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depending on the stand conditions (Liang et al., 2018a), which are close 
to the values required in practical applications such as FIs. However, TLS 
devices have not been yet adopted in FIs, for several reasons: (i) diffi-
culties in the automation of data processing to provide reliable mea-
surements of important forest variables, (ii) high acquisition costs; (iii) 
limited software; and (iv) lack of trained personnel (Liang et al., 2016). 
Many researchers agree that affordability is the main key challenge to 
overcome, emphasizing that automation of point cloud processing with 
attainable and easy-to-use software able to extract information related 
to important forest attributes is essential (Dassot et al., 2011; Newnham 
et al., 2015; White et al., 2016; Liang et al., 2016, 2018a). 

As TLS data sets comprise millions of points, sophisticated methods 
for automatic processing are required. Many algorithms with a high 
level of automation and that are able to extract tree attributes, such as 
dbh, total height (h, m) and stem volume (v, m3), have been developed in 
the last few decades (Cabo et al., 2018; Liang et al., 2012, 2018b; 
Olofsson et al., 2014; Olofsson and Holmgren, 2016; Zhang et al., 2019). 
Although most algorithms yield acceptable dbh and stem curve estima-
tions according to FI requirements, stem detection and estimation of h 
cause bottlenecks in the process, especially with single scans (Krok et al., 
2020; Liang et al., 2018a). Some of the algorithms developed have also 
been included in software applications, such as SimpleForest (Hacken-
berg et al., 2015), 3D Forest (Trochta et al., 2017) and AutoStem™ 
(Bienert et al., 2007), among others (Krok et al., 2020). However, these 
programs have some drawbacks for use in FIs: (i) they focus on 
single-tree rather than stand-level approaches (SimpleForest); (ii) they 
involve semi-automatic processing (3D Forest); and (iii) the software is 
only available commercially (AutoStem™) (i.e. it is not free or open 
source). Furthermore, the previous studies have mainly focused on 
replicating plot-based measurements, which does not extend conven-
tional inventory approaches from a sampling perspective and thus limits 
the utility of TLS in FIs, the main purpose of which is to estimate 
important forest variables at larger scales (e.g. stand and regional) than 
tree and plot levels (Newnham et al., 2015; White et al., 2016). Methods 
that enable TLS to be used for FI purposes must therefore contemplate 
the use of different approaches (Newnham et al., 2015), and other 
procedures in which not all trees in the sample plots are measured may 
be feasible (Liang et al., 2018a). Thus, further research is required to 
address the challenges in the operational use of TLS (Liang et al., 2018a). 

Here we present FORTLS (Molina-Valero et al., 2021), an R package 
developed with the objective of automating TLS point cloud data pro-
cessing and estimating variables for forestry purposes. To fulfil this 
objective, FORTLS enables (i) detection of trees and estimation of dbh 
and other tree attributes, (ii) estimation of some stand variables (e.g. h, 
G, V), (iii) computation of metrics related to important tree attributes 
estimated in FIs at stand-level, and (iv) optimization of plot design for 
combining TLS data and field measured data. The package also includes 
several features for correcting occlusion problems to improve the esti-
mation of stand variables. The current version of FORTLS is based on 
single-scan TLS data, with the aim of facilitating operational use, and it 
has been designed as relatively easy-to-use open-source software aimed 
at use by both scientists and technical users. Relative to multi-scan and 
multi-single-scan approaches, the single-scan approach improves data 
acquisition, shortens the processing time and increases the sample size 
in a cost-efficient manner, mainly because it does not require 
pre-scanning tasks involving location of artificial reference objects 
(Holopainen et al., 2014) or automated post-processing matching 
methods (Liu et al., 2017). Finally, and as a case study, we have tested 
FORTLS for estimating common forestry variables in an experimental 
plot of 1 ha located in an even-aged Pinus sylvestris L. stand in northern 
Spain. These features of the FORTLS package may enable the operational 
use of TLS in FIs, in combination with model-based or model-assisted 
inference approaches. 

2. Methods 

2.1. Software design 

FORTLS (Molina-Valero et al., 2021) has been developed as an R 
package (R Core Team, 2021) because R is free statistical software which 
is accessible to any user interested in this tool. The initial stages of 
development of this package were outlined in Molina-Valero et al. 
(2020), although the first version of FORTLS was not available until 
March 2021. Currently, both the most recent stable version of the 
package and the most up-to-date version can be downloaded free of 
charge, from respectively the CRAN (https://CRAN.R-project.org/packa 
ge=FORTLS) and GitHub development (https://github.com/Mo 
lina-Valero/FORTLS/tree/devel) repositories. 

The R package FORTLS has been optimized by implementing C++

code in the most demanding computing processes by means of the Rcpp 
package (Eddelbuettel, 2013; Eddelbuettel and Balamuta, 2018; Eddel-
buettel and François, 2011) and the RcppEigen package (Bates and 
Eddelbuettel, 2013), which enables integration of the Eigen C++ library 
for specific matrix calculation. For operations with objects in spatial 
data classes, both the raster (Hijmans, 2020) and sp (Bivand et al., 2013; 
Pebesma and Bivand, 2005) packages have been used. For obtaining 
Voronoi polygons, the ggvoronoi package (Garrett et al., 2021) has been 
used in the simulations and metrics.variables functions. As TLS point 
clouds represent large data sets, FORTLS also imports the vroom pack-
age (Hester and Wickham, 2020) for accelerating loading and saving .txt 
files. We have used other important packages to generate and save 
interactive graphics, namely plotly (Sievert, 2020) and htmlwidgets 
(Vaidyanathan et al., 2020). Apart from the packages included in R base 
distribution and other accessory packages such as progress (Csárdi and 
FitzJohn, 2019), scales (Wickham and Seidel, 2020) and tidyr (Wick-
ham, 2021), the other external R packages used for more specific 
functions are mentioned below, with their respective functions. 

The functions and results compiled in this work are based on the 
stable version 1.0.6 of the FORTLS package available in CRAN. In the 
following sections, all steps involved in TLS point cloud data processing 
with FORTLS, as well as the most relevant algorithms, are described: (i) 
normalization; (ii) tree detection; and (iii) estimation of metrics and 
variables at stand-level. 

2.1.1. Normalization 
The normalization process is a necessary first step in processing point 

cloud data, and it is implemented in the normalize function (Table 1), 
which for some processes uses the functions readLAS, clip_circle, clas-
sify_ground, grid_terrain and normalize_height included in the lidR 
package (Roussel et al., 2020; Roussel and Auty, 2020). Normalization 
involves obtaining the coordinates relative to plot centre for TLS point 
clouds supplied as .las or .laz files. The process includes the following 
steps: (i) classification of points as “ground”; (ii) generation of a digital 
terrain model (DTM); (iii) computation of coordinates relative to DTM 
(Cartesian, cylindrical and spherical); and (iv) reduction of point cloud 
density by the point cropping process (PCP). 

In the initial step, points are classified as “ground” or “not ground” 
with the Cloth Simulation Filter (CSF) algorithm (Zhang et al., 2016). 
The DTM is then generated by spatial interpolation of “ground” points. 
Two methods are available for executing this process: (i) spatial inter-
polation based on Delaunay triangulation (by default); and (ii) spatial 
interpolation using a k-nearest neighbour approach with 
inverse-distance weighting. The point cloud is then normalized by 
subtracting the DTM created. Once the point cloud has been normalized, 
Cartesian, cylindrical and spherical coordinates are calculated relative 
to the sampling point (TLS device establishment point). Finally, the 
normalize function applies the PCP algorithm developed by Molina--
Valero et al. (2019) to reduce the point density and thus produce a 
spatially homogeneous point cloud in which the distribution of points is 
proportional to the object size. During execution of the PCP, a selection 
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best performance in all cases, h was always underestimated, reaching 
similar relative bias only for circular fixed area plots of around 18 m 
radius (S2). This again shows that height variables are systematically 
underestimated (Liang et al., 2016, 2018a; Krok et al., 2020). On the 
other hand, AutoStem™ was assessed for a stand planted with Picea 
sitchensis (Bong.) Carr. with a current density of 600 trees per ha 
(Mengesha et al., 2015). This was measured in nine randomly located 
plots of 15 m radius, in which all trees were measured by conventional 
methods and single TLS scans were made from the plot centre with a 
resolution of 6.28 mm at 10 m. The overall difference between 
TLS-derived and conventional volume estimates was 5.6% when 
occluded trees (not detected by TLS) were excluded from the analysis of 
both sources, i.e. TLS and field data, and 10.2% when estimates based on 
TLS were corrected by simple correction factors. FORTLS yielded much 
lower relative bias in volume estimates, especially for the k-tree plot 
design and estimates corrected with distance sampling methods (G.hr. 
cov), which yielded values of around 0% for 12–14 trees (S2). In any 
case, comparison with these findings should be done with caution, as we 
used paraboloid function for estimating volume, in contrast to Mengesha 
et al. (2015), who applied methods based on retrieved stem profiles. 
Nevertheless, this is the most interesting comparison because the 
aforementioned authors used a very similar sampling methodology, 
with single randomly located scans (systematic in our case) and the 
corresponding field plot measurements. 

All plot designs considered (circular fixed area, k-tree and angle- 
count plots) yielded stable estimates in N.tls and G.tls for certain plot 
size ranges (Fig. 9), as occurred for G estimates using a 2D TLS device 
(Fig. 3, Brunner and Gizachew, 2014). However, the variables were 
slightly underestimated, unlike in Brunner and Gizachew (2014), in 
which unbiased G estimates between real and scan basal area were 
observed for 5–10 m radius plot size (only for one of the studied stands). 
However, our findings are generally consistent with the most recent 
findings, which indicate underestimation of N and G due to deficit in tree 
detection caused by occlusions, especially for single scans (Liang et al., 
2016, 2018a; Krok et al., 2020). In our study, uncorrected estimates (G. 
tls) yielded lower bias for smaller plot sizes, due to lower occlusion rates, 
which is consistent with the findings of Corona et al. (2019), who 
concluded that under easy-to-measure stand conditions, plots of 10 m 
radius in which occlusion corrections are not considered may be good 
enough for estimating G. 

To overcome underestimates derived from occlusion effects, we 
incorporated several methods applied in TLS single scans in other 
studies, which improved estimations in larger plot sizes, where G.hn 
yielded the best estimates for 17.5–19 m radius (Fig. 10). This finding is 
consistent with those of Astrup et al. (2014) who reported that a larger 
detection radius seems to improve estimates when distance sampling 
methods are applied. The results presented here indicate that correction 
occlusion methods can improve estimates as observed for G in 
angle-count (Strahler et al., 2008; Lovell et al., 2011) and circular fixed 
area plots (Seidel and Ammer, 2014; Astrup et al., 2014). Because these 
methods can be assessed in FORTLS in terms of relative bias through 
continuous plot size increment and different plot designs, this represents 
an advantage for determining the best possible plot design in execution 
of a single workflow. 

FORTLS also evaluates correlations between variables of interest and 
TLS-derived metrics and variables. This contribution implies a new 
perspective, enabling selection of the best possible plot design according 
to statistical correlation measures instead of measurement accuracy. 
This approach may be considered for estimating forestry variables 
assisted by or based on models, in a similar way as ABA inference 
developed for ALS devices (Næsset, 2002). In some cases, simple linear 
regressions may be fitted when strong relationships are observed for 
only one TLS metrics and/or variables, as between h.0 and P95 for the 
study case, with correlations above 0.94 (Fig. 11). In this case the plot 
design considered was an angle-count plot for a BAF value of 1.3. In 

addition, this concept provides an opportunity to solve the systematic 
problem regarding underestimation of height variables derived from 
TLS measurements (Liang et al., 2016, 2018a; Krok et al., 2020). 

Different groups of variables yielded the highest correlations at 
different plot sizes (Fig. 12); when the correlations for height variables 
were strongest in larger plots, diameter variables retained approximate 
stable correlations, and the highest correlations for other variables (N, G 
and V) were reached in smaller plots. Thus, the plot design could be 
adapted to our stand conditions and target variables for more efficient 
sampling. 

Here we have demonstrated the utility of the R package FORTLS in 
FIs in a case study. As FORTLS works with single scan data, co- 
registration of point clouds in specific software and placement of tar-
gets for field measurements are not required. This improves data 
acquisition and shortens the processing time, as well as enabling the 
sample size to be increased in a cost-efficient manner, which is one of the 
most desirable features of TLS in FIs (Liang et al., 2016). Further 
research to consolidate FORTLS for the approaches mentioned here 
should encompass the following: (i) larger and more complex study 
cases; (ii) consideration of more metrics and variables with high po-
tential for correlation with other forest attributes (leaf area index, spe-
cies, etc.); (iii) exploration of the possibility of making inferences 
assisted by models, by developing an adequate sampling methodology; 
and (iv) improvement of the computation process as much as possible, in 
relation to both algorithms and computing time. 

5. Conclusions 

The R package FORTLS is useful software for processing TLS data for 
forestry purposes. It has the advantage of working with single scans and 
conducting automatic data processing, which may overcome the major 
challenge of affordability in data acquisition and data processing. It has 
yielded good results for conventional variables, based on a preliminary 
case study with direct estimates, as well as good correlations between 
field-derived variables and TLS-derived metrics and variables. However, 
its potential for producing model-assisted inferences from metrics and/ 
or variables has not yet been demonstrated. In addition, one of the most 
valuable features of the software is its flexibility to adapt to the best 
possible plot design for each variable, enabling multiple plot designs to 
be used in a single sampling design. Further research considering larger 
and more complex case studies is necessary to consolidate FORTLS as an 
operational tool in FIs, as well as to develop new metrics and variables. 

6. Software availability 

Name of software: FORTLS 1.0.6 
Developers: Juan Alberto Molina-Valero, María José Ginzo Villa-

mayor, Manuel Antonio Novo Pérez, Adela Martínez-Calvo, Juan 
Gabriel Álvarez-González, Fernando Montes, César Pérez-Cruzado 

Contact Address: Unit for Sustainable Environmental and Forest 
Management (UXAFORES), Department of Agroforestry Engineering, 
Higher Polytechnic Engineering School, Universidade de Santiago de 
Compostela, Benigno Ledo s/n, Campus Terra, 27002 Lugo, Spain. 
Email: juanalberto.molina.valero@usc.es 

Software required: R ≥ 3.5.0 
First available: March 2, 2021 
Availability: https://CRAN.R-project.org/package=FORTLS 
Installation in R: install.packages(‘FORTLS’) 
Program languages: R and C++

License: GPL 3 
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