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Abstract
The number of interconnected devices, such as personal wearables, cars, and smart-homes, surrounding us every day
has recently increased. The Internet of Things devices monitor many processes, and have the capacity of using machine
learning models for pattern recognition, and even making decisions, with the added advantage of diminishing network
congestion by allowing computations near to the data sources. The main restriction is the low computation capacity of
these devices. Thus, machine learning algorithms capable of maintaining accuracy while using mechanisms that exploit
certain characteristics, such as low-precision versions, are needed. In this paper, low-precision mutual information-based
feature selection algorithms are employed over DNA microarray datasets, showing that 16-bit and some times even 8-bit
representations of these algorithms can be used without significant variations in the final classification results achieved.

Keywords Microarray data · Low precision · Feature selection · Mutual information · Classification · Edge computing ·
Internet of Things

1 Introduction

The need for efficient algorithms has been one of the goals
in Computer Science. But during the last years we have
assisted also to the growing tendencies in sensoring and
monitoring of activities and processes, and thus, among
others, to what are called Big Data, on the one hand, and
Internet of Things (IoT), in the other. These two tendencies
have given birth to research areas on Cloud Computing
or Edge Computing. Due to the increasing communication
costs of sending/receiving data from and to the cloud, there
is lately a growing interest in performing ever more complex
machine learning tasks on mobile and embedded devices,
frequently in real-time. Thus, the objective is to optimize
the use of hardware resources and power consumption
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while keeping algorithms’ accuracy comparable to the
classical computations that use double-precision floating-
point arithmetic.

Among the different machine learning methods, feature
selection (FS) is a fundamental task, as it can help in reduc-
ing dimension and thus contributes for more understandable
models. FS is a dimensionality reduction method that works
by removing those features that are redundant and/or irrele-
vant and only keeping the relevant features (or genes, in this
case). The main benefits of feature selection are reducing
experimental costs, enhancing interpretability, speeding up
computation, reducing memory and even improving model
generalization.

However, feature selection is also a challenging task
from the point of view of resource consumption, since a
dataset with m features will produce 2m − 1 candidate
subsets. The vast majority of algorithms rely on searching
over the feature space which is exhaustive, expensive and
time-consuming. Meanwhile, due to the explosive growth of
wireless communication technology and to the progressive
reduction in the cost of electronic components, the number
IoT devices has increased dramatically in recent years, as
said above. In contrast to up-to-date computers, IoT devices
need to optimize the use of hardware resources, so a possible
solution is to adapt machine learning methods to work on
low-precision (i.e., less than 64 bits).
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On the other hand, and regarding application fields, dur-
ing the last few decades, the emergence of microarray
datasets has stimulated a new line of research, both in bioin-
formatics and in machine learning. This type of datasets
poses an interesting challenge because of two reasons:
(i) they have very small samples—often less than 100
patients—in contrast to a very high dimensionality—the
number of features ranges in the order of thousands; and (ii)
it has been shown that most features are not necessary to an
accurate classification [12], so it is paramount to discover
the relevant features to gather an understanding of the pro-
cess. Thus, FS has become a must-do in dealing with these
datasets [6].

In a previous work, we have proposed a low-precision
mutual information feature selection procedure [27]. Mutual
Information (MI) comes from the field of Information
Theory and it is widely used in both machine learning and
statistics. As a matter of fact, it is part of the popular method
mininum Redundancy Maximum Relevance (mRMR),
which is known to work very well with microarray data
[30]. To the best of our knowledge, ours is the first and only
attempt to adapt feature selection to low-precision, despite
the expected benefits that it could add to embedded systems
for on-device analysis.

The goal of the work described inhere is to apply low-
precision mutual information feature selection on a chal-
lenging scenario: microarray data. Three different imple-
mentations will be tested (mutual information maximiza-
tion, mRMR and joint mutual information), to check if the
use of low-precision parameters is possible in datasets with
such high dimensionality as microarrays.

The rest of the paper is organized as follows: Section 2
describes the state of the art of low-precision feature selec-
tion. Section 3 presents our low-precision mutual infor-
mation approach. Section 4 describes the materials and
methods used in the experiments, whose results are shown
and analyzed in Section 5. Finally, Section 6 contains our
concluding remarks and proposals for future research.

2 State of the art

With the growing amount of information being generated at
the edge, the demand for machine learning models that can
be deployed on edge devices has also increased. Although
most of the effort has been put on adapting deep learning
models to work on edge devices, there are some works
that have developed techniques for distributed training
or compression and pruning of other machine learning
methods. Wang et al. [36] presented a technique to train
machine learning methods at the edge that uses gradient-
based approaches (e.g., SVMs, K-means, linear regression
or CNNs). ProtoNN is an algorithm designed by Gupta et al.

[13] based on kNN that projects data to a lower dimensional
space using a sparse-projection matrix in order to reduce
storage requirements. ProtoNN has shown to be only 1–2%
less accurate while consuming 1–2 orders of magnitude less
memory. Also based on reducing the model size is Bonsai
[19], a tree-based algorithm that significantly outperforms
state-of-the-art techniques in terms of model size, accuracy,
speed, and energy consumption. Finally, the researchers in
[22] investigated the effects of parameter quantization and
of reduced working precision on the accuracy of floating-
point SVM classification.

As mentioned above, much effort has been made to adapt
deep learning algorithms for training or inference on the
edge, as depicted in several review works [28, 40]. One
challenging option is to actually train the deep learning
algorithms on the edge, for which federated learning is the
most used approach [38]. Other works are focused on just
deploying on the edge already trained models, so typical
strategies are to reduce the number of trainable parameters
and minimize the number of computations [17], or to reduce
the size of the models by performing quantization1 or model
compression2 [9, 10].

Since edge-devices have limited computing power, energy
consumption is a critical factor, so recent research trends
show that much effort is being put into compressing neural
networks. Several papers have attempted this approach
through quantization, which is able to lower the memory
footprint and potentially speed up the computations. In
relation to inference accuracy, many studies have shown
that it is possible to achieve the same results with reduced
precision of weights and activations [14, 24]. Regarding
learning, Hubara et al. [18] introduced a method to train
Quantized Neural Networks using extremely low precision
and runtime activations, reaching an accuracy comparable
to networks trained using 32 bits. The research of Yu et al.
[39] presents a method of quantification with mixed data
structure and proposes a hardware accelerator. This allows
them to reduce the number of bits needed to represent
neural networks from 32 to 5, also without affecting their
accuracy. Banner et al. [3] introduced a 4-bit post training
quantization approach with just a few percent accuracy
degradation. Finally, the work of Sun et al. [33] shows that
it is possible to train deep neural networks using only 4
bits with non-significant loss in accuracy while enabling
significant hardware acceleration.

With regard to reducing energy consumption in feature
selection, we can only find our own work in which we
presented a limited bit depth mutual information that can

1Technique that reduces arithmetic complexity by decreasing the
number of bits required to represent each weight.
2Technique that reduces the number of model parameters and therefore
improves storage and computing time.
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be applicable to any feature selection method that uses
internally the mutual information measure [25, 27], which
will be detailed in the following section.

3 Low-precisionmutual information

3.1 Background

Mutual Information (MI) comes from the field of Informa-
tion Theory and it is widely used in both machine learning
and statistics. One of its main uses is feature selection
methods, and in fully supervised data, the features X are
ranked using this measure, and the ones finally selected are
those having the highest mutual information with the class
label Y . The mutual information is defined as the expected
logarithm of a ratio:

I (X; Y ) =
∑

x∈X

∑

y∈Y
p(x, y) ln

p(x, y)

p(x)p(y)
(1)

where p(x, y) = Pr{X = x, Y = y} is the probability
mass function of the joint distribution when the random
variable X takes on the value x from its alphabet X and
Y takes on y ∈ Y , while p(x) = Pr{X = x} and
p(y) = Pr{Y = y} are the probability mass functions
of the marginal distributions. In this work, the function is
calculated in natural logarithm, so returned units are “nats”.
In practice we have to estimate this from data. This can be
done by using the sample (maximum likelihood) estimates
of the probabilities p̂ and plug them in Eq. 1. This maximum
likelihood estimator for the mutual information is consistent
[29], and as a result we have:

I (X; Y ) ≈ Î (X; Y ) =
∑

x∈X

∑

y∈Y
p̂(x, y) ln

p̂(x, y)

p̂(x)p̂(y)
(2)

In order to calculate this we need the estimated distri-
butions p̂(x, y), p̂(x), and p̂(y). The probability of any
particular event p(X = x) is estimated by maximum like-
lihood, the frequency of occurrence of an event X = x

divided by the total number of events.
An illustrative example. Let us consider a vector Y with

961 observations, in which the number of occurrences of
an event Y = y is 4. The probability p̂(y) will be p̂(y) =
4/961 = 0.004162330905307, which is approximately
zero. For real applications, it is not necessary to store all
the decimal digits, which makes mutual information an
interesting measure to explore low precision. Besides, as the
Internet of Things devices market matures, we will likely

see a movement away from double-precision floating-point
(i.e., 64-bit representation) to limited approaches using a
lower number of bits.

3.2 Our approach

In information theoretic feature selection, the main chal-
lenge is to estimate the mutual information, for which it
is necessary to estimate the probability distributions. Inter-
nally, it counts the occurrences of values within a particular
group (i.e., its frequency). Based on Tschiatschek et al.’s
[34] work for approximately computing probabilities, we
investigated mutual information with limited number of bits
by considering this measure with low-precision counters
in a previous work [27]. Instead of the 64-bit resolution
used typically by the standard hardware platforms, a fixed-
point representation was targeted with bi as the number of
integer bits and bf as the number of fractional bits. The
motivation to move to fixed-point arithmetic is twofold: (i)
these bit representation compute units are typically faster
and consume far less hardware resources and power than
the conventional floating-point computations and (ii) low-
precision data representation reduces the memory footprint,
enabling larger models to fit within the given memory
capacity and lowering the bandwidth requirements.

Besides, since mutual information parameters are typi-
cally represented in the logarithmic domain, we compute
the number of occurrences of an event and use a lookup
table to determine the logarithm of the probability of a
particular event. The lookup table is indexed in terms of
number of occurrences of an event (individual counters)
and the total number of events (total counter) and stores
values for the logarithms in the desired low-precision rep-
resentation. To limit the maximum size of the lookup table
and the bit-width required for the counters, we assumed
some maximum integer number M . The lookup table L is
pre-computed such that:

L(i, j) =
[
ln(i/j)

q

]

R

· q (3)

where [·]R denotes rounding to the closest integer, q is the
quantization interval of the desired fixed-point representa-
tion (2−bf ), ln(·) denotes the natural logarithm, and where
the counters i and j are in the range {0, ..., M − 1}.

Given certain specific data, the individual counters ci
j and

the population C are computed according to Algorithm 1.
Following the fixed-point representation, we assumed some
maximum integer number M , where M = 2(bf +bi) − 1.
After calculating the cumulative count C, we ensure that it
is in range. Also, we divide by two the individual counters
ci when C reaches its maximum value.
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4Materials andmethods

4.1 DNAmicroarray datasets

Microarray technology is used to collect information from
tissue and cell samples regarding gene expression differ-
ences that could be useful for diagnosing diseases. During
the last two decades, the advent of this type of datasets has
stimulated a new line of research both in bioinformatics and
in machine learning. Although there are usually very small
samples (often less than 100 patients) for training and test-
ing, the number of features in the raw data ranges from 2000
to 25,000. A typical classification task is to separate healthy
patients from cancer patients based on their gene expression
profile (binary approach). There are also datasets in which
the goal is to distinguish among different types of tumours
(multiclass aproach), making the task even more compli-
cated. Therefore, microarray data poses a serious challenge
for machine learning researchers. Having so many features
relative to so few samples creates a high likelihood of find-
ing false positives due to chance (both in finding relevant
genes and in building predictive models). Thus, it becomes
necessary to find robust methods to validate the models and
assess their likelihood.

Besides, several studies have shown that most genes mea-
sured in a DNA microarray experiment are not relevant
in the accurate classification of different classes of the
problem [12]. To avoid the problem of the curse of dimen-
sionality, feature selection plays a crucial role in DNA
microarray analysis, so that the learning algorithm focuses
only on those aspects of the training data useful for analy-
sis and future prediction. Apart from the mismatch between

dimensionality and sample size, microarray data have other
particularities such as the imbalance of the data, their com-
plexity, the presence of overlapping, or the so-called dataset
shift [6]. Table 1 profiles the main characteristics of the 17
DNA microarray datasets used in this research in terms of
the number of samples, features and classes [2, 7, 26, 32].

4.2 MI-based feature selectionmethods

Mutual information definition is useful within the context of
feature selection because it gives a way to quantify the out-
put vector. Thus, there exist in the literature several feature
selection methods based on mutual information measures.
Most methods define heuristic functionals to assess fea-
ture subsets combining definitions of relevant and redundant
features. Among the different information theoretic meth-
ods, we have chosen three to evaluate our low-precision
mutual information approach, each of them making differ-
ent assumptions. For example, Mutual Information Maxi-
mization quantifies only the relevancy, minimum Redun-
dancy Maximum Relevance the relevancy and redundancy,
while the Joint Mutual Information the relevancy, the redun-
dancy and the complementarity [8].

– Mutual Information Maximization (MIM) [23] ranks
the features by their mutual information score, and
selects the top k features, where k is decided by some
predefined need for a certain number of features or
some other stopping criterion. An important limitation
is that this assumes that each feature is independent of
all other features and effectively ranks the features in
descending order of their mutual information content.
Thus, this approach does not take into account the
redundancy between the features.

– minimumRedundancyMaximumRelevance (mRMR)
[30] feature selection method selects features that have
the highest relevance with the target class and are also
minimally redundant, i.e., it selects features that are
maximally dissimilar to each other. Both optimization
criteria (maximum-relevance and minimum-redundancy)
are based on mutual information.

– Joint Mutual Information (JMI) [37] is another fea-
ture selection method based on mutual information, and
it adopts a new criterion to evaluate the candidate fea-
tures. JMI chooses the feature that has the maximum
cumulative summation of joint mutual information with
the selected features in each step and adds it to the
subset S until the number of selected features reaches k.

Let us assume that we have a dataset of m samples and n

features and that we wish to select the top-k. Table 2 shows
the theoretical complexity of the three methods described
above [31].

1336 Medical & Biological Engineering & Computing (2022) 60:1333–1345



Table 1 Characteristics of the
17 DNA microarray datasets. It
shows the number of samples
(#sam.), features (#feat.) and
classes (#cl.)

Dataset #sam. #feat. #cl. Dataset #sam. #feat. #cl.

9-tumors 60 5726 9 Gli85 85 22283 2

11-tumors 174 12533 11 Leukemia-1 72 5327 3

Brain 21 12625 2 Leukemia-2 72 11225 3

Brain-tumor-1 90 5920 5 Lung-cancer 203 12600 5

Brain-tumor-2 50 10367 4 Ovarian 253 15154 2

CLL-SUB-111 111 11340 3 Smk 187 19993 2

CNS 60 7129 2 SRBCT 83 2308 4

Colon 62 2000 2 TOX-171 171 5748 4

DLBCL 47 4026 2

5 Results

In this section we empirically evaluate our low-precision
mutual information method described in Section 3. Among
the different methods that use internally the mutual infor-
mation measure, we have chosen feature selection since this
process has a key role to play in helping to identify the
specific genes that enhance classification accuracy in DNA
microarray data. As said above, there is a large number of
feature selection methods that use mutual information as
a metric to establish the importance of the features, thus
their performance depending on the accuracy obtained by
the mutual information step. In this work, we have imple-
mented our limited bit depth mutual information in the
MIM, mRMR and JMI filters methods due to their pop-
ularity and good results in the machine learning area. In
order to estimate mutual information of continuous features,
the DNA microarray datasets were discretized, using an
equal-width strategy into 10 bins. After the feature selec-
tion process the original (undiscretized) datasets were used
to classify the test data.

In the following sections, we investigate the questions:
“how similar are the rankings obtained by the different
low-precision MI-based feature selection approaches?” and
“which is the impact of these rankings on classification?”.
To address these questions, we use the 17 DNA microarray
datasets detailed in Table 1. Experiments were executed in
the Matlab2020a and Weka [15] environments, using default
values for the parameters.

Table 2 Theoretical complexity of the three feature selection methods
focus of this work

Method Complexity

MIM O(k · m · n)

mRMR O(k2 · m · n)

JMI O(k2 · m · n)

5.1 How similar are the rankings obtained
by the different low-precisionMI-based feature
selection approaches?

In this subsection, we will evaluate the similarity between
the feature rankings obtained by the 64-bit mutual infor-
mation and the low-precision versions (using fixed point
representations with 4, 8, 16 and 32 bits) after performing
the MIM, mRMR and JMI feature selection methods. To
address this study, we show the true positive rate (TPR),
which measures the proportion of features that are correctly
identified as such, using the full mutual information version
(64 bits) as the ideal ranking. In high dimensional datasets,
like DNA microarray data, it is common to focus only on
the top features, so in these experiments we compared only
the k top features, with k = 5, 10, 20, 30, 40 and 50.

As can be seen from the experimental results illustrated
in Table 3, the lowest values of the low-precision approach
using 4 bits show that the correlation between its selected
features and the ideal ranking is quite poor in the three
information theoretic methods. However, from 8 bits on, all
the approaches achieved a TPR close to 1, which means that
the features selected by these low-precision approaches are
very similar to those selected by the full version using 64
bits. It can also be observed that, in general, by increasing
the number of selected features, the TPR is higher.

Trying to understand the possible effect that the size of
the datasets could have on our results, we analyzed the TPR
in two different DNA microarrays: Colon (62 samples and
2000 features) and Ovarian (253 samples and 15,154 fea-
tures). As can be seen in Figs. 1 and 2, as the number of sam-
ples and features of the dataset increases, the performance of
our low-precision version using 8 bits decreases. Regarding
the 4-bit low-precision version, it achieved higher val-
ues of TPR in Ovarian dataset. This could be happening
because, despite the fact that the Ovarian dataset clearly has
a greater number of features, it also presents higher values
of mutual information than in thev case of the Colon dataset
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Table 3 Average True Positive
Rate of the low-precision
approaches using the three
different MI-based feature
selection methods over the 17
microarrays datasets

#bits #features

5 10 20 30 40 50

MIM

4 0.059 0.094 0.106 0.096 0.096 0.099

8 0.906 0.918 0.915 0.912 0.919 0.905

16 0.976 1.000 0.988 0.990 0.987 0.993

32 1.000 1.000 0.997 1.000 0.993 0.996

mRMR

4 0.024 0.047 0.065 0.084 0.097 0.099

8 0.765 0.788 0.815 0.871 0.885 0.905

16 0.953 0.976 0.988 0.994 0.993 0.993

32 0.976 0.994 0.994 0.996 0.997 0.996

JMI

4 0.024 0.035 0.029 0.045 0.046 0.044

8 0.729 0.741 0.838 0.896 0.916 0.924

16 0.882 0.918 0.909 0.945 0.962 0.972

32 0.859 0.871 0.924 0.953 0.968 0.972

(Fig. 3). Remember that, in terms of maximum relevance,
the selected features are individually required to have the
largest mutual information with the class label, reflecting
the largest dependency on the target class.

Finally, we compared the results between the different
feature selection methods. It is worth noticing that the
univariate filter MIM, which takes into account only the
individual relevance of each feature, performs better than
the multivariate filters mRMR and JMI, which take into
account feature dependencies. The information loss when
reducing the number of bits affects the results much more
than in the case of the less complex univariate methods.
Besides, it can be seen that JMI performs better—in some
cases—than MIM and mRMR when 8 bits are used. This
could be because JMI criterion has the best trade-off in
terms of stability and flexibility over other feature selection
methods based on Information Theory due to its nature (it
balances the relevancy and redundancy terms and includes
the conditional redundancy) [8].

5.2Which is the impact of these rankings
on classification?

Once feature selection has been carried out, and in order to
estimate whether the low-precision mutual information in

the MIM, mRMR and JMI methods might affect classifi-
cation, a study using two classifiers belonging to different
families was performed. At this point, it is necessary to clar-
ify that including classifiers in our experiments is likely
to obscure the experimental observations related to fea-
ture selection performance using a limited number of bits,
since they have their own assumptions and particularities.
It has been shown that certain classifiers can obtain out-
standing accuracy levels even when the feature ranking is
not optimal [5]. Therefore, in these experiments, we used a
simple nearest neighbor algorithm (with number of neigh-
bors k = 3) [1], since it makes few assumptions about
the data and we avoid the need for parameter tuning, and a
linear support vector machine (SVM) [35], due to its supe-
riority in performance over other classifiers in this specific
domain of microarray datasets [6, 16], as well as a boost-
ing algorithm (LogitBoost) [11] . To estimate the error rate
we computed 3 × 5-fold cross-validation (i.e., 3 repetitions
of a cross-validation with 5 folds), including both feature
selection and classification steps in a single cross-validation
loop [21].

Tables 4, 5 and 6 show the average classification
accuracy (between 0 and 100%) obtained by 3-NN, SVM
and LogitBoost classifiers when using the feature ranking
built with the 4, 8, 16, 32 and 64 bit versions by the MIM,

Fig. 1 True positive rate of the
different low-precision
approaches on Colon dataset. a
MIM. b mRMR. c JMI
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(b) mRMR
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(c) JMI
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Fig. 2 True positive rate of the
different low-precision
approaches on Ovarian dataset.
a MIM. b mRMR. c JMI

Fig. 3 Histogram of frequency
distribution values of mutual
information of Colon and
Ovarian microarrays. Note that
the axes are scaled differently for
each dataset. a Colon. b Ovarian

Table 4 Average classification
accuracy (%) over the 17
microarray datasets for MIM
method

#bits #features

5 10 20 30 40 50

3NN

4 62.377 65.459 67.210 69.693 70.979 71.695

8 70.983 73.518 75.288 75.443 76.732 76.737

16 70.963 73.315 74.944 75.840 76.552 77.219

32 71.133 73.524 74.879 75.785 76.168 76.851

64 70.800 73.681 75.076 75.644 76.070 76.753

SVM

4 59.188 62.753 68.687 71.996 74.691 75.057

8 68.857 73.545 76.667 77.995 79.067 79.817

16 69.097 73.335 76.465 78.309 79.613 79.876

32 69.103 73.396 76.502 77.745 79.531 80.043

64 69.064 73.396 76.600 78.143 79.178 80.043

LogitBoost

4 62.973 66.764 70.303 71.025 72.627 73.822

8 67.816 71.436 72.662 74.376 74.688 75.927

16 67.901 71.410 73.248 73.744 75.431 75.566

32 67.858 71.431 73.328 73.776 75.377 75.624

64 67.901 71.392 73.241 73.950 75.377 75.592

For each classifier and number of features, highest accuracy rates highlighted in bold
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Table 5 Average classification
accuracy (%) over the 17
microarray datasets for mRMR
method

#bits #features

5 10 20 30 40 50

3NN

4 60.103 63.888 67.487 69.237 70.630 71.695

8 71.565 73.800 75.894 76.639 77.262 76.737

16 71.972 73.686 76.099 76.809 77.691 77.219

32 71.778 73.822 76.352 76.538 77.423 76.851

64 71.430 73.583 76.450 76.538 77.344 76.753

SVM

4 57.553 61.765 68.818 71.354 73.661 74.996

8 69.579 74.881 77.566 78.856 79.644 79.743

16 69.815 74.068 77.428 78.311 79.390 79.922

32 69.700 73.980 77.423 78.401 79.818 80.051

64 69.842 74.034 77.325 78.205 79.818 80.051

LogitBoost

4 60.933 64.032 68.071 69.594 72.119 73.702

8 70.327 72.551 74.041 74.687 75.104 76.031

16 70.134 72.734 74.346 74.194 75.103 75.517

32 69.846 72.719 74.684 74.031 75.117 75.676

64 70.184 72.664 74.727 74.149 75.063 75.523

For each classifier and number of features, highest accuracy rates highlighted in bold

mRMR and JMI feature selection methods, respectively. As
can be seen for the three different information theoretic
methods, the 8, 16 and 32 low-precision versions achieved
very competitive results—in some cases even better—than
the baseline 64-bit approach. Besides, we can see that the
classification accuracy improves as the number of features

increases. Remember that, in the case that the top 50
features are selected, the number of features used to train
the model will be not even 3% of the number of features in
the original microarray dataset.

To explore the statistical significance of our classification
results, and due to the drawbacks of the traditional tests of

Table 6 Average classification
accuracy (%) over the 17
microarray datasets for JMI
method

#bits #features

5 10 20 30 40 50

3NN

4 60.463 64.579 67.060 68.889 70.330 70.632

8 67.823 70.530 72.545 73.691 73.801 74.147

16 68.060 70.754 72.913 74.262 74.131 73.751

32 67.967 70.692 72.801 74.110 74.297 73.805

64 68.123 70.354 72.755 74.602 74.405 73.703

SVM

4 55.784 60.257 64.841 68.408 70.856 72.044

8 67.750 71.653 75.892 76.907 78.193 78.159

16 67.756 71.598 75.587 76.460 78.245 78.796

32 68.161 71.898 75.632 76.934 78.236 78.343

64 68.210 72.424 76.079 77.621 78.081 78.542

LogitBoost

4 61.420 66.392 70.438 71.468 72.617 74.232

8 67.467 69.415 72.782 72.683 73.498 74.050

16 66.630 69.607 72.950 72.761 73.620 74.413

32 66.945 69.430 71.653 72.976 73.520 74.427

64 66.522 69.969 72.635 72.789 73.253 74.402

For each classifier and number of features, highest accuracy rates highlighted in bold
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contrast of the null hypothesis pointed up by [4], we have
chosen to apply the Bayesian hypothesis test [20]. In this
type of analysis, a previous step is needed, which consists
in the definition of the Region of practical equivalence
(Rope). Two methods are considered practically equivalent
in practice if their mean differences given a certain metric
are less than a predefined threshold. In our case, we will
consider two methods as equivalent if the difference in
error is less than 1%. For the whole benchmark and each
pair of methods, we calculated the probability of the three
possibilities: (i) low-precision version wins over full version
(64-bit) with a difference larger than rope, (ii) full version
wins over low-precision with a difference larger than rope,

and (iii) the difference between the results are within the
rope area. If one of these probabilities is higher than 95%,
we consider that there is a significant difference.

Figures 4, 5 and 6 show the distribution of the differences
between each pair of methods using simplex graphs. Since
analyzing specific aspects related to classification is not
the goal of this paper, we only show the results for the 3-
NN classifier (because it makes less assumptions about the
data than SVM and LogitBoost). As can be seen, regardless
of the feature selection method, the low-precision versions
with 8, 16 and 32 bits are practically equivalent to the
64-bit baseline version (the highest probability values are
obtained by rope). In the case of the 4-bit version, and as

Fig. 4 Simplex graphs for pair
comparison of each
low-precision version and the
baseline full version over the 17
microarray datasets for MIM
and 3NN classifier using
Bayesian hierarchical tests: low-
precision version (left) and full
version (right). a 5-top features.
b 10-top features. c 20-top
features. d 30-top features. e
40-top features. f 50-top features

(a) 5-top features

(b) 10-top features

(c) 20-top features

(d) 30-top features

(e) 40-top features

(f) 50-top features
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Fig. 5 Simplex graphs for pair
comparison of each
low-precision version and the
baseline full version over the 17
microarray datasets for mRMR
and 3NN classifier using
Bayesian hierarchical tests: low-
precision version (left) and full
version (right). a 5-top features.
b 10-top features. c 20-top
features. d 30-top features. e
40-top features. f 50-top features

(a) 5-top features

(b) 10-top features

(c) 20-top features

(d) 30-top features

(e) 40-top features

(f) 50-top features

we have been observing in the results obtained so far, here
there is statistical significance with respect to the 64-bit
version, since the probability that the full approach using
64 bits wins over the 4-bit—represented in the figures as
p(64-bit)—is greater than 95% in all the cases.

Finally, Table 7 shows the runtime required by the three
classification algorithms. In terms of classification accu-
racy, the best results were obtained by the SVM classi-
fier. However, in the case of comparing them by their
computational time, a good choice would be the 3NN classi-
fier. This model has a slightly lower accuracy than the other
two classifiers, but requires less than 1/2 of the time to clas-
sify. In addition, it can be observed how the computation
time increases in the microarray datasets with the largest
number of samples and classes (i.e., 9-tumors, 11-tumors,
Brain-tumor-1 and Lung-cancer).

To sum up, these experimental results show that, with
a small number of bits (32, 16 and even 8) the rankings
change, but this variation does not affect significantly
the classification performance, since this measure is the
ultimate form of evaluation of the goodness of a ranking
feature selection method. However, this method has also
some drawbacks. If there is a short distance between the
population values of the mutual information, our low-
precision approach will not be adequate. Besides, we will
require additional bits as the number of features/samples of
the dataset grows. Nevertheless, it is worth noting that our
low-precision technique was created to evaluate data at the
user level. In the case of dealing with large data, most likely
these will be acquired from a variety of sources, and it will
be processed either by more powerful central processors or
disseminated over multiple nodes for further analysis.
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Fig. 6 Simplex graphs for pair
comparison of each
low-precision version and the
baseline full version over the 17
microarray datasets for JMI and
3NN classifier using Bayesian
hierarchical tests: low-precision
version (left) and full version
(right). a 5-top features. b
10-top features. c 20-top
features. d 30-top features. e
40-top features. f 50-top features

(a) 5-top features

(b) 10-top features

(c) 20-top features

(d) 30-top features

(e) 40-top features

(f) 50-top features

Table 7 Runtime (s) for the classification algorithms tested

Dataset 3NN SVM LogitBoost Dataset 3NN SVM LogitBoost

9-tumors 0.303 1.080 0.741 Gli85 0.312 0.327 0.627

11-tumors 0.321 1.405 0.851 Leukemia-1 0.309 0.481 0.629

Brain 0.286 0.310 0.628 Leukemia-2 0.310 0.481 0.629

Brain-tumor-1 0.310 0.704 0.633 Lung-cancer 0.338 0.704 0.633

Brain-tumor-2 0.304 0.598 0.630 Ovarian 0.338 0.361 0.627

CLL-SUB-111 0.319 0.482 0.628 Smk 0.333 0.353 0.628

CNS 0.304 0.317 0.627 SRBCT 0.321 0.604 0.631

Colon 0.302 0.323 0.627 TOX-171 0.338 0.607 0.632

DLBCL 0.298 0.311 0.627

Runtime is calculated as the average of the 3 repetitions of a cross-validation with 5 folds
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6 Conclusions

Driven by the proliferation of mobile computing and Inter-
net of Things, in this work we have applied mutual infor-
mation using low-precision parameters within a feature
selection procedure. The obtained results over 17 microar-
ray datasets demonstrated that 8-bit representations were
sufficient to obtain feature rankings similar to those of dou-
ble floating-point precision parameters and thus opening the
door for the use of feature selection in Internet of Things
devices that minimize the energy consumption and carbon
emissions. Regarding the three feature selection methods
used to test our low-precision mutual information, we have
found that MIM was the most appropriate for this challeng-
ing scenario, taking into account not only its performance in
classification but also its computational complexity.

As future research, we plan to develop other feature
selection methods in low-precision, such as those based
on distances (ReliefF) or on correlations. It would be also
interesting to apply other strategies to represent data with
a low number of bits, such as dynamic fixed point, and
different techniques for rounding.
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