
Received December 1, 2021, accepted December 15, 2021, date of publication December 23, 2021,
date of current version December 31, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3137767

Boosting Perturbation-Based Iterative Algorithms
to Compute the Median String
PEDRO MIRABAL 1, JOSÉ ABREU 2, DIEGO SECO 3,4,
ÓSCAR PEDREIRA5, AND EDGAR CHÁVEZ 6
1Informatics Engineering Department, Universidad Católica de Temuco, Temuco 4813302, Chile
2Instituto Universitario de Investigación Informática, Universidad de Alicante, 03690 Alicante, Spain
3Computer Science Department, Universidad de Concepción, Concepción 3349001, Chile
4Millennium Institute for Foundational Research on Data, Chile
5Database Laboratory, Universidade da Coruña, 15001 A Coruña, Spain
6Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada 22860, México

Corresponding author: Pedro Mirabal (pedro.sanchez@uct.cl)

This work was supported in part by the Comisión Nacional de Investigación Científica y Tecnológica - Programa de Formación de Capital
Humano Avanzado (CONICYT-PCHA)/Doctorado Nacional/2014-63140074 through the Ph.D. Scholarship, in part by
the European Union’s Horizon 2020 under the Marie Skłodowska-Curie under Grant 690941, in part by the Millennium Institute for
Foundational Research on Data (IMFD), and in part by the FONDECYT-CONICYT under Grant 1170497. The work of ÓSCAR
PEDREIRA was supported in part by the Xunta de Galicia/FEDER-UE refs under Grant CSI ED431G/01 and Grant GRC: ED431C
2017/58, in part by the Office of the Vice President for Research and Postgraduate Studies of the Universidad Católica de Temuco,
VIPUCT Project 2020EM-PS-08, and in part by the FEQUIP 2019-INRN-03 of the Universidad Católica de Temuco.

ABSTRACT The most competitive heuristics for calculating the median string are those that use
perturbation-based iterative algorithms. Given the complexity of this problem, which under many formu-
lations is NP-hard, the computational cost involved in the exact solution is not affordable. In this work, the
heuristic algorithms that solve this problem are addressed, emphasizing its initialization and the policy to
order possible editing operations. Both factors have a significant weight in the solution of this problem.
Initial string selection influences the algorithm’s speed of convergence, as does the criterion chosen to select
the modification to be made in each iteration of the algorithm. To obtain the initial string, we use the median
of a subset of the original dataset; to obtain this subset, we employ the Half Space Proximal (HSP) test to
the median of the dataset. This test provides sufficient diversity within the members of the subset while
at the same time fulfilling the centrality criterion. Similarly, we provide an analysis of the stop condition
of the algorithm, improving its performance without substantially damaging the quality of the solution.
To analyze the results of our experiments, we computed the execution time of each proposed modification
of the algorithms, the number of computed editing distances, and the quality of the solution obtained. With
these experiments, we empirically validated our proposal.

INDEX TERMS Approximate median string, algorithm initialization, half space proximal neighbors.

I. INTRODUCTION
The median string problem has attracted the attention of
the scientific community in different domains, from early
work by Kohonen [10], through word recognition and pro-
totyping. An example of the above is encoding as strings
of representative shapes [31], handwritten character recog-
nition [2] or prototyping as a way to condense a dataset [50].
In classification tasks, an approximation to the median string
is better as a prototype compared with taking as a proto-
type a string from the set accumulating the least distance

The associate editor coordinating the review of this manuscript and

approving it for publication was Diego Oliva .

from the rest [15]. Although they show rapid convergence,
some heuristics hardly manage to improve the quality of the
approximation to the median string concerning the starting
point. In contrast, heuristics that converge to better solutions
to problems such as character string classification [50] can
take tens of hours to find a solution [28], [42]. So work must
be done to improve the speed of these algorithms.

Even though there are algorithms that manage to find the
exact solution for this problem [11], the computational cost
is exponential. For a set of strings of size |S| and length l,
a time O(l|S|) is needed. Furthermore, various authors have
shown that the mean chain problem has W [1] - Hard com-
plexity in |S| even for binary alphabets for the Levenshtein

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 169299

https://orcid.org/0000-0001-7345-6007
https://orcid.org/0000-0002-4637-4206
https://orcid.org/0000-0002-2514-9907
https://orcid.org/0000-0002-0148-695X
https://orcid.org/0000-0001-8781-7993

P. Mirabal et al.: Boosting Perturbation-Based Iterative Algorithms to Compute Median String

distance case. Examples of these approaches are greedy algo-
rithms as in [4], [26].

Many heuristics can be classified as disturbance-based
iterative refinement algorithms. An initial seed or string is
modified through editing operations (also named perturba-
tions in the literature) to get closer to the median string. There
are different strategies for selecting the editing operation to be
tested. For example, testing possible insertions, deletions, and
substitutions in a pre-established order without estimating the
probability that the operation will be successful [15]. In [1]
authors proposes a different approach, ranking operations by
an index allowing testing the most promising first, a better
variant of the said index was proposed in [28]. We cover both
approaches in Section II.

A. SUMMARY OF CONTRIBUTIONS
This work proposes two variations to the perturbation-based
iterative refinement algorithms to compute the median string
that improves their performance. The first variation affects
the algorithm’s initialization since an alternative to the
median string belonging to the dataset is sought, which was
the best initialization proposed in previous works. The new
initialization consists in computing the median of a subset
of the original dataset. We propose this subset to by the Half
Space Proximal neighbors of the median of the string set. The
second proposed variation modifies the stop condition; we
propose trimming the list of possible edits in each iteration.
The above trimming befalls when the expected quality of the
operations is less than a threshold; in our case, we took 0 as
the threshold.

This paper continues with Section II, where we review
relevant concepts and the related works. In Section III,
we describe our proposal for a new initialization of the
algorithms and the modification in the stop condition.
In Section IV, we present the set of experiments carried out
and discuss the results, comparing them with other relevant
algorithms. Ending with Section V, where the conclusions we
arrived at are presented.

II. PRELIMINARIES AND RELATED WORK
As described in [1], [28], the Median String problem can be
defined as follows. Let 6 be an alphabet, let 6∗ be the set
of all strings over 6, and let ε the empty symbol over this
alphabet. For two strings Si, Sj ∈ 6∗, an edit operation is
a pair (a, b) 6= (ε, ε), written a → b, which transforms a
string Si into Sj, if Si = σaτ and Sj = σbτ , where σ and
τ represent substrings.

We denote as E
Sj
Si = {e1, e2, . . . , en} the sequence of edit

operations transforming Si into Sj. The cost of E
Sj
Si is ω(E) =∑

ei∈E ω(ei) and the edit distance from Si to Sj is defined as

d(Si, Sj) = argminE {ω(E
Sj
Si)}. The median string is a string

that minimizes
∑

Si∈S d(Ŝ, Si)|Ŝ ∈ 6
∗.

There are multiple approaches to tackle the problem of the
median string, in this paper, we focus on those algorithms
based on perturbations. Kohonen originally conceived this

idea in [10], who proposed, starting from the median of the
set, systematically mutate each of its symbols, verifying if
the sum of the distances decreased. In that work, the authors
established no criteria to evaluate the feasibility of each of the
possible modifications.

Perturbations are called each of the possible editing opera-
tions defined for the Levenshtein editing distance [13], that is,
the substitution of a a symbol for a b symbol, the elimination
of a symbol a or inserting a b symbol. We will denote each
of these operations, as well as their cost, by w(a, b), w(a, ε),
and w(ε, b). One of the interpretations of the edit distance is
to find the sequence of transformations of the string si to sj in
such a way that the sum of the cost of each operation involved
is the minimum.

Some authors such as [4], take the empty string as the
initial string ŝ, perform a greedy search adding at each iter-
ation at the end of the string the symbol that is estimated
to lead to the lowest sum of distances. First,

∑
si∈S d(ŝ +

cj, si) for each cj ∈ 6 is calculated using dynamic pro-
gramming [49], storing the row relative to cj from the
dynamic programming array. The sum of the minimum value
in each row yields the estimate of how promising cj is;
the lower, the better. The process is repeated until nei-
ther cj leads to improvement or the length of ŝ matches
the largest string in S. In [12] this procedure is enhanced
with a different quality estimate, as well as a procedure for
solving cases where more than one symbol has the same
quality.

In [5] authors introduced the idea of performing multi-
ple operations simultaneously to speed up calculation. The
algorithm starts from the median established as the initial
approximation ŝ. In each iteration, they compute the distances
from ŝ to all the strings in S, registering the list of edit
operations in each case. After that, for each position, i of ŝ the
most frequent operation is applied. This process is repeated
until there are no further improvements. Experiments show
that the algorithm is faster than [10]; however, they provide
no details on the quality of the solution. Later the above
strategy was revisited in [44], where they show that there
may be an inverse relationship between convergence speed
and solution quality since as the number of simultaneous
operations increases, the quality of the solution deteriorates.
The authors also stated that this could slightly increase the
probability of finding the global optimum since algorithms
that change only one symbol at a time can get stuck at a local
optimum.

In [14] authors propose one operation at a time approach,
which appraises a specific order to perform operations.
For each position i of ŝ, each possible substitution of the
i-th symbol is applied to identify ŝsub, the string with the
smallest sum of distances. The string ŝins is calculated in
a similar way and ŝdel results from the elimination of the
symbol i. The new candidate is the best among the three
options and ŝ; then the process continues for i+1. The authors
also evaluated two optimizations to reduce the algorithm’s
O(|σ | × |S| × L3) time. The division technique explored

169300 VOLUME 9, 2021

P. Mirabal et al.: Boosting Perturbation-Based Iterative Algorithms to Compute Median String

dividing each string in S into d substrings. In this way,
starting from a string s ∈ S results in strings s1, s2, .., sd .
The procedure independently calculates the median for each
resulting set ŝ1, ŝ2, . . . , ŝd that they are concatenated to obtain
the median of S. Another improvement is related to inserts
and substitutions, which account for most of the computation
time. For substitutions, only the two symbols closest to the
one at position i are evaluated, and for inserts, only the symbol
at position i−1 and its two closest symbols. The above allows
avoiding the |6| factor. They compare the three choices in
a classification task where the median is a prototype for
the classification k -NN, but without considering the sum
of distances. Regardless, the results suggest that splitting
optimization leads to faster convergence but lower quality
prototypes.

Another work that advocates simultaneous operations
is [3]. Even though the proposal is not an algorithm for the
median string, it can be easily adapted. The main loop is
similar to [5] calculating the distance from ŝ to the strings
in S to get the frequency of edit operations. However, only
operations with a frequency more significant than a threshold
of η are considered. The authors focused on prototyping for
classification, they report no experiments to assess the quality
of the median chain.

More recently, [1] improved the results in [14] by applying
perturbations one at a time. When calculating the distance
from ŝ to strings in S, the authors also take into account
the editing operations. The hypothesis is that the operations
on both sequences have a better chance of improving the
solution given the results in [2], which states that if we apply
to ŝ one of the operations of the edit sequence d(ŝ, si) to
get ŝ′ then d(ŝ′, si) <= d(ŝ, si). The above is the underly-
ing idea in [3], [5] but the authors also took into account
the cost of the operation to estimate how much the sum
of distances would reduce by applying the operations. The
estimated probability, from highest to lowest, determines
the order in which operations are evaluated. In cases where
an edit operation is not present in all edit sequences, the
heuristic is optimistic as it does not consider how the appli-
cation of the operation will affect the distance from ŝ′ to
the strings that do not request this operation. In [28] authors
tackled the problem offering an estimate for some of the
cases with a significant improvement in convergence rate
without affecting the quality of the solution. A comparison
between algorithms performing multiple operations simulta-
neously [3], [5] and one operation at a time [1], [14], [28]
suggests that the first ones have fast convergence with a
lower approximation quality. The above can be explained by
the side effect of editions in other positions, as suggested
by [5].

Recently, [46] describes the applications of median string
in DNA motif classification, where the median string is
computed using Markov chains. Also, a prototype gener-
ation in the string space via approximate median for data
reduction in nearest neighbor classification is presented
in [48].

III. OUR PROPOSAL
Most algorithm start from the empty string [1], [5] or from the
string belonging to the dataset that accumulates the least dis-
tance to the rest, understood as the median of the dataset [1],
[4], [10], [14], [28], [42]–[44]. Our goal is to propose an
initialization alternative since, from the works above, initial-
ization affects the speed of convergence of the algorithms.

A. SELECTING A BETTER INITIALIZATION USING THE
HALF SPACE Proximal(HSP) TEST
The Half Space Proximal (HSP) graph was originally defined
by Chávez et al. [19], and it is a sparse subgraph of the com-
plete graph in a metric space. For the construction of this
graph, it needs to separately apply theHSP test to each object
in Si ∈ S. The output of the HSP test on Si is a partition
of S, P = {P1,P2, . . .}, where each Pj has a representative
object pjr , that is connected to Si in the HSP graph. One
advantage of this test is reducing the number of edges of the
complete graph. The connection of the vertices in the HSP
guarantees two desirable properties for our work: proximity
and diversity.

The HSP test proceeds iteratively. Let S ′ be the set of
strings in iteration i (when i = 0, S ′ = S). In each iteration i,
the algorithm finds the nearest neighbor of m in S ′, pir =
kNN (m, S ′). All the strings that are closer to pir than to m
form a new subset Pi of S ′, where pir is the representative
of Pi. All the strings in Pi are removed from S ′. This process
repeats until S ′ is empty. After this, every string is reassigned
to the subset corresponding to the closest representative.

In Fig. 1, we show a pseudo-code of the implementation
used by us of the Half Space Proximal test. In our case,
we previously removed from the dataset the element m. The
output of this algorithm is a set of disjoint subsets Pi derived
from the original dataset. All elements of Pi ∈ P has a
representative pir that is the closest element to m within Pi.
We initialize P as an empty set (line 1), and iterates until
every string in S is added to some subset Pi ∈ P (lines 2-15).
In each iteration, we search for the nearest neighbor of m,
nn ∈ S (lines 4-7), then, all closer to nn than tom are removed
from S and added toQ (lines 8-13), including nn thats become
the representative ofQ. The setQ is added to P (line 14) and a
new iteration begins if S is not empty. From line 16 to line 31,
each element pij ∈ Pi, such that pij 6= pir , is reassigned to
the nearest representative. This part of the algorithm takes
O((n − p) × p) where n is the size of S and p is the number
of subsets in P.

In Fig. 2 we illustrate an example of the Half Space Prox-
imal test. To simplify, we show a possible spatial relation of
the different strings in the set S in terms of distance between
them. In Fig. 2(a), the star represents the set median m ∈ S.
Then, in Fig. 2(b), string s1, represented by a white square,
is selected as the closest to m, and space is split into two
parts, any string closer to s1 than to m is assigned to P1 and

p1r = s1. In Fig. 2(c), the string s2 /∈
n⋃
i=1

Pi, represented by a

white triangle, is selected as the closest to m and the previous

VOLUME 9, 2021 169301

P. Mirabal et al.: Boosting Perturbation-Based Iterative Algorithms to Compute Median String

FIGURE 1. HSP test pseudo-code.

process is repeated to buildP2. This process continues, select-
ing the nearest string s3, represented by a white diamond, and
building P3 and so on, until all strings become part of the set
P = {P1,P2, . . . ,Pn}. In our example, we can see in Fig. 2(d)
that all strings are already assigned. The last stage of the test
is to reassign all strings si 6= pir to the Pi with the pir closest
to si. The final reassignment is shown in Fig. 2(e).

We propose Algorithm 3 for calculating the median string
when strings in the dataset have different weights. This
algorithm takes as input an instance set S, an initialization
string R, and a weight set W that is a vector that represents
the corresponding weight of each element in S. The algorithm
iterates through the same steps until no editions applied to Ŝ
improve the result. First, the distances between R′ and each
Si and the respective involved editions ER

′

Si are computed
(lines 4 − 7). Each edition in ER

′

Si have an associated weight
Wi used to update the statistics (line 6). In lines, 8 − 14,
the repercussion of each edition affecting the same posi-
tion is computed, generating a goodness index of editions.

All editions are inserted in a priority queue Q, sorted by
goodness index. Then, we discard from Q all editions qi
with qi.goodnessIndex ≤ 0 (line 16). Next, we dequeue
editions from Q to obtain a new candidate R′, applying ek to
Ŝ (lines 18−19). These two steps are repeated while the new
candidate R′ is worse than Ŝ and Q is not empty. Finally, the
algorithm returns Ŝ. It is worth noting that the vector W for
strings in S can be computed using any weighting procedure.
In our particular setup, we use the output of Algorithm 1 as
follows. The set S = {pir ∈ Pi} and W = {|Pi|}.

This algorithm iterates by considering one perturbation at
a time until it does not improve during the iteration. Each
iteration may consider several different editions. In the worst
case, this is upper-bounded byO(l×62), where l is the length
of the longest string. The experimental evaluation shows
that this bound is rather pessimistic and that our heuristic
usually needs just a few editions per iteration. The above is a
crucial difference with the algorithm in [1], which uses more
operations per iteration.

For each edition explored during an iteration, the algorithm
computes the distance of the new candidate R′ to all the
elements in S (lines 17 − 20), which takes time O(N × dc),
where dc is the time to compute the edit distance (Levenshtein
in our experiments). By providing a better ranking, we save
on the number of operations explored per iteration, and thus,
on the number of times this distance is computed, which is
expensive. In the case of Levenshtein, for example, it isO(l2).
However, to do that, we expend some computations to bound
the repercussion (lines 8−14). This takesO(l×62) time and
it is usually worth it as

√
l ≥ 6 in most applications.

B. TRIMMING THE LIST OF POSSIBLE EDIT OPERATIONS
The algorithm presented by [28], generates a goodness index
for each edition, taking into account how this edition impacts
other editing alternatives affecting the same position. This
goodness index ismore precise than considering only editions
frequency or the frequency multiplied by the cost as proposed
in [1].

In Fig. 3, it is possible to see on line 15 that their goodness
index sorts the operations but, unlike in [1], [28], we propose
to trim Q discarding those editing operations that have a
negative value of goodness index, line 16. This modification
can reduce the size of Q, speeding up the while loop in
lines 17-20 because it runs until an improvement is achieved
or Q is empty.
The basis of the algorithm in Fig. 4, was presented in [28].

The original algorithm considered all strings Si ∈ S with the
same relevance. We have made the necessary modifications
so that strings Si ∈ S can have different weights. It is
important to notice that, unlike in [1], [14], [15], [28], for the
calculation of the median of S ′ we use an approach in which
each S ′i is weighted according to the size of the subset Pi that
it represents. The idea of weighting strings has been studied
in [27], but only when computing the median of two strings.

Combining the modifications described in Section III-A
and in Section III-B, we have four different algorithms,

169302 VOLUME 9, 2021

P. Mirabal et al.: Boosting Perturbation-Based Iterative Algorithms to Compute Median String

FIGURE 2. HSP test step by step.

FIGURE 3. Median String Repercussion with weighs.

labeled as Median-all, HSP-all, Median-trimmed and HSP-
trimmed. The first part of the algorithms name refers to the
initial string, having Median for those that have as initial
string the set median and HSP for the ones that apply the
modifications described in Section III-A. The second part
of the names refers to how we deal with the operation list.
We use all for those that test the whole operation list and
trimmed for the ones that apply the modifications described
in Section III-B.

IV. EXPERIMENTAL RESULTS
Our experimental evaluation uses different alphabets, set
sizes, and string lengths. In Eq. 1, we show the ratio used
to evaluate the quality of the obtained median string Ŝ,

FIGURE 4. AppMedianStringRepercussion(S,R) :Ŝ.

where SM is the set median. Besides, we compare the number
of edit distances required by the algorithms to converge.
Also, we took into consideration the execution time for each
experiment. As expected, in all the experiments, time was
proportional to the number of edit distances calculated.∑

Si∈S d(Ŝ, Si)∑
Si∈S d(S

M , Si)
(1)

VOLUME 9, 2021 169303

P. Mirabal et al.: Boosting Perturbation-Based Iterative Algorithms to Compute Median String

Three different datasets were used. The first one cor-
responds to the Freeman Chain Code of Eight Direc-
tions [6], which represents contours of letters from the
NIST-3 database. This codification is also used in [1], [7],
[8], [16], [28]. In this dataset, we evaluated set sizes of
{45, 90, 180, 270, 360} and, for each one, 26 independent
samples were drawn.

The second dataset considers 23 symbols representing
different amino acids. We selected 175 samples of orthol-
ogous of insulin protein, representing 70 species, obtained
from eggNog online application 1 with length ranging in
[100, 300] and average 150. With them, we prepared 26 dif-
ferent sets in total, 5 different for each of the sets of size
{20, 40, 80, 120, 160} strings, respectively, and 1 set with
size 175 with all the data available. We use the well-known
BLOSUM62 [18] cost function.

We also generated a third dataset containing synthetic
Freeman chain codes as in [1], [16], [28]. With these data,
we aimed to study how algorithms scale for sets with sizes of
{45, 90, 180, 270, 360}, with the average length of the strings
of {20, 40, 80, 160, 320} symbols, respectively. The length
variation among strings in the same set was 10%. We gener-
ated 5 different sets for each possible combination of set size
and string length, making a total of 125 independent sets.

We designed experiments to compare our proposal with the
best algorithm described in [28], labeled as Median-all, and
in [1], labeled Frequency and Frequency*Cost, in terms of
edit distances calculated, average distance to median string
and time.

In Fig. 5, we can differentiate three groups of algorithms,
at the top, we see the algorithms labeled as Frequency and
Frequency*Cost, exposed in [1]. These two algorithms are
those with the highest number of edit distances calculated,
which increases very rapidly as the size of the dataset grows.
In the central region, we see the algorithm labeled asMedian-
all, presented in [28], and a variant that takes as a start-
ing point the one described in Section III, labeled HSP-all.
These two algorithms perform better in comparison with
those mentioned above. As the dataset size grows, differences
between them are more evident. Finally, in the bottom part of
Fig. 5, the algorithmsMedian-trimmed andHSP-trimmed are
shown. These two algorithms are the ones that perform the
best.

In Fig. 6 the quality of the solution achieved by the same
algorithms is studied. As can be seen, the quality of the two
algorithms computing fewer edit distances is slightly worse.
In Fig. 6, we can differentiate two groups of algorithms, at the
top, we see the algorithms labeled as Median-trimmed and
HSP-trimmed. Except for these two algorithms, the others
behave similarly regarding the quality of the obtained median
string. Finally, as expected, Fig. 7 shows a similar behavior
to Fig. 5, i.e. the running time of the method is proportional
to the edit distances that they compute.

1http://eggnogdb.embl.de/#/app/home

FIGURE 5. Synthetic Freeman Chain Codes: Edit Distances Calculated.

FIGURE 6. Synthetic Freeman Chain Codes: Average Distance to Median
String.

FIGURE 7. Synthetic Freeman Chain Codes: Time.

Next, we expose in detail the effect of each modification
when applied independently. From Fig. 8 to Fig. 16, we see
the comparison between the algorithm that takes as a starting

169304 VOLUME 9, 2021

P. Mirabal et al.: Boosting Perturbation-Based Iterative Algorithms to Compute Median String

FIGURE 8. Edit Distances Calculated: NIST Freeman Chain Codes.

FIGURE 9. Edit Distances Calculated: Proteins. String.

FIGURE 10. Edit Distances Calculated: Synthetic Freeman Chain Codes.

point the one proposed in Section III, labeled as HSP-all,
comparing it with the same algorithm starting from the set
median, labeled as Median-all. It is essential to clarify that
we include the edit distances calculated to obtain the starting

FIGURE 11. Average Distance to Median String: NIST Freeman Chain
Codes.

FIGURE 12. Average Distance to Median String: Proteins. String.

point for those algorithms using the HSP test. For all the
datasets, results show that in most of the cases our proposal
requires fewer operations, while, as can be seen in Fig. 11 and
in Fig. 13, the quality of the median string obtained, in the
Freeman Chain Codes datasets, is equivalent in both cases.
Fig. 12 shows that, in the proteins dataset, the median string
is slightly worse for HSP-all.
We show the comparison between algorithms with the

same starting point, trimming the list of operations and
without trimming it. In this analysis, two new algorithms
are incorporated besides the Median-all and the HSP-all,
explained in detail in the previous section. We label as
Median-trimmed the algorithm that takes as a starting point
the median of the set and trims the list of operations when the
expected quality of the operation is zero. We label as HSP-
trimmed the algorithm that takes as a starting point the one
proposed previously in Sec. III and trims the list of operations
when the expected quality of the operation is zero.

In Fig. 8, Fig. 9, Fig. 10, Fig. 14, Fig. 15, and Fig. 16 we
notice that trimming can reduce the number of calculated edit

VOLUME 9, 2021 169305

P. Mirabal et al.: Boosting Perturbation-Based Iterative Algorithms to Compute Median String

FIGURE 13. Average Distance to Median String: Synthetic Freeman Chain
Codes.

FIGURE 14. Time: NIST Freeman Chain Codes.

FIGURE 15. Time: Proteins. String.

distances, and thus, lead to a decrease in the execution time.
However, the quality of the median is slightly worse when
trimming, as it can be seen in Fig. 11, Fig. 12, and Fig. 13.

FIGURE 16. Time: Synthetic Freeman Chain Codes.

Finally, we can see the significant difference that exists,
concerning the edit distances calculated and execution time,
between the current state of the art, Median-all, and our new
proposal, HSP-trimmed. We can also compare the quality of
the median string achieved for each of the different algo-
rithms. The results show that the loss of quality of the median
string inHSP-trimmed is small, and can be assumed for cases
in which a high speed of convergence is required.

V. CONCLUSION
A new starting point can be used with satisfactory results
in perturbation-based iterative refinement algorithms to com-
pute the median string.We obtain this new starting point from
computing the median of a subset of the original dataset. The
string subset consists of the Half Space Proximal neighbors
of the median string. The above modification implied weight-
ing the elements of the subset depending on the number
of instances they represented. We also show that trimming
the list of operations improved the stop condition of these
algorithms. The above trimming occurs when the expected
quality of the operations is less than a threshold, 0 in our case.

The combination of the two heuristics above in our
approach produce a more competitive solution than SOTA
algorithms. Comparing Median-all and HSP-trimmed we
reduced edit distance computations by 86% on average. Sim-
ilarly, we decreased execution time 82% on average. Reduc-
tions in execution time and the number of computed edit
distances induced a slight increase of 2% in the average
distance to the median string.

REFERENCES
[1] J. Abreu and J. R. Rico-Juan, ‘‘A new iterative algorithm for computing a

quality approximate median of strings based on edit operations,’’ Pattern
Recognit. Lett., vol. 36, pp. 74–80, Jan. 2014.

[2] H. Bunke, X. Jiang, K. Abegglen, and A. Kandel, ‘‘On the weighted mean
of a pair of strings,’’Pattern Anal. Appl., vol. 5, no. 1, pp. 23–30,May 2002.

[3] R. A.M. Cardenas, ‘‘A learningmodel formultiple-prototype classification
of strings,’’ in Proc. 17th Int. Conf. Pattern Recognit. (ICPR), vol. 4, 2004,
pp. 420–423.

169306 VOLUME 9, 2021

P. Mirabal et al.: Boosting Perturbation-Based Iterative Algorithms to Compute Median String

[4] F. Casacuberta and M. D. Antonio, ‘‘A greedy algorithm for computing
approximate median strings,’’ in Proc. VII Sim. Nac. de Reconocimiento
de Formas y Análisis de Imágenes, 1997, pp. 193–198.

[5] I. Fischer and A. Zell, ‘‘String averages and self-organizing maps for
strings,’’ in Proc. ICSC Neural Comput., 2000, pp. 208–215.

[6] H. Freeman, ‘‘Computer processing of line-drawing images,’’ ACM Com-
put. Surv., vol. 6, no. 1, pp. 57–96, 1974.

[7] S. García-Díez, F. Fouss, M. Shimbo, and M. Saerens, ‘‘A sum-over-
paths extension of edit distances accounting for all sequence alignments,’’
Pattern Recognit., vol. 44, no. 6, pp. 1172–1182, Jun. 2011.

[8] A. K. Jain andD. Zongker, ‘‘Representation and recognition of handwritten
digits using deformable templates,’’ IEEE Trans. Pattern Anal. Mach.
Intell., vol. 19, no. 12, pp. 1386–1390, Dec. 1997.

[9] X. Jiang, H. Bunke, and J. Csirik, ‘‘Median strings: A review,’’
Data Mining Time Ser. Databases, pp. 173–192, 2004, doi:
10.1142/9789812565402_0008.

[10] T. Kohonen, ‘‘Median strings,’’ Pattern Recognit. Lett., vol. 3, no. 5,
pp. 309–313, 1985.

[11] J. B. Kruskal, ‘‘An overview of sequence comparison: Time warps, string
edits, and macromolecules,’’ SIAM Rev., vol. 25, no. 2, pp. 201–237,
Apr. 1983.

[12] F. Kruzslicz, ‘‘Improved greedy algorithm for computing approximate
median strings,’’ Acta Cybern., vol. 14, no. 2, pp. 331–339, 1999.

[13] V. I. Levenshtein, ‘‘Binary codes capable of correcting deletions, inser-
tions, and reversals,’’ Soviet Phys. Doklady, vol. 10, no. 8, pp. 707–710,
1966.

[14] C. D. Martínez-Hinarejos, A. Juan, F. Casacuberta, and R. Mollineda,
‘‘Reducing the computational cost of computing approximated median
strings,’’ in Proc. Joint IAPR Int. Workshops SSPR and SPR, 2002,
pp. 47–55.

[15] C. D. Martínez-Hinarejos, A. Juan, and F. Casacuberta, ‘‘Median strings
for k-nearest neighbour classification,’’ Pattern Recognit. Lett., vol. 24,
nos. 1–3, pp. 173–181, Jan. 2003.

[16] J. R. Rico-Juan and J. M. Iñesta, ‘‘New rank methods for reducing the size
of the training set using the nearest neighbor rule,’’ Pattern Recognit. Lett.,
vol. 33, no. 5, pp. 654–660, Apr. 2012.

[17] F. Nicolas and E. Rivals, ‘‘Hardness results for the center andmedian string
problems under the weighted and unweighted edit distances,’’ J. Discrete
Algorithms, vol. 3, nos. 2–4, pp. 390–415, Jun. 2005.

[18] J. G. Henikoff and S. Henikoff, ‘‘Blocks database and its applications,’’ in
Methods in Enzymology, vol. 266. Amsterdam, The Netherlands: Elsevier,
1996, pp. 88–105.

[19] E. Chavez, S. Dobrev, E. Kranakis, J. Opatrny, L. Stacho, H. Tejeda, and
J. Urrutia, ‘‘Half-space proximal: A new local test for extracting a bounded
dilation spanner of a unit disk graph,’’ in Proc. Int. Conf. Princ. Distrib.
Syst., vol. 1, 2005, pp. 235–245.

[20] X. Jiang, J. Wentker, and M. Ferrer, ‘‘Generalized median string compu-
tation by means of string embedding in vector spaces,’’ Pattern Recognit.
Lett., vol. 33, no. 7, pp. 842–852, May 2012.

[21] M. Hayashida and H. Koyano, ‘‘Finding median and center strings for a
probability distribution on a set of strings under Levenshtein distance based
on integer linear programming,’’ in Proc. Int. Joint Conf. Biomed. Eng.
Syst. Technol., 2016, pp. 108–121.

[22] M. Hayashida and H. Koyano, ‘‘Integer linear programming approach to
median and center strings for a probability distribution on a set of strings,’’
in Proc. 9th Int. Joint Conf. Biomed. Eng. Syst. Technol. Rome, Italy:
SCITEPRESS, 2016, pp. 35–41.

[23] X. Jiang and H. Bunke, ‘‘Optimal lower bound for generalized median
problems in metric space,’’ in Structural, Syntactic, and Statistical Pat-
tern Recognition, vol. 2396. Portugal: Sci. Technol. Publications, 2002,
pp. 143–151.

[24] C. Olivares-Rodríguez and J. Oncina, ‘‘A stochastic approach to median
string computation,’’ in Proc. SSPR SPR, in Lecture Notes on Computer
Science, vol. 5342, 2008, pp. 431–440.

[25] E. S. Ristad and P. N. Yianilos, ‘‘Learning string-edit distance,’’ IEEE
Trans. Pattern Anal. Mach. Intell., vol. 20, no. 5, pp. 522–532, May 1998.

[26] L. Franek and X. Jiang, ‘‘Evolutionary weighted mean based framework
for generalized median computation with application to strings,’’ in Struc-
tural, Syntactic, and Statistical Pattern Recognition. USA: Springer, 2012,
pp. 70–78.

[27] G. Sánchez, J. Lladós, and K. Tombre, ‘‘A mean string algorithm to
compute the average among a set of 2D shapes,’’ Pattern Recognit. Lett.,
vol. 23, nos. 1–3, pp. 203–213, Jan. 2002.

[28] P. Mirabal, J. Abreu, and D. Seco, ‘‘Assessing the best edit in perturbation-
based iterative refinement algorithms to compute the median string,’’
Pattern Recognit. Lett., vol. 120, pp. 104–111, Apr. 2019.

[29] R. Corral-Corral, E. Chavez, and G. Del Rio, ‘‘Machine learnable fold
space representation based on residue cluster classes,’’ Comput. Biol.
Chem., vol. 59, pp. 1–7, Dec. 2015.

[30] S. Budalakoti, A. N. Srivastava, and M. E. Otey, ‘‘Anomaly detection and
diagnosis algorithms for discrete symbol sequences with applications to
airline safety,’’ IEEE Trans. Syst., Man, Cybern. C, Appl. Rev., vol. 39,
no. 1, pp. 101–113, Jan. 2009.

[31] X. Jiang, L. Schiffmann, and H. Bunke, ‘‘Computation of median shapes,’’
in Proc. 4th Asian Conf. Comput. Vis., Taipei, Taiwan, 2000, pp. 300–305.

[32] A. Lourenço and A. Fred, ‘‘Ensemble methods in the clustering of
string patterns,’’ in Proc. 7th IEEE Workshops Appl. Comput. Vis.
(WACV/MOTIONS), Jan. 2005, pp. 143–148.

[33] T. Kohonen and P. Somervuo, ‘‘Self-organizing maps of symbol strings,’’
Neurocomputing, vol. 21, nos. 1–3, pp. 19–30, Nov. 1998.

[34] R. Popovici andR.Andonie, ‘‘Sensor signal clusteringwith self-organizing
maps,’’ in Proc. Int. Joint Conf. Neural Netw. (IJCNN), Jul. 2015, pp. 1–8.

[35] B. G. Chern, I. Ochoa, A. Manolakos, A. No, K. Venkat, and T. Weissman,
‘‘Reference based genome compression,’’ in Proc. IEEE Inf. Theory Work-
shop (ITW), Sep. 2012, pp. 427–431.

[36] P. Bille, ‘‘A survey on tree edit distance and related problems,’’ Theor.
Comput. Sci., vol. 337, nos. 1–3, pp. 217–239, Jun. 2005.

[37] P. Bille, P. H. Cording, I. L. Gørtz, F. R. Skjoldjensen, H. W. Vildhøj,
and S. Vind, ‘‘Dynamic relative compression,’’ CoRR, 2015. [Online].
Available: https://arxiv.org/abs/1504.07851

[38] S. Kuruppu, S. J. Puglisi, and J. Zobel, ‘‘Reference sequence construction
for relative compression of genomes,’’ in Proc. Int. Symp. String Process.
Inf. Retr., 2011, pp. 420–425.

[39] S. Wandelt, M. Bux, and U. Leser, ‘‘Trends in genome compression,’’
Current Bioinf., vol. 9, no. 3, pp. 315–326, May 2014.

[40] R. Giancarlo, S. E. Rombo, and F. Utro, ‘‘Compressive biological sequence
analysis and archival in the era of high-throughput sequencing technolo-
gies,’’ Briefings Bioinf., vol. 15, no. 3, pp. 390–406, May 2014.

[41] L. P. Dinu and R. T. Ionescu, ‘‘Clustering based on median and closest
string via rank distance with applications on DNA,’’Neural Comput. Appl.,
vol. 24, no. 1, pp. 77–84, Jan. 2014.

[42] P. Mirabal, J. Abreu, and O. Pedreira, ‘‘Pivot selection for median string
problem,’’ in Proc. 38th Int. Conf. Chilean Comput. Sci. Soc. (SCCC),
Nov. 2019, pp. 1–5.

[43] P. Mirabal, J. Abreu, D. Seco, O. Pedreira, and E. Chavez, ‘‘New initial-
ization for algorithms to solve median string problem,’’ in Proc. 39th Int.
Conf. Chilean Comput. Sci. Soc. (SCCC), Nov. 2020, pp. 1–7.

[44] J. Abreu and P. Mirabal, ‘‘Multi-edition approach for median string
problem,’’ in Proc. 39th Int. Conf. Chilean Comput. Sci. Soc. (SCCC),
Nov. 2020, pp. 1–6.

[45] S. Mirabal and P. Aniel, ‘‘Algoritmos para el cálculo de la cadena media,’’
M.S. thesis, Facultad de Ingeniería, Univ. Concepción, Concepción, Chile,
2019.

[46] M. S. Kaysar and M. I. Khan, ‘‘A modified median string algorithm for
gene regulatory motif classification,’’ Symmetry, vol. 12, no. 8, p. 1363,
Aug. 2020.

[47] D. Chakraborty, D. Das, and R. Krauthgamer, ‘‘Approximating the median
under the Ulam metric,’’ in Proc. ACM-SIAM Symp. Discrete Algorithms
(SODA). Philadelphia, PA, USA: SIAM, 2021, pp. 761–775.

[48] F. J. Castellanos, J. J. Valero-Mas, and J. Calvo-Zaragoza, ‘‘Prototype
generation in the string space via approximate median for data reduction in
nearest neighbor classification,’’ Soft Comput., vol. 25, pp. 15403–15415,
Sep. 2021.

[49] R. A.Wagner andM. J. Fischer, ‘‘The string-to-string correction problem,’’
J. ACM, vol. 21, no. 1, pp. 168–173, 1974.

[50] J. Abreu and J. R. Rico-Juan, ‘‘An improved fast edit approach for two-
string approximated mean computation applied to OCR,’’ Pattern Recog-
nit. Lett., vol. 34, no. 5, pp. 496–504, Apr. 2013.

PEDRO MIRABAL received the Ph.D. degree in
computer science from the University of Concep-
ción, Chile, in 2019. He is currently a Professor
with the Department of Informatics Engineering,
Faculty of Engineering, Universidad Católica de
Temuco, Chile. His research interests include NLP,
data structures, and algorithms.

VOLUME 9, 2021 169307

http://dx.doi.org/10.1142/9789812565402_0008

P. Mirabal et al.: Boosting Perturbation-Based Iterative Algorithms to Compute Median String

JOSÉ ABREU is currently a Researcher with the
Institute for Computing Research, University of
Alicante. He has been a member of the Cuban
Chapter of the International Association of Pattern
Recognition, and a full-time Professor with the
University of Matanzas, and the Catholic Univer-
sity of the Most Holy Conception. His research
interests include data-driven solutions in natural
language processing and instance selection and
prototype construction algorithms.

DIEGO SECO received the Ph.D. degree in com-
puter science from the University of A Coruña,
Spain, in 2009. He is currently an Associate Pro-
fessor with the Department of Computer Science,
University of Concepción, Chile. His research
interests include geographic information retrieval,
geographic information systems, and compressed
data structures and algorithms for textual and geo-
graphic data.

ÓSCAR PEDREIRA received the M.Sc. and Ph.D.
degrees in computer science from the University of
ACoruña, Spain. He has been anAssociate Profes-
sor with the University of A Coruña, since 2008.
He is currently a Researcher of the Database Lab-
oratory. He has coauthored many articles pub-
lished in journals and conferences relevant for
the research areas mentioned. His research inter-
ests include databases (algorithms for similarity
search, data structures and algorithms for graph

databases, geographic information systems), and in software engineering
(process improvement, testing, MDE, and SPL). He has continuously partic-
ipated in research projects and technology and knowledge transfer projects
with different companies.

EDGAR CHÁVEZ received the Ph.D. degree in
computer science from the Centro de Investigacion
enMatematicas (CIMAT), in 1999. He is currently
a Full Professor with the Centro de Investigacion
Cientifica y de Educacion Superior de Ensenada
(CICESE), Ensenada, Mexico. His research inter-
ests include multimedia information retrieval, sim-
ilarity search, indexing, and clustering algorithms.

169308 VOLUME 9, 2021

