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abstract

The time-harmonic propagation of elastic waves in layered media is simulated numerically by means of a

modal-based Partition of Unity Finite Element Method (PUFEM). Instead of using the standard plane

waves or the Bessel solutions of the Helmholtz equation to design the discretization basis, the proposed

modal-based PUFEM explicitly uses the tensor-product expressions of the eigenmodes (the so-called Love

and interior modes) of a spectral elastic transverse problem, which fulfil the coupling conditions among

layers. This modal-based PUFEM approach does not introduce quadrature errors since the coefficients of

the discrete matrices are computed in closed-form. A preliminary analysis of the high condition number

suffered by the proposed method is also analyzed in terms of the mesh size and the number of eigen-

modes involved in the discretization. The numerical methodology is validated through a number of test

scenarios, where the reliability of the proposed PUFEM method is discussed by considering different

modal basis and source terms. Finally, some indicators are introduced to select a convenient discrete

PUFEM basis taking into account the observability of cracks located on a coupling boundary between

two adjacent layers.

2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The development of engineering tools to find cracks on the

interfaces between different layers materials is fundamental to

the early detection of defects in some widely used mechanical

structures in industry (for example, pipes with a coating[32], mul-

tilayer panels in aeronautic shields[9], or in structures involving

multiple layers of functionally graded materials[12,11]). Currently,

ultrasonic testing [5]and Foucault currents[1]propagating

transversally through the coupling interfaces are common inspec-

tion techniques. In both cases, their effectiveness and practical

application is limited by the fact that the excitation source must

be placed close to the crack location for its correct detection. In

order to overcome that limitation, the use of Love waves to find

a defect far from the source has been recently analysed (see, for

instance,[14,31,19], and references therein). In this framework,
Love modes are surface waves associated with the coupling inter-

face, whose motion is transverse to the direction of wave propaga-

tion (see[28]for a detailed description).

To achieve high crack detection rates by using Love waves (see

[10]), it is crucial thea prioriknowledge of a high accurate predic-

tion of the mechanical behaviour of the problem without a crack.

However, typical numerical approximations based on finite differ-

ences or finite element methods suffer from the numerical pollu-

tion effects at high frequency regime[17], where despite the grid

or the mesh could be refined enough to capture the wave-like

oscillations of the model solution, the accumulation of phase-lag

errors introduce spurious deviations on the approximated numer-

ical results[18]. Other high-order techniques such as high-order or

spectral finite element methods[4,13]could mitigate these

numerical pollution phenomena but they still involve a high com-

putational cost since the mesh used in the discretization problem

should be conformal with respect to the internal coupling inter-

faces of the multilayered media[29].

The present work is focused on the numerical approximation of

the solution of a non-destructive testing problem involving a bilay-

ered medium without the presence of a crack. The proposed
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numerical method deals with both challenging drawbacks

described above. For this purpose, Love and interior modes (com-

puted in closed-form from a simplified auxiliary transverse prob-

lem) are used in combination with a partition of unity finite

element method (PUFEM) discretization. This approach avoids

any undesirable numerical pollution effects[16]and simultane-

ously does not require the use of refined meshes to obtain accurate

numerical results even in the case of considering thin layers.

The family of PUFEM methods was introduced in[24], where

the standard polynomial-based discretization of a classical finite

element method (FEM), is used as a partition of unity. In that man-

ner, instead of computing a polynomial approximation of the exact

solution, every local polynomial basis is multiplied by an exact

solution of a target model leading to anenricheddiscrete space

where some exact local solutions of the model are naturally

included. Typically, in the case of the two-dimensional Helmholtz

model stated in a homogeneous medium (with a constant

wavenumber), this enrichment procedure involves the multiplica-

tion of piecewise polynomials functions (defined on a triangular

mesh) by plane waves[25,27,20], radial solutions (written in terms

of Bessel functions)[25], or two-dimensional eigenfunctions[3].

Further developments on the use of the PUFEM technique applied

to heterogeneous media have been analysed recently (see[8,23]).

However, those approaches use conformal meshes with respect

to the position of the coupling interfaces, and since the enriched

functions used in the discretization are only local solutions within

a particular layer of the model, special treatments are required to

impose the coupling conditions among layers.

For the application of the proposed approach, the compatibil-

ity between the system of spatial coordinates used to write the

mechanical model (in this case, the Helmholtz equation) and the

mathematical description of the coupling boundaries of the

layered material plays a key role. More precisely, it is assumed

that: (H1) the global governing partial differential equation

(holding in the entire computational domain) involves some

piecewise (constant per layer) coefficients and (H2) this equation

admits a tensorial representation such that the normal and tan-

gential spatial coordinates with respect to the coupling bound-

aries can be identified. For instance, such assumptions are

usually fulfil in isolation sandwich panels utilized in building

acoustics (where a Cartesian system of coordinates is used and

the coupling boundaries are planar) or in pipelines with coatings

(where cylindrical coordinates are applied to be compatible with

the curved coating shape).

Thanks to both assumptions (H1)-(H2) written above, the

enriched modal-based PUFEM discretization can be designed as

tensor products by using a splitting of eigenmodes derived from

an auxiliary spectral problem in the normal direction and a stan-

dard piecewise polynomial basis acting on the tangential coordi-

nates. For the sake of simplicity in the exposition, this work is

focused on a Cartesian system of spatial coordinates in a two-

dimensional setting, where a bilayered material with planar cou-

pling boundaries is studied.

The outline of this manuscript is as follows: the model problem

and its variational formulation is presented in Section2. In Sec-

tion3, the computation of Loves and interior modes is described

in a detailed and pedagogical manner from an auxiliary spectral

problem. The description of the modal-based PUFEM approach,

its associated discrete problem, and its matrix description is

included Section4. Additionally, an analysis of the condition num-

ber of the PUFEM stiffness matrix is included. Section5includes a

wide variety of numerical tests in order to illustrate the numerical

behaviour of the proposed modal-based PUFEM method. Finally, a

criterion to identify a convenient combination of Love and interior

modes in the PUFEM basis is described in Section6and some con-

clusions are discussed in Section7.
2

2. Model problem

Throughout this work, a bilayered elastic material domain will

be considered, where an excitation will be imposed to polarize

both layers transversally. So, the computational domainX R2is

split in two layers, denoted respectively byXþandX, where dif-
ferent physical properties are settled (see an schematic view in

Fig. 1). More precisely, the transverse propagation speedcis

defined as a piecewise-constant function given by

cxðÞ¼
cþ ifx2Xþ;

c ifx2X;
ð1Þ

where it is assumed 0<c <cþ. In addition, the exterior boundary

of the computational domainX is split in four disjoint parts,
@X¼Ce[Cs[Cþ[C.
Under the assumptions of small perturbations of the displace-

ment field and the stress tensor, the mechanical vibrations of bilay-

ered structures can be modelled by a linear elastic model, where

only the transverse component of the displacement field is

involved. Taking into account a frequency domain model, i.e., if

the external forces are harmonic in time with frequencyx>0,
the time-harmonic problem is stated as follows:

Find the displacement field u:X!Csuch that it holds

x2u divc2ru ¼f inXþ[X; ð2Þ

c2
@u

@m
¼g onCþ[C; ð3Þ

ixbuþc
@u

@m
¼r onCe[Cs; ð4Þ

ujX ¼ujXþ onCI; ð5Þ

c2
@u

@mX
¼c2þ

@u

@mXþ
onCI; ð6Þ

where f;g, and r are respectively volumetric and surface external

loads.

Heremdenotes the unit normal vector outwards toX and

CI¼Xþ\X is the coupling boundary. It is straightforward to

derive the variational formulation of this frequency-domain

problem:

For givenx>0,find u2H1XðÞsuch that

Abu;/ð Þ x2
Z

X

u/dx¼L/ðÞ ð7Þ

for all/2H1XðÞ, with

Abu;/ð Þ ¼
R
Xc
2rur/dx ixb

R
Ce[Cs

cu/dr;

L/ðÞ ¼
R
Xf/dxþ

R
Cþ[C

g/drþ
R
Ce[Cs

cr/dr:

All variational terms in this weak problem are well-posed assuming

thatf2L2XðÞ, and the boundary loadsr2H
1
2Ce[Csð Þand

g2H
1
2Cþ[Cð Þ.

The main goal of the present work is the description of a modal-

based PUFEM method to solve the variational problem(7)in a

bilayered setting. With this purpose, a basis consisting in eigen-

modes of an auxiliary spectral problem will be computed in the

sections below.

3. Spectral characterization of the auxiliary problem

As we announced in the introduction, the key ingredient on the

modal-based PUFEM discretization consists in the computation of

closed-form expressions for the eigenvalues and eigenfunctions

of an auxiliary problem involving the same partial differential

equations and coupling conditions introduced in the target prob-

lem(2)–(6), but possibly with different boundary conditions. In

that manner, the use of an eigenmode expansion for the solution



Fig. 1.Computational domain of the bilayered elastic material described in terms of

the Cartesian coordinatesx1;x2ð Þ.
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of target problem(2)–(6)could be challenging an potentially it

would exhibit a poor asymptotic convergence with respect to the

number of modes used (since the target problem(2)–(6)could

not be associated with a self-adjoint compact resolvent operator).

However, since the auxiliary problem will be stated in such a

way that its eigenmodes form a complete functionalL2-basis, they

will provide a suitable functional setting to be combined locally

with a partition of unity method.

In what follows, the spectral characterization of this new global

problem is analysed, where the Robin boundary conditions with

b–0 in problem(2)–(6)are replaced for simpler Neumann bound-

ary conditions (withb¼0):

Find the eigenpairs w;kð Þ;w–0, such that
kw divc2rw ¼0 inX; ð8Þ

@w

@m
¼0 on@X; ð9Þ

wjX ¼wjXþ onCI; ð10Þ

c2
@w

@mX
¼c2þ

@w

@mXþ
onCI: ð11Þ

In comparison with the original model problem(2)–(6), this

auxiliary problem(8)–(11)have Neumann boundary conditions

on@Xand hence, the linear resolvent operator associated to this
spectral problem is self-adjoint and compact. Hence, a standard

spectral analysis shows there is an infinity numerable set of posi-

tive eigenvalues kn;jn;j2N (without any accumulation point),

which are associated with the angular resonance frequencies

xn;j¼i
ffiffiffiffiffiffiffi
kn;j
p

(see[22]for further details).

Despite the present modal-based PUFEM discretization is appli-

cable to arbitrary computational domains, which could be

described by a Cartesian product in a general local orthogonal sys-

tem of coordinates (such as polar or more general convex coordi-

nates), for simplicity on its description, a typical Cartesian

system of coordinates will be used to introduce the computational

domain. More precisely, throughout this work, a bi-layered compu-

tational domain is considered. More precisely, the layered media is

given byX¼ a;Hð Þ 0;Lð Þwitha;L;H>0, and the upper and

lower layers areXþ¼ 0;Hð Þ 0;Lð Þand Xþ¼ a;0ð Þ 0;Lð Þ,

respectively (seeFig. 1).

Under this assumption, the analytic computation of these

eigenpairs can be performed by a classical separation of variables

procedure. Then, if we assume that the non-null eigenfunctions

are given bywx1;x2ð Þ¼qx1ð Þpx2ð Þ, since the profile of the speed

of soundcthat we are considering is piecewise constant, the Helm-
3

holtz equation in Xþ¼ 0;Lð Þ 0;Hð Þ can be rewritten as

c2þq
00p c2þp

00q¼kqp.

Straightforward computations show that there exists a

sequence of eigenpairs ln;qn n2N
(normalized with respect

the L20;Lð Þnorm) defined by

q0x1ð Þ¼

ffiffiffi
1

L

r

; l0¼0; ð12Þ

qnx1ð Þ¼

ffiffiffi
2

L

r

cos
ffiffiffiffiffiffi
ln
p

x1; ln¼
np
L

2

; n2N;n–0:ð13Þ

For each eigenpairln;qn, thex2-dependent factorp¼pnmust be
computed. If the differential equation satisfied bypnis completed

with the homogeneous Neumann boundary conditions atx2¼ a

andx2¼H;pnsatisfies

c2p0n
0
kn c2lnpn¼0 in a;0ð Þ[0;Hð Þ; ð14Þ

p0n að Þ¼p0nHðÞ¼0; ð15Þ

pn0
þ ¼pn0ð Þ; ð16Þ

c2þp
0
n0

þ ¼c2p0n0ð Þ: ð17Þ

For each fixed value ofn2N, there exist a sequence of eigen-

pairs kn;j;pn;j j2N
which are solution of the spectral differential

problem(14)–(17). To describe them, two different cases should

be considered: Love and interior modes.

Remark 1.The proposed modal-based PUFEM approach requires

the closed-form expressions of those Love and interior modes.

Hypothesis (H1)-(H2) guarantee this explicit knowledge on the

transverse modes, which is fulfil for multilayer structures with

coupling planar boundaries (discussed in detail in this work), but

also in cylindrical layers, or spherical coating materials, or in any

other geometrical configuration associated with local-orthogonal

system of coordinates.
3.1. Love modes

This first case corresponds to eigenmodes which can be under-

stood as interface waves, the so-called Love waves, which satisfy

lnc
2<kn;j<lnc

2
þ. In this case, the solutions of Eq.(14), can be

written

pn;jx2ð Þ¼

C1cosK
n;jx2það ÞþC2sinK

n;jx2það Þ

ifx22 a;0ð Þ;

D1coshK
n;j
þ x2 Hð ÞþD2sinhK

n;j
þ x2 Hð Þ

ifx220;H½ Þ;

8
>>>>>>><

>>>>>>>:

beingC1;C2;D1, andD2constants to be determined and where the

positive wave numbers in each subdomain are given by

Kn;j¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ln
nn;j
c

2

1

 !v
u
u
t ; Kn;jþ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ln 1
nn;j
cþ

2
 !v

u
u
t ; ð18Þ

withnn;j¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kn;j=ln
p

and variablesnn;j2 c;cþð Þ.

Taking into account boundary and interface conditions,(15)–

(17), it follows that the eigenfunctionspn;j(normalized to satisfy

pn;j0ðÞ¼1) are given by

pn;jx2ð Þ¼

cosKn;jx2það Þð Þ
cosKn;jað Þ

ifx22 a;0ð Þ;

coshK
n;j
þ x2 Hð Þð Þ

coshKn;jþHð Þ
ifx220;H½ Þ:

8
>><

>>:
ð19Þ
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3.2. Interior modes

The second type of eigenmodes are the interior modes. They

correspond to those eigenmodes whose associated eigenvalue sat-

isfieskn;j>lnc
2
þ. Having into account this condition, the solutions

of Eq.(14)for this case can be written as follows:

pn;jx2ð Þ¼

eC1coseK
n;jx2það ÞþeC2sineK

n;jx2það Þ

ifx22 a;0ð Þ;

eD1coseK
n;j
þ x2 Hð ÞþeD2sineK

n;j
þ x2 Hð Þ

ifx220;H½ Þ;

8
>>>>><

>>>>>:

beingeC1;eC2;eD1, andeD2constants to be determined and where the

positive wave numbers in each subdomain are given by

eKn;j¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ln
fn;j
c

2

1

 !v
u
u
t ; eKn;jþ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ln
fn;j
cþ

2

1

 !v
u
u
t : ð20Þ

In the expressions written abovefn;j¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kn;j=ln
p

and hence

fn;j2 cþ;þ1ð Þ.

Taking into account boundary and interface conditions,(15)–

(17), it follows that, in this case, the eigenfunctionspn;j(normalized

to satisfypn;j0ðÞ¼1) are given by

pn;jx2ð Þ¼

coseKn;jx2það Þ

coseKn;ja
ifx22 a;0½ ;

coseKn;jþ x2 Hð Þ

coseKn;jþH
ifx220;H½ :

8
>>><

>>>:

ð21Þ

Fig. 2illustrates two different kind of eigenmodes, a Love mode

(left plot) and an interior mode (right plot) with respect to thex2-

axis through the computational domainX(seeFig. 1). The speed of
sound has been settled toc ¼1=2inX andcþ¼1inXþ. In this
example, the geometrical dimensions of the computational domain

are given byL¼1;a¼0:2 andH¼0:8. The Love eigenmodewn;j
(withn¼15 andj¼5) has an oscillatory behaviour in a;0ð Þ

and decays exponentially in 0;Hð Þ, as it can be observed in the left

plot. The right plot illustrates the interior eigenmode withn¼15

andj¼5. It has an oscillatory behaviour in the whole domain,

although the oscillation changes when the wave crosses the inter-

face atx2¼0.

To distinguish the eigenpairs kn;j;wn;j n;j2N
which correspond

to interior modes from those ones which are associated with Love

modes, for each indexn2N, which fixes the modeqnwith thex1-

dependency, the corresponding indexesj2Nare split in two dis-

joint sorted subsets: thosewn;jwithj2In Nare considered inte-

rior modes whereas ifj2Ln Nthen they are Love modes. The
Fig. 2.Love modepn;jfrom Eq.(19)(left) and interior modepn:jfrom Eq.(21)(right) plotte

the Love mode and the oscillatory behaviour of the interior mode in 0;Hð Þ, beingH¼0

4

ordering of subsetsLnandInare given by the natural ascending

order with respect to the magnitude of their associated eigenval-

ueskn;j.

Remark 2.Despite the spectral problems withb¼0 andb>0

share similar variational formulations, the change of nature on the

boundary condition type (from Robin to Neumann boundary

condition onCe[Cs) implies that the eigenfunctions of the
auxiliary spectral problem(8)–(11)are not eigenfunctions of the

spectral problem associated with the target problem(2)–(6).

Moreover, even in the case of constant functions, it is straightfor-

ward to show that the spectral problem associated with(2)–(6)

forb>0 does not admit eigenfunctions of typewx1;x2ð Þ¼px2ð Þ,

since the non-null constant functions do not satisfy the Robin

condition(4).
4. Modal-based PUFEM method

The main idea of the proposed PUFEM methodology consists in

the use of the information of the eigenmodes computed from an

auxiliary spectral problem to be combined with a standard piece-

wise polynomial finite element discretization. Typically, any

PUFEM discretization applied to a two-dimensional problem

would involve a triangular or quadrilateral mesh of the computa-

tional domain. However, due to the tensor product representation

and the assumptions (H1)-(H2) required to the computational

domain (tangent to the coupling interface), the partition of unity

can be settled only in one spatial coordinate direction, reducing

the number of degrees of freedom used in the discretization and

simultaneously keeping the information of the coupling phenom-

ena of the layered material, which is already included in the com-

putation of the eigenmodes.

4.1. Discrete space

Before the detailed description of the modal-based PUFEM dis-

crete space, a preliminary analysis must be performed on the

eigenmodes computed in Section3. Firstly, those redundant eigen-

modes which belong to the polynomial discrete finite element

space should be removed from the PUFEM modal basis. In the par-

ticular case analysed in Section3,q0is a constant function, so it

belongs to the standard piecewise linear polynomial finite element

space in thex1-coordinate. Its inclusion in the PUFEM discrete

space does not add any new feature to the classical discrete FEM

approximation, so it will be neglected from the discrete space.

Regarding the rest of eigenfunctions (n>0), if expressions

qnx1ð Þwere used directly to define the enrichment of the PUFEM

discrete space, since the eigenmodeswn;jsatisfy homogeneous
d with respect tox2, forn¼15 andj¼5. It can be observed the exponential decay of

:8.
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Neumann boundary conditions onCe[Cs, a lack of convergence
will arise around the boundaries where the Robin conditions are

considered in the target problem(2)–(6). To avoid this drawback,

qnis rewritten in terms of complex exponential of different sign,

qnx1ð Þ¼

ffiffiffi
2

L

r
1

2
qþn x1ð Þþ

1

2
qn x1ð Þ; n2N;n–0;

where qþn x1ð Þ¼expi
ffiffiffiffiffiffi
ln
p
x1 andqn x1ð Þ¼exp i

ffiffiffiffiffiffi
ln
p
x1. Taking

into account this new rewriting of the modesqnusing complex

exponential expressions, if both functionsqþn andqn are involved

separately in the PUFEM discrete basis, it is guaranteed that any

boundary condition onCe[Cs(located atx1¼0 andx1¼L) could
be satisfied by a linear combination of typeC0q

þ
nþC1qnwith ade-

quate constantsC0andC1.

Obviously, as it has been already discussed in the section above,

for eachn2N, the eigenmodeswn;j;j2In, associated with the

interior modes are infinite (but countable) and for discretization

purposes, this set of modesInmust be truncated only considering

a finite number of eigenmodes with the smallest magnitude. The

truncated finite set of indexes for the interior modes will be

denoted by~In In, beingJnthe number of interior modes used

in the discretization. The criterion to truncate the infinite sequence

of interior modes corresponds to keep in the discretization only

those interior eigenvalueskn;jwhich satisfy

c2þln6kn;j6c
2
0ln forn¼0;...;N; ð22Þ

wherec0is a truncation parameter, which upper limits the values of

the interior modeskn;jused in the discrete space. In the case of the

eigenpairs associated with the Love modes, its dispersion equation

only admits a finite number of solutions and so, for a fixed value

n2N, all the Love eigenmodes are considered in the discretization.

The number of Love eigenmodes included in the subsetLnwill be

denoted byLn. Using this notation, ifkn;jis an eigenvalue of the aux-

iliary spectral problem and its corresponding eigenmode is used in

the PUFEM discretization, then there exists ak-th family of

eigenmodes such that the pair of indexes n;jð Þ2JN¼ kfgf

Lk[~Ikg
N
k¼1, or equivalently

n2 1;2;...;Nf gandj2 1;...;Ln|fflfflfflfflffl{zfflfflfflfflffl}
j2Ln

;Lnþ1;...;LnþJn|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

j2In

8
>><

>>:

9
>>=

>>;
: ð23Þ

To describe precisely the proposed modal-based PUFEM

method, a one-dimensional finite element mesh must be intro-

duced. For simplicity, an uniform mesh of sizehwill be used

throughout the rest of the present work, this is, a mesh withMele-

ments and whose nodes are given by ym¼hm:m¼0;...;Mf g

0;L½ . Clearly, such mesh hasMþ1 nodes and a mesh size

h¼L=M. In addition, the partition of unity consists in the local

polynomial basis umf gMm¼0, which is the standard LagrangeP1
(piecewise linear) finite element basis, defined by the nodal

relationum ylðÞ¼dlm, wheredlmis the Kronecker’s delta. Hence,
the discrete modal-based PUFEM space Xhis defined by the span

of a tensor product basis as follows:

Xh¼ umq
þ
n pn;j;umqn pn;j;m¼0;...;M;n;jð Þ2JN ;

ð24Þ

where recall that umqn pn;j x1;x2ð Þ¼um x1ð Þqn x1ð Þpn;jx2ð Þand

the ordering of indexesn;jð Þin the subsetsLkand~Ikare given

by the natural ascending order with respect to the magnitude of

their associated eigenvalueskn;j.

From the definition of Xhand since umf gMm¼0is a partition of

unity of the interval 0;L½ , i.e.,
PM
m¼0um x1ð Þ¼1, it is clearly deduced

that
5

wn;j¼

ffiffiffiffiffiffi
1

2L

r
XM

m¼0

umq
þ
nþumqn pn;j2Xh;

with n;jð Þ2JN. hence, the proposed discretization inherits poten-

tially the spectral convergence of the modal basis approximations

(see Section5for the illustration of the numerical behaviour of the

proposed method). Simultaneously, due to the use of a partition of

unity, the functions used for the enrichment in the discrete space

has not to satisfy all the boundary conditions of the source problem,

what increases the flexibility of choice for the modal basis. In addi-

tion, taking into account to the compact support of the finite element

basisumf gMm¼0, the matrix of the discrete problem will be sparse, what

decreases the computational storage requirements for a typical

modal discretization which involves full discrete matrices.

Since the modal-based PUFEM enrichment is flexible enough to

select only a part of the spectral basis, the impact in the accuracy of

considering only Love modes in the discrete space has been anal-

ysed in the numerical results shown in Section5. In this case, the

discrete space is defined by

XLh¼ umq
þ
n pn;j;umqn pn;j;m¼0;...;M;n;jð Þ2JN :

ð25Þ

The numerical features of the proposed modal-based PUFEM dis-

cretization with these two discrete spaces are described in detail

in the following two sections.

Remark 3.The proposed modal-based PUFEM approach and

subsequently, the associated discrete space described above can

be straightforwardly to the three-dimensional configurations. In

that case, the tensor products used in the definition of the discrete

space Xhwould involve the transverse modes (depending on two

spatial variables on a tangent plane parallel to the coupling

interfaces of the multilayer material) and the finite element basis

um
M

m¼0
would be defined on a two-dimensional mesh on the

same tangent plane.
4.2. Matrix description of the discrete problem

To write the matrix description of the variational problem using

the discrete space Xh(and analogously X
L
h), each term of the vari-

ational formulation associated with the sesquilinear formAb, the

L2-inner product, the source, and the boundary data contributions

(see(7)) are computed for unknown and test functions belonging

to the discrete space. Hence, the discrete variational formulation

can be stated as follows: For a fixed frequencyx>0, find
uh2Xhsuch that

Abuh;vhð Þ x2 uh;vhiL2XðÞ¼‘vhð Þ for allvh2Xh:
D

ð26Þ

Clearly, any functionuh2Xhis determined by their respective dis-

crete vector

u
!

h¼ uþmnj;umnj
j2Ln[In

M

m¼0

 !N

n¼1

¼ uþ011;u011;u
þ
012;u012;...;u

þ
01L1þJ1

;u01L1þJ1;...;

uþ0NLNþJN;u0NLNþJN;u
þ
111;u111;...;u

þ
MNLNþJN

;uMNLNþJN ; ð27Þ

and so the vector coefficients define the discrete function, this is,

uh¼
XM

m¼0

XN

n¼1

XLnþJn

j¼1

uþmnj umq
þ
n pn;jþumnj umqn pn;j: ð28Þ
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The coefficient ordering in(27)has been chosen to reduce as much

as possible the bandwidth of the sparse matrices involved in the

discretization. In fact, since the degrees of freedom related to the

same finite element basisumare stored consecutively, it is straight-
forward to show that due to the compact support of the one-

dimensional finite element basis, the bandwidth of the matrix

description is given by 6 max
16n6N

LnþJnð Þ.

Taking into account this basis representation in Xh, the discrete

variational formulation(26)admits the matrix description

x2M u
!
h ixbCu!hþKu

!
h¼b
!
h; ð29Þ

where the coefficients of the matricesM ;C, andK(with respect to

the coordinatesumnj induced by the basis of Xh) are given by the

expressions written below. Taking into account the expression of

the sesquilinear form(7)and the discrete problem(26), the mass

matrixM is defined by

M½ mnj;lki¼

Z

X

umqn pn;julqk pk;idx

¼

ZL

0

umulqnqkdx1

ZH

a

pn;jpk;idx2 ;

the damping matrixCis given by

C½mnj;lki¼
R
Ce[Cs

cumqn pn;julqk pk;idr

¼ umulqnqk x1¼0
þ umulqnqk x1¼L

RH
a
pn;jpk;idx2 ;

and the stiffness matrixKis defined by

K½ mnj;lki¼
R
Xc
2
R
Xr umqn pn;j r ulqk pk;i dx

¼
RL
0
umqn

0
qkul

0
dx1

RH
a
pn;jpk;idx2

þ
RL
0
umqnqkuldx1

RH
a
p0n;jp

0
k;idx2 ;

for all 06m;l6Mandm;jð Þ;k;ið Þ2JN. It should be noted that all

the integrals stated below have been computed using one-

dimensional exact integration with closed form integral formulas

(without requiring the use of quadrature formulas). Since the

source and boundary terms, functionsf;g, andrhave been approx-

imated by high-order polynomials (in the case of the source term,

such interpolation has been performed assuming a tensor product

expression), then the same exact quadrature procedure has been

also applied to the right-hand side termb
!
h. Consequently, the

right-hand side in the linear system(29)is given by

b
!
h

h i

mnj
¼
R
Xfumqn pn;jdxþ

R
Cþ[C

gumqn pn;jdr

þ
R
Ce[Cs

crumqn pn;jdr

¼
RL
0
f1umqndx1

RH
a
f2pn;jdx2 þpn;j að Þ

RL
0
gjx2¼ aumqndx1

þpn;jHðÞ
RL
0
gjx2¼Humqndx1þ umqn x1¼0

RH
a
crjx1¼0pn;jdx2

þumqn x1¼L

RH
a
crjx1¼Lpn;jdx2;

for all 06m6M andm;jð Þ2JN. Obviously, from the symmetric

character of the L2-inner product and the sesquilinear formAbfor

b¼0, both matricesM andKare hermitian. A direct inspection

on the coefficients of the damping matrixCalso reveals it is

hermitian.

4.3. Analysis of the condition number

It is well known that the enriched methods and, in particular,

those ones which are based on a partition of unity and plane waves

suffer from a poor conditioning (see[26,4]for a detailed descrip-
6

tion of effects of the conditioning on the PUFEM numerical results).

The proposed modal-based partition of unity method also shares

this kind of conditioning drawbacks even if the PUFEM discretiza-

tion is restricted to a one-dimensional discretization in thex1-axis.

To check the origin of these conditioning issues, the condition

numberjMð Þof the mass matrixM will be analysed in a simpli-

fied case, where it has been considered the pure Neumann problem

(withb¼0) for a one-layer material (i.e.cþ¼c) in the target

problem(2)–(6). Similar arguments could be also applied to the

stiffness and damping matrixKandCin the linear system(29).

To highlight the different order of magnitude of conditioning in

the proposed modal-based PUFEM method, it will be compared

with those condition numbers coming from an standard finite ele-

ment discretization.

First, notice that the condition number of the mass matrix is not

an issue in a standard piecewise linear finite element discretization

(in one-dimension with a uniform mesh). In this case, for the finite

element mass matrix, its condition number is upper bounded inde-

pendently of the mesh sizeh, this is,jMð Þ¼O 1ðÞ(see[2]for fur-

ther details). In what follows, it will be checked that the condition

number of the modal-based PUFEM mass matrix increases when

the number of eigenmodes is enlarged and simultaneously a

refined finite element mesh is used in the partition of unity). In

fact, it will be shown thatjMð Þ¼O h
2
.

Firstly, in the simple case ofb¼0 andc ¼cþ, the modal basis

solution of the spectral problem is given bywn;j¼qn pj, where

recall thatqn;n2N;n–0 are defined by(13)andpj;j2N are

given as follows:

p0x2ð Þ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
1

aþH

r

; pjx2ð Þ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
2

aþH

r

cos
jpx2
aþH

; j2N;j–0:

Notice that pjj2Nis an orthonormal Hilbert basis in L
2 a;Hð Þ. Fol-

lowing an analogous strategy to that one used to obtain(24), the

discretization space Xhis defined by

Xh¼ umq
þ
n pj;umqn pj; m¼0;...;M;

n;j¼0;...;N; n–0gi; ð30Þ

where the Hilbert basis has been truncated to the firstNeigenval-

ues. Hence, the complex-valued mass matrix M of size

2NNþ1ð ÞMþ1ð Þ 2NNþ1ð ÞMþ1ð Þinherits the tensor product

description used in Xh, and after a reordering (permutation of rows

and columns), it can be written as a Kronecker product of matrices

M ¼A B(where the size ofAis 2Mþ1ð ÞN 2Mþ1ð ÞNand the

size ofBisNþ1ð Þ Nþ1ð Þ) being

A½ mn;lk¼

ZL

0

umulqnqkdx1;for 06m;l6M;16n;k6N; ð31Þ

and

B½ i;j¼

ZH

a

pjpidx2 for 06i;j6N:

Trivially, from the orthogonality of the basis pjj2N, it is obtained

thatBis the identity matrixI. Hence, in the simple case considered

here,M ¼A I. Classical linear algebra results show that the

spectrum ofM andA coincides (see[21]) and so their condition

number also coincides.

Lemma 1.LetA be the matrix defined by(31). If the finite element

mesh satisfies2Nþ1ð Þ<M then it holds

jAð ÞPCh2
; ð32Þ

where C is a positive constant independent of M and N, only dependent

on L.
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Proof.With the aim of estimatingjAð Þ, the numerical range ofA
will be upper and lower bounded. Firstly, valuesmandnare fixed

taking into account that 06m6Mand 06n6N. Then, consider

the vectorv!2C2Mþ1ð ÞN associated with the discrete function

v pn2Xhwithvx1ð Þ¼um x1ð Þsinnpx1 mhð Þ=Lð Þ, which corre-

sponds to the following linear combination of basis functions:

v¼
um
2i

qþn
qþn mhð Þ

qn
qn mhð Þ

: ð33Þ

It holds

v! Av!¼
RL
0
vx1ð Þvx1ð Þdx1¼

RL
0
u2m x1ð Þsin

2 npx1 mhð Þ

L
dx1

¼2
Rh
0
s2

h2
sin

2 nps
L
ds6C

Rh
0
s4

h2
ds6Ch

3
;

where each occurrence of constantCcould denotes a different value

independent ofh(only dependent on the ratioL=n). To obtain the

estimate above, it has been used the first order Taylor polynomial

approximation of the sine function around the origin. Now, it is

straightforward to show from(33)that the unique non-null coeffi-

cients ofv!are given by 1=2iqþn mhð Þ;1=2iqn mhð Þ and hence

v! v!¼
1

2i
ei

np
L
mh

2

þ
1

2i
eþi

np
L
mh

2

¼
1

2
; ð34Þ

and consequently, it has been shown that there existsv!–0
!
such

that

v! Av!

v! v!
62Ch

3
:

Secondly, a different vector coordinatev!is taken into account. In
this case, oncemandnare fixed with 06m6M and 06n6N,

consider the vectorv!2C2Mþ1ð ÞNassociated with the discrete func-

tionv pnXhwithvx1ð Þ¼um x1ð Þcosnpx1 mhð Þ=Lð Þ, which corre-

sponds to the following linear combination of basis functions:

v¼
um
2

qþn
qþn mhð Þ

þ
qn

qn mhð Þ
: ð35Þ

It holds

v! Av!¼
RL
0
vx1ð Þvx1ð Þdx1¼

RL
0
u2m x1ð Þcos

2 npx1 mhð Þ

L
dx1

¼2
Rh
0
s2

h2
cos2 nps

L
dsP eC

Rh
0
s2

h2
dsP eCh;

ð36Þ

where each occurrence of constanteCcould denote a different value

independent ofh(only dependent on the ratioL=n). To obtain the

estimate above, it has been used a strictly positive lower bound

for the cosine function in the compact interval

0;h½ 0;L=2nþ1ð Þð Þ½ , which holds by assuming 2nþ1ð Þ>M

and taking into accounth¼L=M. In the interval written above, it

is ensured that cosnps=Lð Þis strictly positive for anyn). Now, it is

straightforward to show from(35)that the unique non-null coeffi-

cients ofv! are given by 1=2qþn mhð Þ;1=2qn mhð Þ and hence,

using(34),v! v!¼1=2. So, it has been shown that there exists

v!–0
!
such that

v! Av!

v! v!
P2eCh: ð37Þ

Now, ifkmax andkmin are respectively the largest and smallest

eigenvalues of matrixA, using the classical property of the Ray-

leigh quotient for hermitian complex-valued matrices (which

ensures that the numerical range is a real interval with eigenvalues

as endpoints[30]), it holds

kmin 6
v! Av!

v! v!
6kmax for allv!–0

!
:

7

Then, from(37) and (36), there exist two positive constantsCandeC,

independent ofMandN(and hence also independent ofh) such that

2eCh6kmax and kmin 62Ch
3
:

Consequently, sinceA is a positive definite hermitian matrix (it is

associated with the L2-inner product in Xh), it is satisfied

jAð Þ¼
kmax
kmin

P
eC

C
h
2
; ð38Þ

and hence(32)is obtained.h

In conclusion, fromLemma 1, since the spectrum ofA andM

coincides, it is obtained thatjMð Þ¼O h
2
, what implies a sig-

nificant increasing of the condition number as soon as the finite

element mesh is refined. This high condition number (compared

with respect to the low conditioning of standard finite element

methods) in the mass matrix could indicate the numerical mecha-

nism because of the matrix of the linear system(29)suffers for

high condition numbers. As it is reported in the following sections,

to mitigate as much as possible the conditioning issues, different

regularization techniques can be considered, the finite element

meshes have been kept as coarse as possible in most of the numer-

ical test, and also a novel criterion to limit the number of eigen-

modes used in the discrete space has been derived.

5. Numerical results

An extensive variety of numerical tests has been considered to

illustrate the performance and the numerical behaviour of the pro-

posed modal-based PUFEM method. With this aim, different sce-

narios involving different discrete settings have been used. More

precisely, Section5.1shows the different numerical performance

obtained with a discrete space that only involves Love modes,

and with another discrete space that includes both, Love and inte-

rior modes. Finally, in those numerical simulations where only

interior modes are involved, the eigenmodes used in the modal-

based PUFEM discretization(25)hold the condition(22)with

c0¼2cþ.

Section5.2illustrates the consistency of the method for solu-

tions contained in the discrete space. Finally, Section5.3focuses

on the deterioration of the numerical results due to the high con-

dition numbers of the discrete matrix and its potential mitigation

using regularization techniques.

Throughout the entire Section5, the relative errors are com-

puted using a pointwise L1-norm on an 5 5 equispaced Cartesian

grid of points yjk
8

j;k¼1
in the domain 0;L½ a;H½ . More pre-

cisely, the relative error is given by

h¼

max
16j;k65

juyjk uhyjkj

max
16j;k65

juyjkj
;

whereuis the exact solution of the source problem anduhis the

approximated solution computed with the proposed modal-based

PUFEM method. Other finer grids with a larger number of points

have been also considered leading to similar relative errors. To plot

the approximated solution computed by means of the modal-based

PUFEM method, the real part of the approximation in every numer-

ical test is plotted on a 33 33 equispaced grid of points yjk
33

j;k¼1
in

the domain 0;L½ a;H½ . Additionally, the pointwise relative error

with respect to L1-norm is also plotted in the computational

domainX.
If it is not mentioned explicitly other data, the numerical test

have been computed assuming that problem(2)–(6)is settled with

angular frequencyx¼pand homogeneous Neumann boundary
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conditions have been considered on the whole boundary@X. The
computational domain X¼ 0;Lð Þ a;Hð Þ with

a¼0:2;H¼0:8;L¼1 is split in two subdomains where the speed

of sound is given byc ¼1=2inX ¼ 0;Lð Þ a;0ð Þandcþ¼1in

Xþ¼ 0;Lð Þ 0;Hð Þ.

5.1. Numerical comparison of discrete spaces with or without interior

modes

To illustrate the relevance of including the interior modes on

the discrete space (and consequently use the complete set of eigen-

modes computed from the auxiliary spectral problem), a detailed

comparison between the modal-based method have being carried

out using the discrete spaces XLh (only considering Love eigen-

modes) and Xh(using Love and interior eigenmodes).

In this numerical test, the source term is given by

fx1;x2ð Þ¼
1 for x1;x2ð Þ2Xþ;

x2 forx1;x2ð Þ2X;

and the boundary functions are fixed tog¼0 andr¼0. Assuming

these boundary conditions and this source term, it is straightfor-

ward to compute the exact solution in closed form. More precisely,

the exact solution is given by

ux1;x2ð Þ¼
Aþe

ixx2=cþþBþe
ixx2=cþ 1

x2 ifx1;x2ð Þ2Xþ;

Aeixx2=c þBeixx2=c x2
x2 ifx1;x2ð Þ2X;

(

ð39Þ

beingAþ;Bþ;A;B coefficients that are determined by solving the

linear system

0 0 eixH=cþ eixH=cþ

eixa=c eixa=c 0 0

1 1 1 1

1 1 cþ=c cþ=c

0

B
B
B
@

1

C
C
C
A

A

B

Aþ

Bþ

0

B
B
B
@

1

C
C
C
A
¼

0

ic=x3

1=x2

ic=x3

0

B
B
B
@

1

C
C
C
A
;

that results from applying the boundary conditions and the cou-

pling conditions.

Table 1shows the relative error for both, an approximated solu-

tion in the discrete space XLhinvolving only Love eigenmodes and

an approximated solution in the discrete space Xhwith Love and

interior eigenmodes. As it is expected, if interior and Love modes

are included in the discretization then the approximated PUFEM

solutions are much more accurate than those computed with only

Love modes. This conclusion is valid for any value of mesh sizeM

and any number of eigenmodesNas it can be checked inTable 1.

Figs. 3 and 4illustrate the real part of the approximated solution

and the relative error forM¼4 andN¼10 computed using the

discrete space XLhand Xh, respectively.

It is also relevant that, if the relative errors obtained with both

discrete spaces are compared for similar values of degrees of free-

dom (and hence with almost similar computational cost), the

numerical results reached with the discrete Xhoutperforms those

results obtained with only Love modes in XLh. In conclusion, the

numerical results described throughout the rest of this section, will

take into account both Love and interior eigenmodes and hence the

proposed modal-based PUFEM discretization will always use the

discrete space Xh.

5.2. Consistency of the modal-based PUFEM method with Love and

interior modes

In order to check the consistency of the modal-based PUFEM

method (using the discrete space with both interior and Love

modes), the relative error has been analysed in some numerical
8

tests where the exact solutions belong to the discrete space Xh.It

is shown here the case where the exact solution is given by an inte-

rior mode. Numerical results obtained choosing a Love mode as

exact solution are analogous to the ones shown in this section.

The solution considered in this test is the eigenmode associated

with the lowest non-null eigenvalue, this is, u¼w1;L1þ1, where

1;L1þ1ð Þ2JN (see(23)). To obtain such exact solution, the

source term is given byf¼ k1;L1þ1 x
2w1;L1þ1. Obviously, from

a theoretical point of view, since the exact solution belongs to

the discrete space, the numerical approximation error should be

null. However, due to the round-off errors introduced by the dou-

ble precision arithmetic representation and the high condition

number of the discrete matrices, the relative errors shown in the

first two rows ofTable 2are reaching approximatelyO 1014 .

The numerical results ofTable 2also illustrate how the relative

errors are increased as the one-dimensional mesh is refined (Mis

increased) and more eigenmodes are involved in the discrete space

Xh(value ofNis increased). In both cases, since the condition num-

ber of the linear system grows, the relative errors are also

increased. Despite of this well-known phenomena for partition of

unity methods, it should be remarked that five digits of accuracy

are kept even in those numerical approximations where the condi-

tion number is as high asO 1018 .Fig. 5illustrates the real part of

the approximated solution and the relative error forM¼10 and

N¼3.

5.3. Influence of the condition number on the numerical results

In previous sections, it has been reported that the modal-based

PUFEM method suffers for large condition numbers in the linear

systems which have to be solved. Such issue represents a potential

drawback in the use of direct LU-based linear solvers. From the

numerical results described in the sections above and the theoret-

ical analysis made in Section4.3, this conditioning problem is more

relevant as soon as the one-dimensional finite element mesh is

refined and the number of eigenmodes involved in the discrete

space is increased. However, there exists a number of methodolo-

gies to deal with high condition numbers and try to mitigate the

amplification of the round-off errors on the solution of linear sys-

tems. Three different regularization techniques have been evalu-

ated: a naive damping strategy, the classical Tikhonov filtering

(with two different strategies to choose the regularization param-

eter), and the truncated singular value decomposition method. The

latter has been already used for solving linear systems with large

condition numbers in the context of two-dimensional PUFEM dis-

cretizations (see[7]).

Now, to avoid those exact solutions which could belong to Xh,

the source term is given by

fx1;x2ð Þ¼
cos3px1

L
for x1;x2ð Þ2Xþ;

1þx2ð Þcos3px1
L

for x1;x2ð Þ2X:

(

With this source term, it is straightforward to compute the exact

solution in closed form, which does not belong to Xh, and it is given

by

ux1;x2ð Þ¼cos
3px1
L

Aþe
iaþx2þBþe

iaþx2 1
c2þa

2
þ

ifx1;x2ð Þ2Xþ;

Aeiax2þBeiax2 1þx2
c2a2 ifx1;x2ð Þ2X;

8
<

:

ð40Þ

where

aþ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

c2þ

9p2

L2

s

; a¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

c2
9p2

L2

s

;



Table 1

Comparison of the relative error hand the condition numberjfor two different approximated PUFEM solutions: the discrete space X
L
hthat only includes Love modes (left part),

and the discrete space Xhwith both Love and interior eigenmodes (right part). The numerical results are shown for different values of the mesh sizeM, the number of eigenpair

families considered in the discretizationN, and the degrees of freedom (dof) of the discrete approximation.

XLh without interior modesð Þ Xh with interior modesð Þ

M N dof h j dof h j

3 16 1:65 100 1:1 103 60 2:14 103 1:5 108

1 5 32 2:95 100 5:0 104 140 3:00 105 3:1 1013

10 100 1:87 100 9:4 108 500 1:55 105 1:2 1019

3 40 3:53 100 1:0 105 150 7:28 105 2:7 1012

4 5 80 4:45 101 1:1 108 350 1:72 105 5:2 1016

10 250 3:30 103 1:3 1014 1250 3:88 106 1:0 1023

3 88 5:17 100 3:5 108 330 2:73 105 3:6 1015

10 5 176 6:62 102 4:1 1011 770 7:74 106 2:0 1018

10 550 3:69 104 6:2 1016 2750 1:97 105 2:2 1019

Fig. 3.Real part of the approximated solution (left) and modulus of the relative error (right), obtained from the modal-based PUFEM method with a one-dimensional mesh of

four elements (i.e.M¼4) and considering the discrete space XLhwithN¼10. The exact solution is given by(39).

Fig. 4.Real part of the approximate solution (left) and relative error (right), obtained from the modal-based PUFEM method with a one-dimensional mesh of four elements

(i.e.M¼4) and considering the family of Love and interior modeswn;jwith n;jð Þ21;...;10f g Ln[I
Jn
n (i.e.N¼10). The exact solution is given by(39).

Table 2

Relative error hand the condition numberjfor different values of the mesh sizeM, the number of eigenmodesNconsidered in the discretization, and the degrees of freedom
(dof) used in the discrete approximation. The exact solution is given by the non-constant interior mode associated with the lowest eigenvalue.

M N dof h j

1 12 1:49 1015 1:5 102

1 3  60 3:81 1014 1:5 108

5 140 6:60 1012 3:1 1013

1 606 2:78 1011 2:5 1013

100 3 3030 1:06 105 1:4 1018

5 7070 4:92 106 9:5 1018
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Fig. 5.Real part of the approximated solution (left) and modulus of the relative error (right) obtained from the modal-based PUFEM method with a one-dimensional mesh of

ten elements (i.e.M¼10) and considering the discrete space XhwithN¼3). The exact solution is the non-constant interior mode associated with the lowest eigenvalue.
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andAþ;Bþ;A;B are the coefficients computed as solution of the

linear system

0 0 eiaþH eiaþH

iaeiaa iaeiaa 0 0

1 1 1 1

ic
2a ic

2a ic
2
þaþ ic

2
þaþ

0

B
B
B
@

1

C
C
C
A

A

B

Aþ

Bþ

0

B
B
B
@

1

C
C
C
A

¼

0

1=c2a2

1=c2þa
2
þ 1=c2a2

1=a2

0

B
B
B
@

1

C
C
C
A
;

which results from applying the boundary conditions and the cou-

pling conditions.

Table 3shows the comparison of the relative errors obtained

with a LU-based direct solver and with the naive damping algo-

rithm (adding a damping coefficientkdon the diagonal entries of

the matrix). It can be observed that both methodologies lead to

similar relative errors without any significant advantage between

both methods. InFig. 6we show the solution and the modulus of

the relative error for one of the analyzed cases.

Other regularization methods (truncated singular value decom-

position or Tikhonov filtering technique) lead to similar results

(see[22]).

5.4. Numerical comparison with a standard Finite Element Method

The numerical test described above has been also utilised to

compare the accuracy and the computational performance of the

proposed modal-based PUFEM discretization with respect to a

standard Finite Element Method based on piecewise linear
Table 3

Comparison of the relative error hcomputed from solving the discrete linear system usi

method. The relative errors and the condition numberjare reported for different values of t
degrees of freedom (dof) of the discrete approximation.

M N dof kd

3 60 8:7 107

1 5 140 5:3 1010

10 500 2:3 1012

3 150 2:8 107

4 5 350 2:3 1010

10 1250 2:3 1012

3 330 3:8 109

10 5 770 1:0 1012

10 2750 1:1 1012

10
discretization (Lagrange P1-elments) on a structured two-

dimensional triangular mesh.Fig. 7shows the relative error com-

puted with the proposed modal-based PUFEM approach (left plot)

and those errors obtained with the FEM discretization (right plot).

It can be observed that the errors reached by the PUFEM discretiza-

tion are two order of magnitude lower than the FEM errors for any

of thec values. Moreover, the modal-based PUFEM approach is

less prone to the presence of spurious resonances than the FEM

methodology (most of the artificial peaks on the FEM relative

errors are not present in the PUFEM numerical results). Counterin-

tuitively, due to the spectral nature of the discrete basis of the pro-

posed PUFEM discretization, the frequency valuesxassociated
with the natural resonances of the test problem present a lower

error than the typical FEM behaviour there the error is locally

increased.

Finally, this numerical comparison between both methods has

been performed taking into account a two-dimensional 20 20

structured triangular mesh to keep a similar size of the linear sys-

tems to be solved in the FEM and modal-based PUFEM approaches:

the size of the FEM discrete matrix is 441 441 and it has 5842

nonzero entries, whereas the size of the PUFEM discrete matrix is

150 150 and it has 11700 nonzero entries. In that manner, since

the computational times are driven mainly by the time required to

solve those discrete systems, the relative errors reported inFig. 7

has been obtained with similar computational times.
6. PUFEM basis criterion based on the crack observability

The effect of the mesh and the choice of an adequate basis is

essential to obtain accurate and reliable numerical results in any

PUFEM technique due to the high condition number of the
ng a LU-based direct solver and the relative error dobtained using a naive damping

he mesh sizeM, the number of eigenmodesNconsidered in the discretization, and the

h d j

1:13 103 1:14 103 1:5 108

1:24 104 1:25 104 3:1 1013

1:05 104 3:89 105 1:2 1019

6:79 105 8:33 105 2:7 1012

4:70 105 6:61 105 5:2 1016

4:70 105 2:90 105 3:9 1020

1:33 104 1:22 104 1:5 1015

5:47 105 5:71 105 3:1 1018

4:94 105 2:53 105 1:2 1019



Fig. 6.Real part of the approximate solution (using a LU-based direct solver) (left) and modulus of the relative error (right), obtained from the modal-based PUFEM method

with a one-dimensional mesh of four elements (i.e.M¼4) and considering the discrete space XhwithN¼3. The exact solution is given by(40).
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assembled matrices to be solved. Despite the recommendation of

using coarse meshes to define the partition of unity, it is possible

to design other criteria for selecting the most relevant eigenmodes

involved in the definition of the discrete space.

As a particular case, consider a wave propagation problem

where a crack is present in the coupling interface between a bilay-

ered material. If the main purpose of the numerical simulation is

the identification the presence of a crack, then the PUFEM dis-

cretization should only include those eigenmodes which are able

to detect and observe the crack. So, limiting the number of modes

involved in the discretization will reduce the size of the matrix lin-

ear systems and keep bounded its condition number.

A detailed numerical study of crack phenomena is beyond the

scope of this work since, even in the simplest planar and two-

dimensional setting, a variety of crack parameters can be studied,

such as the positions of the stating and ending points, its length,

etc. However, following the methodology used in[6], it is possible

to define a criterion to quantify the ability of an eigenmode to

observe a crack using the following two indicatorsO1andO2:

O1n;jð Þ¼

Z

X

qjx1ð Þpn;jx2ð ÞT1x1;x2ð Þdx1dx2; ð41Þ

O2n;jð Þ¼

Z

X

qjx1ð Þpn;jx2ð ÞT2x1;x2ð Þdx1dx2; ð42Þ

with n;j2N, and whereqj pn;jis a Love or interior eigenmode

(used in the modal-based PUFEM discretization), andT1¼SAþSB
andT2¼SA SB. FunctionsSAandSBare the so-called singular dual

functions associated with the crack, which are static extensions of

the singular solutions of the scattered fields computed in the pre-
Fig. 7.Relative error computed with the proposed modal-based PUFEM method withM¼

20 20 triangular mesh for different values ofc andx. The exact solution is given by

11
sent of a crack. More precisely, if a crack with endpointsAandB

is placed on the coupling interface of the layered material, then

SBx1;x2ð Þ¼gBrBðÞSBlocrB;hBð ÞþSBext x1;x2ð Þ;

wheregBis a cut-off function centered at the crack tipBwith sup-
port contained in a discDBof radiusRB;rB;hBð Þare the local polar

coordinates centered at pointB,

SBlocrB;hBð Þ¼
1

c2
1
ffiffiffiffiffi
rB
p

ffiffiffiffiffi
rB
p

RB
sin

hB
2
;

and finallySBext2H
1XðÞis the solution (defined up to a constant) of

the following problem:

divc2rSBext ¼c
2rgB rSBlocþdivc

2SBlocrgB inXnDB;

@SBext
@m ¼0 on@Xn@DB;

SBext¼0 on@DB:

8
>>><

>>>:

ð43Þ

An analogous definition is also valid forSA(see[6, Section 4.3]for a

more detailed discussion).

An standard piecewise linear finite element discretization on a

triangular mesh has been used to compute the solutions ofSAext
andSBext, since no time-harmonic wave propagation phenomena

is involved in their definitions (in fact, problem(43)is elliptic).

Plots onFig. 8show the singular dual functionsSAandSBfor a crack

placed on the coupling interface lying onx2¼0 between two lay-

ers with tips at pointsA¼ 0:6;0ð ÞandB¼ 0:8;0ð Þ.

The computation of indicatorsO1n;jð ÞandO2n;jð Þhave been

performed interpolating the closed-form expressions of the Love
4 andN¼3 (left) and a piecewise linear FEM approximation (right) in a structured

(40).



Fig. 8.Singular dual functionsSA(left) andSB(right) associated respectively with the endpointsAandBof the crack. The crack is set on the coupling interface between

x2¼0:6 and 0:8.

Fig. 9.The two observability indicatorsO1(left) andO2(right) for a bilayered material plotted with respect to the indicesnandj. The crack is set on the coupling interface

betweenx2¼0:6 and 0:8. The dashed line separates the Love modes (smallerj-index) from the interior modes (largerj-index).
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and interior eigenmodes using local high-order polynomial spaces

in every mesh element (in particular, usingP6-polynomials). Plots

inFig. 9show the values of both indicators. The dashed line sepa-

rate the Love eigenmodes (with smaller indexj) from the interior

modes (with larger values of indexj). For observability purposes,

these plots illustrate that it is enough to consider the Love and

interior eigenmodes withnsmaller than 15. Notice also that for

n<15, the indicator values follow a decreasing trend as soon as

nandjare increased, but theirj-index decay is slower than in

then-index direction.
7. Conclusions

In this manuscript, a non destructive testing problem in a bilay-

ered domain without a crack has been studied. A modal-based par-

tition of unity finite element method has been proposed and

described in detail. In this method the closed-form computation

of the Love and interior modes are essential to approximate the

solution of the wave propagation problem. More precisely, the dis-

crete approximation involves the tensor product of the eigen-

modes, which leads to closed-form evaluation of the element

matrices. The proposed numerical method has been illustrated

using a variety of test problems, where Love modes, interior modes

or both modes have been used in the discretization space. How-

ever, it must be notice that the present approach requires that

the elastic material of each layer is homogenenous (i.e., the phys-

ical parameters should be constant). Otherwise, the closed-form

computation of the internal and the LOve modes could not be pos-

sible. Hence, the present PUFEM methodology is not comparable

with other high-order numerical methods which are applied to
12
the wave propagation of multilayer materials with functionally

graded layers (see for instance[15]).

The modal-based PUFEM method clearly reduces the assem-

bling process but still suffers from poor conditioning (a common

feature of the planewave partition of unity enriched methods when

the number of eigenmodes is increased or the mesh is refined). The

high condition number associated with the discrete matrix have

been also analysed. Finally, some numerical results have been pre-

sented in order to illustrate the accuracy of the method, the

numerical behaviour of the modal-based PUFEM results with

respect to its condition number (using both LU-solvers and differ-

ent regularization techniques). Regularization techniques can be

used to mitigate such numerical drawbacks. Additionally, it has

been studied a feasible criterion to select a reduced basis in the

modal-based PUFEM discrete space based on the observability of

a crack placed on the coupling boundary between layers.
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