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Abstract

Parallel and High Performance Computing (HPC) has gained attention in the last years as a
mean to accelerate several kind of computationally expensive applications. Bioinformatics is
one of the fields that benefits from this acceleration, since it demands a high computational
power to analyse the biological data obtained from experiments. Due to the cost reductions
related to obtaining biological data, more and more tools are able to extract conclusions out
of this data are coming out, with capabilities to visualize, analyse and extract, but they come
with high execution times and computational requirements.

In particular, methylation analysis is one of the bioinformatics fields that fits into this
description, since this process is associated to different biological functions, and abnormal
methylation levels can indicate the presence of certain diseases. For instance, the existence
of regions with different methylation levels is a common characteristic for several types of
cancer. Therefore, discovering differentially methylated regions is an important research field
in genomics, as it can help to anticipate the risk to suffer from some diseases. Nevertheless,
the high computational cost associated to the discovery of differentially methylated regions
prevents its application to large-scale datasets. Hence, a much faster application is required
to further progress in this research field.

During this bachelor’s thesis an optimized version of RADMeth, a tool for the identifica-
tion of differentially methylated regions based on beta-binomial regression, has been devel-
oped and arranged to take advantage of the features of HPC systems. The different optimiza-
tion techniques implemented were developed by applying a workload distribution among the
processing elements using domain decomposition and by keeping inmind the typical architec-
ture of HPC systems composed of several nodes (each of the nodes being a multicore system)
so the novel tool takes advantage of both levels by a hybrid MPI/OpenMP implementation.

This way execution time was significantly reduced, Performance was tested on a cluster
composed of 16 nodes, with 64 GB of memory and 16 cores per node (256 nodes in total).
Obtained results were very satisfactory, obtaining speedups up to 194x.

Resumen

La computación paralela y de altas prestaciones (HPC por sus siglas en inglés) está ganan-
do atención en los últimos años como medio para acelerar varios tipos de aplicaciones con un
coste computacional elevado. Una de las disciplinas que se beneficia de esto es la bioinformá-
tica, que requiere una gran potencia computacional para analizar los datos de experimentos
biológicos. Debido a la reducción de costes asociados a la obtención de datos biológicos, más



y más herramientas capaces de visualizar, analizar y extraer conclusiones de estos datos salen
a la luz, pero vienen con elevados tiempos de ejecución y requisitos computacionales.

Concretamente uno de los campos que cumple estas características es el análisis de la
metilación, ya que este proceso está asociado con diferentes funciones biológicas y niveles
raros de metilación pueden ser un indicativo de la presencia de enfermedades. Por ejemplo,
la existencia de regiones con diferentes niveles de metilación es una característica presente
en muchos tipos de cáncer. Por tanto, el descubrimiento de regiones con diferentes niveles de
metilación es un importante campo de investigación. Sin embargo, llevar a cabo este análisis
sobre grandes cantidades de datos es un proceso computacionalmente costoso, por lo que se
requiere de una herramienta mucho más rápida para prograsar en este campo de investiga-
ción.

En este trabajo se ha desarrollado una optimización de RADMeth, una herramienta que
identifica regiones diferencialmente metiladas basada en regresión beta-binomial, adaptán-
dola para aprovechar las ventajas de los sistemas HPC. Las paralelizaciones implementadas
fueron desarrolladas aplicando una distribución de la carga de trabajo entre los elementos de
procesado usando descomposición de dominio y teniendo en cuenta que los sistemas HPC
suelen ser sistemas multinodo con nodos multinucleo, por lo que la nueva herramienta apro-
vecha las ventajas de ambos con una aproximación híbrida basada en MPI Y OpenMP.

De esta forma se consiguió reducir el tiempo de cómputo de forma significativa. Las prue-
bas de rendimiento se realizaron en un cluster, con 16 nodos y 64 GB de memoria y 16 nú-
cleos por nodo (256 núcleos en total). Los resultados obtenidos fueron muy satisfactorios,
consiguiendo aceleraciones de hasta 194x.

Keywords:

• Differential Methylation

• Whole Genome Bisulfite Se-
quencing

• Beta-Binomial Regression

• Bioinformatics

• MPI

• OpenMP

• High Performance Computing

• Parallel Computing

Palabras clave:

• Metilación diferencial

• Secuenciación de Bisulfito del
Genoma Completo

• Regresión Beta-Binomial

• Bioinformática

• MPI

• OpenMP

• Computación de Altas Presta-
ciones

• Computación Paralela

2



3





Contents

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Document Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Identification of differentially methylated regions 3
2.1 Basic concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 RADMeth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2.2 Input data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.3 Output data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.4 Computation phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Other methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.1 Fisher’s Exact Test and Hidden Markov Models . . . . . . . . . . . . . 13
2.3.2 Algorithms based on smoothing . . . . . . . . . . . . . . . . . . . . . . 13
2.3.3 Algorithms based on beta-binomial distributions . . . . . . . . . . . . 13
2.3.4 Algorithms based on regression . . . . . . . . . . . . . . . . . . . . . . 14
2.3.5 Parallel algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Design and Implementation 17
3.1 Target architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1.1 MPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.1.2 OpenMP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 Data and workload distribution . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2.1 Domain decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2.2 Adjustment of domain decomposition to the identification of differ-

entially methylated regions . . . . . . . . . . . . . . . . . . . . . . . . 25

i



Contents

3.3 Optimization techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3.1 AllInOneGo File Procesing . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3.2 Parallel Input/Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4 Experimental evaluation 33
4.1 Test environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.1.1 System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.1.2 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2 Previous scalability concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.3 One node test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.3.1 Selection of the best schedule . . . . . . . . . . . . . . . . . . . . . . . 40
4.4 Scalability tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.4.1 Input/Output tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.4.2 ParRADMeth, pure MPI version . . . . . . . . . . . . . . . . . . . . . . 44
4.4.3 ParRADMeth, hybrid version without Hyperthreading . . . . . . . . . 45
4.4.4 ParRADMeth, hybrid version with Hyperthreading . . . . . . . . . . . 46

4.5 General conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5 Planning and organization 51
5.1 Project planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.1.1 Phase 1: Analysis of the state of the art and understanding of the
original tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.1.2 Phase 2: Design and implementation of a basic parallel tool with the
whole functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.1.3 Phase 3: Addition of optimization techniques . . . . . . . . . . . . . . 52
5.1.4 Phase 4: Performance evaluation . . . . . . . . . . . . . . . . . . . . . 52
5.1.5 Phase 5: Documentation and report writing . . . . . . . . . . . . . . . 52

5.2 Project metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.2.1 Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.2.2 Budget . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6 Conclusions 57
6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.2 Relation to the bachelor’s title . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.3 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

A User Guide 61
A.1 Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
A.2 Compilation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

ii



CONTENTS

A.3 Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

List of Acronyms 63

Bibliography 65

iii



Contents

iv



List of Figures

2.1 CpG site on the left vs. Non-CpG site on the right . . . . . . . . . . . . . . . . 4
2.2 Example of simple linear regression. Independent variable vs. dependent vari-

able . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Work flow of the MethPipe package for analyzing bisulfite sequencing dataset 6
2.4 Example of CpG site with coverage and methylation levels . . . . . . . . . . . 7
2.5 Example line on .meth file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.6 Example of proportion table . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.7 Example of a design matrix with two factors . . . . . . . . . . . . . . . . . . . 8
2.8 Example of a RADMeth’s output file . . . . . . . . . . . . . . . . . . . . . . . . 9
2.9 Beta distribution for different values of α and β . . . . . . . . . . . . . . . . . 10
2.10 RADMeth’s computation phase pseudocode . . . . . . . . . . . . . . . . . . . 12

3.1 Abstraction of a distributed memory system with several cores and one mem-
ory module per node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 Simple communication with Send and Recv . . . . . . . . . . . . . . . . . . . . 20
3.3 Collective communication with Gather . . . . . . . . . . . . . . . . . . . . . . 20
3.4 Collective communication with AllGather . . . . . . . . . . . . . . . . . . . . 21
3.5 OpenMP ”parallel” directive example . . . . . . . . . . . . . . . . . . . . . . . 23
3.6 OpenMP ”parallel for” directive example . . . . . . . . . . . . . . . . . . . . . 23
3.7 ParRADMeth’s computation phase pseudocode . . . . . . . . . . . . . . . . . . 27
3.8 ParRADMeth’s parallel input phase pseudocode . . . . . . . . . . . . . . . . . 29
3.9 ParRADMeth’s concurrent input phase pseudocode . . . . . . . . . . . . . . . 30
3.10 ParRADMeth’s parallel output phase pseudocode . . . . . . . . . . . . . . . . 31

4.1 Pluton cluster general structure . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2 Static schedule’s speedups. Processing elements (cores) vs. speedup over

RADMeth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

v



List of Figures

4.3 Dynamic schedule’s speedups. Processing elements (cores) vs. speedup over
RADMeth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.4 Guided schedule’s speedups. Processing elements (cores) vs. speedup over
RADMeth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.5 Speedups in the I/O phases for theHansen dataset. Processing elements (cores)
vs. speedup over RADMeth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.6 Speedups for the pure MPI version. Processing elements (cores) vs. speedup
over RADMeth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.7 Speedups of the hybrid version without using Hyperthreading. Processing
elements (cores) vs. speedup over RADMeth . . . . . . . . . . . . . . . . . . . 46

4.8 Speedups for the hybrid version when using Hyperthreading. Processing ele-
ments (cores) vs. speedup over RADMeth . . . . . . . . . . . . . . . . . . . . . 47

5.1 Gantt chart showing the arrangement of the different phases of the project . . 56

vi



List of Tables

4.1 compute-0 nodes specification . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.2 Datasets specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.3 Execution time from the hybrid tool in one node using different schedules (in

seconds) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.4 Execution times in the I/O phases for Hansen dataset . . . . . . . . . . . . . . 43
4.5 Execution time for the pure MPI version (in seconds) . . . . . . . . . . . . . . 44
4.6 Execution time from the hybrid version without usingHyperthreading (in sec-

onds) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.7 Execution time from the hybrid version when usingHyperthreading (in seconds) 47
4.8 Summary of execution times for different versions of the tool (in seconds) . . 48

5.1 Total hours inverted in the project detailed by task . . . . . . . . . . . . . . . 54
5.2 Total hours invested in the project by each resource . . . . . . . . . . . . . . . 55
5.3 Total costs of the project detailed by resource . . . . . . . . . . . . . . . . . . 55

vii



List of Tables

viii



Chapter 1

Introduction

This introductory chapter contextualizes the work and summarizes the motivation of the
bachelor’s thesis, followed by an overview of the main objectives, and an explanation

of the structure of this document.

1.1 Motivation

Parallel and High Performance Computing (HPC) has gained attention in the last years
as a mean to accelerate several kind of computationally expensive applications. One field
that can take advantage of HPC is bioinformatics, where the datasets to be analyzed can be
nowadays extremely large thanks to the reduction in the cost of obtaining biological data.
Therefore, many bioinformatics tools used to work with this huge datasets require extremely
high computational times.

DNA methylation is a chemical modification of DNA resulting from the addition of a
methyl group to a DNA nucleotide. In vertebrates, DNA methylation (which mainly occurs
at cytosines within CpG dinucleotides) has been associated with several biological functions.
For example, methylation plays a key role in genomic imprinting, X-chromosome inactiva-
tion, and it has been associated with the suppression of transposable elements during embry-
onic development [1]. Some studies have shown correlation between promoter methylation
and gene expression [2, 3]. Furthermore, the presence of large-scale abnormally methylated
genomic regions [4] is a hallmark feature of many types of cancers [5, 6]. Whole-Genome
Bisulfite Sequencing (WGBS) is currently the state-of-the-art technology for obtaining a com-
prehensive nucleotide-resolution view of the epigenome. A number of approaches currently
exist for assessing Differential Methylation (DM) from WGBS data.

The use of parallel computing makes up a good solution to reduce execution times asso-
ciated to DM analysis methods. During this bachelor’s thesis a parallel tool was developed
to analyse WGBS data meant to be executed on distributed memory systems such as clusters

1



1.2. Objectives

or supercomputers. The novel parallel tool is based on RADMeth [7], a sequential tool that
performs this analysis based on beta-binomial regression models and Z test. This base tool
is known as one of the best methods to achieve highly precise results and it also shows high
sensitivity and specificity.

1.2 Objectives

The main goal of this bachelor’s thesis is to design and implement a parallel tool for the
identification of differentially methylated regions in genomic analyses: ParRADMeth (Parallel
Regression Analysis of Differential Methylation). This tool allows the use of these algorithms
on HPC systems, significantly reducing their execution times. The parallel tool is based on
RADMeth, implemented in C++.

HPC systems, which are the target of this bachelor’s thesis, are multinode platforms (clus-
ters and supercomputers) where each node is a multicore system. Therefore, taking the most
out of the physical resources as our main goal, the design of the parallel algorithm includes
techniques using explicit parallelism, that is, processes communicating throughmessage pass-
ing, and implicit parallelism, through threads working on shared memory. Concretely, Mes-
sage Passing Interface (MPI) and OpenMP are used to provide both types of parallelism.

As a secondary goal, the performance of the tool is compared to that of RADMeth using
a real environment. For that purpose, several datasets are selected to evaluate the tool and
to prove the upgrades that parallel computing provides. Finally, the parallel tool has been
released so scientists and analysts can take advantage of it.

1.3 Document Structure

After this introductory chapter, this document continues with a chapter to introduce some
previous concepts and give some contextualization to the identification of differentiallymethy-
lated regions in genomic analyses. Next, third chapter explains in detail the design and im-
plementation of the parallel tool ParRADMeth. After that, scalability tests are explained,
together with some conclusions of the results. Fifth chapter shows the different phases and
costs of the project. Finally, last chapter summarizes the conclusions and provides some ideas
for future improvements.

2



Chapter 2

Identification of differentially
methylated regions

This chapter gives an introduction to the identification of Differentially Methylated Re-
gions (DMRs) in genomic analyses, focusing on RADMeth [7], one of the most accurate

tools, that performs this analysis using beta-binomial regression to obtain high-precision re-
sults. As it was already mentioned, this tool has been proved superior that others in terms of
sensitivity and specificity [8]. This chapter also gives an overview of these other tools that
follow different approaches to perform a similar analysis.

2.1 Basic concepts

Before starting with the subject of study, it seems appropriate to clarify the meaning of
some concepts that will often appear during this chapter and, in general, during the whole
document.

• CpG site. Deoxyribonucleic Acid (DNA) is a nucleic acid that contains the genetic
instructions used in the development and functioning of all living organisms. DNA can
be specified naming only the nitrogen-containing nucleobases that compose it (that can
be cytosine [C], guanine [G], adenine [A] or thymine [T]). CpG sites are regions of DNA
where a cytosine [C] nucleotide is followed by a guanine [G] nucleotide along its 5’→
3’ (DNA can be read in two directions, one end is called 5’ and the other one is called 3’.
This indicates the direction in which the cytosine [C] has to appear before the guanine
[G]). Figure 2.1 shows an example of a CpG site.

• Methylation. A methyl group is a small molecule made of one carbon and three hy-
drogen atoms. Methyl groups are added or removed from proteins or nucleic acids and
may change the way these molecules act in the body. Methylation is a chemical process

3



2.1. Basic concepts

Figure 2.1: CpG site on the left vs. Non-CpG site on the right

that modifies DNA through the addition of a methyl group to one or several nucleotids.
Methylation of high-density CpG regions has been widely described as a mechanism
associated with gene expression regulation [2].

• WGBS. Whole Genome Sequencing (WGS) is the process of determining the entirety,
or nearly the entirety, of the DNA sequence of an organism’s genome at a single time. It
provides the most comprehensive collection of an individual’s genetic variation. With
the falling costs of sequencing technology, WGS has become the leader paradigm in
genotyping studies, surpassing the previous leader in this field, DNA microarrays. For
humans, WGS provides 3,000 times more data than this previous leading technology.
WGBS, is a next-generation sequencing technology used to determine the DNAmethy-
lation status of single cytosines [C] by treating the DNA with sodium bisulfite before
sequencing. After sequencing, the unmethylated cytosines [C] appear as thymines [T].

• Regression. It is a statistical method used in finance, investing, and other disciplines
that attempts to determine the strength and character of the relationship between one
dependent variable (usually denoted by Y) and a series of other variables (known as
independent variables). One example of this is simple linear regression, shown in Figure
2.2, a specific form of regression analysis to finds a linear function that predicts the
dependent variable based on a single independent variable. Regression analysis can be
used to infer causal relationships between the independent and dependent variables.

• P-value. The probability that a particular statistical measure of an assumed probability
distribution will be greater than or equal to (or less than or equal to in some instances)
observed results. The p-value is used in the context of null hypothesis testing in order to
quantify the idea of statistical significance of evidence, the evidence being the observed
value of the chosen statistic. Null hypothesis testing is a reductio ad absurdum argument
adapted to statistics.

• Sample. It is related with the concept in the field of statistics, where a sample is a set
of cases collected or selected from a statistical population by a defined procedure. In

4



CHAPTER 2. IDENTIFICATION OF DIFFERENTIALLY METHYLATED REGIONS

Figure 2.2: Example of simple linear regression. Independent variable vs. dependent variable

this case, a sample is equivalent to a single case. From the data plain point of view, a
sample can be seen as a vector of values for the study. In our domain, a sample can be,
for example, a virus or a human being.

• Dataset. A dataset is a collection of data that stores the relation between the subset of
samples considered with the values of each feature to study. In general this relations
are represented as a matrix. We will discuss the format of datasets in our domain in
Section 2.2.2.

2.2 RADMeth

The main objective of this bachelor’s thesis is to develop a parallel tool that gets results as
precise as possible. Since RADMeth [7] was one the tools that showed superiority in this field
[8], we took the decision of developing a tool that provides exactly the same accurate biolog-
ical results as RADMeth. It is important to know how this tool works in order to understand
the development of ParRADMeth. This section starts with an overview of RADMeth to then
focus on the format of the input/output data and which computations it performs to reach
the desired results.

2.2.1 Overview

RADMeth is a publicly available software1 for computing individual differentially methy-
lated sites and genomic regions in data fromWGBS experiments. The tool uses beta-binomial
regression for high-precision DM analysis over WGBS data, and it can handle medium-size
experiments where it becomes critical to accurately model variation in methylation levels

1 http://smithlabresearch.org/software/methpipe/
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2.2. RADMeth

among replicates, and it accounts for influence of various experimental factors such as cell
types or batch effects.

RADMeth is part of MethPipe [9], a computational pipeline for analyzing bisulfite se-
quencing data. That means that raw data from thisWGBS experiments has to be preprocessed
to be used as input data from RADMeth and the results the tool produces can be used as input
data for the next phases of the pipeline. Figure 2.3 shows the workflow of the pipeline for the
identification of differentially methylated regions in WGBS datasets.

rmapbs - Mapping reads
filtering high quality read
trimming adapters
wildcard mapping

T rich 5- A A C G T T G C
5- A A C G T C G C T C G T

A rich T T G C A G C G A G C A -3
 A C G A G C A -3A

clipping mates, fixing overlap
5- A A C G T T G C

 A C G A G C A -3A
5- A A C G T T G C T C G T -3

duplicate-remover -
Removing duplicate reads

Randomly select one read from
multiple duplicate reads mapped to

the same position

methcounts - 
Estimating methylation levels

5- A A C G T C G C T C G T
T G C A G C G T A G C A -3

- C -

- C -
- C -
- C -
- T -

- T -
- T -
- T -

4 C   1 T
meth: 4/5

coverage: 5

0 C   3 T
meth: 0/3

coverage: 3

CpG site non-CpG site

merge-methcounts -
Merging methcounts from

multiple replicates

5- A A C G T C G C T C G T
T G C A G C G T A G C A -3
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T G C A G C G T A G C A -3
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T G C A G C G T A G C A -3
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T G C A G C G T A G C A -3

RADMeth - 
Identification of Differentially

Methylated regions

5- A A C G T C G C T C G T
T G C A G C G T A G C A -3

5- A A C G T C G C T C G T
T G C A G C G T A G C A -3

108 + CpG  0.157971  18   4  20  15
...
...
...

499 + CpG  0.559191  21   3  41  10

Figure 2.3: Work flow of the MethPipe package for analyzing bisulfite sequencing dataset
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2.2.2 Input data

To start understanding how the tool works, it is necessary to explain which data it takes
as input. Since the tool is part of MethPipe, the data it takes as input comes as the result
of processing raw data from WGBS experiments using the previous tools of the pipeline.
Specifically, RADMeth takes two files as input: a proportion table and a designmatrix. The
datasets to be analysed can be usually found as a set of .meth files that need to be combined
using the pipeline to finally build the proportion table, and then manually create the design
matrix.

• .meth files. These files contain the information about the CpG sites of a sample, in-
cluding, among others, coverage and methylation levels for the site. Each line contains
all the information of a CpG site, so the file has as many lines as CpG sites in the sample.
Coverage indicates how many cytosines [C] are in the CpG site before sequencing, and
methylation level indicates the percentage on them that after sequencing still appear
as cytosines [C], proving that they are methylated. In figure 2.4 we can see a visual
representation of a CpG site with five cytosines [C] before sequencing, four of them
methylated and one unmethylated (it appears as a thymine [T]), while in Figure 2.5 we
can see the corresponding line to that CpG site on a .meth file.

Figure 2.4: Example of CpG site with coverage and methylation levels
(http://smithlabresearch.org/software/methpipe/)

chr1 108 + CpG 0.8 5

Figure 2.5: Example line on .meth file

• Proportion table. Once all the .meth files are available, they must be merged into
a single file, the proportion table. Methpipe provides the tool merge-methcounts to
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generate the proportion table from the different files. In Figure 2.6 we can see that the
format of the proportion table is very similar to the one of the .meth files, except for
three small differences. First of all, it starts with a header line to indicate the order
of the samples in the following lines. Second, each line does not contain information
for a Cpg site on a sample, but for the CpG site in all samples of the experiment. And
last, the methylation level does not appear as a percentage but as the absolute value of
methylated cytosines [C].

Figure 2.6: Example of proportion table

• Design matrix. It is manually created and describes the structure of the experiment.
For example, the design matrix shown in Figure 2.7 shows that samples in this example
dataset are associated with two factors: base and case. The first column corresponds to
the base factor and will always be present in the design matrix (it can be seen as stating
that all samples have the same baseline mean methylation level). The second column is
added to distinguish cases from controls.

base case
control_a 1 0
control_b 1 0
control_c 1 0
case_a 1 1
case_b 1 1
case_c 1 1

Figure 2.7: Example of a design matrix with two factors

2.2.3 Output data

One objective of the work is to provide exactly the same accurate biological results as
RADMeth. Therefore, it is important to understand the output format of this tool in order
to use the same one for the results of our parallel tool.

RADMeth generates a single output file for each experiment. As in the input propor-
tion table or in the .meth files, the output file contains the information for all the CpG sites

8
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analyzed, one line per site, without header line since the results are not at sample but at
experiment level. So for each CpG site its line contains:

• The first four columns, with general information about the site, such as its position.

• The fifth column, which contains the p-value of the experiment for that CpG site.

• The four last columns correspond to the total coverage counts and methylated read
counts of the case and control groups, respectively.

In Figure 2.8 we can see the first lines of an output file as example of this format.

chr1 108 + CpG 0.157971 18 4 20 15
chr1 114 + CpG 0.559191 21 3 41 10
chr1 160 + CpG 0.0951122 32 24 39 17
chr1 309 + CpG 0.239772 33 17 19 13
chr1 499 + CpG 0.77014 43 22 29 1

Figure 2.8: Example of a RADMeth’s output file

2.2.4 Computation phase

Now that we know which data RADMeth takes as input and the result that it produces, it
is time to focus on the method the tool uses to reach these results. First of all, the structure of
the tool must be understood. The behavior of the tool can be logically divided in three phases:

• Input phase, where data is read from input files into the appropriate structures.

• Computation phase, where data is processed by the algorithm to produce final results.

• Output phase, where results are written into the output file.

Before focusing on the algorithm used on the computation phase it is necessary to understand
some concepts.

• Binomial distribution. A binomial distribution with parameters n and p is the dis-
crete probability distribution of the number of successes in a sequence of n independent
experiments, each one asking a yes–no question, and each one with its own Boolean-
valued outcome: success (with probability p) or failure (with probability q = 1 − p).

P [X = x] =

(
n

x

)
px(1− p)n−x
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• Beta distribution. The beta distribution (see Figure 2.9) is a family of continuous
probability distributions defined on the interval [0, 1] parameterized by two positive
shape parameters, denoted by α and β, that appear as exponents of the random variable
and control the shape of the distribution.

Figure 2.9: Beta distribution for different values of α and β

• Beta-binomial distribution. The beta-binomial distribution is the binomial distribu-
tion in which the probability of success at each of n trials is not fixed but randomly
drawn from a beta distribution.

P [X = x] =

(
n

x

)
B(k + α, n− x+ β)

B(α, β)

RADMeth uses a beta-binomial regression model [10], a form of regression based on a
beta-binomial distribution, to perform its high-precision DM analysis in WGBS experiments.
This regression model is adequate for this task, since for each CpG site of a single sample the
binomial distribution is a method that provides high-precision results.

This regression model is fitted separetaly for every CpG site. In fact, to determine if a
site is differentially methylated with respect to the test factor (for example, ”case” could be
the test factor when computing the experiment defined in the design matrix from Figure 2.7),
RADMeth fits two regression models: the full model and the reduced model without the test
factor. The significance of DM is determined by comparing the full and the reduced models
using the log-likelihood ratio test.

In Figure 2.10 a pseudocode to illustrate this computation phase is shown. The tool reads
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each row from the input proportion table to the appropriate structure (Line 3). It calculates
the coverage and methylation levels for all samples with and without the test factor (Lines
6-12). Then it checks if the CpG site has either low coverage or the same methylation levels
through all samples with or without the test factor (Lines 13-16). If the CpG site passes the
checks, RADMeth fits full and reduced regressions and analyse results to obtain the p-value
(Lines 17-21). Finally, the results of that CpG site are written to the output file (Line 22). More
information about this method can be found in [7].
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1 test_factor← GetTestFactor();
2 foreach CpG site cpg_site in the proportion_table do
3 full_regresion← WriteData(cpg_site);
4 coverage_factor← 0, coverage_rest← 0;
5 methylation_level_factor← 0, methylation_level_rest← 0;

/* Agregate coverage and methylation levels for
samples with and without the test factor */

6 foreach Sample s in the design_matrix do
7 if s has the test factor then
8 coverage_factor += full_regression[s].coverage;
9 methylation_level_factor += full_regression[s].methylation_level;

10 else
11 coverage_rest += full_regression[s].coverage;
12 methylation_level_rest += full_regression[s].methylation_level;

/* Calculate the p-value */
13 if zero coverage over all case or control samples then
14 p_value← -1;
15 else if methylation level is identical in all samples then
16 p_value← -1;
17 else
18 Fit(full_regression);
19 reduced_regression← CopyWithoutTestFactor(full_regression,

test_factor);
20 Fit(reduced_regression);
21 p_value← LoglikratioTest(reduced_regression, full_regression);
22 WriteToOutputFile(cpg_site, p_value, coverage_factor, coverage_rest,

methylation_level_factor, methylation_level_rest);

Figure 2.10: RADMeth’s computation phase pseudocode

2.3 Other methods

In the WGBS field there is not a set of clear good practices or a de-facto standard defined.
This is the reason why there exist several alternatives to perform its analyses and each of
them obtains a different quality of results. Next, some of the most popular approaches for
DM analysis are listed, discussing advantages and disadvantages among them.
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2.3.1 Fisher’s Exact Test and Hidden Markov Models

One of the most straightforward and commonly used methods for comparing epigenomes
of a pair of samples is the Fisher’s Exact Test [11, 12, 13, 14]. Although it is valid for all sample
sizes, in practice it is employed when sample sizes are small. There are also DM detection
algorithms based on Hidden Markov models (HMM), and even one tool using a HMM-based
method for DM detection is included in the MethPipe pipeline [15, 16]. Existing methods
based on Fisher’s Exact Test and HMMs are appropriate for comparing a pair of samples at
a time, however, they lack the ability to account for variability of methylation levels among
replicates.

2.3.2 Algorithms based on smoothing

Another variety of DM detection algorithms are based on smoothing. These methods op-
erate under the assumption that methylation levels vary smoothly along the genome. They
use local smoothing to estimate the true methylation level of each site in each sample. Some
example implementations of this variety of algorithms are:

• BSmooth. BSmooth methylation analysis pipeline [17] is designed to compute DMRs
between two groups of samples. After smoothing, this tool performs a statistical test,
similar to the t-test, to find DM sites which form DMRs.

• BiSeq. BiSeq [18] is a package that provides useful classes and functions to handle
and analyze targeted bisulfite sequencing data such as reduced-representation bisulfite
sequencing data. In particular, it implements an algorithm to detect DMRs. The package
takes already aligned bisulfite sequence data from one ormultiple samples. The package
is implemented in R, and is open source. Unlike BSmooth, it provides a smoothing-
based method that can be used for experiments that go beyond comparing two groups
of samples, but it requires a set of candidate regions that may exhibit DM.

Because smoothing-based methods perform smoothing on each sample individually, care
must be taken when dealing with regions where methylation levels are difficult or impossible
to estimate.

2.3.3 Algorithms based on beta-binomial distributions

A few DM-detection methods are based on the beta-binomial distribution, which is a nat-
ural choice for describing methylation levels of an individual site across replicates as it can
account for both sampling and epigenetic variability. Based on this idea we can see:

• DSS package. This tool [19] implements a method that constructs a genome-wide prior
distribution for the beta-binomial dispersion parameter and then uses it to estimate
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the distribution of methylation levels in each group of replicates. The differentially
methylated sites are determined by testing the means of these distributions for equality.

• MOABS algorithm. This algorithm [20] constructs a genome-wide distribution of
methylation levels and then uses it to estimate the distribution of methylation levels
at individual sites. The significance of DM is subsequently determined by an estimate
of the methylation difference between the two groups of replicate samples.

The precision of these methods for a given site depends on how closely the distribu-
tion of site’s methylation levels is across replicates or the dispersion parameter resembles
the genome-wide prior.

2.3.4 Algorithms based on regression

Another category of DM detection algorithms are based on regression. Some example im-
plementations are shown next.

• BiSeq. This tool mentioned earlier performs a beta regression after smoothing and so
it also fits into this category.

• limma. This package [21] provides data analysis, linear models and differential expres-
sion for microarray data and was recently also applied to test CpG sites for DM. The
package is implemented in R, and is open source. It provides a method based on linear
regression to perform the differential analysis.

• COHCAP. The tool [22] provides a pipeline to analyze single-nucleotide resolution
methylation data. It provides DM for CpG sites, DM for CpG islands, and integration
with gene expression data. It is implemented as both a R package and a standalone
Java/Perl program pointing to the R script. The pipeline is open source.

• methylKit. This tool [23] is a R package for DNAmethylation analysis and annotation
from high-throughput bisulfite sequencing. Methylation calling can be performed di-
rectly from Bismark aligned BAM files. The package is implemented in R, and is open
source. It provides a method based on logistic regression to perform the differential
analysis, which assumes that the number of reads indicating methylation follows a bi-
nomial distribution across replicates.

• Stats. It is a package [24] that implements different regression methods and allows us
to perform differential analysis over our datasets. It is implemented in R and brings,
among others, three regression-based methods to analyse our data. The models used
for the analysis are, negative binomial regression, poisson regression and poisson re-
gression with dispersion parameter.
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2.3.5 Parallel algorithms

Even though we have seen that there exist several methods to perform DM analysis and
that most of them have a high computational cost, only RADMeth offers a parallel approach
to be executed on a HPC cluster consisting of splitting the proportion table into smaller ta-
bles to be processed separately, and subsequently combining the results. However, this is a
naive approach that does not take into account several problems, such as unbalances in the
workload. This adds extra importance to this bachelor’s thesis, since reducing the execution
time is a big concern when dealing with DM analysis.

2.3.6 Conclusions

Two main conclusions can be extracted from this overview of the state of the art:

1. The existing methods for detecting DM lack either the ability to analyzeWGBS datasets
in complex experimental designs or the ability to account for variation across biological
replicates. Methods based on beta-binomial regression can overcome these limitations.

2. Execution times of this methods are high, however no appropriate parallel tool for HPC
enviroments exists. By developing one, this bachelor’s thesis represents an advance in
the field of bioinformatics.
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Chapter 3

Design and Implementation

This chapter gives a detailed overview of the process followed to obtain the final version
of ParRADMeth, explaining the target architecture, the program structure and the pro-

gramming techniques used to improve the performance. The code is stored on a GitHub
repository 1, and since one of the main goals of the project is to make it available for the
scientific community, this work will be released soon. Two versions will be released, a pure
MPI version and a hybrid version using both MPI and OpenMP.

3.1 Target architecture

Programs that have a high computational complexity or work with large volumes of data
are not made for being executed on personal computers, but on cluster systems composed
of several nodes. The target architecture of this bachelor’s thesis is a distributed memory
system with several nodes interconnected through a network, each of them with a memory
module and several cores (see Figure 3.1). Parallel computing on this type of systems usually
follow the Single Program Multiple Data (SPMD) model, meaning that the workload is divided
into different tasks that are split up among multiple processors and run simultaneously with
different inputs, so that all nodes and cores cooperate in order to obtain results faster. Compu-
tational performance on a cluster depends on several factors such as the number of nodes, the
number of cores, the number of cores per node, the network features or the memory transfer
rates.

Let’s see how systems with these characteristics can be used, getting a little deeper into
the architecture. First of all, a node is a unit that can be seen as a computer, that is, it is
composed of main memory, processing cores, storage and input/output system. Different
nodes form the first level to distribute the workload: each node can execute different tasks of
the main program.

1 https://github.com/afdezfraga/ParRADMeth
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Interconnection network

Core Core

Core Core

Memory

Core Core

Core Core

Memory

Core Core

Core Core

Memory

..............

Node Node Node

Figure 3.1: Abstraction of a distributed memory system with several cores and one memory
module per node

Since each node has its own memory address space, shared data must be send through the
network among nodes, that is why this sort of systems are traditionally programmed with the
message passing technique. This parallelism level is called explicit, as it is the programmer
the one who must specify which data is stored in each memory and when messages are sent
between one node and another.

On a lower level there is implicit parallelism, witch appears inside each node. This hap-
pens because each node has several processing cores, allowing to share out the tasks among
them and to access the node’s shared memory. Unlike explicit parallelism, implicit parallelism
does not need message passing for communication among tasks, nevertheless some auxiliar
mechanisms may be needed to avoid conflicts on shared memory accesses. This level of par-
allelism is generally easier for the programmer, since there is no need to worry about process
communication.

A system with this architecture usually has nodes with hardware accelerators, that is, el-
ements to reach a higher performance on some task that the one that can be reached using a
general purpuse CPU. One example are Graphics Processing Units (GPUs). These accelerators
can be used as processing units, however this project does not focus on this sort of compo-
nents, but on applying both explicit and implicit parallelism to make use of all the CPUs of a
cluster.
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3.1.1 MPI

Message Passing Interface (MPI) is the de facto standard for programming parallel distributed-
memory systems and it is, probably, the most widely used programming framework in the
HPC community. It follows the SPMD paradigm, i.e., it splits the workload into different tasks
that are executed on multiple processors. The MPI specification allows to work with multiple
processing elements coordinated through message passing.

A parallel MPI program consists of several processes, each one with associated local
memory, that can communicate through the interconnection network by using send and re-
ceive routines. The cost of these communications relies on hardware characteristics, espe-
cially the interconnection network ones. The MPI standard includes point-to-point message-
passing communications, collective communications, group and communicator concepts, pro-
cess topologies, environmental management, process creation and management of one-sided
communications, extended collective operations, external interfaces, I/O, some miscellaneous
topics and a profiling interface. All of them are defined for C and Fortran languages. Cur-
rently, there are several widely used free implementation such as OpenMPI2 or MPICH3. Ad-
ditionally, most vendors of HPC hardware offer an MPI implementation optimized for their
hardware. The most important MPI routines used in this bachelor’s thesis are:

• MPI_Init, MPI_Finalize and MPI_Abort. The first functions mark the beginning
and the end of the parallel program, respectively. Their role is to create and delete,
respectively, all the structures needed by the MPI program to be able to send messages
among all processes. As for MPI_Abort, it allows a forced ending of all MPI processes
being called just by one of them.

• MPI_Comm_rank and MPI_Comm_size. They are usually called together and they
allow to know actual process identifier and total number of processes on a given pro-
gram.

• MPI_Send and MPI_Recv. Despite the fact that these two functions are not directly
used in the development of the project, they establish the base of MPI communications,
since they allow the most basic communication between two processes. Their use is
shown in Figure 3.2. They are used together, so that a process sending the message
uses MPI_Send and a process receiving it uses MPI_Recv. Both of them are blocking,
which means that a process execution stops until the transfer ends. For non-blocking
communications there are alternatives such as MPI_Isend and MPI_Irecv.

2 https://www.open-mpi.org/
3 https://www.mpich.org/
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PA PB
MPI_Send MPI_Recv

Figure 3.2: Simple communication with Send and Recv

• MPI_Allgather. Up to now only point to point communications have been discussed.
Nevertheless,MPI_Allgather is not a point to point communication but a collective op-
eration. Collective operations do not involve only two processes, but a group of them.
They are internally implemented to obtain better performance than a simple implemen-
tation by means ofMPI_Send andMPI_Recv. We will explain howMPI_Allgather works
on the basis of its basic version MPI_Gather. This function takes elements from many
processes and gathers them to one single root process. The elements are ordered by
the rank of the process from which they were received. In Figure 3.3 this behaviour is
shown. MPI_Allgather does the same, but this function gathers all the elements to all
the processes, instead of only to one root process, as it is shown in Figure 3.4.

P0 P1 PN

P0

...........

...

Figure 3.3: Collective communication with Gather
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P0 P1 PN

P0 P1 PN

...........

...........

... ... ...

Figure 3.4: Collective communication with AllGather

In addition to these listed routines, several MPI functions related to I/O were also used.
MPI-IO [25] is a convenient interface for enabling true parallel I/O on systems that support
it, providing mechanisms for performing synchronization, syntax for data movement and
means for defining non-contiguous data layout in a file [26]. MPI-IO interface has become
the standard mechanism for file I/O within HPC applications. Without MPI-IO two common
alternatives to parallel I/O are left.

1. Main process accesses a file and it is in charge of performing all the I/O and gather-
ing/scattering data from/to other processes.

2. Each process opens a separate file and performs I/O to it independently.

These alternatives, even though are simple to code, respectively present poor scalability
and challenges with file management. One of the best advantages of MPI-IO over UNIX I/O is
that the former has the ability to specify non contiguous accesses in a file and related memory
buffers, which is a common need in parallel applications. Next, some MPI-IO functions used
during the work are listed:

• MPI_File_open and MPI_File_close. These functions are collective operations that
allow to open and close a file, respectively, to be accessed in parallel by several pro-
cesses.

• MPI_File_get_size. This function is a data access operation that returns the size in
bytes of the file.

• MPI_File_read_at_all. This operation is a collective function that allows processes to
read in parallel from a file using an explicit offset that can be different for each one.
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• MPI_File_write_at_all. This operation is a collective function that allows processes
to write in parallel to a file using an explicit offset that can be different for each process.

3.1.2 OpenMP

OpenMP4 is one of the most used approaches for parallel programming on shared memory
systems for C, C++ or Fortran applications. The OpenMP specification defines a collection of
compiler directives, library routines and environment variables that implement multithread-
ing with the fork-join model. A main thread runs the sequential parts of the program, while
additional threads are forked to execute parallel tasks. Threads communicate and synchronize
by using the shared memory.

The main advantages of OpenMP are its portability and ease of use. Currently there are
compilers for practically all architectures and its use usually involves less changes in the struc-
ture of the code than the use of other low-level shared-memory libraries as POSIX threads.

Even though a pureMPI program can take advantage of all the cluster’s hardware by using
one process per core, using a hybrid approach with processes that create OpenMP threads for
the parallelization inside each node has several benefits:

1. Threads are lighter than processes, so creating and destroying them is usually faster.
Also context switching among threads of the same process is less expensive.

2. Memory overload reduction, since threads can access the same shared memory struc-
tures, while MPI processes need a copy of the structures for each process.

3. Posibility of execution in Simultaneous MultiThreading (SMT)mode. SMT is a technique
for improving the overall efficiency of superscalar CPUs with hardware multithreading.
It is based on the simulation of two logical threads on a single CPU core, in order to
merge one thread instructions with the other ones, taking advantage of CPU cycles
that would be free in other way. Two concurrent threads per CPU core are common,
but some processors support up to eight concurrent threads per core. This technique is
better known as Hypertheading.

Next, the most relevant directives used during this bachelor’s thesis are listed:

• pragma omp parallel. This directive spawns a team of OpenMP threads that execute
the code region as it can be seen in Figure 3.5.

• pragma omp parallel for. This directive is actually a shortcut of other two directives,
pragma omp parallel, that has been explained before and pragma omp for. This second

4 https://www.openmp.org/
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main()
{

SomeInitialCode();
#pragma omp

parallel
{

BlockOfCode();
}
SomeFinalCode();

}

T0

Parallel {

T0 T1 TN......

}

T0

SomeInitialCode()

SomeFinalCode()

BlockOfCode()

OMP_NUM_THREADS

Figure 3.5: OpenMP ”parallel” directive example

directive, when called over a for loop inside a block taggedwith the pragma omp parallel

directive, divides loop iterations among spawned threads executing the code block. This
directive can be used as shown in Figure 3.6.

main()
{

SomeInitialCode();
#pragma omp

parallel for
for (int i = 0; i

< 12; ++i)
{

BlockOfCode(i);
}
SomeFinalCode();

}

T0

Parallel for{

}

T0

SomeInitialCode()

SomeFinalCode()

BlockOfCode(i)

OMP_NUM_THREADS

Implicit barrier

T0
--------------

-------
i = 0
i = 1
i = 2
i = 3

T1
--------------

-------
i = 4
i = 5
i = 6
i = 7

T2
--------------

-------
i = 8
i = 9
i = 10
i = 11

Figure 3.6: OpenMP ”parallel for” directive example
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These directives can have some clauses to specify some general or data-sharing attributes.
The most important attributes in the case of the developed parallel tool are:

• shared, private and firstprivate. These three clauses specify data-sharing attributes
and receive as parameter a comma-separated list of variables. The first two clauses
specify that variables should be shared among all threads or that each thread should
have its own instance of a variable, respectively. The firstprivate clause, specifies that
each thread should have its own instance of a variable, but it also specifies that the
variable should be initialized with the value assigned to the variable prior to the parallel
construct.

• schedule. This clause applies to the for directive and specifies how iterations are dis-
tributes among threads. The following schedule options are available:

– static. Batches of iterations are distributed statically (distribution is done before
entering the loop) in a round-robin fashion.

– dynamic. Batches of iterations are distributed with a first-come-first-served pol-
icy until no batch remains.

– guided. The same as dynamic, but with batches whose sizes get smaller and
smaller, down to 1.

– auto. Let the compiler and/or runtime library decide what is best suited.

– runtime. Deffer the decision at run time by mean of the OMP_SCHEDULE envi-
ronment variable.

3.2 Data and workload distribution

3.2.1 Domain decomposition

In parallel computing the initial problems must be decomposed into partial tasks that will
be assigned to different processing elements (processes or threads). Some techniques are
focused on making each processing element work with the data it gets from the previous
element and, after performing its task, send it to the next one. This strategy is known as
pipelining. Nevertheless, RADMeth does not have different processing stages, but the same
one applies to different data (CpG sites). In this case the best approach is known as domain

decomposition.
Domain decomposition is based on two principals. First, each processing element will

perform the same sort of calculation and, second, each processing element will work on dif-
ferent data. The advantage it provides with respect to sequential execution is that input data
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is distributed among the different elements so the workload is also distributed. In particular,
the chosen technique for this program is domain decomposition by blocks applied to MPI
processes and dynamic distribution of data among the threads.

Regarding domain decomposition by blocks, given a number n of elements to distribute,
and a number p of processes, blocks size can be calculated as:

1. m = ⌈np ⌉. If n mod p = 0 elements are equally distributed and all processes work
with blocks of m elements. This is the optimal case, however it depends on input data
and system features, so we cannot rely on it to be reproduced on different systems for
different datasets.

2. m = ⌊np ⌋ and r = n mod p. This means that now we are using a block size of m and r

elements are left over. This r elements are distributed adding one extra element to the
first r processes. The difference among processes is reduced to only one element, in a
way that data is better balanced among them.

3.2.2 Adjustment of domain decomposition to the identification of differ-
entially methylated regions

As seen in Section 2.2.4, RADMeth must perform the same operations over the different
CpG sites (each one on a different line in the input file). ParRADMeth distributes those CpG
sites among the different processing elements and, consequently, the workload is also dis-
tributed. In Figure 3.7 the pseudocode of ParRADMeth is shown. The parallel pseudocode
is very similar to the sequential pseudocode shown in Figure 2.10, but with some variations
related to input and output data to introduce domain decomposition. Concretely, now the
proportion table is split into blocks, so each process only computes its corresponding part
(Line 2). Also, after doing the required computations for a certain CpG site, the results are
not written to the output file, but to an intermediate buffer (Line 23), since some extra syn-
chronization among processes will be needed to write in parallel to the output file. As each
process has all the information it needs for the computation phase in its own proportion table
block, no need of extra communication is required in this phase, staying the same as it was
in the sequential tool (Lines 3-22).

This domain decomposition is implemented in ParRADMeth with two levels of paral-
lelism:

• Explicit parallelism. This level uses processes, coordinated by means of message
passing. As explained before, at this point each process works over a different block of
data, which is kept in memory. The idea behind this level is:
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1. For each row of the proportion table, the process creates a full regression structure
where it stores coverage andmethylation values for each factor. It also creates one
reduced regression with the same values as the one seen before, but only for the
ones from samples that have the test factor.

2. Then the process checks some extreme cases where we know for sure that the test
will not succeed. If any of these cases is detected, then a p-value of -1 will be the
result, indicating that the test was not performed.

3. If tests were passed, the process fits the full and reduced regressions.

4. Finally, it checks whether the fitting algorithm succeeds, performs the test to get
the p-value and stores the result in a buffer.

• Implicit parallelism. At this level, processing elements are threads. A process has
initially only one main thread, but it can create more to distribute the workload. In this
case, threads are used to distribute the calculation of p-values for different CpG sites of
the proportion table assigned to its process. The reason behind this redistribution of the
workload is that there is a huge variation among the workload associated to different
CpG sites. Because of this variation, a dynamic distribution would be very interesting
to balance the workload. However, a dynamic distribution at process level requires
many synchronizations and messages that reduce the performance, that is why this is
done at thread level only. The main thread also creates a shared structure where the
results of all threads can be stored.

3.3 Optimization techniques

ParRADMeth was implemented having in mind the goal of obtaining the best possible per-
formance in terms of execution time while keeping the same accurate biological results as the
sequential tool it is based on. This section explains some techniques that were included in the
code of the parallel tool in order to improve the performance of the basic hybrid MPI/OpenMP
approach explained in Section 3.2.

3.3.1 AllInOneGo File Procesing

The original program works with rows one by one: i.e. it reads one row, it does the com-
putations related to the row, it write the results to the output file, and it goes to the next line.
This means that only one row is kept in memory at a time. Although this is the best option
in terms of memory requirements, it may not be the best option in terms of execution time,
in particular for parallel computing, since it will force the tool to be continuously accessing
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1 test_factor← GetTestFactor();
2 proportion_table_block← ReadPropTableBlock(proportion_table);
3 #pragma omp parallel for
4 foreach CpG site cpg_site in the proportion_table_block do
5 full_regresion← WriteData(cpg_site);
6 coverage_factor← 0, coverage_rest← 0;
7 methylation_level_factor← 0, methylation_level_rest← 0;

/* Agregate coverage and methylation levels for
samples with and without the test factor */

8 foreach Sample s in the design_matrix do
9 if s has the test factor then
10 coverage_factor += full_regression[s].coverage;
11 methylation_level_factor += full_regression[s].methylation_level;
12 else
13 coverage_rest += full_regression[s].coverage;
14 methylation_level_rest += full_regression[s].methylation_level;

/* Calculate the p-value */
15 if zero coverage over all case or control samples then
16 p_value← 0;
17 else if methylation level is identical in all samples then
18 p_value← 0;
19 else
20 Fit(full_regression);
21 reduced_regression← CopyWithoutTestFactor(full_regression,

test_factor);
22 Fit(reduced_regression);
23 p_value← LoglikratioTest(reduced_regression, full_regression);
24 WriteToOutputBuffer(cpg_site, p_value, coverage_factor, coverage_rest,

methylation_level_factor, methylation_level_rest);

Figure 3.7: ParRADMeth’s computation phase pseudocode

the file. That is why ParRADMeth comes with this AllInOneGo File Processing technique
to process the input proportion table.

This technique consists in reading thewhole file at once and keeping thewhole proportion
table in memory before starting with the computations in order to reduce cache misses. As it
will be explained in Section 3.3.2, in a preliminary version of ParRADMeth the main process
was in charge of applying this technique and then distributing the data among processes.
However, this approach was not the most appropriate, and some optimizations that improve
the performance of the technique are shown in the following section.

In addition, the values of the rows of the proportion table were stored as size_t in the
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sequential version of the program, which seems unnecessarily large because the range of val-
ues is limited and small, so they can be represented with just 16 bits. In order to alleviate the
memory requirements of the AllInOneGo File Processing, the data type was changed to un-

signed int. This data type, that usually needs 16 bits, is enough to represent the information of
the proportion table. Theferore, although this technique increases the memory requirements
compared to the original RADMeth, all datasets used in the experimental evaluation of Chap-
ter 4 fitted perfectly in the memory available in one node of the cluster used for evaluation
(64 GB).

3.3.2 Parallel Input/Output

In a preliminary version of ParRADMeth there was a main process that was in charge of
reading the input proportion table and distributing the data (blocks of rows) among the other
processes, as well as gathering other processes results and writing them to the output file.
It means that the phases to read the input and write the output were sequential. After a
preliminary benchmarking of this version, I realized that these phases were a bottleneck and
significantly degraded the performance of the program. Therefore, these I/O phases were
modified in order to include parallel computing on them:

• Parallel input. Functions from MPI-IO were used in order to parallelize this input
phase, allowing each process to read from a certain offset. The input proportion table
has a 2D matrix format where each CpG site is a row and each sample is a column.
Each position in the matrix has a pair of coverage and methylation values, as we have
seen in Section 2.2.2 . This format is very convenient for parallel processing, since we
are interested in having a block of consecutive input rows in each process and that is
the way they are physically stored in the file. Therefore, the version of ParRADMeth
with parallel input reading makes that each process only reads the block of rows that it
will process instead of the whole file. However, this approach is not so straigthforward
as not all rows have the same length and the number of rows in a file is not known in
advance. Nevertheless, as the size of the file is indeed easy to know with the function
MPI_File_get_size, this information can be used to distribute bytes among processes in
order to create a fair distribution of rows. To avoid one line to be split between two
processes, making none of them able to compute it right, an overlapping technique
was also implemented: if there is a number p of processes, process n ∈ [0, p-1] reads
extra bytes to ensure that it will be able to correctly process the row that it may share
with process n+1. As was remarked in Section 3.1.1, MPI-IO theoretically obtains better
performance that Unix I/O and it has been experimentally checked that this is fulfilled
for our specific case. Figure 3.8 shows the pseudocode of this parallel input reading.
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Input: A string, path_to_input_file, containing the output block of the process
Output: A string, input_block_string, containing the input lines for the process

1 input_file← MPI_File_open(path_to_input_file);
/* Figure out who reads what */

2 filesize← MPI_File_get_size(input_file);
3 start_offset← CalculateStartOffset(filesize);
4 end_offset← CalculateEndOffset(filesize);
5 end_offset += overlap;
6 input_block← MPI_File_read_at_all(input_file, start_offset,

end_offset);
/* Avoid half lines at the start and at the end and

ensure no two process keep the same line in their
buffers */

7 true_start← 0;
8 while input_block[true_start] is not a newline character do true_start++;
9 true_start++;

10 true_end← end_offset - start_offset - overlap;
11 while input_block[true_end] is not a newline character do true_end++;
12 input_block[true_end+ 1]← ’\0’;
13 input_block_string = string(input_block[true_start]);

Figure 3.8: ParRADMeth’s parallel input phase pseudocode

• Concurrent input. Even though with the parallel input reading all processes can read
from this at the same time, most of the time spent in the input phase is not consumed
there, but on string processing to ensure that the input file is a valid one and to parse
its contents into the suitable structures. In the pure MPI version of the parallel tool this
is easy to do, since data is already fairly distributed. However, in the hybrid version
the input bytes are redistributed among threads so they can concurrently process the
input string. This redistribution among threads was performed eactly as in the case of
processes, i.e., also applying the overlapping technique so there are no split lines left
unprocessed between one thread end and the next thread beginning. The parallel and
concurrent algorithm for input reading was finally implemented as shown in Figure 3.9.

• Parallel output. As was previously discussed in Section 2.2.3, each row in the input
proportion table produces a row in the output file, so after a certain process computes
all consecutive rows on its input block, it will have a output block of also consecutive
rows. This means that the process that gets input block #0 will have to write its output
block at the beginning of the output file, and process that gets input block #1 will have
to write its output block right after output block #0. Keeping this in mind, the algorithm
was implemented as shown in Figure 3.10 to allow processes to write their output in
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Input: A string, input_block_string, containing the input lines for the process
Output: A buffer, validated_lines, containing an array of preprocessed lines
/* Figure out who reads what */

1 block_size← input_block_string.length();
2 start_offset← CalculateStartOffset(block_size);
3 end_offset← CalculateEndOffset(block_size);
4 end_offset += overlap;
5 thread_block← CopySubstring(input_block_string, start_offset,

end_offset);
/* Avoid half lines at the start and at the end and

ensure no two threads keep the same line in their
buffers */

6 true_start← 0;
7 while thread_block[true_start] is not a newline character do true_start++;
8 true_start++;
9 true_end← end_offset - start_offset - overlap;

10 while thread_block[true_end] is not a newline character do true_end++;
11 thread_block[true_end+ 1]← ’\0’;
12 thread_block_string = string(thread_block[true_start]);

/* At this point every thread knows where to start
processing lines and where to end */

/* Every thread validates that its lines fits the
format and stores them on some array separately */

13 foreach line l in the thread_block_string do
14 ValidateLineFormat(l);
15 thread_lines.append(l);

/* Each thread places its array of lines in some
shared buffer so main thread knows where to access
them all */

16 threads_shared_buffer[thread_number]← thread_lines;
/* After an implicit barrier, main thread joins the

arrays so lines stay in the same order */
17 foreach array a in the threads_shared_buffer do
18 validated_lines.appendArrayOfLines(a);

Figure 3.9: ParRADMeth’s concurrent input phase pseudocode

parallel:

1. Each process stores its output block in a string buffer.

2. Processes share the length of their output buffers using theMPI functionMPI_allgather

3. Each process computes the output file offset in which it needs to start writing its
output block.
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4. Processes open the output file using MPI_File_open, write its output block at the
same time usingMPI_File_write_at_all and finally close the file usingMPI_File_close.

Input: A string, my_output_block, containing the output block of the process
Output: The output file with every output block correctly written

1 my_output_length←my_output_block.length();
/* Gather all output blocks lengths in every process */

2 output_blocks_lengths← MPI_allgather(my_output_length);
3 my_write_offset← CalculateOffset(output_blocks_lengths);
/* Write in parallel to the output file */

4 output_file← MPI_File_open(path_to_output_file);
5 MPI_File_write_at_all(output_file, my_output_block,

my_write_offset);
6 MPI_File_close(output_file);

Figure 3.10: ParRADMeth’s parallel output phase pseudocode
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Chapter 4

Experimental evaluation

This chapter starts describing the system and the datasets used for scalability tests, as well
as the procedure for choosing the best configuration for the final measures. Once the method-
ology to measure performance is known, it presents the results of the overall evaluation of
ParRADMeth, as well as some insights into the performance improvement achieved by each
one of the optimization techniques.

4.1 Test environment

4.1.1 System

ParRADMeth’s performance was tested on a cluster called Pluton1 and installed at CITIC2.
This multicore cluster is an heterogeneous system made of nodes connected by a high perfor-
mance interconnection network (InfiniBand FDR). Figure 4.1 shows cluster’s structure. Plu-
ton has one only entry point from the outside: its frontend node. From this node code can
be compiled or modified, and jobs can be sent to the workload manager, or queueing system,
which is in the charge of executing them on compute nodes. The frontend node also works
as a NAS server (Network Attached Storage) where user files are stored. Compute nodes can
access these data remotely through local network.

1 http://pluton.dec.udc.es/
2 https://www.citic-research.org/
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Plutón

LAN Compute
nodes

Frontend  Node
pluton.dec.udc.es

Internet

Figure 4.1: Pluton cluster general structure

Furthermore, compute nodes provide computing resources: CPUs, memory and accelera-
tors (GPUs). They follow a logical organization by booths where nodes have similar resources.
Currently, there are three booths, with the following distribution:

• compute-0: 17 compute nodes (compute-0-0 to compute-0-16), making a total of 272
cores, 1088 GB of memory (64 GB per node) and 20 accelerators.

• compute-1: 2 compute nodes (compute-1-0 and compute-1-1), making a total of 48
cores, 256 GB of memory (128 GB per node) and without accelerators.

• compute-2: 6 compute nodes (compute-2-0 to compute-2-5), making a total of 192
cores, 1536 GB of memory (256 GB per node) and 2 accelerators.

During this bachelor’s thesis ParRADMeth’s performance was tested on compute booth
#0, since it is the one with the highest number of nodes, allowing to test the scalability of the
tool. Hardware specifications for compute booth #0 nodes is shown in Table 4.1, highlighting
that nodes from this booth have all two octa-core Intel Xeon E5-2660 CPUs, so we can use up
to 16 cores per node (up to 32 logical threads taking advantage of Hyperthreading).
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compute-0-{0-17}

CPU (model)
2 × Intel Xeon E5-2660 Sandy Bridge-EP (0-0-16)
2 × Intel Xeon E5-2650v2 Ivy Bridge-EP (0-17)

CPU (speed/turbo)
2.20GHz / 3.0GHz (0-0-16)
2.60GHz / 3.4GHz (0-17)

Cores per CPU 8
Threads per core 2

Cores/Threads per node 16 / 32
Cache L1/L2/L3 32KB / 256KB / 20MB
Memoria RAM 64GB DDR3 1600Mhz

Discos 1 × HDD 1 TB SATA3 7.2K rpm
Redes InfiniBand FDR and Gigabit Ethernet

Table 4.1: compute-0 nodes specification

Paying attention to Table 4.1 it can be seen that nodes are interconnected by a LAN net-
work. This is a GigabitEthernet network, with a maximum throughput of 1 Gbps. In addition,
every node has an InfiniBand FDR network interface. InfiniBand is a high performance in-
terconnection network, that is, a very high throughput and a very low latency network, with
many specifications. The one being used in this cluster is the FDR specification, allowing to
reach a throughput of 56 Gbps and latencies of 1-2 µs.

As it was previously mentioned, we can not access Pluton’s compute nodes directly, but
through a workload manager, also known as a job scheduler. This software is in charge of
assigning cluster’s resources to users according to their needs. Users send their jobs to the
workload manager from the frontend node indicating the required resources. Then, the job
scheduler executes the jobs when it considers it appropriate, always trying to satisfy the
requirements of the highest possible amount of users. Pluton’s job scheduler is the Slurm
Workload Manager3, in version 19.05.2.

Jobs are the Slurm’s execution unit, and they can be either batch jobs (executed in back-
ground) or interactive jobs. When sending a job to the workload manager, Slurm uses pa-
rameters to know the required resources. Next, the most relevant ones during testing are
shown:

• Memory. It indicates the memory required for the job. It can be indicated in total or
by core. It is important to keep in mind that this amount is limited by the physical RAM
memory.

• Number of nodes. It indicates the number of nodes that must be used.
3 https://slurm.schedmd.com/
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• Number of cores. It indicates the number of cores that are required by the job for
executions with implicit parallelism. It can be indicated in total or by process.

• Exclusive access. This option prevents Slurm to execute jobs from other users on
nodes where our jobs are being executed. It means that all cores and memory are as-
signed to our job. It is very useful for performance tests, since it prevents other jobs to
interfere with ours, which may lead to inaccurate results.

• Execution time. It is compulsory to indicate the estimated execution time for the
work. It is important to try to make a good estimation, since this way we contribute
to a more efficient functioning of the task scheduler. On the other hand, to guarantee
the quality of the service and a good distribution of the hardware among all the users
of the cluster, there is a maximum limit of 72h for every job.

Syntax is not specified since it can be found checking Slurm documentation4.
Another main task of the frontend node, as we previously mentioned, is program compi-

lation. Pluton has the Lmod5 tool installed to administrate most of the software with the idea
of supporting different versions of the same package. In particular, the following packages
were used during this bachelor’s thesis.

• CC. This module brings a C/C++ compiler, besides some standard libraries, so it is
needed for both compilation and execution of the tool. In particular, during this bach-
elor’s thesis the GNU implementation (gcc)6 was used in version 8.3.0.

• MPI. This library, described in Section 3.1.1, specifies the syntax of routine for message
passing, and it is also needed for both compilation and execution. In particular, we used
OpenMPI7 implementation, version 3.1.4.

• GSL8. It is a numerical library for C and C++ programmers that provides a wide range of
mathematical routines. It is a dependency from the original sequential tool. Specifically,
we used version 2.6.

In addition to those packages, since RADMeth is at the moment part of the MethPipe
pipeline, some of their components are RADMeth’s dependencies, in particular, common and
smithlab_cpp submodules. Since they are not standard libraries, it is not usual that they are
instaled on clusters, so it was part of my work to install those submodules on the cluster. The

4 https://slurm.schedmd.com/documentation.html
5 https://lmod.readthedocs.io/
6 https://gcc.gnu.org/
7 https://www.open-mpi.org/
8 https://www.gnu.org/software/gsl/
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full pipeline is available in GitHub, in SmithLab’s public repository9. In particular we used
version 4.1.1.

4.1.2 Datasets

Performance tests measure the improvements that parallel techniques and proposed opti-
mizations bring to the tool. Datasets with real biological data and different characteristics
have been used in order to check the performance of ParRADMeth in different scenarios. It
should be noted that RADMeth is part of a pipeline and the files it needs as input are the out-
put of the previous stage of the pipeline. That said, input datasets are not directly available,
but several ”.meth” files that have to go through the pipeline to become proper input files for
the tool can be found. Next a description of every dataset employed during this bachelor’s
thesis will be given . In addition, Table 4.2 shows for each dataset the number of CpG sites,
the number of samples and the size of the input proportion table given to the tool.

Dataset CpG sites Samples Size
Test Dataset 2.802.194 6 130 MB
Akalin 2012 28.670.426 2 823 MB
Heyns 2012 28.299.639 2 869 MB
Berman 2012 28.149.963 2 880 MB
Hansen 2014 28.217.449 6 1,4 GB

Table 4.2: Datasets specification

• Test Dataset. Small dataset that comes with the tool for testing purposes. It has been
used to validate the parallel tool, that is, it gets the same biological results as the original
sequential tool. This dataset is composed by six ”.meth” files, each one with size of
88.5 MB, that become a proportion table with size 130 MB. The sequential tool needs
8 seconds for the input phase, 3075 seconds for the computation phase and 12 seconds
for the output phase (0,64% I/O).

• Akalin 2012 [27]. This dataset is used to compare methylomas of HCT116 cells with
those of cells cloned without DNMT1 and DNMT3b. Two compressed ”.meth” files,
each one with a size of 700MB, contain the information needed for the experiment.
Once joined, they become a proportion table with size 823 MB. RADMeth needs 180
seconds in the input and output phases and 10523 seconds in the computation phase
(1,68% I/O).

• Heyns 2012 [28]. Heyns dataset compares WGBS between centenarians and new-
borns. It is composed by two ”.meth” files, one representing a centenarian and another

9 https://github.com/smithlabcode/methpipe
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one representing a newborn. Both become a proportion table with size 869 MB. The
sequential tool takes 175 seconds in the input and output phases, representing a 0,93%
of the runtime of the tool, and 18665 seconds in the computation phase.

• Berman 2012 [29]. Dataset composed by two compressed ”.meth” files used to compare
individuals with colorectal cancer to healthy individuals. After decompression they
form a 880 MB proportion table. RADMeth takes 61 seconds in the input phase, 42359
seconds in the computation phase and 117 seconds in the output phase (0,42% I/O).

• Hansen 2014 [30]. This dataset is used to compare cells immortalized with EBV virus
with others activated with CD40. It is the largest dataset, composed by six compressed
”.meth” files each with a size of 750 to 850 MB after decompression that form a propor-
tion table with size 1,4 GB. The sequential tool takes a 0,42% of its runtime in input and
output phases, 78 seconds in the input phase and 116 seconds in the output phase. It
also takes 45703 seconds in the computation phase.

4.2 Previous scalability concepts

Before starting with the tests, some basic concepts will be explained to understand the
performance metrics that will be shown:

• Processing element. A processing element is the minimum unit of computation. It
should be pointed out that we refer to physical units and not to logical ones, since,
even if the second ones allow us to take advantage of the first ones, the physical units
are those that provide the computing power. For example, we can execute two threads
on a single core, but it will not provide the double computing power since they share
the same physical resource. Said that, we refer as processing elements to the cores
employed during program execution.

• Speedup. It is the metric that measures the improvement in execution of the parallel
tool in relation with the sequential one. It can be calculated for np processing elements
with the following formula:

speedup(np) =
Tsequential

Tparallel(np)

where Tsequencial is the execution time of the sequential tool and Tparallel is the execu-
tion time of the parallel one when using np processing elements. Ideally speedup takes
values between 0 and np, but three cases can happen:
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– speedup(np) ∈ (0,1]: Parallel execution does not improve execution time. If both
times are the same the value of the speedup is equal to one.

– speedup(np) ∈ (1,np]: Parallel execution improves execution time. Ideal paral-
lelization will give a speedup value of np, that is, sequential execution workload
is perfectly balanced among processing elements.

– speedup(np) > np: Parallel execution exceeds the maximum theorical improve-
ment. This scenario is known as superlineal speedup and can be achieved because
of different factors, as it can be a better memory management, reducing cache
misses.

• Efficiency. This metric gives an idea of the behavior of the parallel tool, independently
of the number of processing elements that are being used on execution. It takes val-
ues between 0 and 1 (perfect parallelism), even though it can take higher values when
speedup is superlinear. It is usually shown in percentage by multiplying its value by a
hundred. It can be calculated, for np elements, with the following formula:

efficiency(np) =
speedup(np)

np
=

Tsequential

np ∗ Tparallel(np)

• Scalability. On an ideal case efficiencywill keep constant independently of the number
of processing elements, but this does not usually happen on real scenarios. Scalability is
defined as the capacity of keeping efficiency when the number of processing elements
increases.

4.3 One node test

ThehybridMPI/OpenMP implementation included in ParRADMeth allows the user to choose
among different configurations of number of processes and threads in order to obtain the best
performance in different architectures. Before starting testing the scalability of the tool it is
necessary to select the configuration that gives the best performance in one single Pluton’s
node and this configuration will be assumed as the best when increasing the amount of nodes.
As it has been seen so far, the parameters that can be modified are threads to process ratio,
use of Hyperthreading and schedule policy in the main for loop (both, Hyperthreading and
schedule policy were described in Section 3.1.2).

Talking about threads to process ratio, it is important to remember that nodes that are used
for experimental evaluation have two CPUs with eight cores each. That is, in total in one node
there are 16 cores. As the goal is to take advantage of system features to the maximum, the
highest number of processing elements available will be used. Consequently, for one node the
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equation nProcesses * Threads_by_Process = 16 must be true. Moreover, Hyperthreding can be
used, allowing the use of two threads on each core, so for one node using Hyperthreding the
equation nProcesses * Threads_by_Process = 32 must be true. In spite of that, these are logical
threads, so the number of processing elements keeps being 16.

Each row of the input file takes a different time to be processed. On the one hand, some
rows are on those extreme cases that do not need to execute the fitting phase (see Figure 3.7,
lines 14-17). On the other hand, the fitting algorithm does not take the same time to execute
over different data. This leads to situations where even if the number of lines in the input
dataset is fairly distributed workload is not. Since threads of the same process can all access
every row and there is no need to physically redistribute rows to make each thread work with
more or less of them, the higher the threads-by-process ratio, the better the workload balance.

4.3.1 Selection of the best schedule

This workload balance concept is important when thinking about the impact a schedule has
on the performance of the tool. Concretely, choosing the proper scheduling scheme is key in
order to get the best possible balance in terms of compute time among the threads on the same
node. So the better the schedule policy adapts to differences in rows compute time, the better
the performance it will deliver and also the more consistency in giving good performances
among different datasets.

During these tests, every available dataset was used, as memory is not a concern and
they will give a good vision of how consistent a schedule policy performance is.The three
schedules were tested (static, dynamic and guided) with one process and 1, 2, 4, 8 and 16
threads without Hyperhreading and 32 threads with Hyperhreading. In Table 4.3 execution
times are shown in different cores (C), with and without the use of Hyperthreading (Ht). It
can be seen that dynamic schedule gets the best performance for almost every experiment.
The only exception are executions with only one core (without parallel computation) and for
the test dataset, which is too small to raise any conclusion. However, in almost every dataset,
specially in the largest ones, it is closely followed by guided schedule. In Akalin dataset tests,
where workload balance is critical, dynamic schedule obtained much better results than both
guided and static schedules. This happens because this dataset has an isolated block of very
high computational demanding rows, and when using guided or static schedules this whole
block is assigned to the same thread.

Figures 4.2, 4.3, 4.4 show speedups for static, dynamic and guided schedules, respectively,
for every number of cores tested. As was previously discussed, on Akalin dataset dynamic

schedule gets a much better performance than the other two schedules, meaning that on
critical situations dynamic schedule is the only one able to improve the performance by using
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Dataset Schedule 1C 2C 4C 8C 16C 16C
(Ht)

Test Dataset
Static 2429,87 1222,98 646,802 346,816 177,645 134,669

Dynamic 2452,65 1241,6 645,295 345,663 178,65 134,634
Guided 3092,73 1548,49 800,794 416,765 218,926 162,896

Akalin 2012
Static 10779,5 5471,83 3226,06 2320,45 1709,09 1740,41

Dynamic 8498,7 4268,41 2267,63 1210,38 635,544 498,651
Guided 8482,31 4315,81 2870,94 1962,43 1552,37 1355,65

Heyns 2012
Static 20853,4 9576,94 4982,45 2580,24 1420,36 1068,81

Dynamic 18702,1 9403,89 4751,03 2465,8 1343,91 1016,51
Guided 18855,7 9666,95 5029,72 2564,63 1441,23 1123,16

Berman 2012
Static 42185,8 21573,8 11503 5878,87 3364,37 2536,54

Dynamic 42412,6 16697 8771,63 4682,22 2408,69 1829,07
Guided 42603,1 16991,4 9249,38 4868,46 2553,51 1967,5

Hansen 2014
Static 45686,80 23143 12213 6419,48 3610,04 2753,90

Dynamic 46156,80 23069,10 11703,30 6037,69 3226,99 2424,93
Guided 45927,60 23298,90 12280,40 6606,22 3538,72 2734

Table 4.3: Execution time from the hybrid tool in one node using different schedules (in sec-
onds)

32 threads. So, in the following tests the hybrid version of the tool will always use dynamic

schedule.
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Figure 4.2: Static schedule’s speedups. Processing elements (cores) vs. speedup over RAD-
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Figure 4.3: Dynamic schedule’s speedups. Processing elements (cores) vs. speedup over RAD-
Meth
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Figure 4.4: Guided schedule’s speedups. Processing elements (cores) vs. speedup over RAD-
Meth
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4.4 Scalability tests

This section will show the results obtained during performance tests using several Pluton’s
nodes. In every test execution time was calculated for RADMeth, which will be the basis
for the calculation of speedups, and for ParRADMeth using 1, 2, 4, 8 and 16 nodes, with the
configuration that was explained in the previous section when measuring the performance of
the hybrid tool. In particular, the configuration used was: one process for each node, 16 cores
for each process (16 threads without Hyperthreading, 32 logical threads when using it) and
dynamic schedule. As shown before, the largest dataset has a size of 1,4 GB, so all of them fit
in memory in every experiment.

Execution times measured during these tests are included as tables and bar charts are also
included to show speedups. It should be noted that bar charts follow a logarithmic scale base
two on the vertical axis.

4.4.1 Input/Output tests

First of all, it is important to mention that during this bachelor’s thesis two different ap-
proaches to deal with the Input/Output bottleneck were considered. RADMeth performs I/O
operations by means of streams, so the first considered approach was to extend this function-
ality to be able to use streams to read and write to files in parallel among different processes.
After some research routines available in the MPI-IO library were considered as a new ap-
proach. MPI-IO seems to be a more natural option to implement parallel I/O in ParRADMeth,
since it is specifically designed for HPC. In addition, some studies show that MPI-IO provides
better performance [25, 26].

With both approaches in mind, it was important to measure their performance and scal-
ability to decide which one fits better into ParRADMeth. Since there is no difference among
datasets that concerns the scalability of any approach in I/O phases and for some datasets the
time spent during these phases was very small (16 seconds of sequential execution) only the
largest dataset, Hansen 2014, was used to compare both methods. Table 4.4 shows the exe-
cution times of the I/O phases using the two approaches. Both of them significantly reduced
execution times, to less than five seconds in both cases, but MPI-IO was proved to reach lower
execution times that the Streams I/O approach.

Approach 1C 16C 32C 64C 128C 256C
MPI-IO 99,0562 9,24324 7,4917 3,77 3,45 2,75053

Streams I/O 158,328 13,8453 8,7971 6,72007 4,6716 3,52449

Table 4.4: Execution times in the I/O phases for Hansen dataset

Figure 4.5 shows speedup values for both methods. We can see that both approaches are
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able to scale, but MPI-IO consistently reach higher speedup values. These conclusions apply
to both the pure MPI and the hybrid MPI/OpenMP versions, so all the results shown in the
following sections were taken with the tool using the MPI-IO approach.
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Figure 4.5: Speedups in the I/O phases for the Hansen dataset. Processing elements (cores)
vs. speedup over RADMeth

4.4.2 ParRADMeth, pure MPI version

In Table 4.5 execution times of ParRADMeth for different number of cores (C) using only
MPI processes are shown. It can be seen that the pure MPI version of the tool manages to
significantly reduce the execution time of the algorithm for some datasets. However, the
runtime for Akalin dataset stays almost unchanged from 16 processes forwards, even though
it is reduced compared with the one from sequential execution. This version does not use
threads, just processes, so in each test it will use one process per processing element available.

Dataset 16C 32C 64C 128C 256C
Test Dataset 218,117 109,643 59,4741 29,8572 16,8326
Akalin 2012 1806,011 1713,63 1676,670 1521,06 1420,55
Heyns 2012 1357,88 700,674 427,978 259,292 178,848
Berman 2012 3312,92 1778,87 1036,47 668,184 492,275
Hansen 2014 3571,35 1978,08 1202,22 823,506 639,506

Table 4.5: Execution time for the pure MPI version (in seconds)
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In general terms (forgetting the Akalin dataset), we observe that the pureMPI tool reduces
its runtime when incrementing the number of processes. However, this reduction is less
significant for the largest datasets. Figure 4.6 shows how the tool scales for the different
datasets. Two main conclusions can be extracted from these results. On the one hand, the
static workload distribution makes this version of the tool unable to scale well when facing
critical scenarios such as Akalin dataset, where workload is by default completely unbalanced.
On the other hand, even for non-critical scenarios the static workload distribution makes the
tool unable to scale as well as it should.
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Figure 4.6: Speedups for the pure MPI version. Processing elements (cores) vs. speedup over
RADMeth

4.4.3 ParRADMeth, hybrid version without Hyperthreading

In Table 4.6 execution times in different number of cores (C) are shown. The hybrid version
of the tool highly reduces the execution time of the algorithm for every dataset when increas-
ing the number of processing elements, including Akalin dataset, which, as it was previously
explained, supposes the worst case scenario in terms of workload balance. This version uses
threads, not only processes, with the configuration that already discussed in Section 4.3, so
in each test it uses one process and 16 threads per node.

Figure 4.7 shows how the tool scales for the different datasets. Differently to the pure MPI
implementation, this version of the tool is able to scale well in every scenario, and it reaches
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Dataset 16C 32C 64C 128C 256C
Test Dataset 178,65 111,30 55,9983 28,6928 14,997
Akalin 2012 635,544 399,291 378,904 251,844 147,719
Heyns 2012 1343,91 690,48 528,959 298,195 150,909
Berman 2012 2408,69 1525,18 974,335 524,031 273,247
Hansen 2014 3226,99 1631,63 1013,7 557,177 297,574

Table 4.6: Execution time from the hybrid version without using Hyperthreading (in seconds)

the highest speedups for the largest datasets. Moreover, it avoids the problem of workload
imbalance in the Akalin dataset, and the speedup continuously incresases up to 16 nodes (256
processing elements).
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Figure 4.7: Speedups of the hybrid version without using Hyperthreading. Processing ele-
ments (cores) vs. speedup over RADMeth

4.4.4 ParRADMeth, hybrid version with Hyperthreading

As explained in Section 3.1.2, Hyperthreading is a technique that allows to execute several
threads simultaneously on the CPU. ParRADMeth was tested on Intel Xeon E5-2660 CPUs,
that allows the execution of two simultaneous threads at a time. This means that using the
same physical processing elements, we can have twice logical threads processing the data.
The runtime for all the datasets is significantly reduced compared to the execution without
Hyperthreading, getting times of less than five minutes in all of them, as it is shown in Table
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4.7, where execution times for different number of cores (C) are shown. An exceptional case
can be seen for test_dataset using the 16 nodes, where increasing the number of nodes worsen
tool’s performance, but it just happened because execution times were tiny.

Dataset 16C 32C 64C 128C 256C
Test Dataset 134,634 82,1206 42,0951 21,2393 41,1531
Akalin 2012 498,651 304,764 326,554 215,101 121,354
Heyns 2012 1016,51 514,386 440,915 253,301 136,471
Berman 2012 1829,07 1133,31 780,041 421,23 219,022
Hansen 2014 2424,93 1228 803,705 444,672 242,977

Table 4.7: Execution time from the hybrid version when using Hyperthreading (in seconds)

Figure 4.8 shows the speedups for the hybrid version of the tool are shown with Hyper-

threading. Except for the case of the extremely small testing dataset, this version of the tool
proved to have a great scalability in all scenarios. Speedups of up to 195 are reached, and
the larger the dataset, the higher the speedup achieved, proving that the tool scales better for
bigger datasets.
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Figure 4.8: Speedups for the hybrid version when using Hyperthreading. Processing elements
(cores) vs. speedup over RADMeth
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4.5 General conclusions

Thanks to this experimental evaluation very powerful conclusions can be extracted from
the behaviour of every version of ParRADMeth. Also, because of the use of very different
datasets we can get a wide coverage of these behaviours. For instance, the Akalin dataset
allows ParRADMeth to be tested in a critical scenario, where getting a good workload balance
is extremely difficult. The main idea extracted from this test was that the factor that will
determine the scalability and the performance of the tool is how good a version of the tool
manages to balance the workload

The first conclusion obtained is that the dynamic schedule is the best performer for the
hybrid tool, no matter the size of the dataset or the well pre-distributed it is. This proved the
importance of allowing ParRADMeth to distribute the workload dynamically, in contrast with
the pure MPI tool or the hybrid tool using the static schedule, which were never able to reach
a speedup value of more than eight for the Akalin dataset, even using up to 256 processing
elements. This happens because threads are our main mechanism lo balance the workload
during execution time. Even though the guided schedule also distributes the workload dy-
namically it was probed to do this task worse than the dynamic one.

Thanks to this workload balance advantage, the hybrid version of the tool proved to reach
lower execution times than the pure MPI one, and to scale better in all situations, specially
in critical ones, even without using Hyperthreading. The hybrid tool also allows us to use
Hyperthreading, which is able to obtain execution times even ten times lower than the ones
we get from the pure MPI approach. Table 4.8 provides a summary of these results for the
different versions of the tool.

Dataset RADMeth hybrid ParRADMeth
1 core 1 core 256 cores 256 cores (Ht)

Test Dataset 3097,32 2335,78 14,997 41,1531
Akalin 2012 10886,90 8186,47 147,719 121,354
Heyns 2012 18736,50 13968,50 150,909 136,471
Berman 2012 42800,80 31629,60 273,247 219,022
Hansen 2014 45931,20 34224,90 297,574 242,977

Table 4.8: Summary of execution times for different versions of the tool (in seconds)

So, from a general point of view, pretty satisfying results were obtained, especially due to
two reasons:

• On the one hand, interesting upgrades were included in the tool, so that it consistently
reached superlinear speedups with the hybrid tool in one node, even without using
Hyperthreading.
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• On the other hand, dynamic workload balance was included in the parallel tool, so it
is able to scale even in the worst case scenarios. This allows ParRADMeth to reduce
execution times to less than fiveminutes even for datasets that needmore than 12 hours
to execute with the sequential program. In addition, the parallel tool also gets a better
scalability when the larger the dataset is.
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Chapter 5

Planning and organization

This chapter gives a detailed overview of the organization of the project. First, the different
phases implemented in the project are presented, and afterwards, time and cost of each

step are specified.

5.1 Project planning

The project follows an incremental development model, starting with a basic parallel imple-
mentation with the whole functionality and then including different optimization techniques
in subsequent development steps. Therefore, each of these steps alternate performance eval-
uation to detect the bottlenecks and the development of optimization techniques that can
minimize their impact.

5.1.1 Phase 1: Analysis of the state of the art and understanding of the orig-
inal tool

First, a general background analysis of the subject was completed. On the one hand, I
started reading the original work paper and analyzing the original code of RADMeth [7], as
well as the way to execute it. On the other hand, I searched and studied other methods for the
identification of differentially methylated regions in genomic analyses. Concretely, I could get
a better understanding of the field and the different methods. Finally, I made the decision that
the parallel algorithms would be implemented using MPI and OpenMP.

5.1.2 Phase 2: Design and implementation of a basic parallel tool with the
whole functionality

Once the code of the original tool was understood, the next step was to design and im-
plement a basic parallel algorithm, only by using MPI. Even though the execution times did
not show the desired performance it allowed to start investigating and testing these issues.
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After analysing the results of these tests, several bottlenecks were identified and so, different
strategies were designed to reduce its impact of even eliminate them.

5.1.3 Phase 3: Addition of optimization techniques

After analysing potential bottlenecks identified during previous tests the following opti-
mization techniques were added :

1. AllInOneGo File Processing, since the whole input file fits in memory and it improves
the performance of the tool (see Section 3.3.1).

2. Change of the datatype of the buffers from size_t to unsigned_int to reduce memory
consumption.

3. Design and implementation of a parallel mechanism for input reading (see Section
3.3.2).

4. Design and implementation of a parallel mechanism for output writing (see Section
3.3.2).

5. Design and implementation of a hybrid version of the computational phase usingOpenMP.

6. Design and implementation of a concurrent mechanism for input reading (see Section
3.3.2).

5.1.4 Phase 4: Performance evaluation

Once the final pureMPI and hybrid versionswere implemented, the next stepwas to test the
tool’s performance and scalability. As shown in Chapter 4, these tests consisted of two parts.
On the one hand, it was necessary to find the best combination of MPI processes, OpenMP
threads and OpenMP schedule policy for one node. On the other hand, it was necessary to
measure execution times using that configuration on more nodes.

5.1.5 Phase 5: Documentation and report writing

During all the life-cycle of the project all the steps taken have been documented. During
the early stages, brief annotations were made to document objectives, advances, and issues
detected. For some particular ideas, such as parallel and concurrent reading phase, more
detailed documentation was written. The last step was to collect up all the documentation
and performance results into this report.
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5.2 Project metrics

In addition to the organization of the project, we have also taken into account the time and
resources spent as well as their theoretical costs.

5.2.1 Time

The project duration was nine months, from September 2020 to May 2021. Nevertheless,
we must take into account that in some periods the project was suspended due to lack of time
because of the regular studies.

Table 5.1 shows a breakdown of the different phases of the project into smaller tasks and
its estimated duration. These tasks are then arranged in a Gantt diagram as seen in Figure 5.1.

The most relevant dependencies among tasks are the following, grouped by type:

• Finish-to-Start dependencies (FS). Dependencies indicating that the predecessor task
must finish before the successor can start. This is the most common type of dependency
in project management and the real world. Dependencies of this type are:

– Tasks a, b, c and d→ Task e. Researching about the original tool and the state of
the art sets the beginning of the project, that is why, until I understand properly
the state of the art and the way RADMeth works, starting the parallel implemen-
tation makes no sense.

– Tasks e→ Task f. Bottleneck analysis can not start until the basic implementa-
tion is completely implemented.

– Tasks g, h, i and j→ Task k and l. Task g, h and i represent the implementation
of the different optimization techniques and Task j represent the start of the ex-
perimentation phase by developing the scripts to execute test in Pluton. We can
not start testing until the final versions of the tool are completely implemented
and the tests scripts are not developed.

– Tasks m and n→ Task o. In this report documentation about code implemen-
tation (Task m) and experimental results (Task n) is gathered, so the report will
not be started until all previous documentation is finished.

• Start-to-Start dependencies (SS). Dependencies indicating that a task cannot start before
the predecessor task starts. This dependency does not indicate that both tasks have to
start at the same time. Dependencies of this type are:

– Tasks e→ Task m. Task m creates a document about how the code was imple-
mented, so it can not start before the code implementation itself (Task e) starts.
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– Tasks l→ Task n. Following the same pattern as before, Task n creates a docu-
ment about the results gathered during tool’s experiments, and those results are
generated and gathered during Task n.

Finally, its important to highlight that Tasks h and i were not planned on the beginning
and they appeared as result of the bottleneck analysis (Task f). That is the reason why no
relation is created to model when they should start. However, it we knew in advance that this
optimization techniques were going to be implemented a Finish-to-Start dependency from
the task where both of them are detected would be a the suitable way to represent it.

Phase Task Duration (h)

1

a. Review original article 6
b. Analysis of the original code 14

c. Compiler installation and execution of the original code 10
d. Information research 15

2 e. Basic parallelization with the whole functionality 60

3

f. Bottlenecks analysis 15
g. Addition of OpenMP 20

h. Development of AllInOneGo File Processing technique 5
i. Development of Parallel Input/Output 60

4
j. Script development to use during performance tests 5

k. One node configuration research 15
l. Performance tests and result gathering 40

5
m. Code implementation documentation 10

n. Analysis results documentation 15
o. Report elaboration 80

Total 370

Table 5.1: Total hours inverted in the project detailed by task

5.2.2 Budget

Three people were involved in the development of the project: the student and two tutors.
The student was responsible for the software development and result gathering, while the
tutors were responsible for the choice of the topic and the supervision of the project. The
result analysis was done by all of them.

Table 5.2 shows an approximation of the amount of hours invested in the project by each
of the resources. The hours assigned to the tutors are based on the amount of meetings, mail
conversations, problem troubleshooting and document reviews.

Finally, Table 5.3 shows estimated cost per hour of each resource, and the total cost of the
project.
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Resource Hours
Student 370
Tutor 1 35
Tutor 2 25

Table 5.2: Total hours invested in the project by each resource

Resource Cost per hour (€/h) Hours Cost(€)
Student 40 370 14.800
Tutors 60 60 3.600

Total 18.400

Table 5.3: Total costs of the project detailed by resource
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Figure 5.1: Gantt chart showing the arrangement of the different phases of the project
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Chapter 6

Conclusions

This chapter brings the conclusions of the project, its relation with the bachelor degree
and the main future work lines that can be followed after the thesis.

6.1 Conclusions

The main goal of this bachelor’s thesis was the development of a parallel tool for the iden-
tification of differentially methylated regions in genomic analyses, allowing us to release an
open source product that scientific community can take advantage of and dig more deeply
into the fields of bioinformatics and parallel programming.

By looking at the experimental results presented in Chapter 4, we can conclude that this
goal has been accomplished, since ParRADMeth brings good results in terms of runtime,
speedup and scalability. In fact, for every dataset the tool was able to reduce its execution
time to less than five minutes, being up to 195 times faster than the execution of the original
tool. Another remarkable fact is that, even for a sequential execution of the parallel tool, the
optimization techniques make our tool faster than the original one. That is, not only our tool
adapts the algorithm to HPC systems in an efficient and scalable way, but it also gets lower
execution times when using the same resources as the original tool. Moreover, ParRADMeth
is able to reach superlinear speedups even in worst cases scenarios for executions with up to
16 processing elements, and its performance was better the larger the dataset was.

During this project, I was able to learn many interesting topics from fields like bioin-
formatics and HPC, where initially my knowledge was low. Therefore, it was necessary to
invest some time in the study of these topics. This bachelor’s thesis also improved my tech-
nical skills in different technologies that I already knew, such as C++ or MPI and introduced
me into some new ones, such as OpenMP. In general terms, I consider that this project made
me grow as a professional and improved my soft and technical skills, as well as it introduced
me into the research field.
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6.2 Relation to the bachelor’s title

The development of this project allowed me to use some of the knowledge obtained during
the degree. First of all, I must mention the programming knowledge learned from ”Program-
ming I and II” that was improved through the rest of the courses. In addition, when using
MPI andmultithread technologies some concepts explained on ”Concurrency and Parallelism”
were applied, as well as some advanced MPI topics learned from ”Computer Architecture”.
Also some concepts about clusters, which are the target architectures of the developed tool,
were learned from ”Administration of Infrastructures and Information Systems”. Finally, the
project was planned trying to follow a classic development cycle, learned from ”Project Man-
agement”, even though, since it is a research project, tasks dedication can not be estimated
very precisely.

6.3 Future work

On the one hand, one possible future work line could be focusing on the MethPipe pipeline
and continue implementing parallel algorithms for other different computational demanding
tools that it is composed of, by means of MPI and OpenMP.

On the other hand, another future work line could be focusing on RADMeth and trying
to expand its execution to different system architectures. Some examples could be a ver-
sion for its execution in GPUs or a version for Big Data clusters using MapReduce parallel
programming model.

Finally, by releasing the tool as open source, we let other developers contribute with any
other improvement or modification result of specific requirements that were not in mind
during its design.
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Appendix A

User Guide

The aim of this guide is to help final users of the application with the installation, configu-
ration and execution of ParRADMeth.

A.1 Prerequisites

The project uses some libraries and programs for compilation, configuration and execution.
Before starting the installation, please confirm that the following software is available in your
system. Particular versions used during development are shown.

• GCC v8.3.0

• GSL v2.6

• make v3.82

• MPI compiler with suppoort for OpenMP:

– OpenMPI v3.1.4

• Git (Optional)

Different versions of the software may work but they have not been tested.

A.2 Compilation

The project was designed so a system level installation is not needed, but user level com-
pilation and execution can be done. Compilation of the tool for your system architecture can
be done by following these steps:

1. Download. First, obtain project files by cloning this git repository.
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2. Compilation. In this step go to the root folder of the project and use make.

3. Installation. In this steps, still on the root folder, use make install. This will
place the executable on the bin/ folder.

4. Cleaning (Optional). Optionally, still on the root folder of the proyect, use make
clean to delete files generated during tool’s compilation. Only unnecessary files are
deleted, so executable files generated still work.

A.3 Execution

ParRADMeth must be executed with MPI execution commands (mpiexec or mpirun).
Therefore, the tool can be executed using the following command from the root folder of the
project:

mpiexec -n <numProcs> ./bin/ParRADMeth regression <options>

<design_matrix> <proportion_table>

(A.1)

being numProcs the number of MPI processes to execute, design_matrix the path to
the file containing the design matrix, proportion_table the path to the file containing the
proportion table and options a list of the following arguments:

• -factor <f> (Compulsory). The factor to test.

• -o <output_file> (Optional). Output option.

• -h (Optional). Print usage and exit.

• -v (Optional). Verbose, print more run information.
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List of Acronyms

DM Differential Methylation. 1, 5, 10, 12–15

DMRs Differentially Methylated Regions. 3, 13

DNA Deoxyribonucleic Acid. 3

HMM Hidden Markov models. 13

HPC High Performance Computing. 1, 2, 19, 21, 43

MPI Message Passing Interface. 2, 17, 19, 21

SMT Simultaneous MultiThreading. 22

SPMD Single Program Multiple Data. 17, 19

WGBS Whole-Genome Bisulfite Sequencing. 1, 5, 6, 10, 12, 37

WGS Whole Genome Sequencing. 4
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