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Abstract: The ever-increasing number of smart devices connected to the internet poses an unprece-
dented security challenge. This article presents the implementation of an Intrusion Detection System
(IDS) based on the deployment of different one-class classifiers to prevent attacks over the Internet
of Things (IoT) protocol Message Queuing Telemetry Transport (MQTT). The utilization of real
data sets has allowed us to train the one-class algorithms, showing a remarkable performance in
detecting attacks.
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1. Introduction

The “Internet of Things” (IoT) refers to any technology implementation, including a set
of smart devices interconnected to the internet, interacting with external systems through
information and data exchange. Currently, there are over 5 billion connected IoT devices [1],
according to the previous definition. One of the most relevant applications of IoT is in, what
is usually referred to as, Industry 4.0 [2]. It allows for real-time management of automated
controlled systems through remote monitoring via a client device, such as a Smartphone,
tablet, or PC. Additionally, by collecting and analysing data and information with cloud
processing techniques, it is possible to achieve more complex interactions amongst the
different elements of the IoT system [3,4].

IoT devices are usually quite affordable, but they usually present a rather limited
computation capacity, not being feasible to implement cybersecurity primitives at a device
level. Therefore, IoT devices tend to be fast and efficient but with limited resilience against
network attacks.

IoT systems have traditionally been a target for attacks. They have been used in
botnets, such as the Mirai attack in September 2016, in which 400,000 IoT devices were
infected and eventually performed a massive DDoS attack. Another notable example took
place in April 2020, when the Dark Nexus botnet, based on the Mirai code, compromised
over 1350 IoT devices [5].

Some of the most widely used IoT protocols are: Bluetooth [6], zigbee [7], and LORA [8]
in the physical/link layer and CoAP and MQTT [9–11] for the application layer.

To improve security in IoT systems, one of the most popular approaches is to use an
intrusion detection system (IDS). This method is based on monitoring network traffic and,
therefore, it does not require high computing capacity at a device level. In addition, the
IDS does not require any change in the configuration in the existing IoT systems.
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IDS can be signature-based or anomaly detection-based. Signature-based detection
methods, using predefined rules, are effective in detecting attacks for previously known
behaviours. On the other hand, anomaly-based identification is used in order to detect
unknown attacks or attacks with patterns that are not clearly defined. In order to do so,
the IDS is monitoring the entire system, comparing anomalous traffic with predefined
behaviours assumed to be normal through previously trained artificial intelligence models.
The most resource-consuming activities are performed offline, allowing for an overall
smooth, efficient IDS activity.

One quite common approach to increase the security of an IoT network is the utilization
of patterns of previous attacks within an IDS [12–15].

In particular, the two main methods for an IDS introduction are: attack recognition
via real-time status monitoring and juxtaposition with the previous normal value [16]
or signature-based pattern recognition in the network data flow [17]. In the latter, the
implementation of a detection model is mandatory. This action is usually performed by
introducing machine learning algorithms, such as Support Vector Machine and Random
Forest [18,19] or clustering techniques [20].

A supplementary approach involves deep learning methods, such as auto-encoders
and Deep Belief Networks (DBNs) due to their dimension-reduction capabilities in op-
timal classification models [21–23]. For thread detection modelling, more sophisticated
techniques, such as Long Short Term Memory (LSTM), have been proved to be a valid
solution [24,25].

More recent research lines have implemented the NSL-KDD dataset (enhanced version
ofKDD99) to incorporate Remote to Local (R2L) and User to Root (U2R) attacks on IoT
systems. Specifically, it introduces two-level classification algorithms using a Bayesian
network and the K-Means method [26]. Another current study introduces the NSL-KDD
dataset in an IDS, using Kontiki. In this environment, a network of IoT devices is simulated
using the MQTT protocol [27]. Finally, in the AWID dataset, attack detection through
Machine Learning is proposed in wireless IoT environments (WIDS) [3,28,29].

Regarding open source IDS systems, Snort and Suricata [30] are the most widely
implemented to address IoT system security. In the present paper, the Snort 3.0 version,
launched in 2021, is selected to be compared to the proposed IDS.

The purpose of the article is to improve security IoT environments, specifically in those
presenting certain characteristics (in terms of computing capacity and protocols), making
them a likely target for attacks (i.e., botnets). To that end, we propose the implementation
of an IDS, introducing one-class classifiers using the MQTT protocol. This approach should
constitute a viable solution since it analyses the network traffic without altering the system
configuration or demanding additional computing capacity. The network analysis of the
MQTT protocol can be used to prevent intrusion attacks through non-legitimate clients.
This vulnerability is included in RFC5246 [31], “Communications could be intercepted,
altered, re-routed or disclosed”, which also prevents an attacker from performing code
injections to alter the operation of the system.

The final factor to develop a truly applicable model is the utilisation of reliable
datasets [32], such as e KDD99 [33], NSL-KDD [34], and AWID [35] for TCP/IP, con-
taining network data of this protocol. Therefore, the present article also details how to
create a dataset based on MQTT.

The main goal of this research is the development of an IDS with a new machine
learning approach, complementing the traditional, signature-based method. The one-class
machine Learning algorithm is a state-of-the-art technique previously presented in [36].

Regarding the composition of this article, Section 2 introduces the case study, while
Section 3 refers to the one-class classifier outlook. Finally, Section 4 explains the experiments
and results and Section 5 presents both the conclusions and some future lines of work.



Electronics 2022, 11, 422 3 of 12

2. Case Study

MQTT is a messaging protocol specifically designed for light machine-to-machine
(M2M) communications, making it very suitable for connecting small devices to networks
with limited bandwidth. The MQTT protocol is widely used in IoT [37] and industry [2]
environments.

The architecture of a MQTT system follows a star topology [38], with a central node
or “broker” acting as a server. The broker is responsible for managing the network and
transmitting the messages in real time. The communication protocol is based on topics
created by the client publishing the message and the receiving node(s) subscribing to the
topic. Therefore, it allows for both one-to-one or one-to-many communications.

As previously mentioned, the rather limited computational capability of the devices
in a MQTT system makes it vulnerable, which could lead to attackers monitoring and even
affecting the normal activity.

One of the most common ways in which an attacker gains access to the system is by
using the Shodan network scan on the default port 1883 [39]. Subsequently, and once inside
the system, the invader can proceed to “sniff” the data packages and identify the plain text
password [40]. Once obtained, it can gain access to the system, scan the broker messages
(identified by the use of the ‘#’ character), and ultimately manipulate the different topics.

For this article, the following IoT system implementing the MQTT protocol is defined:

- Actuators and sensors: Comprised of two integrated boards NodeMCU, including a
low-power micro controller connected to a wireless network via a ESP8266 chip [41].
The NodeMCU chip is connected to a HC-SR04 ultrasonic sensor, which subscribes to
the topic “distance/ultrasonic1”, where it publishes the distance to any element in
front of it, up to a range of 40 centimetres. The other NodeMCU is connected to an
actuator consisting of a relay that turns a desk light on and off, subscribes to the topic
“light/relay”, and, depending on the value, changes the state to “0” off, “1” on.

- The server: Developed in node.js due to its efficiency in controlling multiple and
simultaneous connections, with the npm package manager, which has installed the
“Aedes’ ’library [42], with which a MQTT broker server has been programmed. The
server also hosts the client web application.

- Web application:Developed using angular.js, which connects to the broker as another
client with the angular-MQTT library. The difference is that it implements web sockets
instead of the MQTT protocol for the communication with the broker. The web
application has an interface that shows the status of the different devices and allows
for interaction with them in real time.

- System clients: A PC and a smartphone interacting with the sensors through the web
app connected via WiFi while generating network traffic.

In the present article, the intrusion was conducted using the mosquito software from a
client, apart from the IoT infrastructure [43]. By means of a distinctive symbol, the topics of
the system were unveiled. Subsequently, the sensor was targeted to alter the associated
temperature and the actions on the actuator. In order to produce additional random frames,
a power shell was implemented. Finally, a router customized with OpenWRT [44] received
the traffic from the regular traffic, the IoT system under attack, and the internet navigation
in a PCAP file.

For file management purposes, the traffic included in the PCAP files was separated,
taking into account the fields in the MQTT protocol, together with the common fields
for every frame (ports, IP locations, and the time code according to the AWID data set).
Additionally, a tag was assigned to each frame in order to mark whether it was under
attack or not. The output was a data set in csv format with a total of 80.893 frames. A
total of 78.995 frames (97.65%) were found to be normal, while 1.898 (2.35%) presented
irregularities. Figure 1 introduces the steps for obtaining the data set, with the elements of
the WLAN environment, as previously described. In this case, the system was attacked from
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another computer with intrusion attacks against the server. All the traffic was collected,
dissected, and tagged by the router to generate the data set in CSV format.

Figure 1. Intrusion dataset setup.

3. Intrusion Detection Classifier

In order to address the security problems associated with the MQTT protocol, a
solution based on the one-class technique was introduced.

3.1. Classifier Approach

In order to implement a one-class classifier, it is necessary to have prior knowledge
of which conditions under the MQTT environment are working correctly. The followed
steps are:

• The target set comprised only of legitimate samples is divided into 10 random groups:
• for i = 1:1:10

– All groups except the ith are used to train the classifier. An example of this
process is shown in Figure 2.

– Once the training stage has finished, the group i, together with all the non-target
samples, are used to validate the classifier. An example of this process is shown
in Figure 3.

• The mean value from the 10 iterations is used as a measure of the classifier perfor-
mance.

• Finally, the classifier’s performance is best selected and trained with all the target
samples.
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Figure 2. One-class classifier implementation.
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Figure 3. One-class classifier test stage.

3.2. Methods

In this section, different sets of anomaly detection techniques are introduced.

3.2.1. Approximate Convex Hull

An Approximate Convex Hull (ACH) refers to a one-class classification technique of
the boundary subset, with a very positive track record of practical implementations [45].
The underlying core concept is to obtain a reliable approximation to the limits of a certain
data set S ∈ Rn; hence the “boundary” denomination. This is achieved by calculating
the convex limits. Considering that the typical convex hulls of S with N samples and d
variables implies a computational cost of O(N(d/2)+1) [45], it is computationally advisable
to opt for a reliable enough approximation. Therefore, p random projections of the hull are
generated over 2D planes to subsequently calculate their respective convex boundaries [46],
reducing the overall computational cost, as presented in the following Figure 4.

Figure 4. Representative example of Convex Hull Approximation.

With the approximation modelling completed with the p projections, a new data set
was considered an anomaly when it surpassed the convex hull for any of the generated
projections. Additionally, adding an expansion factor α, by which the convex limits were
enlarged or contracted from the centroid of each projection, increased the adaptability to
different typologies of data sets. An α over 1 means that the limits are expanded, while
under 1 implies narrowed boundaries.
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3.2.2. Non-Convex Boundary over Projections

The Non Convex Boundary over Projections (NCBoP) technique relies on concepts
akin to those introduced in the previous section and Figure 4, but it produces remarkably
improved results for non-convex data sets [36]. In the NCBoP, the limits are calculated via
non-convex limits, therefore eliminating false positives occurring if an anomaly presents
within the the convex hull. As for the previous method (ACH), it is possible to introduce
an α factor to avoid over- or under-fitting [36].

Figure 5 shows the difference between the convex hull and non-convex hull calculation
for a given dataset in R2.

Convex hull Non-convex hull

Figure 5. Difference between convex and non-convex hull.

One caveat worth mentioning for NCBoP is that the computational cost is higher than
in ACH. Therefore, the decision regarding which one to go with should be based on the
complexity and/or shape of each dataset to be processed.

3.2.3. K-Means

The non supervised family of learning algorithm, named K-Means, is well known for
clustering purposes [47,48]. This procedure defines a set of groups for the initial data set
based on the number of groups selected by the user. The algorithm uses the total sum of
distances from each cluster centroid to every point.

The training set is utilized for calculating the centroid of each group. If the distance of
a certain test data to its closest centroid is minimum, K-means can be considered a one-class
technique. Therefore, the anomaly can be detected when the distance is higher than the
distance of every cluster data to the centroid.

An example where the training set is divided in two clusters is presented in the
following Figure 6. In this case, a test point, represented by a green dot, is labelled as a
target because the distance to the nearest centroid (black star of Cluster #2) is lower than
that of many others in the training samples.

Feature 1

Fe
at

ur
e 

2

Cluster #1

Cluster #2

Figure 6. Graphical representation of a sample labelling using K-means.
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3.2.4. Principal Component Analysis

Principal Component Analysis (PCA) is a common technique oriented at reducing
the dimension when this factor represents a potential threat [49,50]. In addition, PCA
can provide a good solution for detecting anomalies and solving classification-related
problems [51,52].

The PCA algorithm is based on the eigenvectors of the co-variance matrix for calcu-
lating the directions, where the set of data has higher variability. Upon definition of these
directions, they are known as principal components. Subsequently, they are used for linear
projections with fewer dimensions. If the criteria chosen is based on the distance between
the data projected and the primitive data, a reconstruction error value is obtained as a
one-class procedure. By doing so, if the reconstruction error of the test data is larger than
the value obtained in the training process, an anomaly has been identified.

The following Figure 7 introduces an example of how the distance from a test point
to its projection is greater than all the distances of the training points to their respective
projections. In this case, only the first component is used. The limit between normal and
anomalous behaviour is commonly related to the training distance percentile.

Feature 1

Fe
at

ur
e 

2

First 
component

Figure 7. Representation of PCA for one-class.

3.2.5. One-Class Support Vector Machine

One of the most typical algorithms for anomaly detection is the Support Vector Ma-
chine (SVM) for one-class (OCSVM) tasks due to the high-quality outcome for various
applications [53,54].

The OCSVM is a supervised-learning, procedure-mapping method supported by a
kernel function. Subsequently, an hyper-plane able to maximize the distance between the
origin and the mapped points is defined. Consequently, the instances near the hyper plane
are considered the support vectors.

When the training procedure is completed and a new data set enters the classifier, it
returns the distance from the high dimensional plane to the input data. Any negative result
is flagged as an anomaly.

4. Experiments and Results
4.1. Experiments Setup

The following subsection introduces the set of experiments implemented for this article.

4.1.1. Techniques Configuration

In order to evaluate the performance of each of the five techniques presented so far,
the following benchmarks have been set:
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• ACH and NCBoP: Values for projections checked [10, 50, 100 , 500].
Values for the α parameter in order to further evaluate restriction limits: [0.8, 0.9, 1,
1.1, 1].

• K-means: Number of clusters to divide the dataset into [1–15].
Values defined for the outlier percentage in the training data: [0, 5, 10, 15, 20, 25].

• PCA: The amount of main components ranges from 1 to n − 1, with n being the
number of variables in the training set. The K-means algorithm outlier fraction is
taken into consideration as well.

• SVM: An outlier percentage is also considered, similarly to the K-means and PCA cases.

4.1.2. Data Pre-Processing

In order to improve the results, the dataset was normalized, ranging from 0 to 1 while
introducing the z-score method [55]. Additionally, the categorical variables were converted
into numerical values. On top of that, a data set without pre-processing was tested for
complementary reasons.

4.1.3. Performance Measurement

In order to assess the output for each classifier, the “Area Under the Receiver Operating
Characteristic Curve” (AUC) [56] was the selected measure. This measure represents the
probability for a random positive sample of being labelled as positive. Furthermore, in
contrast to other variables, such as sensitivity, precision, or recall, AUC is not sensitive to
class distribution, which is a significant advantage, especially in one-class problems [57].
As an additional item, the required training time for each classifier was also introduced
as an indicator for the associated computational cost. Finally, the benchmark tests were
confirmed with a k- f old cross-validation test, considering k = 10.

4.2. Results

The experiments presented so far have led to the results shown in Table 1 for Intrusion
Detection and Table 2 for MiTM events, respectively. For each technique, the configuration
presenting a stronger AUC is selected and represented.

Table 1. Best AUC results for intrusion detection attacks for each technique.

Technique Features Normalization AUC (%) Time (s)

ACH 500 projections
α = 1

Zscore 52.063 3.11

NCBoP 500 projections
α = 1

No 60.317 1211.73

K-means Clusters = 10
Outlier Fraction = 15%

No 76.496 0.84

PCA Components = 15
Outlier Fraction = 20%

0-1 89.296 0.21

SVM Outlier Fraction = 0% No 69.235 285.56

With the default set of rules, Snort can detect DoS attacks but not intrusions. There-
fore, it is necessary to create a specific directive at the byte level to screen and discover
a potential use for the special character “#” by an external client. Unfortunately, this ap-
proach is vulnerable if the attacker changes its network configuration. Conversely, the
proposed IDS can detect intrusion attacks using the proposed model without any additional
configuration required.
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Table 2. Best AUC results for MiTM attack for each technique.

Technique Features Normalization AUC (%) Time (s)

ACH 100 projections
α = 1

No 89.564 0.33

NCBoP 500 projections
α = 1

No 90.317 2211.73

K-means Clusters = 6
Outlier Fraction = 10%

No 91.696 0.48

PCA Components = 8
Outlier Fraction = 10%

ZScore 92.628 0.27

SVM Outlier Fraction = 10% 0–1 79.588 313.08

As per deployment easiness, it implements the XGBoost algorithm. Since it introduces
GPU processes, the overall implementation becomes more complex and computationally
costly compared to previous works [24].

5. Conclusions and Futures Works

The results have revealed that the best overall technique for MiTM detection is PCA,
simultaneously presenting an AUC over 89% and the shortest training time. In particular,
the highest performance level was obtained with eight components, Zscore normalization,
and an outlier fraction of 10% in the training set. Similar conclusions were reached with
the IDS, although the AUC values obtained were slightly lower in comparison. As stated
above, the training time is a significantly important parameter in machine learning tasks.
Therefore, K-means and PCA algorithms are suitable for these kinds of high-dimensional
data sets. In other cases, NCBoP and SVM might be acceptable, since their associated AUC
performance is still acceptable.

Under such an assumption, the implementation of the proposed approach would
be presented as a very promising tool to monitor the potential appearance of two dif-
ferent types of attacks within an MQTT protocol environment. This could have a very
positive, direct impact on the network performance, helping to increase the cybersecurity
protection level.

For future works, additional one-class techniques could be applied in order to further
improve the performance of the anomaly detection system. In particular, dimension reduc-
tion techniques, such as autoencoder, could be specially promising. Finally, the introduction
of unsupervised techniques, as opposed to semi-supervised techniques, could prove ex-
tremely useful in the future. To that end, clustering techniques might play a significant role,
which is worth being further studied. Finally, the application of the presented one-class
techniques to new IoT datasets, such as Constrained Application Protocol (CoAP), could
provide valuable sources of information against currently undetected attacks.
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