25 243.84 203.20 2/27
4 50% 822 +10 to −20 406.40 203.20 4/27
1 70% 796 +10 to −20 568.96 203.20 1/27
1 100% 644 +15 to +5 812.80 203.20 1/27

Length Thickness
Disks 3 100% 303 +2 to −3 655.32 170.18 1
figures are included for each configuration, one of them representing
the damaged mesh and the other one highlighting the areas where
material is removed as well as debris trajectories. The intrinsic random
nature associated with the uncontained rotor failure event is readily
appreciated by the different variety of debris trajectories and hole sizes
located at diverse areas of the aircraft structure. As can be observed,
both skin and stiffeners from the central fuselage and wing root are
damaged.

5. Conclusions

This paper presents an open-source framework (DamageCreator) to
simulate realistic local damage to aircraft structure due to an engine
12
failure event. Several damaged configurations representing a fan disk
event were generated in the application example. By analyzing the set
of damaged models obtained, it is possible to observe the complex
patterns that emerge in the case of study. To address the randomness
of the event, the tool incorporates statistical information on historical
databases from real accidents to characterize the location and size of
holes in the wing and fuselage. As the infinite energy criterion specified
in the regulations is adopted, all material that intersects the debris path
is eliminated. This is a more accurate approach than the industry prac-
tice of removing entire fuselage panels and, in turn, more conservative
than calculating and applying ballistic curves to determine the material
to be removed. A major advantage is that manual generation is avoided,



Journal of Computational Science 62 (2022) 101682

13

C. Cid et al.

Fig. 18. Damaged configuration 1.



Journal of Computational Science 62 (2022) 101682

14

C. Cid et al.

Fig. 19. Damaged configuration 2.



Journal of Computational Science 62 (2022) 101682

15

C. Cid et al.

Fig. 20. Damaged configuration 3.



Journal of Computational Science 62 (2022) 101682

16

C. Cid et al.

Fig. 21. Damaged configuration 4.



Journal of Computational Science 62 (2022) 101682C. Cid et al.
which would be extremely cumbersome, too conservative in assuming a
larger-than-necessary damage size, and imprecise due to the difficulties
in predicting the location and shape of holes in the fuselage.

This is the first time that damage caused by uncontained debris from
engine failure is modeled in complex finite element models of assem-
bled aircraft structures, generating a comprehensive set of damaged
meshes. As a result, the application of this tool in the aircraft design
process would improve the approaches based on fail-safe optimization,
leading to lighter structures.

Future work involves incorporating ballistic curves into the software
by performing explicit impact simulations, to determine the holes
produced by each debris. A possible approach would be to build a
physics-informed machine learning model using a sufficiently large set
of simulations, in order to predict damaged areas more accurately.
Additionally, another impact sources, such as an Uncontained APU
Rotor Failure (UARF), bird strikes or drone collisions, could be easily
implemented due to the modular software architecture.

CRediT authorship contribution statement

Clara Cid: Conceptualization, Methodology, Software, Writing –
original draft, Writing – review & editing, Visualization. Aitor Bal-
domir: Conceptualization, Methodology, Supervision, Writing – review
& editing. Miguel Rodríguez-Segade: Conceptualization, Methodol-
ogy, Software, Writing – review & editing, Visualization. Santiago
Hernández: Writing – review & editing, Supervision.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

The research leading to these results has been conducted under
Grant PID2019-108307RB-I00 funded by MCIN/AEI/10.13039/50110
0011033. The authors also acknowledge funding received from the
Galician Government through research grant ED431C 2017/72. The
first author also acknowledges the sponsorship of the Galician Gov-
ernment through the grant ‘‘axudas de apoio á etapa predoutoral co-
financiadas parcialmente polo programa operativo FSE Galicia 2014-
2020’’ under identification number ED481A-2018/193. Funding for
open access charge: Universidade da Coruña/CISUG.

References

[1] J.S. Arora, D.F. Haskell, A.K. Govil, Optimal design of large structures for damage
tolerance, AIAA J. 18 (5) (1980) 563–570, http://dx.doi.org/10.2514/3.7669.

[2] Y.Y.S.F. Feng, F. Moses, Optimum design, redundancy and reliability of structural
systems, Comput. Struct. 24 (2) (1986) 239–251, http://dx.doi.org/10.1016/
0045-7949(86)90283-X.

[3] K.S. Marhadi, S. Venkataraman, S.A. Wong, Load redistribution mechanism in
damage tolerant and redundant truss structure, Struct. Multidiscip. Optim. 44
(2) (2011) 213–233, http://dx.doi.org/10.1007/s00158-011-0623-1.

[4] M. Stolpe, Fail-safe truss topology optimization, Struct. Multidisc. Optim. 60
(2019) 1605–1618, http://dx.doi.org/10.1007/s00158-019-02295-7.

[5] S. Dou, M. Stolpe, On stress-constrained fail-safe structural optimization con-
sidering partial damage, Struct. Multidiscip. Optim. 63 (2) (2021) 929–933,
http://dx.doi.org/10.1007/s00158-020-02782-2.

[6] S. Dou, M. Stolpe, Fail-safe optimization of tubular frame structures under
stress and eigenfrequency requirements, Comput. Struct. 258 (2022) 106684,
http://dx.doi.org/10.1016/j.compstruc.2021.106684.

[7] M. Jansen, G. Lombaert, M. Schevenels, O. Sigmund, Topology optimization
of fail-safe structures using a simplified local damage model, Struct. Multidisc.
Optim. 49 (4) (2014) 657–666, http://dx.doi.org/10.1007/s00158-013-1001-y.

[8] M. Zhou, R. Fleury, Fail-safe topology optimization, Struct. Multidisc. Optim. 54
(2016) 1225–1243, http://dx.doi.org/10.1007/s00158-016-1507-1.
17
[9] O. Ambrozkiewicz, B. Kriegesmann, Density-based shape optimization for fail-
safe design, J. Comput. Des. Eng. 7 (2020) 615–629, http://dx.doi.org/10.1093/
jcde/qwaa044.

[10] H. Wang, J. Liu, G. Wen, Y.M. Xie, The robust fail-safe topological designs
based on the von mises stress, Finite Elem. Anal. Des. 171 (2020) 103376,
http://dx.doi.org/10.1016/j.finel.2019.103376.

[11] J. Martínez-Frutos, R. Ortigosa, Risk-averse approach for topology optimization
of fail-safe structures using the level-set method., Comput. Mech. (2021) http:
//dx.doi.org/10.1007/s00466-021-02058-6.

[12] J. Martínez-Frutos, R. Ortigosa, Robust topology optimization of continuum
structures under uncertain partial collapses, Comput. Struct. 257 (2021) 106677,
http://dx.doi.org/10.1016/j.compstruc.2021.106677.

[13] A. Baldomir, S. Hernández, L. Romera, J. Díaz, Size optimization of
shell structures considering several incomplete configurations, in: 53rd
AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials
Conference, Honolulu, Hawaii, 2012, http://dx.doi.org/10.2514/6.2012-1752.

[14] C. Cid, A. Baldomir, S. Hernández, L. Romera, Reliability based design opti-
mization of structures considering several incomplete configurations, in: 17th
AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, 2016,
http://dx.doi.org/10.2514/6.2016-4290.

[15] C. Cid, A. Baldomir, S. Hernandez, L. Romera, Multi-model reliability-based
design optimization of structures considering the intact configuration and several
partial collapses, Struct. Multidiscip. Optim. 57 (3) (2018) 977–994, http://dx.
doi.org/10.1007/s00158-017-1789-y.

[16] C. Cid, A. Baldomir, S. Hernández, Probability-damage approach for fail-safe de-
sign optimization (PDFSO), Struct. Multidiscip. Optim. 62 (6) (2020) 3149–3163,
http://dx.doi.org/10.1007/s00158-020-02660-x.

[17] C. Cid, A. Baldomir, S. Hernández, Probability-damage approach for fail-safe
design optimization under aleatory uncertainty (𝛽-PDFSO), in: AIAA SciTech
2021 Forum, 2021, http://dx.doi.org/10.2514/6.2021-1480.

[18] C. Cid, A. Baldomir, S. Hernández, Reliability index based strategy for the
probability damage approach in fail safe design optimization (𝛽-PDFSO), Eng.
Comput. (2022) http://dx.doi.org/10.1007/s00366-022-01611-y.

[19] Federal Aviation Administration, FAR Final Rule, Federal Register, 1978, (Vol-
ume 43, Number 194), 14 CFR Part 25, (Docket No. 16280; Amendment No.
25–45).

[20] Federal Aviation Administration, FAR Final Rule, Federal Register, 2008, 14 CFR
Part 25, (Docket No. 2007-27310; Amendment No. 25–126).

[21] Federal Aviation Administration, FAR Final Rule, Federal Register, 1970, (Vol-
ume 35, Number 68), 14 CFR Part 25, (Docket No. 9079; Amendment No.
25–23).

[22] Federal Aviation Administration, Damage Tolerance and Fatigue Evaluation of
Structure , AC 25.571-1D, U.S. Department of Transportation, 2011.

[23] Federal Aviation Administration, Minimizing the Hazards from Propeller Blade
and Hub Failures , AC 25-905-1, U.S. Department of Transportation, 2000.

[24] Federal Aviation Administration, Design Considerations for Minimizing Hazards
caused by Uncontained Turbine Engine and Auxiliary Power Unit Rotor Failure
, AC 20-128A, U.S. Department of Transportation, 1997.

[25] Federal Aviation Administration, Uncontained Engine Debris Analysis Using
the Uncontained Engine Debris Damage Assessment Model, AR-04/16, U.S.
Department of Transportation, 2004.

[26] C. Cid, A. Baldomir, M. Rodríguez-Segade, S. Hernández, DamageCreator: A
global tool for generating finite element models of damaged aircraft due to blade
release or uncontained engine rotor failure, in: AIAA Aviation 2021 Forum, 2021,
http://dx.doi.org/10.2514/6.2021-2436.

[27] Federal Aviation Administration, Aircraft Catastrophic Failure Prevention
Research Program Plan, CT-94/26, U.S. Department of Transportation, 1994.

[28] Federal Aviation Administration, Committee on Uncontained Turbine Engine
Rotor Events Data Period 1976 through 1983, 1991, FAA/SAE, Aerospace
Information Report, Report No. AIR4003.

[29] Federal Aviation Administration, Committee on Uncontained Turbine Engine
Rotor Events Data Period 1984 through 1989, 1994, FAA/SAE, Aerospace
Information Report, Report No. AIR4770.

[30] Federal Aviation Administration, Large Engine Uncontained Debris Analysis,
AR-99/11, U.S. Department of Transportation, 1999.

[31] Federal Aviation Administration, Small Engine Uncontained Debris Analysis,
AR-99/7, U.S. Department of Transportation, 1999.

[32] J. López-Puente, D. Varas, J. Loya, R. Zaera, Analytical modelling of high velocity
impacts of cylindrical projectiles on carbon/epoxy laminates, Composites A 40
(8) (2009) 1223–1230, http://dx.doi.org/10.1016/j.compositesa.2009.05.008.

[33] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, et al., Scikit-learn: Machine
learning in python, J. Mach. Learn. Res. 12 (Oct) (2011) 2825–2830.

[34] Collier Research Corporation, Hypersizer 8.0 example in documentation:
Data/training/FEA/fuse-wing, 2020, URL https://hypersizer.com.

http://dx.doi.org/10.2514/3.7669
http://dx.doi.org/10.1016/0045-7949(86)90283-X
http://dx.doi.org/10.1016/0045-7949(86)90283-X
http://dx.doi.org/10.1016/0045-7949(86)90283-X
http://dx.doi.org/10.1007/s00158-011-0623-1
http://dx.doi.org/10.1007/s00158-019-02295-7
http://dx.doi.org/10.1007/s00158-020-02782-2
http://dx.doi.org/10.1016/j.compstruc.2021.106684
http://dx.doi.org/10.1007/s00158-013-1001-y
http://dx.doi.org/10.1007/s00158-016-1507-1
http://dx.doi.org/10.1093/jcde/qwaa044
http://dx.doi.org/10.1093/jcde/qwaa044
http://dx.doi.org/10.1093/jcde/qwaa044
http://dx.doi.org/10.1016/j.finel.2019.103376
http://dx.doi.org/10.1007/s00466-021-02058-6
http://dx.doi.org/10.1007/s00466-021-02058-6
http://dx.doi.org/10.1007/s00466-021-02058-6
http://dx.doi.org/10.1016/j.compstruc.2021.106677
http://dx.doi.org/10.2514/6.2012-1752
http://dx.doi.org/10.2514/6.2016-4290
http://dx.doi.org/10.1007/s00158-017-1789-y
http://dx.doi.org/10.1007/s00158-017-1789-y
http://dx.doi.org/10.1007/s00158-017-1789-y
http://dx.doi.org/10.1007/s00158-020-02660-x
http://dx.doi.org/10.2514/6.2021-1480
http://dx.doi.org/10.1007/s00366-022-01611-y
http://refhub.elsevier.com/S1877-7503(22)00090-4/sb19
http://refhub.elsevier.com/S1877-7503(22)00090-4/sb19
http://refhub.elsevier.com/S1877-7503(22)00090-4/sb19
http://refhub.elsevier.com/S1877-7503(22)00090-4/sb19
http://refhub.elsevier.com/S1877-7503(22)00090-4/sb19
http://refhub.elsevier.com/S1877-7503(22)00090-4/sb20
http://refhub.elsevier.com/S1877-7503(22)00090-4/sb20
http://refhub.elsevier.com/S1877-7503(22)00090-4/sb20
http://refhub.elsevier.com/S1877-7503(22)00090-4/sb21
http://refhub.elsevier.com/S1877-7503(22)00090-4/sb21
http://refhub.elsevier.com/S1877-7503(22)00090-4/sb21
http://refhub.elsevier.com/S1877-7503(22)00090-4/sb21
http://refhub.elsevier.com/S1877-7503(22)00090-4/sb21
http://refhub.elsevier.com/S1877-7503(22)00090-4/sb22
http://refhub.elsevier.com/S1877-7503(22)00090-4/sb22
http://refhub.elsevier.com/S1877-7503(22)00090-4/sb22
http://refhub.elsevier.com/S1877-7503(22)00090-4/sb23
http://refhub.elsevier.com/S1877-7503(22)00090-4/sb23
http://refhub.elsevier.com/S1877-7503(22)00090-4/sb23
http://refhub.elsevier.com/S1877-7503(22)00090-4/sb24
http://refhub.elsevier.com/S1877-7503(22)00090-4/sb24
http://refhub.elsevier.com/S1877-7503(22)00090-4/sb24
http://refhub.elsevier.com/S1877-7503(22)00090-4/sb24
http://refhub.elsevier.com/S1877-7503(22)00090-4/sb24
http://refhub.elsevier.com/S1877-7503(22)00090-4/sb25
http://refhub.elsevier.com/S1877-7503(22)00090-4/sb25
http://refhub.elsevier.com/S1877-7503(22)00090-4/sb25
http://refhub.elsevier.com/S1877-7503(22)00090-4/sb25
http://refhub.elsevier.com/S1877-7503(22)00090-4/sb25
http://dx.doi.org/10.2514/6.2021-2436
http://refhub.elsevier.com/S1877-7503(22)00090-4/sb27
http://refhub.elsevier.com/S1877-7503(22)00090-4/sb27
http://refhub.elsevier.com/S1877-7503(22)00090-4/sb27
http://refhub.elsevier.com/S1877-7503(22)00090-4/sb28
http://refhub.elsevier.com/S1877-7503(22)00090-4/sb28
http://refhub.elsevier.com/S1877-7503(22)00090-4/sb28
http://refhub.elsevier.com/S1877-7503(22)00090-4/sb28
http://refhub.elsevier.com/S1877-7503(22)00090-4/sb28
http://refhub.elsevier.com/S1877-7503(22)00090-4/sb29
http://refhub.elsevier.com/S1877-7503(22)00090-4/sb29
http://refhub.elsevier.com/S1877-7503(22)00090-4/sb29
http://refhub.elsevier.com/S1877-7503(22)00090-4/sb29
http://refhub.elsevier.com/S1877-7503(22)00090-4/sb29
http://refhub.elsevier.com/S1877-7503(22)00090-4/sb30
http://refhub.elsevier.com/S1877-7503(22)00090-4/sb30
http://refhub.elsevier.com/S1877-7503(22)00090-4/sb30
http://refhub.elsevier.com/S1877-7503(22)00090-4/sb31
http://refhub.elsevier.com/S1877-7503(22)00090-4/sb31
http://refhub.elsevier.com/S1877-7503(22)00090-4/sb31
http://dx.doi.org/10.1016/j.compositesa.2009.05.008
http://refhub.elsevier.com/S1877-7503(22)00090-4/sb33
http://refhub.elsevier.com/S1877-7503(22)00090-4/sb33
http://refhub.elsevier.com/S1877-7503(22)00090-4/sb33
http://refhub.elsevier.com/S1877-7503(22)00090-4/sb33
http://refhub.elsevier.com/S1877-7503(22)00090-4/sb33
https://hypersizer.com


Journal of Computational Science 62 (2022) 101682C. Cid et al.
Clara Cid completed her Ph.D. in Aerospace and Civil
Engineering at the University of A Coruña (Spain) in Jan-
uary 2022. Upon graduation, she continued working on
the Structural Mechanics Group (GME) as a posdoctoral
researcher. She won the 2021 SwRI Student Paper Award in
NonDeterministic Approaches and the 2022 Lockheed Mar-
tin Student Paper Award in Structures, in the AIAA SciTech
Forum and Exposition. Cid’s research interests include fail-
safe size optimization and optimization under aleatory and
epistemic uncertainty.

Aitor Baldomir is an Associate Professor of Structural
Mechanics at the University of A Coruña since 2008. He
has collaborated with Airbus in structural analysis and
optimization of aeronautical structures in the A380, A350,
A30x and A320neo programs. He also collaborated in two
European research projects: MAAXIMUS (Seventh Frame-
work Programme) and STRATOFLY (Horizon 2020). He is an
AIAA member since 2011. Currently, his research lines are
fail-safe size optimization and optimization under aleatory
and epistemic uncertainty.
18
Miguel Rodríguez-Segade is a Ph.D. student in Aerospace
and Civil Engineering at the University of A Coruña. His
research interests includes hypersonic vehicles and opti-
mization. He collaborated in the European research project
STRATOFLY (Horizon 2020).

Santiago Hernández is an Emeritus Professor of Structural
Mechanics. Professor Hernández founded the Structural Me-
chanics Group (GME) at the University of A Coruña. He
received the Distinguished Service Award as a member of
the AIAA Multidisciplinary Design Optimization Technical
Committee (2013). He is an Associate Fellow of AIAA (2009)
Fellow of ASCE (2007), IABSE (2016), and Chief Academic
Officer at WIT (2018). He has participated in a large number
of research projects at national and international level.
He has almost three hundred scientific publications, has
authored several books and edited books written by leading
scientists. He is well known for his expertise in aeroelasticity
and for the application of numerical optimization techniques
to engineering design.


	An open-source framework for aircraft damage simulation in engine failure events
	Introduction
	Events and debris characterization
	Software architecture
	General overview
	Input parameters
	Software implementation
	Aircraft FEM import
	Definition of input parameters
	Determination of vulnerable impact area
	Generation of the geometry of the debris element, impact line and velocity
	Definition of damage criteria (ballistic equation)
	Meshing of the debris element, generation of shotlines and intersection with the aircraft mesh
	Clustering elements and sorting by proximity to the debris origin
	Application of damage criteria to define number of holes
	Remove mesh elements from the original mesh


	Application example
	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References


