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for the grading of publicly available databases such as IDRiD [11], DDR 
[12], or Messidor-2 [5]. In contrast, Table 2 depicts an alternative scale 
that classifies DR into 4 different severity grades and was used for the 
grading of the well known Messidor database [13]. Fig. 1 depicts 
representative examples of images with different grades of DR according 
to the severity scale of Table 1. These examples include color retinog
raphy images of both left and right eyes. 

The diversity of lesions and the complex relations among the 
different severity grades make the grading of DR especially challenging. 
In fact, it has been shown that even clinical specialists tend to disagree in 
the most complex cases [5]. Thus, automated grading methods can also 
be useful by helping the clinicians to provide a more reliable diagnosis. 
In that regard, numerous deep learning approaches have been proposed 
for addressing the detection of DR as a binary classification, i.e. 
grouping the different grades into only two different classes (typically 0, 
1 vs 2,3,4) [9,14]. However, the complete grading of DR represents a 
more challenging and less explored objective, for which there is an 
increasing interest [9]. 

The common approach for the automated grading of DR from color 
retinography is the use of Deep Neural Networks (DNNs) [7,9]. Previous 
works have been typically focused on improving aspects such as the 
network architecture (e.g. using attention mechanisms [15]) or the 
formulation of the training objective (e.g. using novel regularization 
schemes [16]). However, all the works follow the same approach to 
alleviate the scarcity of annotated data, particularly using neural net
works previously pre-trained on an additional annotated dataset of 
natural images (i.e. the ImageNet [17] dataset) [9]. 

The limited amount of annotated data that is usually available in 
medical imaging is a long-standing issue for the application of DNNs in 
the field [9,18]. In this context, the use of neural networks pre-trained 
on the ImageNet dataset has been the go-to approach during several 
years [9,19]. However, while ImageNet pre-training allows to achieve 
successful results in numerous applications, it is still a fully-supervised 
approach that relies on the availability of large amounts of annotated 

natural images. Thus, this approach does not really solve the funda
mental issue of the dependency of DNNs on large amounts of annotated 
data. Instead, it only replaces the lacking annotations in one application 
domain by additional annotated data from another. 

Recently, self-supervised learning has arisen as a promising alter
native to the traditional supervised pre-training approaches [20]. 
Self-supervised learning is based on the use of pretext tasks for which the 
supervisory signals are obtained without involving manual annotations. 
In this case, the networks are typically trained in the prediction of 
hidden portions of the data or hidden relations among different data 
samples. For instance, a DNN can learn about the input domain in a 
self-supervised fashion by restoring noisy samples [21], colorizing 
gray-scale samples [22], or performing instance discrimination via 
contrastive learning [23]. An advantage of these approaches is that the 
pre-training can be easily performed on the same application domain of 
the final target task, given that no manual annotations are required. 
Thus, these approaches can potentially provide more useful high level 
representations than traditional supervised alternatives that are per
formed in natural images. 

A particular free source of supervision that can be found in medical 
imaging is the existence of complementary imaging modalities, i.e. 
different imaging techniques that depict complementary visualizations 
of the same organs or tissues [24]. In modern clinical practice, it is 
common the use of complementary imaging techniques for the assess
ment of the most complex cases, which eases the gathering of multi
modal collections of medical images (i.e. collections of multimodal 
visual data) [25,26]. Traditionally, these multimodal visual data have 
only been used when labels for the images are also available, e.g. 
developing algorithms that make their prediction based on a multimodal 
input [27,28]. However, the differences and similarities among com
plementary modalities represent a potentially rich source of supervision 
in itself, which can be taken advantage of for representation and transfer 
learning purposes. In this regard, the prediction of a target image mo
dality from another input modality has been explored in recent works 
[24,29]. In this case, the aim is the pre-training of a neural network for 
different downstream tasks performed on the same input modality [30, 
31]. However, while the supervision provided by this multimodal pre
diction explicitly teaches the network to recognize the similarities be
tween the modalities, there is no explicit incentive to recognize the 
differences between them. Thus, some relevant knowledge about the 
input image modality may be lacking in the pre-trained networks. 

In general, downstream tasks that require a broad understanding of 
the retinal images, such as the grading of DR, would benefit from pre- 
training approaches that ensure a complete comprehension of the 
input modality. To that aim, we propose a novel self-supervised multi
modal pre-training approach that explicitly teaches the network to 
recognize the common characteristics between modalities as well as the 
characteristics exclusive to the input modality. In this way, the pre- 
trained networks will have a complete comprehension of the input 
domain modality, including all the anatomical and pathological struc
tures that are present in the images. 

The proposed pre-training approach, denoted as Multimodal Image 
Encoding (MIE), is applied on top of a standard convolutional encoder 
commonly used for image classification. The learning of the common 
and exclusive characteristics regarding the input modality is ensured by 
providing two complementary supervisory signals for the training of the 
network, one due to the multimodal prediction of the target modality 
and another due to the reconstruction of the input modality. Likewise, 
the learning of rich representations from these two supervisory signals is 
ensured by a proposed network design that facilitates the disentangle
ment of the common and exclusive features at the output of the con
volutional encoder being pre-trained. 

In this work, MIE is applied as self-supervised pre-training for the 
grading of DR from color retinography. For that purpose, color reti
nography is used as input modality and fluorescein angiography [25] as 
target modality during the training of MIE. Retinography-angiography 

Table 1 
International Clinical Diabetic Retinopathy disease severity scale for the grading 
of DR [10]. NPDR denotes Non Proliferative DR whereas PDR denotes Prolif
erative DR.  

Grade Clinical findings on color retinography 

0 - No apparent 
DR 

No abnormalities 

1 - Mild NPDR Microaneurysms only 
2 - Moderate 

NPDR 
More than just microaneurysms but less than severe NPDR 

3 - Severe NPDR Any of the following but no signs of PDR: 
● More than 20 intraretinal hemorrhages in each of four 
quadrants 
● Definite venous beading in two or more quadrants 
● Prominent intraretinal microvascular abnormalities in one or 
more quadrants 

4 - PDR One or more of the following: 
● Neovascularization 
● Vitreous/preretinal hemorrhage  

Table 2 
Severity scale for the grading of DR on the publicly available Messidor database 
[10].  

Grade Clinical findings on color retinography 

0 - No apparent DR No abnormalities 
1 - Mild DR 5 or less microaneurysms but no hemorrhages 
2 - Moderate DR Any of the followings but no neovascularization: 

● Between 6 and 14 microaneurysms 
● 4 or less hemorrhages 

3 - Severe DR Any of the followings: 
● Neovascularization 
● 15 or more microaneurysms 
● 5 or more hemorrhages  
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Meanwhile, x𝒵 is a complementary representation that encodes the 
characteristics of the input image that cannot be represented in xℬ

because they do not belong to the target modality ℬ. In order to provide 
the training feedback for simultaneously learning the representations xℬ

and x𝒵 , MIE presents two complementary training objectives. One is the 
prediction of the target image modality from the input image x𝒜. The 
other is the reconstruction of the input modality from the intermediate 
representations xℬ and x𝒵 . In this work, the objective is to facilitate the 
grading of DR from retinography using DNNs, hence retinography is 
used as the input modality 𝒜. For the target modality ℬ, we use fluo
rescein angiography, an alternative modality that requires the injection 
of a contrast dye to the patients [25]. The use of this contrast dye pro
vides additional information about the retinal vasculature and related 
lesions, which is useful for the diagnosis of DR [48]. However, as a 
counterpart, some other structures or characteristics are harder to 
appreciate in this modality. Additionally, fluorescein angiography pre
sents the drawback of being an invasive image modality with potential 
side effects due to the required contrast dye. However, in this work, 
fluorescein angiography is only used in the pre-training phase, taking 
advantage of publicly available multimodal image collections. After the 
pre-training phase, the neural networks are fine-tuned in the grading of 
DR using only color retinography. The main visual differences between 
retinography and angiography are depicted in Fig. 4. Additionally, it can 
be seen in this example that there is a relative displacement of the retinal 
structures between the two image modalities. This is because retinog
raphy and fluorescein angiography are not captured at the same time, 
hence there is movement of the patient between the capture of one 
image and the other. In order to fully take advantage of the unlabeled 
multimodal data, MIE uses retinography and fluorescein angiography 
image pairs that are automatically aligned with the methodology pro
posed in Ref. [49]. The aligned image pairs allow the use of pixel-wise 
metrics as loss function for both the target modality prediction and 
the input modality reconstruction. In this regard, the use of pixel-level 
training feedback is an advantage that reduces the necessity of 
training data in comparison to the image-level counterpart [29]. 

2.1.1. Network architecture 
In order to ensure the learning of relevant image patterns and avoid 

trivial solutions, we propose a specific network design for MIE that is 
depicted in Fig. 5. 

In this regard, MIE can be split into two main transformations, F :

𝒜→ℬ,𝒵 and G : ℬ,𝒵→𝒜. The former addresses the simultaneous gen
eration of the target modality ℬ and the complementary information 𝒵, 
whereas the latter addresses the reconstruction of the input modality 𝒜
from the combination of ℬ and 𝒵. In this case, we use an encoder- 
decoder architecture with skip connections for both F and G. Thus, in 
total, the proposed network design presents 4 distinct components: the 
encoder FE, the decoder FD, the encoder GE, and the decoder GD. Among 
these components, FE represents the classification encoder that is pre- 
trained and will be later fine-tuned for the grading of DR. Meanwhile, 
FD, GE, and GD are auxiliary components necessary for performing the 
proposed pre-training approach. During the MIE pre-training, the 
encoder FE learns to recognize relevant patterns from the input image 
modality. In order to learn a rich set of features that completely describe 
the input image contents, the output of the encoder is connected to two 
branches. The first branch connects to the decoder FD that generates the 
prediction x̂ℬ in the target image modality space. This branch is used as 
a means of learning the common features between modalities. In 
contrast, the second branch encodes the features that are exclusive to the 
input image modality, which are necessary for the complete recon
struction of the input image. This reconstruction is performed by the 
encoder GE and the decoder GD that merge back together the common 
and exclusive features. In particular, both the encoded features x̂𝒵 and 
the high level representation extracted by GE are fed to the decoder GD 
that generates the reconstructed image x̂𝒜. In summary, in the proposed 

network design the output of the encoder FE is connected to two different 
branches, producing two possible paths for the forward flow of infor
mation through the network:  

● 1st branch: the information flows through the path FE → FD → GE → 
GD. The aim of this branch is to learn the features that are common 
between modalities.  

● 2nd branch: the information flows through the path FE → GD. The aim 
of this branch is to learn the features that are exclusive to the input 
modality. 

Despite the differences between retinography and angiography, the 
general structure of the images is shared between modalities. Thus, the 
common features must encode an important part of the image contents 
together with their precise spatial distribution. To facilitate the gener
ation of structurally accurate predictions at full resolution, x̂𝒜 and x̂ℬ, 
skip connections are used for the first network branch containing the 
common features. This significantly reduces the information bottleneck 
between each encoder and decoder. However, in this case, the network 
is forced to learn relevant patterns from the data due to the inherent 
complexity of the required multimodal transformation. In the case of the 
second branch containing the exclusive features, the learning of relevant 
features is directly forced by the spatial bottleneck between FE and GD. 
Thus, in this case, no skip connections are used between FE and GD. In 
this regard, our experiments empirically demonstrate that the proposed 
design provides and adequate bottleneck that is enough to avoid an 
identity mapping through the second branch of the network. Thus, the 
features exclusive to the input image modality are successfully learned 
by the network. Additionally, to ensure that this narrower branch is not 
ignored during the training, a gradient block operation is introduced 
between FD and GE. This operation allows the forward flow of infor
mation from FD to GE but blocks the backward flow of training feedback. 
This avoids conflicting feedback through FD, ensuring that the input 
image is not bypassed through the skip connections. 

Regarding the characteristics of the different encoders and decoders, 
we adopt the common VGG [19,38] design for all of them. The particular 
layers of each encoder and decoder are depicted in the diagram of Fig. 6. 

In particular, the convolutions present 3 × 3 kernels and ReLU 
activation functions, the downsampling is performed with strided max 
pooling operations, and the upsampling with transpose convolutions. In 
this case, we adopt a standard VGG-B [38] convolutional encoder for the 
main encoder in the network, FE, which will be reused for the grading of 
DR. To ensure that most of the relevant features are learned in this 
encoder, the other parts of the network present a relatively lower ca
pacity. Particularly, while we keep the same number of downsampling 
and upsampling steps, both the number of layers and number of chan
nels is reduced by half in FD, GE, and GD. 

2.1.2. Network training 
As depicted in Fig. 5, during the training the network receives 

complementary feedback from two different sources. One is the pre
diction of the target image modality and the other is the reconstruction 
of the input modality. Regarding the multimodal prediction, we adopt 
the approach proposed in Ref. [24] using the negative Structural Simi
larity (SSIM) as loss function. Particularly, SSIM [50] is a similarity 
metric that considers the intensity, contrast, and structural differences 
between images. The SSIM value for a pair of pixels (x, y) is obtained 
using a set local statistics as: 

SSIM(x, y) =
(2μxμy + c1) + (2σxy + c2)

(μ2
x + μ2

y + c1)(σ2
x + σ2

y + c2)
(1)  

where μx and μy are the local averages for x and y, respectively, σx and σy 
are the local standard deviations for x and y, respectively, and σxy is the 
local covariance between x and y. The local statistics are computed for 
each pixel by weighting its neighborhood with a Gaussian window of σ 
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classification of the images, always improving the results obtained 
before any pre-training. However, not all the pre-training methods 
provide the same performance. In this regard, MIE represents the best 
alternative, given that it is the best approach in IDRID and a close second 
best in Messidor. Additionally, MIE also provides the highest Accuracy 
on Messidor despite the similar ACA between ImageNet and MIE. This 
difference between Accuracy and ACA is explained by the different 
number of samples among classes on the Messidor dataset. In that re
gard, the obtained results indicate that MIE provides a better perfor
mance in the most numerous classes of this dataset. In contrast, while 
ImageNet pre-training obtained the best performance in Messidor, it was 
the worse pre-training in IDRiD. This shows that the features learned 
using this approach do not adapt equally well to all the possible sce
narios in retinal imaging. In this regard, despite of being a limited 
domain, retinal images still present a high variability due to the different 
acquisition devices and procedures as well as the individuals ethnicity. 
Additionally, the distribution of grades and even the grading criteria can 
vary among datasets. In this case, IDRiD and Messidor datasets present 
key differences in all these aspects, as described in Section 2.2.1. 

3.3. Transfer learning with full network fine-tuning 

The full potential of MIE for transfer learning is studied by per
forming a full network fine-tuning in the grading of DR. For the IDRiD 
dataset we use the default training/test split and for the Messidor dataset 
we use a 5-fold cross-validation approach. In these experiments, 25% of 
the training set is used as validation subset to apply the learning rate 
schedule and early stopping. Given the small size of the IDRiD dataset, in 
order to account by the variability in the selection of the validation 
samples, we perform 4 training repetitions following a 4-fold procedure 
for the training/validation splits. Tables 5 and 6 depict the results of 
these experiments for the IDRID and Messidor datasets, respectively, 
using the different studied approaches (Random, ImageNet, MR, and 
MIE). Additionally, Figs. 8 and 9 depict the average confusion matrix for 
each method and dataset. 

With regards to the detection of DR and rDR, Figs. 10 and 11 depict 
the ROC curves for the different pre-training approaches on the IDRiD 
and Messidor datasets, respectively. 

Similarly to the previous experiments, the results show a large per
formance gap between Random and the different pre-training 

alternatives. Thus, the studied pre-training approaches not only provide 
useful features readily available for the classification but also facilitate 
the complete training of the network using task-specific annotated 
datasets. In this case, MIE represents the best alternative for both 
datasets, outperforming MR as well as ImageNet pre-training. In the 
IDRiD dataset, MR provides a slightly higher mean rDR AUC than MIE. 
In this regard, a higher rDR AUC indicates a better separation between 
grades \{0,1\} and grades \{2,3,4\}, which corresponds with the 
detection of rDR. However, the difference in rDR AUC is small and, 
overall, the results indicate a better performance of MIE. 

The comparisons shows that MIE leverages the domain-specific 
knowledge provided by the unlabeled multimodal data to a greater 
extent than MR. Additionally, in comparison to the supervised pre- 
training on a different domain (i.e. the natural images of ImageNet), 
pre-training on the same domain using MIE results in better transfer 
learning performance even when the number of pre-training samples is 
several orders of magnitude lower. 

With regards to ImageNet pre-training, in this case a similar per
formance, in relative terms, is achieved for IDRiD and Messidor. The 
performance gap between datasets (in relative terms) that was observed 
in Section 3.2 is reduced when the ImageNet pre-trained networks are 
fine-tuned for the specific characteristics of each dataset. 

Regarding the performance for each class, all the pre-training alter
natives produce a similar pattern in the confusion matrices. In that 
sense, in the IDRiD dataset, MIE outperforms the other pre-training al
ternatives in 3 out of 5 classes, whereas, in the Messidor dataset, MIE 
consistently outperforms the other alternatives across all the classes. 

3.4. State-of-the-art comparison 

In this section, we provide a comparison of our proposal against 
relevant state-of-the-art methods for the grading of DR. The proposed 
methodology for these comparisons, MIE-DR, corresponds to performing 
a complete network fine-tuning for the grading of DR after the pre- 
training using MIE. For each dataset, the comparison is performed 
using the same evaluation metrics that are used in previous works. 

First, Tables 7 and 8 depict the state-of-the-art comparisons for 
IDRiD and Messidor, respectively. In this case, the results of MIE 
correspond to the same experiments that are performed in Section 3.3. 

Then, in order to compare with other relevant works in the literature, 

Table 3 
Results for DR grading on IDRiD using the pre-trained networks as fixed feature extractors. Bold denotes the best result for each evaluation metric.  

Method Pre-training QWK ACA Accuracy DR AUC rDR AUC 

Random None 0.00 20.00 33.01 35.81 36.58 
ImageNet Supervised 58.66 43.49 53.40 87.08 88.50 
MR Self-supervised 66.42 43.92 60.19 87.38 91.51 
MIE (Proposed) Self-supervised 71.05 46.30 61.17 91.90 94.59  

Table 4 
Results for DR grading on Messidor using the pre-trained networks as fixed feature extractors. Bold denotes the best result for each evaluation metric.  

Method Pre-training QWK ACA Accuracy DR AUC rDR AUC 

Random None 0.00 ± 0.00 25.0 ± 0.00 46.08 ± 0.10 62.14 ± 2.90 61.64 ± 3.98 
ImageNet Supervised 71.61 ± 2.18 54.76 ± 1.96 63.69 ± 1.89 85.53 ± 2.28 89.6 ± 2.47 
MR Self-supervised 63.87 ± 2.65 47.69 ± 1.26 62.51 ± 1.43 81.37 ± 1.89 86.39 ± 2.61 
MIE (Proposed) Self-supervised 70.77 ± 1.86 54.18 ± 3.20 66.05 ± 2.74 84.39 ± 2.60 89.13 ± 2.10  

Table 5 
Results after performing transfer learning for DR grading on IDRiD. Bold denotes the best result in terms of mean value for each evaluation metric.  

Method Pre-training QWK ACA Accuracy DR AUC rDR AUC 

Random None 14.97 ± 6.89 22.89 ± 2.12 36.41 ± 3.53 68.58 ± 1.85 65.77 ± 1.79 
ImageNet Supervised 71.93 ± 4.77 49.97 ± 1.9 64.08 ± 2.66 91.35 ± 1.84 93.38 ± 1.0 
MR Self-supervised 72.97 ± 1.69 46.24 ± 2.9 59.95 ± 1.26 91.74 ± 0.67 94.46 ± 0.46 
MIE (Proposed) Self-supervised 76.44 ± 1.54 51.59 ± 2.36 65.05 ± 1.19 93.38 ± 0.37 94.36 ± 0.21  
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image modality is also evident by the visual analysis of the reconstructed 
images in Fig. 7. 

Despite the satisfactory results, MIE-DR also presents some limita
tions that are common to previous works on the grading of DR, such as 
the uneven performance among classes (Figs. 8 and 9). This is mainly 
due to the unbalanced distribution of samples in the training data and 
the existence of particular challenging cases, e.g. the distinction be
tween grades 0 and 1 that depends on the presence of tiny micro
aneurysms. In this regard, the focus of this work is exclusively on 
providing a novel pre-training alternative using unlabeled multimodal 
data. This is the first work addressing the grading of DR that focus on this 
important aspect of the methodology. However, achieving a balanced 
performance among classes without compromising the overall results is 
an important objective that should be considered in future works. 
Additionally, aiming at improving the classification of the most chal
lenging cases, future works could explore multi-task learning ap
proaches by simultaneously performing the segmentation of retinal 
lesions together with the grading of DR. In this regard, the generation of 
lesions maps could also be used as a means of improving the interpret
ability of the learned models. Finally, these future works could take 
advantage of the results presented in this work and build novel meth
odologies upon MIE pre-trained networks, for both the grading of DR 
and the segmentation of retinal lesions. 

Another important future research direction is to adapt the idea of 
MIE to other relevant image modalities such as, e.g., OCT or OCT-A, or 
even different image modalities from other medical domains. In that 
regard, it would be worth exploring the adaption of the proposed idea to 
3D multimodal data, which is also common in medicine. 

5. Conclusions 

The grading of DR is usually approached by reusing networks pre- 
trained for supervised image classification on the ImageNet dataset. In 
this context, we proposed MIE as a novel self-supervised alternative that 
takes advantage of unlabeled multimodal images pairs for pre-training 
the networks. In contrast to previous multimodal pre-training 
methods, our proposal explicitly teaches the networks to recognize the 
common characteristics between modalities as well as the characteris
tics exclusive to the input modality. This ensures a complete under
standing of the retina in the same image modality that will be later used 
for the grading of DR. 

The proposed methodology is evaluated on several public datasets 
under different experimental settings. First, the performed analyses 
indicate that MIE successfully learns and disentangles the common and 
exclusive characteristics between modalities. Second, the transfer 
learning results show that, overall, MIE outperforms previous multi
modal pre-training methods as well as the commonly used ImageNet 
pre-training. This is corroborated by the state-of-the-art comparison 
where our proposal is competitive and usually outperforms previous 
works. These satisfactory results open the door to further developments 
in the detection and grading of DR, building upon neural networks that 
are successfully pre-trained on unlabeled multimodal data. 
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