
T h e N e w U P C + + D e p S p a w n Hi g h P e rf o r m a n c e
Li b r a r y f o r D a t a- Fl o w C o m p u ti n g wi t h H y b ri d

P a r all eli s m

B a sili o B. Fr a g u el a () [0 0 0 0− 0 0 0 2 − 3 4 3 8 − 5 9 6 0] a n d
Di e g o A n d r a d e [0 0 0 0− 0 0 0 1 − 5 6 7 0 − 7 4 2 5]

U ni v e r si d a d e d a C o r u ñ a, CI TI C, G r u p o d e A r q ui t e c t u r a d e C o m p u t a d o r e s.
F a c ul t a d e d e I nf o r m á ti c a, C a m p u s d e El vi ñ a, S / N. 1 5 0 7 1. A C o r u ñ a, S p ai n.

{ b a s i l i o . f r a g u e l a , d i e g o . a n d r a d e } @ u d c . e s

A b s t r a c t. D a t a- fl o w c o m p u ti n g i s a n a t u r al a n d c o n v e ni e nt p a r a di g m
f o r e x p r e s si n g p a r all eli s m. T hi s i s p a r ti c ul a rl y t r u e f o r t o ol s t h a t a u t o-
m a ti c all y e x t r a c t t h e d a t a d e p e n d e n ci e s a m o n g t h e t a s k s w hil e all o w-
i n g t o e x pl oi t b o t h di s t ri b u t e d a n d s h a r e d m e m o r y p a r all eli s m. T hi s i s
t h e c a s e of U P C + + D e p S p a w n, a n e w t a s k- b a s e d li b r a r y d e v el o p e d o n
U P C + + (U ni fi e d P a r all el C + +), a li b r a r y f o r p a r all el c o m p u ti n g o n a
P a r ti ti o n e d Gl o b al A d d r e s s S p a c e (P G A S) e n vi r o n m e nt, a n d t h e w ell-
k n o w n I nt el T B B (T h r e a di n g B uil di n g Bl o c k s) li b r a r y f o r m ul ti t h r e a d-
i n g. I n t hi s p a p e r w e p r e s e nt a n d e v al u a t e t h e e v ol u ti o n of t hi s li b r a r y
af t e r c h a n gi n g i t s e n gi n e f o r s h a r e d m e m o r y p a r all eli s m a n d a d a p ti n g i t
t o t h e n e w e s t v e r si o n of U P C + +, w hi c h di ff e r s v e r y s t r o n gl y f r o m t h e
o ri gi n al v e r si o n o n w hi c h U P C + + D e p S p a w n w a s d e v el o p e d. A s w e will
s e e, w hil e k e e pi n g t h e s a m e hi g h l e v el of p r o g r a m m a bili t y, t h e n e w v e r-
si o n i s o n a v e r a g e 9. 3 % f a s t e r t h a n t h e ol d o n e, t h e m a xi m u m s p e e d u p
b ei n g 6 6. 3 %.

K e y w o r d s: D a t a- fl o w c o m p u ti n g · h y b ri d p a r all eli s m · P G A S · r u n-
ti m e s · hi g h- p e rf o r m a n c e c o m p u ti n g · t a s k- b a s e d p a r all eli s m

1 I n t r o d u c ti o n

T h e d at a- fl o w c o m p uti n g p a r a di g m i s v e r y att r a cti v e f o r p a r all el c o m p uti n g
b e c a u s e it d o e s n ot i m p o s e a n y p a rti c ul a r o r d e r of e x e c uti o n a m o n g t a s k s, o nl y
r el yi n g o n t h e n e c e s s a r y s ati sf a cti o n of t h e d e p e n d e n ci e s i n h e r e nt t o t h e m. T hi s
a p p r o a c h i s p a rti c ul a rl y i nt e r e sti n g i n t h e p r e s e n c e of c o m pl e x a n d i r r e g ul a r
p att e r n s of d e p e n d e n ci e s, w hi c h r e q ui r e t h e fi n e g r ai n e d s y n c h r o ni z ati o n a m o n g
t a s k s t h at it p r o vi d e s i n o r d e r t o a c hi e v e g o o d p e rf o r m a n c e. F u rt h e r m o r e, it s
a p pli c ati o n c a n al s o si m plif y t h e d e v el o p m e nt a n d m ai nt e n a n c e of a p pli c ati o n s
if t h e p a r a di g m i s a p pli e d t h r o u g h t o ol s t h at c a n a ut o m ati c all y e xt r a ct t h e
t a s k s d e p e n d e n ci e s f r o m si m pl e i nf o r m ati o n s u c h a s t h e i n p u t s a n d t h e o ut p ut s
of e a c h t a s k. T hi s i s t h e c a s e of t h e d e p e n d cl a u s e i nt r o d u c e d i n O p e n M P 4. 0,
w hi c h i s t h e m o st p o p ul a r a p p r o a c h i n t hi s fi el d. I n f a ct, d u e t o t h e hi g h e r
c o m pl e xit y of di st ri b ut e d m e m o r y p r o g r a m mi n g, wit h it s n e e d t o di st ri b ut e a n d

T his v ersi o n of t h e c o ntri b uti o n h as b e e n a c c e pt e d f or p u bli c ati o n, aft er p e er r e vi e w (w h e n a p pli c a bl e) b ut is n ot t h e V ersi o n of
R e c or d a n d d o es n ot r efl e ct p ost- a c c e pt a n c e i m pr o v e m e nts, or a n y c orr e cti o ns. T h e V ersi o n of R e c or d is a v ail a bl e o nli n e at: htt p://
d x. d oi. or g/ 1 0. 1 0 0 7/ 9 7 8- 3- 0 3 1- 0 8 7 5 1- 6 _ 5 5. Us e of t his A c c e pt e d V ersi o n is s u bj e ct t o t h e p u blis h er’s A c c e pt e d M a n us cri pt t er ms of
us e htt ps:// w w w.s pri n g er n at ur e. c o m/ g p/ o p e n-r es e ar c h/ p oli ci es/ a c c e pt e d- m a n us cri pt-t er ms

2 B. B. Fraguela and D. Andrade

communicate data among processes, most proposals in this field are restricted
to shared memory systems.

In recent years there has been increasing interest in bringing the advantages
of data-flow runtimes to distributed memory environments [2,10,11,14,19,21],
not only because they allow working on larger problems, but also because their
benefits can be even larger in these systems. Indeed, since a data-flow runtime has
all the information on the placement of the data and their relation with the tasks
and the dependencies, it can also automate the transmission of data among the
distributed memories on which the different processors work, a task particularly
cumbersome for programmers in the presence of the complex irregular patterns
of dependences for which these tools excel.

This paper focuses on one of the most recent proposals in this area, the
UPC++ DepSpawn library [14], which allows exploiting this strategy in clusters
of multi-core processors. One of the most original features of this library is that
it operates on a Partitioned Global Address Space (PGAS) environment. In this
model each process has a private space that is exclusive to it as well as a portion of
a common shared space that all the processes can access. As expected, this shared
space, which is manipulated by means of one-sided accesses, offers much lower
latency and larger bandwidth in the portion that has affinity to the accessing
process or to other processes that are located in the same node in the cluster
compared to the portions located in other nodes. The PGAS model arguably
simplifies the development of distributed memory applications compared to the
traditional MPI-based paradigm based on totally separate memory spaces.

The name UPC++ DepSpawn stems from the fact that its PGAS environ-
ment is provided by UPC++ [23], a library that supports in C++ the abstrac-
tions of the UPC (Unified Parallel C) language [12], while most of the run-
time for data-flow computing is derived from a shared-memory library called
DepSpawn [17]. Both DepSpawn libraries provide native shared memory paral-
lelism on top of the well-known Intel TBB library.

In the past few years the two external components on which UPC++ Dep-
Spawn relies experienced very strong changes, which called for its redesign. First,
while UPC++ had not received meaningful updates since its inception in 2014,
a radically new version called UPC++ 1.0 [4] was released in 2019. This version
both provided new functionalities and removed features provided by the origi-
nal library, now called v0.1. Although some of the features lost were intensively
used by UPC++ DepSpawn, UPC++ v0.1 had lacked support for a long time,
while UPC++ 1.0 has a very active community and is strongly supported. This,
together with the advantages of the new version validated in [4] called for chang-
ing this component of UPC++ DepSpawn. The second very relevant change was
the decision by Intel of replacing Intel TBB by a new library called oneTBB [1].
Similar to the case of UPC++, the new version lacks components intensively
used by UPC++ DepSpawn, and since Intel TBB is no longer distributed, an
update in this area was also required.

This paper describes the modifications performed in the library due to the
changes in UPC++ and TBB. This includes a brief description of our experience

The New UPC++ DepSpawn Library for Data-Flow Computing 3

with the new limitations in UPC++ 1.0, and more particularly in the aspects
related to its interaction with multithreading, which have not been discussed in
the literature as far as we know. The changes performed are evaluated showing
a positive impact on performance in both cases. The final contribution of the
manuscript is the public release of UPC++ DepSpawn under a permissive open
source license at https://github.com/UDC-GAC/upcxx_depspawn.

The rest of the paper is organized as follows. The related bibliography is
discussed in Section 2, which is followed by a description of UPC++ DepSpawn
in Section 3. The changes performed in the runtime are described in Section 4,
while Section 5 is devoted to the evaluation. Finally, Section 6 is devoted to our
conclusions and future work.

2 Related work

There are two main approaches for providing data-flow computing in distributed
memory applications, a static one and a dynamic one. The first one requires stat-
ically providing the set of tasks and dependencies among them in some domain-
specific language (DSL). This is fed to a tool that generates a code that supports
the parallel execution of the tasks described respecting the dependencies speci-
fied and performing the data communications required. Since the discovery of the
dependencies is performed off-line and the code generator has all the information
on the whole program, this approach should lead to minimal overheads during
the execution and the best possible planning and discovery of potential opti-
mizations. On the other hand, there are two shortcomings to this strategy. One
is the impossibility of dealing with dependencies that can be only known at run-
time, and sometimes, depending on the tool, with irregular dependencies, even
if they can be known statically. The second problem is the need to identify and
correctly state all the dependences in the code, which can be cumbersome. The
static strategy is followed by the Parameterized Task Graph (PTG) model [13],
on which the DAGuE/PaRSEC framework [10] is based. The most notable soft-
ware developed on this framework is DPLASMA [9], the leading implementation
for dense linear algebra algorithms in distributed memory systems.

As for the dynamic approaches, which can deal with dynamic and irregular
dependencies, we can break them in two families. The first one relies on a wide
array of mechanisms to define and enforce dependencies among tasks thanks to
their manipulation during the execution of the program. This is the case of locks,
full/empty bits, synchronized blocks, and futures, among others.

The last alternative consists of writing an apparently sequential version of
the algorithm in which the parallel tasks are identified, and their inputs and
outputs are labelled. Then, during the execution of this instrumented code in a
parallel environment, a runtime finds the tasks to run and their dependencies,
and it schedules the executions and performs the necessary data transfers in
such a way that all the dependencies are met. In our opinion this is the most
attractive strategy from the point of view of simplicity and elegance, but it is also
the one with the higher expected overheads, as it is the most demanding on the

https://github.com/UDC-GAC/upcxx_depspawn

4 B. B. Fraguela and D. Andrade

runtime. We identify two main alternatives for implementing this approach. The
first one, tested in [11,20], consists of running this code that provides the tasks
and dependencies in a single process, which acts as master or client, while all the
other processes involved act as slaves or servers, executing the tasks under its
control. SYCL [18], which can manage multiple distinct memories and devices
under this model from a single host application can also be classified in this
group. The second strategy, followed by UPC++ DepSpawn and the MPI-based
StarPU [2,3], executes the code in parallel in all the processes involved, so that
they all have a view of the task graph and they agree on which process runs
what and when. Another key difference of UPC++ DepSpawn with respect to
StarPU in addition to the PGAS approach is the transparent exploitation of
thread-level parallelism within each process.

It deserves to be mentioned that there are projects that involve both complex
runtimes and advanced compilers. For example, a project that started follow-
ing a library-based dynamic approach but later developed a new language and
compiler in order to be able to apply more optimizations and remove runtime
overhead was [5], the new alternative being presented in [19]. Another alterna-
tive based on a new language that achieves parallelism through data-flow is [21],
which is characterized by focusing on workflows and being purely functional.

Finally, although [22] deals with a superscalar scheduler of PLASMA re-
stricted to shared memory, it is strongly related to our work, since it describes
the change of this scheduler from a proprietary solution to the OpenMP stan-
dard. Our work, however involves changes both in the shared and the distributed
memory aspects of our library.

3 Data-flow computing with UPC++ DepSpawn

Since UPC++ DepSpawn integrates in applications written using UPC++ [23],
this section first presents the basics of the latter before introducing UPC++
DepSpawn, so that its syntax and semantics can be understood.

3.1 UPC++

UPC++ [23] supports the development in C++ of parallel programs following
the PGAS paradigm and more concretely the concepts of the UPC language [12]
but without the need for a new language and related compiler. In UPC++
programs the standard datatypes define data that is located in the local pri-
vate memory of the process, while the UPC++ types shared_array<T,B> and
shared_var<T> define, respectively, unidimensional arrays of elements and scalars
of type T located in the shared memory that all the processors can access. By
default, when the optional parameter B is not provided, the distribution of the
elements of the arrays is purely cyclic, so that if there are P processes, element
i has affinity to process i mod P , which means that it is placed in the portion
of the shared space associated to that process. The template argument B allows
changing the distribution to block cyclic, the size of the block being B. Relatedly,

The New UPC++ DepSpawn Library for Data-Flow Computing 5

just as C++ has pointer and reference types, UPC++ provides global_ptr<T>

and global_ref<T> that play the same role, respectively, for the data item placed
in the global shared space.

Just as UPC, UPC++ follows a SPMD style, which is enabled by functions
that provide a unique identifier to each process as well as the number of processes
involved. The library also provides other interesting features, but they are not
required to write UPC++ DepSpawn programs.

3.2 UPC++ DepSpawn

UPC++ DepSpawn provides data-flow computing on top of UPC++ in an el-
egant way that requires very little effort. This procedure can be summarized
in three steps. The first one involves writing a sequential version of the code
to parallelize where each task is encapsulated as a function that expresses all
its dependencies with other tasks through its parameters. This library does not
require to label each function parameter in order to inform the runtime on its
usage by the function. Rather, the metaprogramming capabilities of C++ are
exploited in order to analyze the data type of each formal parameter and infer
from it its nature. This way, data passed by value or constant reference are as-
sumed to be exclusively inputs, as the function can read but not modify them,
while data passed by non-constant reference is assumed to be both an input and
an output. In the case of UPC++ DepSpawn, the references will be object of
the template class global_ref<T>, where T will be a const type in the case of
constant references. Then, the second step involves rewriting the function in-
vocations from the usual f(a, b, ...) notation to upcxx_spawn(f, a, b, ...).
Finally, an invocation to upcxx_wait_for_all() must be inserted at the point
where the algorithm finishes and we want to wait for the results.

Listing 1.1 exemplifies the usage of UPC++ DepSpawn for the implementa-
tion of a Cholesky decomposition on a shared array A of N×N tiles. The code uses
the macro _ to map from a natural bidimensional indexing to the linear index-
ing required by the unidimensional shared_array class provided by UPC++. In
addition to the main algorithm, the code includes the definition of the function
dgemm, responsible for making a matrix product between tiles. From the data
types of its parameters UPC++ DepSpawn can infer that dest is both read and
written by the function, while a and b are only inputs.

As we can see, an algorithm written with UPC++ DepSpawn looks like a
sequential implementation, making the development and the maintenance very
easy. The code, however, must be run by all the UPC++ processes. This allows
each process to learn the set of tasks and dependencies in the code and to
schedule the executions making sure that all the dependencies are fulfilled. Each
process also independently infers who will be responsible for running each task
based on the location of its arguments following a strategy explained in [15].
The main topic introduced in this latter publication is however a variation of
upcxx_spawn called upcxx_cond_spawn. This function takes as first argument a
boolean that informs the runtime on whether the task is involved in the part
of the global task dependency graph (TDG) that pertains to the tasks executed

6 B. B. Fraguela and D. Andrade

shared_array<Tile> A(N * N);
#define _(i, j) ((i) * N + (j))
...

void dgemm(global_ref<Tile> dest, Tile a, Tile b) {
// dest = dest + a x b

}

for(i = 0; i < N; i++) {
upcxx_spawn(potrf, A[_(i,i)]);
for(r = i+1; r < N; r++) {
upcxx_spawn(trsm, A[_(i,i)], A[_(r,i)]);

}
for(j = i+1; j < N; j++) {
upcxx_spawn(dsyrk, A[_(j,i)], A[_(j,j)]);
for(r = j+1; r < N; r++) {
upcxx_spawn(dgemm, A[_(r,j)]), A[_(r,i)]), A[_(j,i)]));

}
}

}

upcxx_wait_for_all();

Listing 1.1. Cholesky factorization in UPC++ DepSpawn

in this process or not. This can reduce the overhead of the runtime by quickly
dismissing tasks that the process can safely ignore.

4 An improved runtime

As explained in Section 1, UPC++ DepSpawn was deeply changed due to the
important recent novelties in the Intel TBB and UPC++, affecting its mecha-
nisms to exploit both shared and distributed memory parallelism. This section
discusses the decisions taken and the modifications performed in both fields.

4.1 Shared memory parallelism migration

DepSpawn [17] and UPC++ DepSpawn [14] relied on the Intel TBB not only for
the creation of threads and parallel tasks, but also for the scheduling of the ready
tasks and the definition of many synchronization objects. At this point we must
bear in mind that when DepSpawn [17] was written the C++11 standard, with
its support for threading and synchronization, was not fully available everywhere,
and relying on the Intel TBB solved this. Nowadays it no longer makes sense to
not rely on the C++11 facilities whenever possible.

In 2020 Intel dropped the Intel TBB library as it had been known, and it
integrated it into its oneAPI initiative, which goes well beyond the capabilities
we need. The new version is called oneTBB [1], and while the high level func-
tionalities are mostly the same, the low level tasking API was removed. Since
the DepSpawn libraries relied on this API, a change was needed. One possibility

The New UPC++ DepSpawn Library for Data-Flow Computing 7

was to adapt our libraries to the higher level API of oneTBB. Another option
was to move the threading and tasking on top of C++11, designing ourselves
the thread and task pools, task packaging and scheduling. This latter alterna-
tive was attractive because (a) removing the oneTBB dependency simplifies the
deployment of the library, (b) being provided by a company, the portability of
oneTBB is much more compromised than that of the C++11 standard, and (c)
we suspected that while TBB/oneTBB provide very good performance, we could
implement a runtime suited to our needs with even better performance for two
reasons. The first one is that the generic nature of the TBB leads to generic
APIs, with inherent encapsulation costs, and to a runtime that may be more
complex than what we actually need. As a result, by writing our own implemen-
tation we could avoid TBB-related overheads. The second and most important
reason is the lack of control on the order of execution of the ready tasks in TBB.
This is in general an advantage of TBB that allows it to apply complex work-
stealing strategies in order to balance the workload among its threads. However,
a data-flow computing engine is a specific context in which we have a subset
of tasks that are part of a general graph that are ready to be executed. Our
intuition is that in this situation, if we have different ready tasks that can be
run at a given point, it is better to run the oldest tasks before the newest ones.
One reason is that this tends to fulfill older rather than newer dependencies in
the TDG, resulting in a more balanced progress through the TDG. This results
in more locality in the triggering of dependencies, so that older tasks on which
newer tasks depend tend to complete their execution before.

As a result of this analysis, the threading, tasking and scheduling in DepSpawn
and UPC++ DepSpawn were rewritten to be based on C++11 instead of the
TBB. Our task objects are designed for maximum simplicity and minimum over-
head, and just as other objects frequently built and destroyed, they have their
own memory pools. Contention was minimized by basing almost every synchro-
nization on atomic operations, resulting in a nearly lockless design. As for our
new threading runtime, it is based on a pool of C++11 threads that extracts
ready tasks from a thread-safe FIFO queue. The queue has a fixed maximum
size in order to reduce memory management overheads and minimize insertion
time. When this maximum is reached, the pushing thread runs tasks from the
head until there is space for the new task. This policy also avoids storing too
many ready tasks without actually participating in their execution.

The queue ensures that tasks are executed in the order in which they are
ready, which is something we could not achieve directly with TBB. This helps
follow the policy of executing older tasks before newer ones because, as a general
trend, the older a task the earlier it tends to be ready for execution. However, our
queue does not further enforce the execution of older tasks before newer tasks
by acting as a priority queue. That is, it does not reorder its contents by sorting
the ready tasks it holds according to their id, which is an integer that is smaller
the older the task is. A critical reason for this is that DepSpawn, which provides
the new threading system to UPC++ DepSpawn, does not support this id in its
tasks, as its original purpose in UPC++ DepSpawn is to uniquely identify a task

8 B. B. Fraguela and D. Andrade

when its completion is notified to another process. A second reason is that with
the current design, push and pop operations are extremely fast thanks to being
based on very cheap non-blocking atomic operations and our decision to use a
fixed size queue. Enforcing an order among the tasks stored would have implied
locks, explorations of the structure upon every push and/or pop, and in general
a more complex data structure with a much more expensive management and
potential to become a bottleneck for the participating threads.

Two extra steps with low cost were taken to promote the ordered execution
of the tasks in each process. First, whenever a task finishes, it releases its depen-
dencies in order, i.e., from the oldest to the newest dependent task, so that tasks
tend to enter in order the queue of ready tasks. Second, whenever our runtime
receives notifications of termination of remote tasks, they are sorted according
to their id so that older tasks release their dependencies before newer tasks.

4.2 Distributed memory parallelism migration

The new UPC++ 1.0 [4] largely differs from the version 0.1 of 2014 on which
UPC++ DepSpawn was originally written. In fact the new UPC++ is not an
update to the old one, but a complete rewrite that is totally different both at
the API and implementation levels. They do not even rely on the same low level
libraries, as [23] used GASNet [6] for communications, while UPC++ 1.0 uses
the new GASNet-EX [7] communication library for exascale.

Unfortunately, UPC++ 1.0 dropped elements that were used in UPC++
DepSpawn programs such as the distributed arrays or the global references.
While UPC++ DepSpawn does not use itself global arrays, as seen in Listing 1.1
this abstraction is convenient for writing global data-flow programs. Global ref-
erences were more related to UPC++ DepSpawn because they mimicked exactly
the same semantics as regular references provide to DepSpawn in shared memory.

The good news is that UPC++ 1.0 offers all the elements needed to build
and manipulate globally shared data, and thus any desired components can
be built on top of it. We felt that global arrays are a nice abstraction that
has been very successful, being widely implemented both by languages [12] and
libraries [16], and thus we wrote our own global array class. Our class improves
upon the one provided by [23] in several ways, mostly by being bidimensional,
supporting not only full but also upper and lower triangular matrices to save
space, and providing generic 2D block cyclic distributions and well as simple
row and column cyclic distributions or even placement in a single process. Let
us notice however that this type is provided for convenience and users are free
to obtain the pointers to the global data they want to manipulate from any data
structure they wish.

Contrary to global arrays, global references played a direct role in UPC++
DepSpawn. As explained in Section 3.2, the library analyzes the type of the
formal parameters of the task functions and it infers from it the kind of usage that
the function can make of the associated argument. Namely, arguments passed
by value or constant reference i.e., parameters of type T or global_ref<const T>,

The New UPC++ DepSpawn Library for Data-Flow Computing 9

are read-only inputs, while values passed by non-constant reference, that is, with
parameters of type global_ref<T>, can be both inputs and outputs.

In this case we felt that forcing programmers to use a class written by us
that replaced the now unsupported global_ref class was not the best option,
particularly when we could just assign its meaning to global pointers, which
do exist in UPC++ 1.0. This way we decided that when a formal parameter
to a spawned function is a global pointer to a constant type, i.e. of the form
global_ptr<const T>, the implication is that the function will read the associated
data through the pointer, but it will not change it, and thus it will be a read-
only input. Similarly, global pointer parameters that point to a non-constant
type indicate that the function can both read and write the data they point to.

Besides these external changes, the migration to UPC++ 1.0 also implied
internal changes in the runtime. Replacing the communication and synchroniza-
tion mechanisms of [23] by those of [4] was relatively straightforward except
for three details. The first one is related to thread safety, which is critical to
our runtime given not only its multi-threaded nature, but also the aggressive
level of asynchrony and optimization applied. Both versions of UPC++ can be
compiled in a thread-safe mode, but while this suffices to ensure thread safety
in UPC++ v0.1 this is not the case with the new UPC++. Indeed, as indi-
cated in the UPC++ 1.0 specification [8], important elements such as futures
and promises are not thread-safe. As a result, proper measures must be taken
to safely manage these objects in a runtime like ours. Our strategy relied on
minimizing as much as possible the use of these elements and trying to restrict
the use of the ones used to a single thread. Finally, the few futures for which it is
beneficial to allow several threads to operate on them are protected by mutexes.

The second issue is related to a new limitation on the activities that user
code is allowed to perform when it is executed during calls to UPC++. This
user code are the RPCs and the callbacks, as they are only executed when the
UPC++ runtime makes what is termed as user-level progress, as opposed to
the internal level progress, which cannot be observed by the application. The
main way in which user-level progress takes place in UPC++ 1.0 is by invoking
the new function progress. However, there are other very relevant and typical
ways of entering this state such as waiting for a future to be ready. In fact this
concept is so important that the UPC++ 1.0 specification [8] informs on the
kind of progress that every single function can perform.

The new limitation that constitutes the second problem is that attempts
to enter user-level progress in user code that is already run within a user-level
progress context may result in a no-op every time. This way, for example, if
during a callback or RPC our code tries to wait for a future to be ready, since
this implies trying to make user-level progress in code already executed in that
mode, the application can, and in fact will, very probably, hang. This situation
happened in the UPC++ DepSpawn runtime because this limitation did not
exist in [23]. As a result, the runtime was rewritten to move every attempt to
enter UPC++ user-level progress out of RPCs and callbacks. This implied the
creation of new task queues where tasks that required this kind of progress found

10 B. B. Fraguela and D. Andrade

during user-level progress were stored, so that they can be safely executed after
leaving this state.

A third particularity of the new UPC++ that required special consideration
were the new persona objects and the notification affinity for futures [8]. This
latter concept is derived from the fact that in UPC++ 1.0 each future is associ-
ated to a single persona, each persona can only be associated to a single thread
at a time, and only that thread is able to signal the completion of the futures
associated to that persona. Thus additional care must be taken in the manage-
ment of futures shared by several threads. In addition, only the thread that owns
a special persona called master persona can perform important operations, such
as executing RPCs. In our runtime any thread must be able to run these tasks
if needed. Thus, the new UPC++ DepSpawn runtime also ensures the properly
synchronized management of the master persona among all its threads.

5 Evaluation

The experiments have been run in a cluster with 32 nodes, each one consisting
of 2 Intel Xeon E5-2680 v3 at 2.5 GHz and 128GB of memory. Since each pro-
cessor has 12 cores, the experiments use up to 768 cores, which are configured
with hyperthreading disabled, so that at most one thread can be run per core.
Codes were compiled with g++ 6.4 and optimization level O3, release 2021.3.0
of UPC++ 1.0 being the one used.

The evaluation relies on the right-looking Cholesky factorization in List-
ing 1.1, the LU decomposition, and the Gauss-Seidel stencil. The BLAS compu-
tational kernels benchmarks rely on the OpenBLAS library version 0.3.1 using
a single thread. As a result, all the shared memory parallelism comes from the
exploitation of our runtime, which is configured to use a single process per node
with 24 threads, one per core. Also, all the UPC++ DepSpawn codes apply the
optimization presented in [15], which is thus the baseline performance.

Figures 1 to 3 present the performance achieved by the old and the new
version of UPC++ DepSpawn for each one of the three benchmarks. Each graph
is a strong scaling study that considers two problem sizes and represents the
performance as a function of the number of nodes used. In addition, the Cholesky
and LU graphs include the performance obtained by the current state-of-the-art
implementation, provided by DPLASMA [9] and relying on the same OpenBLAS
library for the computational kernels. As explained in Section 2, DPLASMA
follows a data-flow approach that relies on the Parameterized Task Graph (PTG)
model [13] based on a static description of the algorithm. Another difference is
that DPLASMA uses MPI for the communications, OpenMPI 2.1.1 being used
in the experiments. Every performance point, both for the UPC++ DepSpawn
and the DPLASMA measurements, corresponds to the best combination of tile
size and matrix mapping on the number of nodes considered following a block
cyclic distribution.

As we can see, the improvement is very noticeable in Cholesky. The new ver-
sion always outperforms the old one, and it allows scaling to 32 nodes the small

The New UPC++ DepSpawn Library for Data-Flow Computing 11

1 2 4 8 16 32

Nodes

0

5000

10000

15000
G

F
lo

p
s

new UPC++ Depspawn 40K

old UPC++ Depspawn 40K

DPLASMA 40K

new UPC++ Depspawn 70K

old UPC++ Depspawn 70K

DPLASMA 70K

Fig. 1. Performance of the Cholesky de-
scomposition benchmark

1 2 4 8 16 32

Nodes

0

0.5

1

1.5

2

G
F

lo
p

s

10
4

new UPC++ Depspawn 40K

old UPC++ Depspawn 40K

DPLASMA 40K

new UPC++ Depspawn 70K

old UPC++ Depspawn 70K

DPLASMA 70K

Fig. 2. Performance of the LU descomposi-
tion benchmark

1 2 4 8 16 32

Nodes

0

1

2

3

4

G
F

lo
p

s

10
10

new Depspawn 32K

old Depspawn 32K

new Depspawn 64K

old Depspawn 64K

Fig. 3. Performance of the Gauss-Seidel
benchmark

1 2 4 8 16 32

Nodes

-5

0

5

10

15

S
p

e
e

d
u

p
 (

%
)

Cholesky

LU

Gauss-Seidel

Fig. 4. Speedup of the new multithreading
runtime with respect to the old one

problem size, which did not scale above 16 nodes with the old version. The im-
provement also allows UPC++ DepSpawn to clearly outperform DPLASMA for
both problem sizes, the difference growing as the number of nodes used increases.
In LU, the old UPC++ DepSpawn always scaled reasonably and outperformed
DPLASMA, although we can see that the performance growth was slowed down
for the small problem size when 32 nodes were used in the evaluation. The new
version also systematically increases the performance, particularly as the num-
ber of nodes grows, and solves this scalability issue. Finally, Gauss-Seidel is a
very lightweight computation with a pattern much simpler than Cholesky and
LU. The performance of both versions is basically the same up to 16 nodes, but
the tendency of the new version to provide better performance as the number of
nodes grows is finally seen when 32 nodes are used.

12 B. B. Fraguela and D. Andrade

Altogether, the maximum speedup for the new version with respect to the
old one is 66.3%, which happens for the small problem size of LU at 32 nodes
thanks to the increase in performance from 9.27 TFlops to 15.41 TFlops. The
average speedup across the Cholesky, LU and Gauss-Seidel tests is 13.9%, 11.5%
and 2.4%, respectively, the global average being thus a noticeable 9.3%.

In order to measure the relative influence on the new performance obtained
of the changes performed in the multithreading engine and the adaptation to the
new UPC++, a version of the old UPC++ DepSpawn based on UPC++ v.01
that relied on the new C++11 runtime for multithreading was developed. Fig-
ure 4 shows the speedup that it obtains compared to the original one based on
Intel TBB. While the new runtime can lose up to 2% speedup, it can achieve
improvements of up to 8%, the average across all the experiments being 2.3%.
As a result, roughly one fourth of the improvement of the new runtime comes
from the changes in the multithreading environment.

LU is the most computationally demanding benchmark, and the number of
tasks per process is very large when few nodes are used, making less important
the control of the order of execution of tasks in that situation compared to the
smart work-stealing facilities of the Intel TBB. In the other two codes this control
is more clearly beneficial. This is particularly true in Gauss-Seidel, which is the
benchmark with the fewest computational needs and whose few tasks are more
sensitive to the order of execution. In Cholesky, which sits in between LU and
Gauss-Seidel in terms of computational needs, the benefit of the new runtime
is still positive but drops when more than 8 nodes are used. This probably
happens because after this point the smaller number of tasks per node makes it
more unlikely that there are delays in the execution of tasks that are critical to
trigger subsequent dependent tasks. The difference with respect to Gauss-Seidel
resides in the fact that the latter has so few live tasks in each moment that any
delay in the execution of tasks in the critical path will surely lead to idle cores,
while Cholesky has a reasonable number of tasks to keep busy the cores used.

6 Conclusions

UPC++ DepSpawn is a recently introduced library for exploiting task paral-
lelism in distributed memory systems. The tasks are executed under an an ef-
ficient scheduler that respects the implicit dependencies among them extracted
by the library from their arguments and formal parameter types. In this paper
the library largely evolved, changing both its shared and distributed memory
components. This way, multithreading was moved from Intel TBB to a manu-
ally managed thread pool and related task queue, while in the PGAS component
the obsolete and no longer supported UPC++ v0.1 library that relied on GAS-
Net was replaced by the new UPC++ 1.0 based on GASNet-EX. This critical
redesign of the implementation only involved minor changes in the API, not
impacting the ease of use. Performance, however, noticeably improved, reaching
maximum speedups of 66.3% when using 768 cores, the average speedup across
varying number of cores, benchmarks and problem sizes tested being 9.3%.

The New UPC++ DepSpawn Library for Data-Flow Computing 13

The manuscript also describes the challenges that the new limitations im-
posed by UPC++ 1.0 on multithreading pose for our library, which did not
exist in the older version of UPC++, and how we addressed them.

Furthermore, the library has been now made publicly available under an open
source license at https://github.com/UDC-GAC/upcxx_depspawn.

As future work we want to evaluate UPC++ Depspawn in conjunction with
heterogeneous devices typically found in clusters such as GPUs. Developing dis-
tributed BLAS and/or LAPACK libraries on top of UPC++ Depspawn also
seems a useful contribution given the results observed.

Acknowledgements This research was supported by the Ministry of Science
and Innovation of Spain (PID2019-104184RB-I00 / AEI/ 10.13039/501100011033),
and by the Xunta de Galicia co-founded by the European Regional Development
Fund (ERDF) under the Consolidation Programme of Competitive Reference
Groups (ED431C 2021/30). We acknowledge also the support from the Centro
Singular de Investigación de Galicia "CITIC", funded by Xunta de Galicia and
the European Union (European Regional Development Fund- Galicia 2014-2020
Program), by grant ED431G 2019/01. Finally, we acknowledge the Centro de
Supercomputación de Galicia (CESGA) for the use of their computers.

References

1. oneAPI Threading Building Blocks (oneTBB).
https://github.com/oneapi-src/oneTBB, accessed: 2022-03-26

2. Agullo, E., Aumage, O., Faverge, M., Furmento, N., Pruvost, F., Sergent, M.,
Thibault, S.: Harnessing clusters of hybrid nodes with a sequential task-based
programming model. In: Intl. Workshop on Parallel Matrix Algorithms and Appli-
cations (PMAA 2014) (Jul 2014)

3. Augonnet, C., Thibault, S., Namyst, R., Wacrenier, P.: StarPU: a unified platform
for task scheduling on heterogeneous multicore architectures. Concurrency and
Computation: Practice and Experience 23(2), 187–198 (2011)

4. Bachan, J., Baden, S.B., Hofmeyr, S., Jacquelin, M., Kamil, A., Bonachea, D.,
Hargrove, P.H., Ahmed, H.: UPC++: A high-performance communication frame-
work for asynchronous computation. In: 2019 IEEE Intl. Parallel and Distributed
Processing Symposium (IPDPS). pp. 963–973 (May 2019)

5. Bauer, M., Treichler, S., Slaughter, E., Aiken, A.: Legion: Expressing locality and
independence with logical regions. In: Intl. Conf. on High Performance Computing,
Networking, Storage and Analysis. pp. 66:1–66:11. SC’12 (2012)

6. Bonachea, D.: Gasnet specification. Tech. Rep. CSD-02-1207, University of Cali-
fornia at Berkeley, Berkeley, CA, USA (oct 2002)

7. Bonachea, D., Hargrove, P.H.: GASNet-EX: A high-performance, portable commu-
nication library for exascale. In: Languages and Compilers for Parallel Computing.
pp. 138–158. LCPC’19 (2019)

8. Bonachea, D., Kamil, A.: UPC++ v1.0 Specification, Revision 2021.3.0. Tech. Rep.
LBNL-2001388, Lawrence Berkeley National Laboratory (March 2021)

9. Bosilca, G., Bouteiller, A., Danalis, A., Faverge, M., Haidar, A., Herault, T.,
Kurzak, J., Langou, J., Lemarinier, P., Ltaief, H., Luszczek, P., YarKhan, A.,

https://github.com/UDC-GAC/upcxx_depspawn
https://github.com/oneapi-src/oneTBB

14 B. B. Fraguela and D. Andrade

Dongarra, J.: Flexible development of dense linear algebra algorithms on massively
parallel architectures with DPLASMA. In: 2011 IEEE Intl. Symp. on Parallel and
Distributed Processing Workshops and Phd Forum. pp. 1432–1441 (May 2011)

10. Bosilca, G., Bouteiller, A., Danalis, A., Hérault, T., Lemarinier, P., Dongarra,
J.: DAGuE: A generic distributed DAG engine for high performance computing.
Parallel Computing 38(1-2), 37–51 (2012)

11. Bueno, J., Martorell, X., Badia, R.M., Ayguadé, E., Labarta, J.: Implementing
OmpSs support for regions of data in architectures with multiple address spaces.
In: 27th Intl. Conf. on Supercomputing. pp. 359–368. ICS’13 (2013)

12. Burke, M.G., Knobe, K., Newton, R., Sarkar, V.: UPC language specifications,
v1.2. Tech. Rep. LBNL-59208, Lawrence Berkeley National Lab (2005)

13. Cosnard, M., Loi, M.: Automatic task graph generation techniques. In: 28th Annual
Hawaii International Conference on System Sciences. HICSS’28, vol. 2, pp. 113–122
vol.2 (Jan 1995)

14. Fraguela, B.B., Andrade, D.: Easy dataflow programming in clusters with UPC++
DepSpawn. IEEE Transactions on Parallel and Distributed Systems 30(6), 1267–
1282 (June 2019)

15. Fraguela, B.B., Andrade, D.: High-performance dataflow computing in hybrid
memory systems with UPC++ DepSpawn. The Journal of Supercomputing 77(7),
7676–7689 (July 2021)

16. Fraguela, B.B., Bikshandi, G., Guo, J., Garzarán, M.J., Padua, D., von Praun, C.:
Optimization techniques for efficient HTA programs. Parallel Computing 38(9),
465–484 (Sep 2012)

17. González, C.H., Fraguela, B.B.: A framework for argument-based task synchroniza-
tion with automatic detection of dependencies. Parallel Computing 39(9), 475–489
(2013)

18. Reyes, R., Brown, G., Burns, R., Wong, M.: Sycl 2020: More than meets the eye.
In: Intl. Workshop on OpenCL. IWOCL’20 (2020)

19. Slaughter, E., Lee, W., Treichler, S., Bauer, M., Aiken, A.: Regent: A high-
productivity programming language for HPC with logical regions. In: Intl. Conf. for
High Performance Computing, Networking, Storage and Analysis. pp. 81:1–81:12.
SC’15 (2015)

20. Tejedor, E., Farreras, M., Grove, D., Badia, R.M., Almasi, G., Labarta, J.: A
high-productivity task-based programming model for clusters. Concurrency and
Computation: Practice and Experience 24(18), 2421–2448 (2012)

21. Wozniak, J.M., Armstrong, T.G., Wilde, M., Katz, D.S., Lusk, E., Foster, I.T.:
Swift/T: Large-scale application composition via distributed-memory dataflow pro-
cessing. In: 13th IEEE/ACM Intl. Symp. on Cluster, Cloud, and Grid Computing.
pp. 95–102 (May 2013)

22. YarKhan, A., Kurzak, J., Luszczek, P., Dongarra, J.: Porting the PLASMA nu-
merical library to the OpenMP standard. Int. J. Parallel Program. 45(3), 612–633
(2017)

23. Zheng, Y., Kamil, A., Driscoll, M.B., Shan, H., Yelick, K.: UPC++: A PGAS
extension for C++. In: IEEE 28th Intl. Parallel and Distributed Processing Symp.
(IPDPS 2014). pp. 1105–1114 (May 2014)

	The New UPC++ DepSpawn High Performance Library for Data-Flow Computing with Hybrid Parallelism

