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Diabetic retinopathy is an increasingly prevalent eye disorder that can lead to severe vision impairment. The
severity grading of the disease using retinal images is key to provide an adequate treatment. However, in order to
learn the diverse patterns and complex relations that are required for the grading, deep neural networks require
very large annotated datasets that are not always available. This has been typically addressed by reusing net-
works that were pre-trained for natural image classification, hence relying on additional annotated data from a
different domain. In contrast, we propose a novel pre-training approach that takes advantage of unlabeled
multimodal visual data commonly available in ophthalmology.

The use of multimodal visual data for pre-training purposes has been previously explored by training a
network in the prediction of one image modality from another. However, that approach does not ensure a broad
understanding of the retinal images, given that the network may exclusively focus on the similarities between
modalities while ignoring the differences. Thus, we propose a novel self-supervised pre-training that explicitly
teaches the networks to learn the common characteristics between modalities as well as the characteristics that
are exclusive to the input modality. This provides a complete comprehension of the input domain and facilitates
the training of downstream tasks that require a broad understanding of the retinal images, such as the grading of
diabetic retinopathy.

To validate and analyze the proposed approach, we performed an exhaustive experimentation on different
public datasets. The transfer learning performance for the grading of diabetic retinopathy is evaluated under
different settings while also comparing against previous state-of-the-art pre-training approaches. Additionally, a
comparison against relevant state-of-the-art works for the detection and grading of diabetic retinopathy is also
provided. The results show a satisfactory performance of the proposed approach, which outperforms previous
pre-training alternatives in the grading of diabetic retinopathy.

1. Introduction

Diabetic Retinopathy (DR) is a complication of the diabetes affecting
the retina, representing one of the leading causes of visual disability
worldwide [1,2]. The early detection of the disease and the accurate
grading of its severity are important steps towards providing the most
adequate treatment and avoiding permanent vision loss [3,4]. However,
the complex and diverse effects of this disease in the retina make the
grading a very tedious and challenging task [5]. Simultaneously, the
ever-increasing global prevalence of diabetes also makes the diagnosis of
DR an important challenge in terms of health resources [2,6]. This is
motivating the development of automated methods for the detection and
severity grading of DR [7], which will facilitate the efficient screening of
the population at risk [4].

In clinical practice, the detection and severity grading of DR is
typically performed through the visual examination of the eye fundus
using imaging techniques such as color retinography (or color fundus
imaging) [3,8]. This retinal imaging modality is an affordable and
widely available technique that allows the study of the retinal anatomy
and the detection of pathological structures related to DR [8]. In this
regard, the severity of DR is given by the presence of different lesions in
the retina, being necessary to consider both the type and the number of
lesions for the grading of DR [9]. Given the complexity of the disease,
different severity scales have been clinically proposed and are being
used in different countries [9]. For instance, Table 1 depicts the Inter-
national Clinical Diabetic Retinopathy (ICDR) severity scale [10], which
classifies DR into 5 different severity grades and is commonly used in
recent literature on the grading of DR. This severity scale has been used
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Table 1

International Clinical Diabetic Retinopathy disease severity scale for the grading
of DR [10]. NPDR denotes Non Proliferative DR whereas PDR denotes Prolif-
erative DR.

Grade Clinical findings on color retinography

0 - No apparent No abnormalities

DR

1 - Mild NPDR Microaneurysms only

2 - Moderate More than just microaneurysms but less than severe NPDR
NPDR

3 - Severe NPDR Any of the following but no signs of PDR:

@ More than 20 intraretinal hemorrhages in each of four
quadrants

@ Definite venous beading in two or more quadrants

@ Prominent intraretinal microvascular abnormalities in one or
more quadrants

One or more of the following:

@ Neovascularization

@ Vitreous/preretinal hemorrhage

4 - PDR

for the grading of publicly available databases such as IDRiD [11], DDR
[12], or Messidor-2 [5]. In contrast, Table 2 depicts an alternative scale
that classifies DR into 4 different severity grades and was used for the
grading of the well known Messidor database [13]. Fig. 1 depicts
representative examples of images with different grades of DR according
to the severity scale of Table 1. These examples include color retinog-
raphy images of both left and right eyes.

The diversity of lesions and the complex relations among the
different severity grades make the grading of DR especially challenging.
In fact, it has been shown that even clinical specialists tend to disagree in
the most complex cases [5]. Thus, automated grading methods can also
be useful by helping the clinicians to provide a more reliable diagnosis.
In that regard, numerous deep learning approaches have been proposed
for addressing the detection of DR as a binary classification, i.e.
grouping the different grades into only two different classes (typically O,
1 vs 2,3,4) [9,14]. However, the complete grading of DR represents a
more challenging and less explored objective, for which there is an
increasing interest [9].

The common approach for the automated grading of DR from color
retinography is the use of Deep Neural Networks (DNNs) [7,9]. Previous
works have been typically focused on improving aspects such as the
network architecture (e.g. using attention mechanisms [15]) or the
formulation of the training objective (e.g. using novel regularization
schemes [16]). However, all the works follow the same approach to
alleviate the scarcity of annotated data, particularly using neural net-
works previously pre-trained on an additional annotated dataset of
natural images (i.e. the ImageNet [17] dataset) [9].

The limited amount of annotated data that is usually available in
medical imaging is a long-standing issue for the application of DNNs in
the field [9,18]. In this context, the use of neural networks pre-trained
on the ImageNet dataset has been the go-to approach during several
years [9,19]. However, while ImageNet pre-training allows to achieve
successful results in numerous applications, it is still a fully-supervised
approach that relies on the availability of large amounts of annotated

Table 2
Severity scale for the grading of DR on the publicly available Messidor database
[10].

Grade Clinical findings on color retinography

No abnormalities

5 or less microaneurysms but no hemorrhages
Any of the followings but no neovascularization:
@ Between 6 and 14 microaneurysms

@ 4 or less hemorrhages

Any of the followings:

@ Neovascularization

@ 15 or more microaneurysms

@ 5 or more hemorrhages

0 - No apparent DR
1 - Mild DR
2 - Moderate DR

3 - Severe DR
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natural images. Thus, this approach does not really solve the funda-
mental issue of the dependency of DNNs on large amounts of annotated
data. Instead, it only replaces the lacking annotations in one application
domain by additional annotated data from another.

Recently, self-supervised learning has arisen as a promising alter-
native to the traditional supervised pre-training approaches [20].
Self-supervised learning is based on the use of pretext tasks for which the
supervisory signals are obtained without involving manual annotations.
In this case, the networks are typically trained in the prediction of
hidden portions of the data or hidden relations among different data
samples. For instance, a DNN can learn about the input domain in a
self-supervised fashion by restoring noisy samples [21], colorizing
gray-scale samples [22], or performing instance discrimination via
contrastive learning [23]. An advantage of these approaches is that the
pre-training can be easily performed on the same application domain of
the final target task, given that no manual annotations are required.
Thus, these approaches can potentially provide more useful high level
representations than traditional supervised alternatives that are per-
formed in natural images.

A particular free source of supervision that can be found in medical
imaging is the existence of complementary imaging modalities, i.e.
different imaging techniques that depict complementary visualizations
of the same organs or tissues [24]. In modern clinical practice, it is
common the use of complementary imaging techniques for the assess-
ment of the most complex cases, which eases the gathering of multi-
modal collections of medical images (i.e. collections of multimodal
visual data) [25,26]. Traditionally, these multimodal visual data have
only been used when labels for the images are also available, e.g.
developing algorithms that make their prediction based on a multimodal
input [27,28]. However, the differences and similarities among com-
plementary modalities represent a potentially rich source of supervision
in itself, which can be taken advantage of for representation and transfer
learning purposes. In this regard, the prediction of a target image mo-
dality from another input modality has been explored in recent works
[24,29]. In this case, the aim is the pre-training of a neural network for
different downstream tasks performed on the same input modality [30,
31]. However, while the supervision provided by this multimodal pre-
diction explicitly teaches the network to recognize the similarities be-
tween the modalities, there is no explicit incentive to recognize the
differences between them. Thus, some relevant knowledge about the
input image modality may be lacking in the pre-trained networks.

In general, downstream tasks that require a broad understanding of
the retinal images, such as the grading of DR, would benefit from pre-
training approaches that ensure a complete comprehension of the
input modality. To that aim, we propose a novel self-supervised multi-
modal pre-training approach that explicitly teaches the network to
recognize the common characteristics between modalities as well as the
characteristics exclusive to the input modality. In this way, the pre-
trained networks will have a complete comprehension of the input
domain modality, including all the anatomical and pathological struc-
tures that are present in the images.

The proposed pre-training approach, denoted as Multimodal Image
Encoding (MIE), is applied on top of a standard convolutional encoder
commonly used for image classification. The learning of the common
and exclusive characteristics regarding the input modality is ensured by
providing two complementary supervisory signals for the training of the
network, one due to the multimodal prediction of the target modality
and another due to the reconstruction of the input modality. Likewise,
the learning of rich representations from these two supervisory signals is
ensured by a proposed network design that facilitates the disentangle-
ment of the common and exclusive features at the output of the con-
volutional encoder being pre-trained.

In this work, MIE is applied as self-supervised pre-training for the
grading of DR from color retinography. For that purpose, color reti-
nography is used as input modality and fluorescein angiography [25] as
target modality during the training of MIE. Retinography-angiography
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(d) Grade 3

(e) Grade 4

(i) Grade 3 (j) Grade 4

Fig. 1. Examples of color retinography images for different grades of DR according to the severity scale depicted in Table 1 [10]. These examples are taken from the
test set of the public IDRiD dataset [11] and include both left and right eyes. In particular, ((a),(c),(d),(e),(f),(h),(i)) represent left eyes whereas ((b),(g),(j)) represent
right eyes. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

pairs of unlabeled images can be easily obtained due to the common use
of this multimodal pair in clinical practice for decades [25] worldwide.
Nevertheless, after the self-supervised multimodal pre-training, the
networks only require the input retinography for the subsequent grading
of DR. The main contributions of this work as summarized as follow:

@ A novel self-supervised pre-training approach for learning from
multimodal visual data in medical imaging is proposed. To the best
of our knowledge, this is the first work that proposes a novel self-
supervised alternative to ImageNet pre-training for the grading of
DR.

@ The proposed network design disentangles the common and exclu-
sive features regarding the input modality and allows the learning of
rich representations from the unlabeled multimodal visual data.
Additionally, the proposed approach can be applied on top of a
standard convolutional encoder for image classification.

@ The transfer learning performance for the detection and grading of
DR is evaluated on several datasets and under different experimental
settings. All the experiments are performed on public datasets, for
both the pre-training (Isfahan MISP [26]) and the grading of DR
(Messidor [13], IDRiD [11], EyePACS-Kaggle [32]).

@ An exhaustive comparison against different alternatives, including
ImageNet pre-training and the previous state-of-the-art multimodal
approach is performed. Additionally, a comparison against relevant
state-of-the-art works for the detection and grading of DR is also
provided.

1.1. State-of-the-art for DR grading

In this section, we provide a more detailed discussion about relevant
works on the detection or grading of DR. The automated diagnosis of DR
has been previously addressed in numerous works using classical ap-
proaches for image processing and analysis [7,33]. In that regard, a
classical pipeline for the automated diagnosis of DR usually contains the
following steps: image pre-processing, extraction of anatomical struc-
tures, extraction of relevant features, and feature-based image classifi-
cation [7,33].

The objective of the pre-processing stage [7] is to facilitate the
subsequent extraction of anatomical structures and relevant features for

the diagnosis. For that purpose, illumination correction [34], contrast
enhancement [34,35], and noise or artifact reduction [35] have been
commonly performed [7,34,36]. Meanwhile, the subsequent extraction
of anatomical structures is usually performed with two different objec-
tives. Firstly, this can be used as an intermediate step to facilitate the
extraction of other anatomical structures or relevant lesions [7,34,37].
For instance, the localization or segmentation of the optic disc is typi-
cally used as an intermediate step in the detection of bright lesions such
as exudates [34], whereas the segmentation of the blood vessels is useful
for the detection of red lesions such as hemorrhages or microaneurysms
[371. Secondly, some anatomical structures can be directly used for the
extraction of anatomical features that are relevant for the diagnosis of
DR, such as vessel areas [33,35] or vessel bifurcation points [34,35].

Besides the vascular features, the main clinical characteristics that
are useful for the classification of the images are those related to the
presence of lesions such as microaneurysms, hemorrhages, or exudates
[33,37]. In this regard, the detection of these lesions can be directly used
for the classification of the images using clinical severity scales (such as
the ones depicted in Tables 1 and 2) as a fixed set of rules for the grading
[37]. Nevertheless, the presence and size of the lesions can be also used
as individual features for the later classification of the images using
machine learning techniques [34,35]. Additionally, non-clinical fea-
tures have also been used in several works, including e.g. texture fea-
tures or entropy measures [34].

With regards to the feature-based classification stage, different ma-
chine learning techniques have been used, such as Support Vector Ma-
chines (SVM) [7,34,35], Decision Trees [34], Neural Networks [7,34],
or Random Forests [7,33]. In that regard, currently, DNNs represent the
most common approach for the detection and grading of DR. In contrast
to previous machine learning alternatives, DNNs avoid the use ad-hoc
image features and allow to directly classify the images in a single
step. However, the use of pre-processing techniques to facilitate the
recognition of the main characteristics in the images is still widely
extended [9].

Regarding the use of DNNs, standard classification networks, such as
VGG [38], ResNet [39], or EfficientNet [40] are commonly used [9,41].
However, some specific variations of these networks have also been
proposed. For instance, Wu et al. [42] propose a dual design consisting
of coarse and fine subnetworks that perform binary and multi-class
classification, respectively. Other common variations are the addition
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of attention layers [42] or novel attention blocks that can be placed on
top of standard networks [15,43]. These blocks are usually inspired by
the Convolutional Block Attention Modules [44] that perform channel
and spatial-wise attention. In particular, He et al. [15] propose to
perform attention over groups of features that aim at representing the
different categories that must be predicted. Also, in the context of the
joint diagnosis of DR and Diabetic Macular Edema, Li et al. [43] propose
to perform cross-disease attention over diseases-specific features.

Regarding the training objective, the most common approach is the
use of cross-entropy loss for multi-class classification [9]. However, this
area has also been the focus of several proposals, particularly taking
advantage of the fact that the classes can be ordered by their severity. In
this regard, de la Torre et al. [45] propose the use of Quadratic Weighted
Kappa, which is commonly used for the evaluation, as loss function. This
loss assigns a greater penalty when the predicted class is more distant
from the target label. In contrast, Aradjo et al. [46] take advantage of the
order among classes to model each individual prediction as a Gaussian
distribution, hence also giving an estimate of the uncertainty in the form
of the predicted variance. Differently, Galdran et al. [16] propose a
regularization approach that allows to set the desired cost associated to
each possible error in a confusion matrix. Also for regularization pur-
poses, Tu et al. [47] propose the prediction of lesion maps at a reduced
scale together with the grading.

Regarding the initialization or pre-training of the networks, all the
previous works rely on the classical fully-supervised ImageNet pre-
training [9]. Thus, our work is the first to explore a novel
self-supervised alternative using unlabeled data from the same domain.
In particular, our proposal takes advantage of unlabeled multimodal
image pairs that are common in ophthalmology [25,26].

The remainder of the manuscript is structured as follows. The ma-
terials and methods that are used in this work are described in Section 2.
This section includes (Section 2.1) the methodology for the proposed
pre-training as well as (Section 2.2) the methodology for the grading of
DR. The experiments and results are presented in Section 3. A discussion
of the obtained results is provided in Section 4 and, finally, conclusions
are drawn in Section 5.

2. Materials and methods

This work presents a novel self-supervised pre-training as well as a
complete methodology for the grading of DR in color retinography using
DNNs. The proposed methodology for the grading of DR can be split into
two different parts, which are depicted in the diagram of Fig. 2.First, a
neural network is pre-trained using the proposed MIE pre-training using
unlabeled multimodal retinal images. In this regard, the proposed pre-
training uses unlabeled image pairs consisting of fluorescein angiog-
raphy and color retinography, hence it does not requires any labeled
data. Then, the pre-trained neural network is fine-tuned for the grading
of DR. This fine-tuning is performed using labeled color retinography
images and standard supervised approaches. Finally, after the pre-
training and fine-tuning phases, the neural network is able to make a
prediction on the grading of DR using only a color retinography image as

Pre-training task: Multimodal image encoding
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input.

2.1. Multimodal image encoding

In contrast to previous approaches that explored the use of multi-
modal images for self-supervised learning [24], MIE explicitly aims at
learning both the features that are common between modalities as well
as the features that are exclusive to the input image modality. This re-
sults in a large variety of learned patterns that completely describe the
desired image modality and can be taken advantage of for any down-
stream tasks performed on the same modality.

In medical imaging, it is typical to use complementary image mo-
dalities that not only change the appearance of the different organs and
tissues, but also allow the visualization of completely different struc-
tures or properties of the tissues. This is typically achieved by the use of
either completely different image acquisition technologies or injected
contrasts dyes [25]. Thus, considering two complementary image mo-
dalities of this kind, .4 and B, it is expected that, while most of the
content is common between modalities, some relevant structures may
only be appreciated in one of the modalities, e.g. A. In this case, it could
be possible to train a neural network in the prediction of modality 5
from modality A4, such as in Ref. [24]. However, given that some rele-
vant structures or properties of the input modality .A are missing on the
target modality 5, the network may ignore these characteristics exclu-
sive to A and focus on learning just the characteristics that are common
between modalities. Thus, this kind of approach can potentially discard
valuable patterns useful for representation learning purposes and
transfer learning towards different downstream tasks.

A conceptual diagram of the proposed pre-training approach is
depicted in Fig. 3. The aim of MIE is to ensure that the network learns all
the characteristics of the input modality .4 during the pre-training phase.
For that purpose, MIE defines a new domain Z that aims at encoding the
characteristics of modality A that are missing in modality 5. Then, given
any input image x4 € A, the network learns to generate two comple-
mentary representations, xz € B and xz € Z, which together provide a
complete representation of the input image contents. In particular, x; is
the predicted representation of the input image in the target modality 5.

, Target Modality |

Prediction

*.. Input Modality |
| Reconstruction |

being pre-trained

; ]
i Neural network |
i i
i H

Fig. 3. Conceptual diagram of the proposed MIE pre-training. .4 represents the
input modality, B represents the target modality, and Z represents a new
domain containing the characteristics of .A that do not belong to B.

Target task: Grading of diabetic retinopathy

MIE Pre-training

DNN

Unlabeled multimodal data
(Two modalities)

DR Grading Fine-tuning

Labeled data
(One modality)

Transfer Learning

Fig. 2. Diagram of the proposed methodology for the grading of DR.
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Meanwhile, xz is a complementary representation that encodes the
characteristics of the input image that cannot be represented in xz
because they do not belong to the target modality . In order to provide
the training feedback for simultaneously learning the representations x5
and xz, MIE presents two complementary training objectives. One is the
prediction of the target image modality from the input image x4. The
other is the reconstruction of the input modality from the intermediate
representations xz and xz. In this work, the objective is to facilitate the
grading of DR from retinography using DNNs, hence retinography is
used as the input modality .A. For the target modality B, we use fluo-
rescein angiography, an alternative modality that requires the injection
of a contrast dye to the patients [25]. The use of this contrast dye pro-
vides additional information about the retinal vasculature and related
lesions, which is useful for the diagnosis of DR [48]. However, as a
counterpart, some other structures or characteristics are harder to
appreciate in this modality. Additionally, fluorescein angiography pre-
sents the drawback of being an invasive image modality with potential
side effects due to the required contrast dye. However, in this work,
fluorescein angiography is only used in the pre-training phase, taking
advantage of publicly available multimodal image collections. After the
pre-training phase, the neural networks are fine-tuned in the grading of
DR using only color retinography. The main visual differences between
retinography and angiography are depicted in Fig. 4. Additionally, it can
be seen in this example that there is a relative displacement of the retinal
structures between the two image modalities. This is because retinog-
raphy and fluorescein angiography are not captured at the same time,
hence there is movement of the patient between the capture of one
image and the other. In order to fully take advantage of the unlabeled
multimodal data, MIE uses retinography and fluorescein angiography
image pairs that are automatically aligned with the methodology pro-
posed in Ref. [49]. The aligned image pairs allow the use of pixel-wise
metrics as loss function for both the target modality prediction and
the input modality reconstruction. In this regard, the use of pixel-level
training feedback is an advantage that reduces the necessity of
training data in comparison to the image-level counterpart [29].

2.1.1. Network architecture

In order to ensure the learning of relevant image patterns and avoid
trivial solutions, we propose a specific network design for MIE that is
depicted in Fig. 5.

In this regard, MIE can be split into two main transformations, F :
A—-B, Z and G : B, Z—A. The former addresses the simultaneous gen-
eration of the target modality B and the complementary information Z,
whereas the latter addresses the reconstruction of the input modality A
from the combination of B and Z. In this case, we use an encoder-
decoder architecture with skip connections for both F and G. Thus, in
total, the proposed network design presents 4 distinct components: the
encoder Fg, the decoder Fp, the encoder G, and the decoder Gp. Among
these components, Fg represents the classification encoder that is pre-
trained and will be later fine-tuned for the grading of DR. Meanwhile,
Fp, Gg, and Gp are auxiliary components necessary for performing the
proposed pre-training approach. During the MIE pre-training, the
encoder Fg learns to recognize relevant patterns from the input image
modality. In order to learn a rich set of features that completely describe
the input image contents, the output of the encoder is connected to two
branches. The first branch connects to the decoder Fp that generates the
prediction Xp in the target image modality space. This branch is used as
a means of learning the common features between modalities. In
contrast, the second branch encodes the features that are exclusive to the
input image modality, which are necessary for the complete recon-
struction of the input image. This reconstruction is performed by the
encoder Gg and the decoder Gp that merge back together the common
and exclusive features. In particular, both the encoded features Xz and
the high level representation extracted by Gg are fed to the decoder Gp
that generates the reconstructed image X 4. In summary, in the proposed
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network design the output of the encoder Ff is connected to two different
branches, producing two possible paths for the forward flow of infor-
mation through the network:

@ 1st branch: the information flows through the path Fg — Fp — G —
Gp. The aim of this branch is to learn the features that are common
between modalities.

@ 2nd branch: the information flows through the path Fg — Gp. The aim
of this branch is to learn the features that are exclusive to the input
modality.

Despite the differences between retinography and angiography, the
general structure of the images is shared between modalities. Thus, the
common features must encode an important part of the image contents
together with their precise spatial distribution. To facilitate the gener-
ation of structurally accurate predictions at full resolution, X 4 and Xp,
skip connections are used for the first network branch containing the
common features. This significantly reduces the information bottleneck
between each encoder and decoder. However, in this case, the network
is forced to learn relevant patterns from the data due to the inherent
complexity of the required multimodal transformation. In the case of the
second branch containing the exclusive features, the learning of relevant
features is directly forced by the spatial bottleneck between Fr and Gp.
Thus, in this case, no skip connections are used between Fg and Gp. In
this regard, our experiments empirically demonstrate that the proposed
design provides and adequate bottleneck that is enough to avoid an
identity mapping through the second branch of the network. Thus, the
features exclusive to the input image modality are successfully learned
by the network. Additionally, to ensure that this narrower branch is not
ignored during the training, a gradient block operation is introduced
between Fp and Gg. This operation allows the forward flow of infor-
mation from Fp to Gg but blocks the backward flow of training feedback.
This avoids conflicting feedback through Fp, ensuring that the input
image is not bypassed through the skip connections.

Regarding the characteristics of the different encoders and decoders,
we adopt the common VGG [19,38] design for all of them. The particular
layers of each encoder and decoder are depicted in the diagram of Fig. 6.

In particular, the convolutions present 3 x 3 kernels and ReLU
activation functions, the downsampling is performed with strided max
pooling operations, and the upsampling with transpose convolutions. In
this case, we adopt a standard VGG-B [38] convolutional encoder for the
main encoder in the network, Fg, which will be reused for the grading of
DR. To ensure that most of the relevant features are learned in this
encoder, the other parts of the network present a relatively lower ca-
pacity. Particularly, while we keep the same number of downsampling
and upsampling steps, both the number of layers and number of chan-
nels is reduced by half in Fp, Gg, and Gp.

2.1.2. Network training

As depicted in Fig. 5, during the training the network receives
complementary feedback from two different sources. One is the pre-
diction of the target image modality and the other is the reconstruction
of the input modality. Regarding the multimodal prediction, we adopt
the approach proposed in Ref. [24] using the negative Structural Simi-
larity (SSIM) as loss function. Particularly, SSIM [50] is a similarity
metric that considers the intensity, contrast, and structural differences
between images. The SSIM value for a pair of pixels (x, y) is obtained
using a set local statistics as:

(2up, +c1) + (204 + )

SSIM (x,y) = —
) = et TNt @ )

@

where i, and p,, are the local averages for x and y, respectively, ox and o,
are the local standard deviations for x and y, respectively, and oy, is the
local covariance between x and y. The local statistics are computed for
each pixel by weighting its neighborhood with a Gaussian window of ¢
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Fig. 4. Representative example of color retinography and fluorescein angiography for the same eye. The main anatomical structures in the retina and relevant lesions
are highlighted. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

———> Forward flow of information

--------- S
--------- >

Training feedback from the prediction of the target modality
Training feedback from the reconstruction of the original modality

Fig. 5. Proposed network architecture for the pre-training of a convolutional encoder using MIE.

= 1.5 [50]. ¢; and c5 are small constants to avoid instability when the
denominator is close to zero [50].

Then, the loss for the prediction of the target image modality is
defined as:

1 N -~
Ly=—5 > SSIM(Xp 0, X5,) @

where N denotes the number of pixels in the images.

Given that both the input image reconstruction and the multimodal
prediction provide a training target of similar characteristics, we also
use the negative SSIM as loss function for the input image reconstruc-
tion. Thus, this loss is defined as:

1 c N ~
£ = g e D S Runes Nane) @

where C denotes the number of channels in the color images.
Finally, the training is performed by the optimization of the joint

training loss defined as:

Lyie = La+ Lp (C))

2.1.3. Datasets

The pre-training is performed using a public multimodal dataset of
retinal images provided by Isfahan MISP [26]." This dataset is composed
of 59 multimodal image pairs consisting of a color retinography and a
fluorescein angiography image of the same eye. Half of these image pairs
correspond to patients diagnosed with DR whereas the other half
correspond to healthy individuals. However, given that the proposed
MIE pre-training only requires unlabeled data, the labels regarding the
presence of DR are not used. The retinography-angiography pairs are
automatically aligned following the methodology proposed in Ref. [49].

! https://misp.mui.ac.ir/en/node/1498.


https://misp.mui.ac.ir/en/node/1498

A.S. Hervella et dl.

| | | II' 512 ll
512 256
256
128
64

R Sl =

Y

Computers in Biology and Medicine 143 (2022) 105302
256
256
256 256
128 128 128
64 64 64

321 32

323

[l Convolution 3x3, stride 1 + RelLU
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—3» Skip connection + concatenation

Fig. 6. Detailed diagram of the proposed network design for MIE. Each block represents the output of a layer in the network and the numbers above or below the
blocks denote the number of output channels for the corresponding layers. The number of input channels for each layer is the same as the number of output channels
of the previous layer or the summation of output channels if there is a concatenation operation. From left to right: Encoder Fg, Decoder Fp, Encoder Gg, and

Decoder Gp.

2.1.4. Training details

The training is performed on 50 image pairs and the remainder 9
pairs are used for validation purposes. The neural network is randomly
initialized following the approach proposed by He et al. [51]. Then, the
training is performed using the Adam optimization algorithm [52] with
the standard decay rates of 1 = 0.9 and f» = 0.999. The training is
performed at a constant learning rate « = le — 4 for a total of 5000
epochs. The batch size is one image and the samples are resized to a fixed
width of 400 pixels. In order to avoid overfitting when training with a
small number of samples, we use a data augmentation strategy including
both spatial and color augmentations. In particular, the spatial aug-
mentations are affine transformations including scaling, rotation, and
shearing, whereas the color augmentations are channel-wise trans-
formations performed in HSV color space, similar to those proposed in
Ref. [24].

2.2. Diabetic retinopathy grading

For the grading of DR we follow the most common approach in the
literature [9]. In this regard, the grading of DR is formulated as a
multi-class classification where the likelihood for several mutually
exclusive classes must be predicted. These classes represent the different
grades of the pathology, which can be 4 or 5 depending on the clinical
criteria being applied [5,13]. This multi-class classification is trained
using the cross-entropy between the predicted likelihoods and the
ground truth labels as loss function.

Regarding the network architecture, the classification is performed
using a fully convolutional encoder followed by a global average pooling
and a fully connected layer. The global pooling produces a fixed set of
features regardless of the input image size and then the fully connected
layers generate the final prediction for each class. Additionally, these
predictions are normalized by applying a softmax operation to the
output. In our proposal, the encoder is pre-trained using the proposed
MIE approach.

2.2.1. Datasets

Regarding the grading of DR, the main experiments and comparisons
in this work are performed on the public IDRiD [11] and Messidor [13]
datasets. For the comparison with the state-of-the-art, an additional
cross-dataset experiment is performed on the public EyePACS-Kaggle
[32] and Messidor-2 [53] datasets.

IDRID: This dataset consists of 516 retinal images from clinical exams
performed in India. The image acquisition was performed with pupil
dilation using a Kowa VX-10 alpha fundus camera. The images are
categorized into the 5 severity grades. The ground truth was annotated
by two medical experts following the ICDR severity scale [10], which is
depicted in Table 1. The dataset presents a default split of 403 images for
training and 113 for test. This default training/test split is used in all the
experiments.

Messidor: This dataset consists of 1200 retinal images acquired by 3
different ophthalmology departments in France. The image acquisition
was performed with a 3CCD camera on a Topcon TRC NW6 non-
mydriatic retinograph. The images are categorized into 4 severity
grades. The ground truth was annotated by the medical experts of the
different ophthalmic departments that provided the images, following
the severity scale that is depicted in Table 2. Additionally, 800 images
were acquired with pupil dilation and 400 without dilation. This dataset
does not present any default split and, therefore, we perform all the
experiments using a 5-fold cross-validation approach.

EyePACS-Kaggle (training set): This dataset consists of 35,126 retinal
images acquired with different cameras. The dataset aims to promote the
development of robust algorithms in “real-world” data, hence including
noise in both images and labels. The images are categorized into 5
severity grades. This dataset is used as training set for the cross-dataset
experiment in the state-of-the-art comparison.

Messidor-2: This dataset is an extended and unlabeled version of
Messidor consisting of 1748 images. The additional images are acquired
under the same conditions as those from the original dataset. The labels
for 1744 images are provided by Ref. [5]. In this case, the images are
categorized into 5 severity grades. The ground truth was annotated by
three medical experts following the ICDR severity scale [10], which is
depicted in Table 1. This dataset is used as test set for the cross-dataset
experiment in the state-of-the-art comparison.

2.2.2. Training details

In order to reflect all the common practices in the literature [19] and
evaluate the proposed approach in different scenarios, we perform two
different types of experiments. In the first type, the pre-trained encoder
is used as a fixed feature extractor and only the final fully connected
layer is fine-tuned for the grading of DR. In contrast, in the second type,
the whole network is fine-tuned for the grading of DR.
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@ Fixed feature extractor: First, the features for each training image are
extracted offline using the pre-trained encoder followed by the
global average pooling. Then, a linear classifier (i.e. the last fully
connected layer) is trained on top of the extracted features following
a multinomial logistic regression approach. In this case, the optimi-
zation is performed until convergence in the training set using the L-
BFGS-B algorithm with L2 regularization [54].

@ Full network fine-tuning: The optimization is performed using the
Adam algorithm [52] with batch size of 8 images and the standard
decay rates of #; = 0.9 and 3 = 0.999. The initial learning rate is set
to a = le — 4 and it is reduced by a factor of 10 each time that the
validation loss does not improve for 10 epochs, up to a minimum of «
= le — 6. Then, the training is stopped. In order to avoid overfitting,
we use a data augmentation strategy including both spatial and color
augmentations. In particular, the spatial augmentations include
random rotations and mirroring, whereas the color augmentations
are channel-wise transformations performed in HSV color space,
similar to those proposed in Ref. [24].

The images are resized to a fixed retinal width of 400 pixels in all the
experiments.

2.3. Evaluation metrics

The performance is evaluated using the same metrics that are com-
mon in previous works focusing on the detection and grading of DR [9].
In that regard, the networks are evaluated for the grading of DR using
Accuracy, Average Classification Accuracy (ACA), and Quadratic
Weighted Kappa (QWK). Additionally, to assess the performance in each
individual class, the normalized confusion matrices are also computed.

ACA represents a class-balanced version of Accuracy that is
computed by individually measuring the accuracy for each class and
then computing the average value. Thus, all the classes present the same
importance in the final score regardless of the number of samples in each
of them. This metric is particularly useful for the grading of DR due to
the different number of samples per severity grade that is present in all
the datasets.

QWK is a quadratically weighted version of the Cohen’s Kappa score
[551, which expresses the level of agreement corrected by the proba-
bility of agreement by chance. In this regard, QWK = 1 denotes complete
agreement between predictions and ground truth whereas QWK =
0 denotes that the same results could be achieve by random classifica-
tion. In ordinal classification (i.e. when the classes present an inherent
order), the quadratic weighting assigns a larger weight to the samples
with larger disagreement. In particular, the weight is proportional to the
square of the ordinal distance (OD) between the prediction and the
ground truth. This metric is commonly used in the grading of DR because
it takes into account that the classes are ordered by severity and that a
closer erroneous prediction is preferable than a farther one [16,46]. For
instance, for an image with ground truth grade 1, a prediction of grade 2
(OD = 1), despite erroneous, is preferable than a prediction of grade 4
(OD = 3).

Besides the previous evaluation, the networks trained for multi-class
classification are also evaluated for two binary classification problems
that are common in the literature, DR detection (0 vs 1,2, ...) and
referable DR (rDR) detection (0,1 vs 2, ...) [9,14]. This evaluation is
performed using Receiver Operator Characteristic (ROC) curves, which
plot True Positive Rate (TPR) against False Positive Rate (FPR) for
different decision thresholds. Additionally, we also compute the Area
Under Curve (AUC) for ROC, which is commonly used to summarized
the performance into a single value.

2.4. Alternative approaches

The evaluation of MIE for the grading of DR includes several com-
parisons against other relevant methods for the pre-training or initiali-
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zation of the neural network. In that regard, all the alternatives in our
experimentation follow the same fine-tuning methodology that is
described in Section 2.2 and the difference among them is the pre-
training phase. In particular, we consider the following alternatives
for the pre-training phase:

@ Random: In this case, no pre-training is performed and the neural
network is randomly initialized following the formula proposed by
He et al. [51].

@ ImageNet: The neural network is pre-trained on the ImageNet
dataset [17] using a fully-supervised image classification task. In
particular, we use a pre-trained network that is provided in the
computer vision library of the PyTorch project [56]. In contrast with
the proposed MIE pre-training, this alternative requires labeled data
and it is performed on natural images (including e.g. people, vehi-
cles, etc.) instead of retinal images.

@ MR [24]: The neural network is pre-trained on an unlabeled multi-
modal dataset of retinal images using a previous state-of-the-art
methodology. This approach can be seen as a subcase of MIE that
only uses the training feedback from the prediction of the target
modality (£p in Eq. (4)). Likewise, MR uses a simpler architecture
only consisting of the encoder Fg and the decoder Fp, (see Fig. 5). To
produce a fair comparison, the MR pre-training is performed using
the same training configuration that is described in Section 2.1.4 and
the same multimodal dataset that is described in Section 2.1.3.

@ MIE: The neural network is pre-trained on an unlabeled multimodal
dataset of retinal images using the proposed MIE pre-training that is
described in Section 2.1.

2.5. Implementation details

The proposed methodology and the experiments in this work were
implemented in Python 3 using the following opens source libraries:
PyTorch for the parts specific to deep learning, Scikit-Image for the
image loading and processing, and Scikit-Learn for the evaluation met-
rics and training of linear classifiers. The training of the neural networks
was performed in GPU using an NVIDIA GTX 1070 with memory size of
8 GB.

3. Experimental results
3.1. Multimodal image encoding

In order to comprehensively evaluate the proposed methodology,
first we perform a qualitative analysis of the results obtained in the
proposed pre-training. In this regard, Fig. 7 depicts predicted and
reconstructed images for some representative examples of the validation
set. Additionally, besides the predicted angiography and reconstructed
retinography, we include two alternative reconstructions that allow to
study which information MIE has encoded through each of the two
branches in the network. In particular, Fig. 7 depicts the following
images:

@ xa: The original retinography that is used as input to the network.

@ Xp: The predicted angiography.

@ X,: The reconstructed retinography.

() ;E : The reconstructed retinography when only the information
provided by the first branch of the network is used. This branch aims
at learning the common features between modalities.

@ x2: The reconstructed retinography when only the information
provided by the second branch of the network is used. This branch
aims at learning the features that are exclusive to the input modality.

All these examples, including the alternative reconstructions, are
generated using the same pre-trained network. In order to generate the
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Fig. 7. Examples of predicted and reconstructed images using MIE. x5 represents the input retinography, Xy the predicted angiography, and X, the reconstructed

retinography. Additionally, ii and iﬁ represent alternative reconstructions that are generated by using only the features of the first or second branch in the network,

respectively.

alternative reconstructions ;}Z and ;,2: using only the information of the
first and the second branch, respectively, the features of the opposite
branch are masked out in the forward pass through the network at test
time. In particular, the features of the opposite branch are multiplied by
a tensor of zeros before being fed to the final decoder Gp in the network
(see Fig. 5).

The results show that MIE successfully generates angiographies and
retinographies that are consistent with the content of the input images.
The reconstructed retinographies are very similar to the input images
(0.93 SSIM [50] for the images in the validation set), which indicates
that the network has successfully learned a rich set of features that allow
to completely describe the image contents in this modality. The main
difference that can be perceived between the reconstructed and the
original images is the lack of fine structural detail for some of the
reconstructed bright lesions. In this regard, it must be noticed that the
bright lesions are exclusive to the retinography and, therefore, they are
not depicted in the predicted angiography. Thus, the information related
to these lesions must be propagated trough the bottleneck of the second
branch, which explains the loss of fine structural detail in some cases.

The alternative reconstructions, i}; and ﬁi, confirm that, as inten-
ded, the network encodes different information in each of the two
branches. In particular, i}, depicts only those characteristics of the ret-
inography that can be inferred from an angiography, such as the

vasculature or the red lesions In contrast, ﬁi mainly depicts the char-
acteristics that are exclusive to the retinography, such as the color for
different parts of the image, the bright lesions, or the detail within the
optic disc. Thus, as intended, the first branch encodes the features that
are common between modalities whereas the second branch encodes the
features that are exclusive to the input modality. These two branches
together allow the learning of a rich set of features that completely
describe the input image modality in the encoder that is being pre-
trained.

3.2. Pre-trained network as feature extractor

To study the quality of the representations learned by the proposed
approach, we perform a set of experiments using the pre-trained encoder
as fixed feature extractor. In this case, as described in Section 2.2.2, a
linear classifier is trained on top of the features extracted by the encoder.
For the IDRiD dataset we use the default training/test split and for the
Messidor dataset we use a 5-fold cross-validation approach. Tables 3 and
4 depict the results obtained for the IDRID and Messidor datasets,
respectively, using the different studied approaches (Random, Image-
Net, MR, and MIE).

These results show that there is a large performance gap between
Random and the different pre-training alternatives. This indicates that
all the studied alternatives provide features that are useful for the
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Table 3

Results for DR grading on IDRiD using the pre-trained networks as fixed feature extractors. Bold denotes the best result for each evaluation metric.
Method Pre-training QWK ACA Accuracy DR AUC rDR AUC
Random None 0.00 20.00 33.01 35.81 36.58
ImageNet Supervised 58.66 43.49 53.40 87.08 88.50
MR Self-supervised 66.42 43.92 60.19 87.38 91.51
MIE (Proposed) Self-supervised 71.05 46.30 61.17 91.90 94.59

Table 4

Results for DR grading on Messidor using the pre-trained networks as fixed feature extractors. Bold denotes the best result for each evaluation metric.
Method Pre-training QWK ACA Accuracy DR AUC DR AUC
Random None 0.00 £+ 0.00 25.0 = 0.00 46.08 + 0.10 62.14 + 2.90 61.64 + 3.98
ImageNet Supervised 71.61 £ 2.18 54.76 + 1.96 63.69 + 1.89 85.53 + 2.28 89.6 + 2.47
MR Self-supervised 63.87 + 2.65 47.69 + 1.26 62.51 +1.43 81.37 +1.89 86.39 + 2.61
MIE (Proposed) Self-supervised 70.77 £ 1.86 54.18 + 3.20 66.05 + 2.74 84.39 + 2.60 89.13 + 2.10

classification of the images, always improving the results obtained
before any pre-training. However, not all the pre-training methods
provide the same performance. In this regard, MIE represents the best
alternative, given that it is the best approach in IDRID and a close second
best in Messidor. Additionally, MIE also provides the highest Accuracy
on Messidor despite the similar ACA between ImageNet and MIE. This
difference between Accuracy and ACA is explained by the different
number of samples among classes on the Messidor dataset. In that re-
gard, the obtained results indicate that MIE provides a better perfor-
mance in the most numerous classes of this dataset. In contrast, while
ImageNet pre-training obtained the best performance in Messidor, it was
the worse pre-training in IDRiD. This shows that the features learned
using this approach do not adapt equally well to all the possible sce-
narios in retinal imaging. In this regard, despite of being a limited
domain, retinal images still present a high variability due to the different
acquisition devices and procedures as well as the individuals ethnicity.
Additionally, the distribution of grades and even the grading criteria can
vary among datasets. In this case, IDRiD and Messidor datasets present
key differences in all these aspects, as described in Section 2.2.1.

3.3. Transfer learning with full network fine-tuning

The full potential of MIE for transfer learning is studied by per-
forming a full network fine-tuning in the grading of DR. For the IDRiD
dataset we use the default training/test split and for the Messidor dataset
we use a 5-fold cross-validation approach. In these experiments, 25% of
the training set is used as validation subset to apply the learning rate
schedule and early stopping. Given the small size of the IDRiD dataset, in
order to account by the variability in the selection of the validation
samples, we perform 4 training repetitions following a 4-fold procedure
for the training/validation splits. Tables 5 and 6 depict the results of
these experiments for the IDRID and Messidor datasets, respectively,
using the different studied approaches (Random, ImageNet, MR, and
MIE). Additionally, Figs. 8 and 9 depict the average confusion matrix for
each method and dataset.

With regards to the detection of DR and rDR, Figs. 10 and 11 depict
the ROC curves for the different pre-training approaches on the IDRiD
and Messidor datasets, respectively.

Similarly to the previous experiments, the results show a large per-
formance gap between Random and the different pre-training

alternatives. Thus, the studied pre-training approaches not only provide
useful features readily available for the classification but also facilitate
the complete training of the network using task-specific annotated
datasets. In this case, MIE represents the best alternative for both
datasets, outperforming MR as well as ImageNet pre-training. In the
IDRiD dataset, MR provides a slightly higher mean rDR AUC than MIE.
In this regard, a higher rDR AUC indicates a better separation between
grades \{0,1\} and grades \{2,3,4\}, which corresponds with the
detection of rDR. However, the difference in rDR AUC is small and,
overall, the results indicate a better performance of MIE.

The comparisons shows that MIE leverages the domain-specific
knowledge provided by the unlabeled multimodal data to a greater
extent than MR. Additionally, in comparison to the supervised pre-
training on a different domain (i.e. the natural images of ImageNet),
pre-training on the same domain using MIE results in better transfer
learning performance even when the number of pre-training samples is
several orders of magnitude lower.

With regards to ImageNet pre-training, in this case a similar per-
formance, in relative terms, is achieved for IDRiD and Messidor. The
performance gap between datasets (in relative terms) that was observed
in Section 3.2 is reduced when the ImageNet pre-trained networks are
fine-tuned for the specific characteristics of each dataset.

Regarding the performance for each class, all the pre-training alter-
natives produce a similar pattern in the confusion matrices. In that
sense, in the IDRiD dataset, MIE outperforms the other pre-training al-
ternatives in 3 out of 5 classes, whereas, in the Messidor dataset, MIE
consistently outperforms the other alternatives across all the classes.

3.4. State-of-the-art comparison

In this section, we provide a comparison of our proposal against
relevant state-of-the-art methods for the grading of DR. The proposed
methodology for these comparisons, MIE-DR, corresponds to performing
a complete network fine-tuning for the grading of DR after the pre-
training using MIE. For each dataset, the comparison is performed
using the same evaluation metrics that are used in previous works.

First, Tables 7 and 8 depict the state-of-the-art comparisons for
IDRiD and Messidor, respectively. In this case, the results of MIE
correspond to the same experiments that are performed in Section 3.3.

Then, in order to compare with other relevant works in the literature,

Table 5

Results after performing transfer learning for DR grading on IDRiD. Bold denotes the best result in terms of mean value for each evaluation metric.
Method Pre-training QWK ACA Accuracy DR AUC rDR AUC
Random None 14.97 + 6.89 22.89 + 2.12 36.41 + 3.53 68.58 + 1.85 65.77 £ 1.79
ImageNet Supervised 71.93 + 4.77 49.97 +1.9 64.08 + 2.66 91.35 +£1.84 93.38 £ 1.0
MR Self-supervised 72.97 + 1.69 46.24 + 2.9 59.95 + 1.26 91.74 £ 0.67 94.46 + 0.46
MIE (Proposed) Self-supervised 76.44 + 1.54 51.59 + 2.36 65.05 + 1.19 93.38 + 0.37 94.36 £ 0.21
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Table 6
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Results after performing transfer learning for DR grading on Messidor. Bold denotes the best result in terms of mean value for each evaluation metric.

Method

Pre-training

QWK ACA Accuracy DR AUC rDR AUC
Random None 12.08 + 14.91 29.03 £5.1 48.1 +2.74 64.42 + 2.7 63.27 £ 5.12
ImageNet Supervised 87.77 £ 1.97 68.05 + 3.76 75.74 + 3.86 9391 +£1.13 96.92 + 0.98
MR Self-supervised 88.4 + 1.68 67.39 + 2.62 74.73 + 2.33 93.23 £ 1.03 97.1 + 0.81
MIE (Proposed) Self-supervised 89.7 + 0.87 72.55 + 1.75 79.44 + 0.59 94.22 + 0.92 97.4 + 0.47
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we perform an additional cross-dataset experiment by training the net-
works on the EyePACS-Kaggle dataset and evaluating the performance
on Messidor-2. In this case, given the very large size of the training
dataset, only 10% of the training data is used for validation and a single
training experiment is performed. Table 9 depicts the state-of-the-art

Fig. 8. Average normalized confusion matrices after performing transfer learning for DR grading on IDRiD.
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Fig. 9. Average normalized confusion matrices after performing transfer learning for DR grading on Messidor.
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Fig. 10. Mean ROC curves for the detection of DR and rDR on IDRiD.

comparison for this cross-dataset experiment.

The provided comparisons show that MIE-DR is competitive in all the

scenarios, always achieving the best performance for the grading of DR.
In this regard, the proposed approach is advantageous even when a large

11

annotated training dataset is available for the grading of DR, such is the
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Fig. 11. Mean ROC curves for the detection of DR and rDR on Messidor.

State-of-the-art comparison for DR grading on the IDRiD
dataset. Bold denotes the best result.

Method Accuracy

Wu et al. [42] 60.20

Tu et al. [47] 65.05
MIE-DR (Proposed) 65.05 + 1.19

Table 8

State-of-the-art comparison for DR grading on the Messidor dataset. Bold de-
notes the best result for each evaluation metric.

Method ACA DR AUC rDR AUC

Cao et al. [57] 93.90 + 0.90 -

Li et al. [43] - - 96.30

Martinez-Murcia et al. [58] 56.40 + 13.00 81.00 + 7.00 93.00 + 2.00

Hua et al. [27] - - 99.40 + 1.10

MIE-DR (Proposed) 72.55 £ 1.75 94.22 + 0.92 97.4 £ 0.47
Table 9

State-of-the-art comparison for DR grading in a cross-dataset setting. Training on
EyePACS-Kaggle and evaluation on Messidor-2. Bold denotes the best result for

each evaluation metric.

Method QWK ACA

Aratjo et al. [46] 71.00 59.60
Galdran et al. [16] 79.79 + 1.03 63.41 + 1.99
de la Torre et al. [45] 83.20 -

MIE-DR (Proposed) 83.43 67.03

case of the cross-dataset experiment in Table 9. Moreover, in this case,
Additionally, Fig. 8 shows that MIE-DR is also competitive for the
classification of DR (0 vs 1,2,3) or rDR (0,1 vs 2,3) against works that
specifically address these tasks as a binary classification. Conclusively,
these results show that MIE is a viable and effective pre-training alter-
native for the grading of DR. In this regard, previous works are typically
based on the used of ImageNet pre-training networks, requiring addi-
tional annotated data. In contrast, the proposed MIE pre-training is
performed using only unlabeled images. In our proposal, the lack of
annotations is successfully compensated by taking advantage of a small
set of multimodal images corresponding to the final application domain,
i.e. retinal imaging.
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4. Discussion

The automated grading of DR represents one of the most challenging
tasks in the field of retinal image analysis. This task requires to take into
consideration different lesions and retinal anomalies, in order to then
produce a high level analysis of these findings to estimate the adequate
grade of the disease. In our experiments, the difficulty of the grading of
DR is demonstrated by the low performance that is achieved when
training a DNN from scratch (Tables 5 and 6 and Figs. 8 and 9). In that
case, following a standard training methodology, the networks fail to
converge to a satisfactory solution.

In the literature, the typical approach to train a DNN in the grading of
DR is the reuse of networks pre-trained for ImageNet classification. In
this regard, previous works have proposed different methodologies,
including modifications to the network architecture and the training
objective, but always building upon the ImageNet pre-training. That
approach presents the disadvantages of requiring additional annotated
data and being performed on a different application domain. In contrast
to all the previous works, the novelty of our methodology, MIE-DR, is
precisely on the pre-training phase. In particular, we propose a novel
self-supervised pre-training, MIE, that is performed on unlabeled
multimodal data of the final application domain, i.e. retinal images.

In order to demonstrate the advantages of MIE as pre-training, we
evaluate the transfer learning performance under two different experi-
mental settings using a standard network architecture and training
methodology. These results show that, in general, MIE is superior to
existing alternatives, such as ImageNet and MR pre-training. In partic-
ular, MIE provides satisfactory results on IDRiD and Messidor for both
the linear classification and full network fine-tuning evaluations. In
contrast, ImageNet pre-training achieves the best results in a particular
scenario for linear classification but it is not robust enough to changes in
the data distribution neither it takes the same advantage of the full
network fine-tuning. This outcome is also supported by the state-of-the
comparisons, where MIE-DR is highly competitive and outperforms
previous works based on ImageNet pre-trained networks.

With regards to MR pre-training, this previous multimodal approach
provides a performance that is competitive with ImageNet pre-training
in several scenarios. However, in general, it is outperformed by MIE.
This shows that MIE allows to further take advantage of the multimodal
data by explicitly learning the features that are common between mo-
dalities as well as the features exclusive to the input modality. This
translates into better high level representations of the input modality,
subsequently improving the transfer learning performance, either using
linear classification or full network fine-tuning. Additionally, the success
of MIE disentangling the common and exclusive features for the input
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image modality is also evident by the visual analysis of the reconstructed
images in Fig. 7.

Despite the satisfactory results, MIE-DR also presents some limita-
tions that are common to previous works on the grading of DR, such as
the uneven performance among classes (Figs. 8 and 9). This is mainly
due to the unbalanced distribution of samples in the training data and
the existence of particular challenging cases, e.g. the distinction be-
tween grades O and 1 that depends on the presence of tiny micro-
aneurysms. In this regard, the focus of this work is exclusively on
providing a novel pre-training alternative using unlabeled multimodal
data. This is the first work addressing the grading of DR that focus on this
important aspect of the methodology. However, achieving a balanced
performance among classes without compromising the overall results is
an important objective that should be considered in future works.
Additionally, aiming at improving the classification of the most chal-
lenging cases, future works could explore multi-task learning ap-
proaches by simultaneously performing the segmentation of retinal
lesions together with the grading of DR. In this regard, the generation of
lesions maps could also be used as a means of improving the interpret-
ability of the learned models. Finally, these future works could take
advantage of the results presented in this work and build novel meth-
odologies upon MIE pre-trained networks, for both the grading of DR
and the segmentation of retinal lesions.

Another important future research direction is to adapt the idea of
MIE to other relevant image modalities such as, e.g., OCT or OCT-A, or
even different image modalities from other medical domains. In that
regard, it would be worth exploring the adaption of the proposed idea to
3D multimodal data, which is also common in medicine.

5. Conclusions

The grading of DR is usually approached by reusing networks pre-
trained for supervised image classification on the ImageNet dataset. In
this context, we proposed MIE as a novel self-supervised alternative that
takes advantage of unlabeled multimodal images pairs for pre-training
the networks. In contrast to previous multimodal pre-training
methods, our proposal explicitly teaches the networks to recognize the
common characteristics between modalities as well as the characteris-
tics exclusive to the input modality. This ensures a complete under-
standing of the retina in the same image modality that will be later used
for the grading of DR.

The proposed methodology is evaluated on several public datasets
under different experimental settings. First, the performed analyses
indicate that MIE successfully learns and disentangles the common and
exclusive characteristics between modalities. Second, the transfer
learning results show that, overall, MIE outperforms previous multi-
modal pre-training methods as well as the commonly used ImageNet
pre-training. This is corroborated by the state-of-the-art comparison
where our proposal is competitive and usually outperforms previous
works. These satisfactory results open the door to further developments
in the detection and grading of DR, building upon neural networks that
are successfully pre-trained on unlabeled multimodal data.
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