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Marek Teichmann, Andreas Enzenhoefer

This is a post-peer-review, pre-copyedit version of an article published in IEEE Robotics and Automation

Letters. The authenticated version is available at: http://dx.doi.org/10.1109/LRA.2020.3010204.

©2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all

other uses, in any current or future media, including reprinting/republishing this material for advertising

or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or

reuse of any copyrighted component of this work in other works.

Abstract

Co-simulation of complex robotic systems allows the different components to be mod-

elled and simulated independently using methods and tools tailored to their nature and

time-scale, which makes the implementation process more modular and flexible. Some ap-

plications require the use of non-iterative coupling schemes for optimal performance, such

as real-time interactive environments and human and hardware-in-the-loop setups. Stability

of non-iterative schemes is challenging due to the restricted and delayed information that is

exchanged between subsystems, and robust prediction of interface variables is key. Here, we

propose a framework for exchanging model information between mechanical systems with

contact, where reduced-order models approximate the interface dynamics of the subsystems.

Effective mass and force terms are formulated using a reduced representation of the model,

which can then be exchanged between subsystems and integrated in their simulation. The

analysis of several simulations of challenging robotic contact tasks, such as grasping and

insertion with jamming, shows that model-based coupling allows for stable co-simulation

with larger interface stiffness values, resulting in stronger coupling and higher simulation

accuracy.
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1 Introduction

The analysis and simulation of robotic contact tasks is an important element in design, con-

trol and training of robotic systems. The increasing complexity and level of detail demanded

from the simulation of robotic mechanical systems can be addressed using co-simulation as an

efficient approach for dealing with subsystems with different properties and time-scale. In co-

simulation, subsystems are modelled independently and simulated using numerical methods tai-

lored to them. Many applications of industrial interest can benefit from the use of co-simulation

techniques. Notably, railway systems [3], hydraulic machinery [15], and automotive applica-

tions [5].

Robotic tasks can give rise to complex mechanical models. Decomposing such models into

subsystems can have various advantages. For example, some subsystems can be modelled as

articulated bodies, and simulated using efficient recursive algorithms. Contact tasks, on the other

hand, require formulations that can deal with many unilateral contacts and friction efficiently.

Simulating all these subsystems using a monolithic formulation may be possible in some cases,

but co-simulation is often a better choice from an implementation standpoint. Specific solvers

for each subsystem can be coupled together in a co-simulation setup, which can improve the

implementation process, making it more modular and flexible.

Subsystem coupling is critical for a robust and stable co-simulation, and the selection of in-

terface variables plays an important role. The best choice for the interface variables is usually

not obvious, and it may depend on model characteristics as well as implementation details [15].

Subsystems exchange data at discrete communication points, and the time interval between

them is known as macro time-step. Simulation of each subsystem is then carried out indepen-

dently using different integration methods and step-sizes, also known as micro time-steps. There-

fore, a prediction of the interface variables during the macro time-step is needed. Some schemes

determine those values through iteration [24, 17], while others use extrapolation techniques.

Iterative schemes are more stable than non-iterative ones [11], but at a higher computational

cost that can be prohibitive for real-time applications. Furthermore, they cannot be used with

subsystems that do not allow for state resetting, especially those that involve physical systems

such as in human and hardware-in-the-loop simulation. This motivates the interest in developing

stabilization methods for non-iterative co-simulation schemes.

Generally, coupling methods provide a prediction of the input variables of a subsystem. On
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the one hand, signal-based methods rely on past interface data and do not account for subsystem

dynamics. Such methods commonly use extrapolation and filtering techniques to approximate

future coupling variables. On the other hand, model-based methods account for the internal struc-

ture of subsystems in order to emulate subsystem dynamics and represent input/output relations

(see, Fig. 1). The cornerstone of such methods is the characterization of reduced-order models,

which can be obtained via model-order reduction [26]. Alternatively, system identification tech-

niques can be used to characterize these models, which may require a learning phase to identify

model parameters [21].

In our previous work [13, 14], we proposed a model-based coupling using the effective mass

and effective force terms of a multibody system for the interfacing of subsystems with faster

dynamics in multi-rate co-simulation setups, such as hydraulic subsystems. This also included a

reduced model formulation for multibody systems with unilateral contact. In this current paper,

we extend the model-based coupling concept for mechanical-mechanical co-simulation of sub-

systems with contact. We propose a framework where the subsystems exchange model data (i.e.,

effective mass and effective force terms) to formulate and integrate reduced models of other sub-

systems into their simulation. Simulation of complex robotic contact tasks and phenomena such

as jamming illustrate the advantages of the proposed method.
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Figure 1: Co-simulation of two mechanical subsystems with signal-based coupling (top) and
model-based coupling (bottom).
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2 Models for systems with contact

Contact between elements in a system can be modelled with unilateral constraints, which repre-

sent contact detachment via inequalities in the constraint equations. Coulomb friction in contacts

can also be modelled with constraints, where friction forces are subjected to inequalities. It is

challenging to formulate contact and friction constraints in a systematic and efficient manner. In

this section, we describe the main elements in complementarity formulations for systems with

contact and friction.

Let us consider a constrained mechanical system parametrized by a set of p dependent gen-

eralized coordinates q and n dependent generalized velocities v, which can be related as q̇ = Nv,

where N(q) is the p× n transformation matrix between the two parametrizations, and p ≥ n in

general. Constraints in the system can then be characterized by a set of r constraint velocity

components

η = Av (1)

where A(q, t) is the r×n constraint Jacobian matrix. In addition, holonomic constraints can also

be defined at the position level by a set of r constraint coordinates Φ(q, t) such that Φ̇= Av−b,

where b(q, t) =−(∂Φ/∂ t) are the prescribed constraint velocities; often b = 0. Contact distances

can be used as unilateral constraint coordinates, but such coordinates cannot be defined for

friction constraints since tangential velocity components are generally nonholonomic.

The equations of motion of the system can be written as

Mv̇ = f+ATλ (2)

where M(q) is the n×n mass matrix, f is the n×1 array of generalized forces, which also include

the Coriolis and centrifugal terms, and λ is the r×1 array of constraint interaction forces. Then,

by incorporating the constraint acceleration η̇, the dynamics equations of the constrained system

becomeM −AT

A 0


 v̇

λ

=

 f

η̇−g

 (3)

where g(q,v) = Ȧv.
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If all constraints are bilateral, then η̇ is given and the system in Eq. (3) can be solved,

which has a unique solution if constraints are not redundant. On the other hand, unilateral

constraints in Eq. (3) formulate a mixed linear complementarity problem (LCP) by introducing

the complementarity condition [1]

0 ⩽ λn ⊥ η̇n ⩾ 0 (4)

where λn are the normal contact force components, η̇n are the normal contact acceleration

components of closed contact points, and ⊥ denotes component-wise complementarity, i.e.,

λn jẇn j = 0, ∀ j.

In general, the dynamics equations for systems with contact and Coulomb friction formulate

a mixed nonlinear complementarity problem (NCP) [25]



M −AT
b −AT

n −AT
t

Ab 0 0 0

An 0 0 0

At 0 0 0





v̇

λb

λn

λt


=



f

η̇b −gb

η̇n −gn

η̇t −gt


0 ⩽ λn ⊥ η̇n ⩾ 0

0 ⩽ σt(λn,λt) ⊥ γ̇t ⩾ 0

κt(λn,λt, η̇t, γ̇t) = 0



(5)

where λb are the bilateral constraint forces, λn and λt are the normal and tangential contact

force components, respectively, and ηb = Abv, ηn = Anv, and ηt = Atv, are the associated con-

straint velocity components. Friction saturations σt(λn,λt) define the limits of the Coulomb fric-

tion force [7]. The saturation for a contact point can be interpreted as the distance to the friction

cone, which equals zero when the contact force is on the surface and positive inside the cone.

For the j-th contact point, σt j = µ2
j λ 2

n j
−λ 2

t j,1
−λ 2

t j,2
⩾ 0, where µ j is the friction coefficient. The

slack velocities γt are complementary to the saturations, and together with κt = 0, they ensure

that the sliding velocity opposes the kinetic friction force [25].

Alternatively, the friction cone can be approximated with a pyramid to formulate a mixed

LCP [7, 22, 2] Linear problems are preferable than nonlinear ones and many solver algorithms

with guaranteed convergence are available in the literature [9]. Further details on the numerical
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methods to solve Eq. (5) are described in Section 5.

3 Co-simulation of mechanical systems

Interface{
Φi coord.
ηi vel.

Subsystem 1{
q1 coord.
v1 vel.

Subsystem 2{
q2 coord.
v2 vel.

s1,w1 s2,w2

Local parametrization{
s1, s2 coord.
w1, w2 vel.

body

joint

contact

FORCE-BASED COUPLING

βiSubsystem 1 Input: interface
force
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s2,w2Subsystem 1 Input: local co-
ordinates and
velocities

MODEL-BASED COUPLING

s2,w2

f̃2M̃2

Subsystem 1

Input: effective
mass matrix
and effective
force (and
initial state)

Figure 2: Coupling methods for co-simulation of robotic systems with contact.

In this section, we describe the co-simulation of mechanical systems and the two most com-

monly used coupling methods: force-based and kinematics-based coupling.

Figure 2 shows a robotic system in a co-simulation setup. Let us consider two systems with

n1 and n2 generalized velocities in v1 and v2, as well as p1 and p2 generalized coordinates in q1

and q2, respectively. The interface between the two systems can be characterised by a reduced

parametrization with two sets of m1 and m2 velocities for each subsystem which can be written

as

w1 = B1v1 and w2 = B2v2 (6)
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where B1(q1) and B2(q2) are the m1 × n1 and m2 × n2 Jacobian matrices of the transformation,

respectively. In addition, a set of coordinates s1(q1) and s2(q2) can also be related to the interface

velocities as ṡ1 = R1w1 and ṡ2 = R2w2. Such parametrizations generally represent the motion

of the elements at the interface, such as bodies or nodes that interact with other subsystems.

Moreover, the kinematics and forces of these parametrization are meant to be exchanged in a

co-simulation setup as inputs and outputs, thus m j ≪ n j in general.

Interaction between the subsystems can be parametrized by a set of ri interface velocities,

which can be written in terms of the reduced parametrization as

ηi = G1w1 +G2w2 (7)

where G1(s1,s2) and G2(s1,s2) are the interface Jacobian matrices. Interface velocities can also

be written in terms of the global parametrization as

ηi = G1B1v1 +G2B2v2 (8)

Additionally, a set of ri interface coordinates Φi(s1,s2) can also be defined for the holonomic

velocity components in ηi such that Φ̇i = ηi.

The set of m interface forces βi can then be introduced into the equations of motion of each

subsystem in Eq. (2) as

M1v̇1 = f1 +AT
1λ1 +BT

1 GT
1βi (9)

M2v̇2 = f2 +AT
2λ2 +BT

2 GT
2βi (10)

where M1(q1) and M2(q2) are the mass matrices, f1(q1,v1) and f2(q2,v2) are the generalized

forces, A1(q1) and A2(q2) are the constraint Jacobian matrices, and λ1 and λ2 are the internal

constraint forces of each subsystem respectively, which can also represent contact and friction as

discussed in Section 2. The dynamics of each subsystem formulate a complementarity problem

if contact and friction are present (see Eq. (5)), which cannot be solved without an estimation

of the interface variables (e.g., interface force βi or interface kinematics ηi and Φi).

Constraints do not require any knowledge about the constitutive properties of the system

and are commonly used to model interactions between elements of a system. In co-simulation,

however, constraints cannot be imposed between subsystems in a systematic manner, mainly be-
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cause the simulations run independently and only exchange restricted information. Formulating

the subsystem dynamics with interface constraints such as

ηi = 0 (11)

results in algebraic loops in the system [11]. Thus, constraint equations require iterative co-

simulation schemes to solve for algebraic loops, such as predictor–corrector schemes [18, 20].

Non-iterative co-simulation schemes for mechanical systems often exchange interface forces

in order to remove algebraic loops from the system. Then, interface forces can be determined in

one of the subsystems and then applied to the other subsystem as an input. Forces can be deter-

mined in one subsystem through the kinematic constraints imposed by the motion of the other

subsystem. However, deciding which subsystem imposes its motion to another can largely affect

the stability of these kinds of schemes [4], which often require constraint relaxation [17, 19, 6].

Therefore, interface forces can be defined through a constitutive relation using the interface

kinematics as

βi =−KiΦi −Diηi (12)

where Ki and Di are the interface stiffness and damping matrices, respectively. This expression

can be used with any of the subsystems to determine the interface force, but the choice is difficult

to generalize. Alternatively, a preliminary interface solve at the beginning of each macro time-

step can determine the interface force to be applied to both subsystems, but that generally

reduces the stability [16].

3.1 Force-based coupling

If the interface force β In
i is given as an input to subsystem 1, it can be introduced into the

equations of motion as an applied force

M1v̇1 = f1 +AT
1λ1 +BT

1 GT
1β

In
i (13)

The local position s In
2 is also given to compute the Jacobian matrices G1(s1,s In

2 ), which ultimately

define the geometry of the interface force. Then, by adding the internal constraints, the dynamics
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formulation in Eq. (3) becomes

M1 −AT
1

A1 0


 v̇1

λ1

=

f1 +BT
1 GT

1β
In
i

η̇1 −g1

 (14)

Instability issues in this formulation come from the fact that no specification is made on the

interface kinematics, which are often used as output variables in some formulations, i.e., wOut
1

and sOut
1 are not constrained. Therefore, the motion of the elements at the interface is indepen-

dent from that of the other subsystem, leading to significant error in the interface kinematics ηi

and Φi, as well as undesired high-frequency oscillations.

3.2 Kinematics-based coupling

If the kinematics of subsystem 2 is given as input to subsystem 1 (i.e., s In
2 , w In

2 and ẇ In
2 ), con-

straints can be used to define the interface kinematics. Differentiation of the interface velocity

in Eq. (7) yields the interface acceleration

η̇i = G1ẇ1 +G2ẇ In
2 +g In

i (15)

where g In
i (s1,w1,s In

2 ,w In
2 ) = Ġ1w1+Ġ2w2 are nonlinear terms that also depend on the input kine-

matics.

The dynamics equations of the constrained subsystem 1 can be written as


M1 −AT

1 −BT
1 GT

1

A1 0 0

G1B1 0 0




v̇1

λ1

βi

=


f1

η̇1 −g1

η̇i −g In
i −G2ẇ In

2

 (16)

where the motion of the interface ηi must be specified either by equalities or inequalities, in case

of contact. Furthermore, the input local configuration s In
2 and velocity w In

2 can be extrapolated

using the input acceleration ẇ In
2 along with the time integration of subsystem 1 during the macro

time-step. As a result, simulation of subsystem 1 determines the interface constraint force βOut
i ,

which can then be passed to subsystem 2.

Unfortunately, interface constraints are usually not stable and they require some relaxation.
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Thus, the interface force βi can be written in terms of the interface kinematics using the expres-

sion in Eq. (12), so that the equations of motion can be written as

M1v̇1 = f1 +AT
1λ1 +BT

1 GT
1βi(s1,w1,s In

2 ,w In
2 ) (17)

which can be solved implicitly using constraint regularization, for instance.

4 Model-based coupling

The main idea behind model-based coupling is to obtain a reduced-order model of a subsystem

that can emulate its dynamics at the co-simulation interface. Reduced models can provide an

approximation of the subsystem outputs in terms of the inputs, which can be used to extrapolate

the coupling variables [21] or even replace the subsystem during a macro time-step [13]. Here,

we formulate the dynamics equations of the reduced model using the local parametrization w in

Eq. (6). Contact and friction within the subsystem are taken into account by satisfying constraint

complementarity, as in [14]. Then, we exchange the dynamic equations of the reduced model

with other subsystems and integrate them in their simulation.

Let us then select local parametrization w2 = B2v2 to formulate the dynamics of subsystem 2

as [13]

M̃2ẇ2 = f̃2 +GT
2βi (18)

where M̃2(q2) is the m2 ×m2 effective mass matrix of subsystem 2 in the local parametrization

w2, and f̃2(q2,v2) is the m2 ×1 effective force.

The effective mass depends on the configuration of the subsystem as well as the interactions

of the elements within that subsystem. By decoupling the interface motion from the subsystem

motion compatible with the internal constraints, an expression for the effective mass can be

obtained as [13]

M̃2 =
(

B2(I−P2)M−1
2 BT

2

)−1
(19)

where P2(q2) is an n2 ×n2 matrix that accounts for the internal constraints and the constrained
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motion, and I is the identity matrix. In the absence of internal constraints, P2 = 0 and the effec-

tive mass M̃2 =
(
B2M−1

2 BT
2
)−1 [10]. On the other hand, if all internal constraints are bilateral

(η̇ = 0) the projector matrix can be written as P2 = M−1
2 AT

2
(
A2M−1

2 AT
2
)−1 A2 [13].

However, unilateral contact and friction may violate the constraint equation η̇ = 0 due to

complementarity in Eq. (5) if the force limit is reached, e.g., a contact can detach if the force is

zero. Therefore, constraints with force limits must be treated differently [12]. Closed contacts

(η̇n = 0) and static friction (ηt, η̇t = 0) can be considered as constraint forces, we call them active

constraints [12]. Open contacts and kinetic friction are not constraints any more. We remove

open contact from the effective mass formulation and consider kinetic friction as an applied

force.

Hence, the projector operator [14]

P2 = M−1
2 ÂT

2
(
Â2M−1

2 ÂT
2
)−1 Â2 (20)

where Â2 is the Jacobian matrix of the active constraints (i.e., bilateral, closed contacts, and

static friction). Likewise, the effective force can be written as [14]

f̃2 = M̃2

(
B2(I−P2)M−1

2 (f2 + ĀT
2 λ̄2)+ Ḃ2v2 +B2P2v̇2

)
(21)

where Ā2 is the Jacobian matrix of the constraints removed from the active set (i.e., sliding

contacts) and λ̄2 are the kinetic friction force components.

The reduced model of subsystem 2 in Eq. (18) may then be combined with subsystem 1,

such that the dynamics equations of the combined system can be written as



M1 0 −AT
1 −BT

1 GT
1

0 M̃ In
2 0 −GT

2

A1 0 0 0

G1B1 G2 0 0





v̇1

ẇ2

λ1

βi


=



f1

f̃ In
2

η̇1 −g1

η̇i −gi


(22)

where M̃ In
2 and f̃ In

2 are the input of subsystem 1 and updated every macro time-step. In addition,

the reduced parametrization s2 and w2 is updated every micro time-step, and it evolves according

to the dynamics of both subsystem.
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The main advantage of this formulation is that the interface constraints are solved inside

the subsystem. This allows us to use constraint regularization for the interface constraints and

ultimately improve the stability of mechanical–mechanical subsystem coupling in co-simulation.

5 Numerical formulation

The dynamics of systems with contacts are often formulated at the impulse–momentum level

for a more consistent treatment of the nonsmooth dynamic equations [1]. The system dynamics

equations are then discretized in time and the generalized acceleration can be approximated by

a finite difference of the generalized velocity as

v̇ =
vk+1 −vk

h
(23)

where vk is the known velocity at the beginning of the time-step, vk+1 is the unknown velocity at

the end of the times-step, and h is the simulation micro step-size. Thus, the dynamics equations

in Eq. (3) can be written as [14]

M −AT

A 0


vk+1

λ̂k+1

=

 pk

ηk+1

 (24)

where pk(qk,vk) = M(qk)vk + hf(qk,vk) is the known generalized momentum, M and A are the

known mass and Jacobian matrices evaluated with the known coordinates qk, and λ̂k+1 is the

unknown constraint impulse over the micro time-step, which can be related to the unknown

constraint force as hλk+1. Here, the constraint velocity η = Av represents the internal subsystem

constraints η1 and η2, as well as the interface constraints ηi.

As discussed in Section 2, contact and friction can be described by limits in the constraint

forces λ. Linear force limits can be generally written as

λlow ⩽ λk+1 ⩽ λupp (25)

where λlow and λupp are the lower and upper limits of the constraint forces, respectively. Unilat-

eral constraints describing normal contact forces λn are characterized by the limits λlow
n = 0 and

λ
upp
n = +∞, whereas bilateral constraint force limits can be set to infinity, i.e., λlow

b = −∞ and

12



Model-based coupling for co-simulation of robotic contact tasks

λ
upp
b =+∞. Limits in Coulomb friction forces, on the other hand, need to be linearised in order

to formulate an LCP, which can be written component-wise as λlow
t = −µλk

n and λ
upp
t = +µλk

n,

where µ is a matrix with friction coefficients, and λk
n is the known normal contact force from

the previous time-step. This description of the friction force bounds represents a linear approxi-

mation of the friction cone by a polyhedra, also known as box friction model [14].

The force limits in Eq. (25) can be enforced by two sets of non-negative saturation impulses

σ̂low = λ̂k+1 − λ̂low ⩾ 0

σ̂upp = λ̂upp − λ̂k+1 ⩾ 0

 (26)

which are complementary to the slack velocities γ low ⩾ 0 and γupp ⩾ 0, respectively. Slack veloc-

ities define the constraint velocity as

ηk+1 −bk = γ low −γupp (27)

where bk(qk, tk) is the prescribed constraint velocity. Contact and friction constraints require the

slack velocities to enforce the force limits defined by the saturations, but bilateral constraint

equations can be simply written as ηk+1
b = bk

b.

The unknown velocities vk+1 can be eliminated from Eq. (24), and by introducing the slack

velocities in in Eq. (27) and the complementarity conditions between slack velocities and slack

forces in Eq. (26), a mixed (or bounded) LCP can be formulated as

(
AM−1AT

)
λ̂k+1 + z = γ low −γupp

0 ⩽ γ low ⊥
(
λ̂k+1 − λ̂low

)
⩾ 0

0 ⩽ γupp ⊥
(
λ̂upp − λ̂k+1

)
⩾ 0


(28)

where z = AM−1pk −bk is known.

Once the constraint impulses λ̂k+1 are determined, the velocity at the end of the step can be

obtained from Eq. (24) as

vk+1 = M−1(pk +ATλ̂k+1) (29)

13



A. Peiret et al.

and the position from the relation q̇ = Nv as

qk+1 = qk +hN(qk)vk+1 (30)

which is a semi-implicit integration scheme.

A unique solution to the mixed LCP in Eq. (28) exists if the matrix AM−1AT is a P-matrix

(i.e., all principal minors are positive) [8], which is the case for symmetric positive-definite ma-

trices. However, constraint redundancy produces low-rank Jacobian matrices, and consequently,

positive semi-definite LCP matrices. Thus, constraint forces are not unique if constraints are re-

dundant. Moreover, solver algorithms converge poorly if the matrix is ill-conditioned or close to

singular.

6 Constraint regularization

Regularization (or relaxation) can improve numerical stability and convergence of solver al-

gorithms [23] as well as co-simulation schemes [19]. We define constraint forces through a

constitutive relation

λk+1 =−KΦk+1 −DΦ̇k+1 (31)

The constraint coordinate and velocity can be approximated by the following finite differences

Φk+1 =Φk +hΦ̇k+1, and a new expression for the constraint equation can be obtained as

Φ̇k+1 +Cλ̂k+1 +φk = 0 (32)

where C = (h2K+hD)−1 and φk = (hI+K−1D)−1Φk contain the so-called regularization terms.

Stiffness and damping matrices are usually diagonal, since they are usually defined by the ana-

lyst.

As in Eq. (27), slack velocities can be used to define the constraint violation Φ̇k+1 = ηk+1 −

bk − (γ low −γupp) in Eq. (32). Then, the new formulation with the regularized constraint equa-
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tions can be written asM −AT

A C


vk+1

λ̂k+1

=

 pk

bk −φk +γ low −γupp

 (33)

which can be reduced, as in Eq. (28), to

(
AM−1AT +C

)
λ̂k+1 + z = γ low −γupp (34)

where z = AM−1pk −bk +φk. The coefficient matrix AM−1AT +C will never become rank defi-

cient due to the term C, which can also improve the matrix condition number.

7 Examples

Several numerical experiments in co-simulation setups were carried out with a model of a 7-DOF

robotic arm performing two contact tasks in microgravity: payload grasping task, and insertion

task with jamming. We compare different combinations of the coupling methods presented in

this paper: kinematics–force, model–force, and kinematics–model, and model–model. The first cou-

pling method corresponds to subsystem 1 (i.e., end effector and environment), and the second

one to subsystem 2 (i.e., articulated arm).

The interface is the 6 DOF joint between the end effector and the arm, and contact only

occurs between the end effector and the environment. The motion of the bodies immediately

after the interface define the local parametrizations with 6 velocities and 12 coordinates each

(3 translation vector components and 9 rotation matrix coefficients). Therefore, the reduced

models generated have a 6×6 effective mass matrix M̃, which are added into the simulation as

additional rigid bodies with a general mass matrix. Moreover, each link of the arm is modelled

as a 6 DOF rigid body (42 DOF for the arm) and the joints between them remove 5 relative DOF

using constraints, which results in a significant reduction of degrees of freedom in the reduced

model.

Both micro and macro step-sizes are equal to 1 ms, and the reference solution is a mono-

lithic simulation of the entire system with the same step-size. The co-simulation setup was im-

plemented in C++ using Vortex simulation software as the multibody dynamics engine and
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contact detection algorithm, and the Eigen library for linear algebra to preform efficient sparse

matrix and vector operations.

7.1 Grasping task

A gripper attached to the end effector is used to grasp a payload and displaces it with a trans-

lation (see Fig. 3). During the first second of the simulation, the gripper closes its claws and

grasps the fixture attached to the payload. Then, the joints are actuated to move the load to a

different location, where it is kept stable until the end of the simulation.

Figure 4 shows the position and velocity of the griper in the direction of the translation.

For small values of the interface stiffness, all coupling methods are in agreement. However, for

large stiffness values, simulation stability is lost for all the methods except for model–model.

Kinematics-based coupling can keep the position stable in spite of high-frequency oscillations in

the velocity, while the force-based coupling fails.

Initial configuration
(t = 0 s)

Interface

Gripper
(subsystem 1)

Arm
(subsystem 2) fixed base

payload

Final configuration
(t = 10 s)

translation

Figure 3: Model of a robotic arm grasping a payload. The joint actuation law follows a sine-
square function with a peak velocity of 0.5 rad/s for the first joint.

7.2 Insertion task

The robotic arm performs the insertion of a connector into a fixed socket (see Fig. 5). The

connector is rigidly attached to the end effector and has two parallel square-section pins. The
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Figure 4: Position and velocity of the end effector during the grasping tasks for two sets of
interface stiffness Ki and damping Di values.

width of each pin is 100 mm, the play between pin and hole is 4 mm, and the friction coefficient

is µ = 0.5. Two phases precede the insertion: a 90◦ rotation to orient the connector followed

by a translation to align the connector with the socket. Then, the connector is pushed inside

the socket at a constant speed of 0.1m/s until it stops. Jamming during the insertion phase was

achieved by a small misalignment of the connector control velocity of α = 2.5◦, which caused

the motion of the connector to stop before the end of the insertion phase.

Figure 6 shows the vertical position and velocity of the connector during the insertion task.

For small interface stiffness values, all the methods produce similar results, but they disagree

with the baseline in that jamming does not occur. On the other hand, larger stiffness values

allows the model–model simulation to jam, while the other methods fail. Interestingly, capturing

complex contact phenomena such as jamming requires a strong coupling between subsystems,

which was attained with model-based coupling and a large interface stiffness.
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Initial configuration
(t = 0 s)

Interface
Arm

(subsystem 2)

Connector
(subsystem 1)

fixed
base

fixed socket

Oriented configuration
(t = 6 s)

90◦

rotation

Aligned configuration
(t = 12 s)

translation

Jammed configuration during insertion
(t = 20 s)

section view

α

misaligned
insertion

Figure 5: Model of a robotic arm performing an insertion task with jamming of the connector in
the socket.

8 Discussion

Model-based coupling can substantially improve simulation accuracy compared to other signal-

based coupling approaches. Large interface stiffness values reduced the error several orders of

magnitude while keeping the model–model simulation method stable (see Fig. 7). The purely

signal-based kinematics–force method shows the lowest stability threshold value for the inter-

face stiffness. In some cases, introducing model-based coupling to only one of the subsystems

can improve simulation stability and accuracy. But the better choice between force-based and

kinematics-based coupling seems to be problem dependent.

The computational time needed to generate the reduced model is a considerable fraction

of the total simulation time (Fig. 8). In the examples presented here, the reduced model gen-

eration time is less than the dynamics solver time, and the total time is still below the step

size (1ms), which makes it suitable for real-time applications. Thus, model-based coupling can

significantly improve simulation accuracy at a fair computational cost. To further optimize the

computation, the reduced model could be generated in parallel with some other tasks, such as

with the collision detection.

Figure 9 shows a correlation between the model generation time and the number of active
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Figure 6: Position and velocity of the end effector during the insertion task for two sets of
interface stiffness Ki and damping Di values.

constraints. The bottle neck of this computation is the inverse matrix
(
Â2M−1

2 ÂT
2
)−1

in Eq. (20),

the size of which is the number of active constraints (i.e., bilateral constraints, closed contacts,

and static friction). This operation was optimized using a sparse-matrix Cholesky decomposition

and solving for the columns of the right-hand matrix, so that the inverse matrix does not have

to be calculated. The computational complexity appears to lie in between O(n) and O(n2), and

it shows some overhead for a small number of constraints.

The proposed method improved simulation accuracy and coupling stability. However, con-

sidering the properties of reduced model constant within the co-simulation macro step is a

limitation of our method. Therefore, future work could focus on how changes in the subsystems

affect the formulation of reduced models (e.g., contact detachment and stick-slip transitions).

Moreover, improvements to the computational performance of the method and the scalability in
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Figure 7: Root-mean-square (RMS) error of the position and velocity of the arm’s end effector
compared with the reference for different interface stiffness values Ki. Proportional damping
Di/Ki = 10−2 s was used in all the simulations, and angular stiffness and damping values were
reduced by a factor of 10 compared to the linear ones.

large-scale simulations can also be of interest for future applications.

9 Conclusions

Different coupling methods for co-simulation of mechanical systems were discussed and ana-

lyzed. In addition, a framework for model-based coupling of subsystems with contact was put

forward, where reduced-order models can be exchanged between subsystems. These models are

formulated using effective mass and effective force terms, and can be combined and simulated

with other mechanical systems. Numerical results of co-simulation setups of robotic systems

performing challenging tasks such as grasping and insertion were used to illustrate the benefits
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Figure 8: Average computational time (wall-clock) of co-simulation steps of size h = 1ms. Inter-
face stiffness Ki = {104, 105, 106, 107, 108, 109}N/m for each method, and the reference without
co-simulation. The total time is divided into: reduced model generation time (calculation of ef-
fective mass and effective force terms), dynamics simulation time, and others (subsystem data
exchange, collision detection, etc.). Results were obtained on an Intel Core i7-8750H CPU at
2.2 GHz with 16 GB of memory and 64-bit Windows 10.
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Figure 9: Computational time (wall-clock) to generate the reduced model in terms of the number
of active constraints (left) and solve the system dynamics in terms of the total number of con-
straints (right) of subsystem 1 (plug with socket) in the insertion task example (step data from
failed simulations are also included). Complexity-order lines are scaled and shown as reference
only.

of the proposed method. Model-based coupling improved simulation stability and allowed for

larger interface stiffness, which resulted in stronger coupling between subsystems and improved

simulation accuracy.
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