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Abstract
Currently, optical coherence tomography is one of the most used medical imaging modalities, offering cross-sectional 
representations of the studied tissues. This image modality is specially relevant for the analysis of the retina, since it is the 
internal part of the human body that allows an almost direct examination without invasive techniques. One of the most rep-
resentative cases of use of this medical imaging modality is for the identification and characterization of intraretinal fluid 
accumulations, critical for the diagnosis of one of the main causes of blindness in developed countries: the Diabetic Macular 
Edema. The study of these fluid accumulations is particularly interesting, both from the point of view of pattern recognition 
and from the different branches of health sciences. As these fluid accumulations are intermingled with retinal tissues, they 
present numerous variants according to their severity, and change their appearance depending on the configuration of the 
device; they are a perfect subject for an in-depth research, as they are considered to be a problem without a strict solution. 
In this work, we propose a comprehensive and detailed analysis of the patterns that characterize them. We employed a pool 
of 11 different texture and intensity feature families (giving a total of 510 markers) which we have analyzed using three 
different feature selection strategies and seven complementary classification algorithms. By doing so, we have been able to 
narrow down and explain the factors affecting this kind of accumulations and tissue lesions by means of machine learning 
techniques with a pipeline specially designed for this purpose.

Keywords  Optical coherence tomography · Texture analysis · Feature selection · Computer-aided diagnosis · 
Classification · Feature analysis

1  Introduction

Currently, the study of the retina represents one of the main 
approaches to the non-invasive study of the human body. 
The study of the optic disc [32], arterio-venous structures 
[30] or alterations in the histological composition of the ret-
ina [2] are capable of providing useful information not only 
for diseases affecting the ocular system, but also for patholo-
gies of general impact. At present, of the medical imaging 
modalities available that focus on the analysis of these struc-
tures, we can highlight optical coherence tomography (OCT) 
[19]. This modality is able to generate, usually by means of 
interferometry combined with coherent light beams [35], 
a cross-sectional representation of the main retinal tissues. 
The relevance of the study of these structures is such that it 
is possible to obtain information about cardiovascular [20, 
45], neurological [12] or even metabolic pathologies; like 
the nowadays prominent diabetes [44].
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Thus, the study presented in this paper addresses the 
analysis of retinal structures affected by pathological fluid 
accumulations. Nowadays, pathologies such as age-related 
macular degeneration (AMD) [21] or diabetic macular 
edema (DME) [22, 40] represent one of the main causes 
of blindness in developed countries, both as a consequence 
of consumer habits and the aging of the human population. 
These pathologies trigger a degeneration of the delicate reti-
nal tissues that causes the progressive appearance (either by 
leakage from the damaged arterio-venous structures or by 
degradation of the natural filtering mechanisms of the retinal 
tissues) of intraretinal fluid accumulations. These accumula-
tions gradually harm the delicate and complex histological 
organization of the retina, causing progressive vision loss in 
the patient. In Fig. 1, we show a representative example of 
a image where different types of fluid accumulations have 
completely deformed the retinal architecture. As we can see, 
the patterns present in a healthy retina and one affected by 
the aforementioned leakages are completely different. We 
can even differentiate three types of accumulations in this 
image. The upper one, with cystic bodies; the intermediate 
one, with fluid intermixed with retinal tissues with a spongi-
form texture; and the lower one, a detachment of the lower 
retinal layers near the central point of vision (the fovea).

In some cases, these fluid accumulations are very difficult 
to identify due to the presence of diffuse regions. Moreo-
ver, for a correct diagnosis, experts analyze hundreds of 
images that comprise a complete OCT scan. The number of 
samples required for analysis, together with the misshapen 
forms they present (often mistaken for healthy tissues or 
other pathological bodies) often results in a stronger impact 
of the subjectivity of the clinical expert. This, consequently, 
severely hampers clinical follow-up or even early detection: 
both critical for the correct improvement of the patient and 
to prevent irreversible damage [3].

It is precisely because of these two factors (the clinical 
relevance of the fluid patterns as a biomarker for numerous 
critical pathologies and the level of influence of the subjec-
tivity in the matter) that different automatic methodologies 
for their analysis have been proposed. These usually follow 
a basic scheme: first, they remove any unwanted patterns 
(usually related to noise or artifacts product of the capturing 
device); second, an initial candidate generation strategy that 
obtains a set of representative examples (these range from 
a simple thresholding to even most modern deep learning-
based strategies); finally, they perform a false-positive (FP) 
pruning, optimizing the rough detections into the proper 
final representation of the fluid accumulations.

To exemplify these cases, we can refer ourselves to two 
of the first works in the domain, by Wilkings et al. [43] 
and Roychowdhyry et al. [37]. In these works, they detect 
cystoid fluid accumulations with a thresholding strategy 
and posterior filtering of FPs based on a set of rules/basic 
intensity features. The initial artifact removal is based on the 
reduction of the region of interest to the particular retinal 
region, completely ignoring the patterns in the choroidal and 
vitreous humor regions (both the outermost and innermost 
regions of the human eye: the internal fluid of the eye and 
the main vascular layer that feeds the retina). Wieclawek 
[42] and González et al. [16] improved these middle steps 
by using more advanced initial candidate generation strate-
gies, like using clustering techniques such as the watershed 
transform to obtain an initial set of candidates.

Regarding noise, an example can be seen in Dehnavi et al. 
[11], where an initial K-SVD dictionary learning in the Cur-
velet transform is used to reduce speckle noise. This way, 
a methodology like the proposed by Wilkings et al. [43] 
based on empirical thresholdings is more viable, as the ini-
tial candidate generation is less prone to FPs (albeit they also 
preserve the posterior FP filtering step). This strategy was 

Fig. 1   Macular OCT images. a OCT without the presence of cystoid regions. b OCT with the presence of cystoid regions
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also improved by Wang et al. [41] with fuzzy level sets. The 
initial candidate selection is obtained from a fuzzy domain 
to, then, optimized to a precise contour segmentation with 
level sets. Finally, other works took a more clinically cen-
tered approach, focusing on medical knowledge to obtain 
the candidate selection. For example, Xu et al. [46] used 
the information of the retinal layers to obtain a defined set 
of candidates based on a voxel classification, or Lang et al. 
[26] and Swingle et al. [39], that limited their work to a par-
ticular subset of fluid accumulations with their own medical 
consequences: micro-cystic fluid leakages.

On the one hand, Fig. 2 shows a set of examples with 
different fluid accumulation patterns. Some of then, like the 
ones in the first row, present almost clear limits, with high 
contrast and defined cellular barriers. On the other hand, 
patterns like the fluid accumulations present in the second 
row of that same figure are severely intermixed with normal 
retinal tissues, suffering from contrast issues product of the 
capturing strategy or their cellular barrier has been broken/
still has not been formed, making increasingly difficult the 
task of diagnosing/correctly segmenting the fluid accumula-
tions (as there may not even be a defined limit to detect). Its 
in these situations where works of the state of the art, either 
based on classical learning algorithms or modern deep learn-
ing strategies, tend to fail to obtain consistent results with 
different images (even when belonging to the same patient). 
In this work, we try to establish a proper baseline for future 
works regarding what biomarkers and features present in 
the OCT images are key to the issue at hand. By doing so, 

we hope that future pattern recognition strategies can take 
advantage of our findings to develop more robust computer-
aided diagnosis methodologies with less computational 
resources. Additionally, our findings could be extrapolated to 
the medical domain, where the patterns found to be relevant 
for this pathology can be used to better assess and diagnose 
it as well as others of similar nature. In summary, the main 
contributions of our work are as follows:

•	 Methodology to determine the main patterns and com-
ponents that characterize a pathology in OCT images.

•	 Analysis methodology easily transferable to other medi-
cal imaging modalities and pathologies.

•	 Implementation of our proposal in the detection of 
intraretinal fluid, a complex unresolved domain where 
an early detection is critical.

•	 Generation of robust and explainable results, thanks to 
the analysis of a fine-grained and heterogeneous library 
of 510 feature markers.

This paper is organized in the following sections: Sect. 2, 
“Methodology,” presents the steps followed to perform the 
proposed analysis. Section 3, “Resources and configura-
tions,” presents a compendium of all the resources used 
for the proposed analysis: dataset, classifiers, selectors and 
feature library (as well as the particular configuration used 
in each case). Section 4, “Results,” exposes the metrics 
obtained as a result of following the proposed methodology. 
These results are further discussed in Sect. 5, “Discussion.” 

Fig. 2   Examples of cystoid regions with different levels of complexity. 1st row, cystoid regions with clear limits. 2nd row, fluid accumulations 
mixed with normal retinal tissues
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Finally, Sect. 6, “Conclusions,” presents a brief final notes 
on the presented study.

2 � Methodology

In this section, we will proceed to illustrate each of the steps 
followed to conduct the analysis proposed in this work. 
These steps are illustrated in Fig. 3. As can be seen in this 
figure, our analysis is divided into four main stages. The first 
one consists of a specific sampling to create the dataset to be 
analyzed. Subsequently, from these samples, we will extract 
a series of features that will define under different points 
of view relevant characteristics of the extracted samples. 

Once we have collected the features, we will use different 
feature selection strategies to determine the most relevant 
ones. Finally, by using different families of classifiers, we 
will evaluate the contribution of these subgroups of features 
to the studied problem.

2.1 � Dataset creation

First, we will create the dataset. For this, we will need to 
extract representative samples of the cases to be studied. 
In this case, the different forms in which the fluid accu-
mulations may appear as well as the different patterns of 
other tissues present in the retina. Before extracting these 

Fig. 3   Main stages of the proposed methodology
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samples, we will first remove the non-retinal region to 
reduce the analysis space.

2.1.1 � Retinal region of interest extraction

In this case, this target region of interest is limited by the 
Inner Limiting Membrane (ILM) and the Retinal Pigment 
Epithelium (RPE). These retinal layers border the vitreous 
humor and the choroidal layer, respectively. Eliminating 
these two regions (the vitreous humor and the choroid) 
from the analysis is particularly interesting, since the vit-
reous humor presents fluid patterns similar to those of the 
studied subject (having similar density) and the choroid 
presents oval patterns similar to cystic-like patterns also 
contained within the scope of the study. Thus, by eliminat-
ing them, we were able to obtain more significant results 
in the posterior analysis. These layers have been extracted 
thanks to the methodology proposed in the work of Chiu 
et al. [7]. To do so, the vertical gradients of the different 
retinal layers are used as weights to find the optimal path 
between both ends of the OCT image. As can be seen in 
Fig. 3, every layer of the retina (including the limiting 
ones mentioned above) presents these patterns as a defin-
ing property. Thus, using these gradient profiles, we can 
find the two main layers that delimit the regions of interest 
in our work.

2.1.2 � Extraction of representative samples

Now that we have the regions of interest fully delimited, it 
is time to extract the samples. Since we intend to examine 
retinal tissues and fluid accumulations in detail, we used 
windows of a particular size that exclusively covered each 
of the two cases mentioned above (and, within each case, the 
different ways in which the patterns can present themselves). 
Each of the samples was selected by domain experts in order 
to cover the different pathological and non-pathological 
cases needed for the work, thus ensuring the heterogeneity 
and representativeness of the dataset.

2.2 � Feature extraction

To study the patterns present in the retina, we have extracted 
a comprehensive library of features. These features have 
been chosen to illustrate three main defining factors of an 
image: distribution of intensity levels in the sample, spatial 
relationship of the pixels in the image and organization/ori-
entation of the gradients they exhibit. In the following sec-
tions, we will illustrate in more detail why each particular 
feature class has been chosen.

2.2.1 � Intensity‑based descriptors

First, and as a basis for the analysis, we focus on features 
that analyze the non-spatial distribution of the different gray 
levels. This is because, due to the nature of the fluid accumu-
lations, they appear as regions with high contrasts and low 
luminance gray levels. On the other hand, for more complex 
retinal patterns, this family of descriptors can be used as a 
complement to the other classes considered to significantly 
improve their ability to characterize retinal fluid regions.

2.2.2 � Pixel spatial relationship descriptors

These descriptors based on textural information are useful 
for determining the distinctive patterns in both considered 
classes. Fluids present more homogeneous patterns in the 
inner regions, while more irregular textures as they inter-
mingle with healthy tissues. In addition, each of the retinal 
layers present unique patterns depending on their biological 
function. This is also true for other retinal structures, both 
healthy (such as vessels) and pathological (such as accumu-
lations of dense wastes).

2.3 � Gradient‑based texture descriptors

Gradient-based descriptors are particularly interesting in this 
case. Healthy retinal tissues (regions with intact histological 
organization) tend to exhibit horizontal gradients in a limited 
range of orientations. On the other hand, fluid accumulations 
tend to exhibit gradients in almost all directions (being sphe-
roid-like accumulations). In more extreme cases, the very 
absence of gradients (as in thickened spongiform regions 
of the retina) can also be a good biomarker. Finally, vessels 
crossing the retina are easily detectable by this strategy, as 
they present defined vertical gradients with the shadows they 
project onto more external layers of the retina.

2.4 � Feature selection

After collecting the aforementioned set of features, we will 
proceed to the selection of the most relevant ones from the 
total set. As we will demonstrate, having such an exhaus-
tive library, it is common for redundancy to exist in the 
library. For this reason, by means of feature ranking strate-
gies, we will be able to evaluate which ones provide more 
information.

In this case, we have evaluated three different methodolo-
gies for feature selection. One based on the study of graphs 
to analyze the inter- and intra-class distance (the Trace ratio 
estimator), another based on random subsampling with 
neighbors of the same and different classes to perform a 
density estimation similar to a k-Nearest Neighbors (Reli-
efF), and the third based on the training of a pool of decision 
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trees for the analysis of their relevance (since the features 
in shallower positions of the tree, in theory, are more repre-
sentative of each class). Thus, we can see that each selector 
considers to a different extent the relevance of the sets and 
the relationship of new features with the previously selected. 
While the trace ratio is more sensitive to the dataset, finding 
features less dependent on each other, the Random Forest 
is less sensitive to the particularities of the dataset, likely 
generating rankings that consider features that are dependent 
on the previous ones. In this case, the ReliefF was chosen to 
act as a middle ground between both extremes.

2.5 � Classifier training

Finally, to perform the actual relevance analysis of these 
features, we will study four families of classifiers. In this 
way, we intend to analyze different levels of complexity of 
the studied features, allowing from less to more degrees of 
freedom and by means of different optimization strategies. 
In this work, we have considered from Linear and Gaussian 
models to nonparametric (k Nearest Neighbors) and based 
on pools of simple classifiers (ensemble). These classifier 
paradigms were considered as they include models with low 
fitting capabilities but high generalization (such as linear 
models) and others with high fitting capacity, but with a high 
possibility of overfitting to the problem presented (as in the 
case of ensemble-based classifiers).

The classification was done using a constructed dataset 
that was randomly divided into a 10-fold cross-validation 
repeated 10 times for each selector (for a total of 3 selectors) 
and classifier configuration (for a total of seven classifiers). 
Additionally, a model was trained for each increasing subset 
of features to further study the behavior of each selected 
feature to a maximum of the top 100 selected features (as 
most selectors failed to properly assign a score to the fea-
tures from this point onward due to the lack of relevance to 
the matter).

3 � Resources and configurations

In this section, we will detail the resources used and their 
specifications required to replicate our work. First, in 
Sect. 3.1 “Dataset,” we explain in detail the characteristics 
of the employed dataset. Subsequently, in Sect. 3.2 “Fea-
ture library,” we explain each of the families of descrip-
tors used in our work and the particular markers. Finally, in 
Sects. 3.3 and 3.4 “Feature selectors” and “Classifiers,” we 
present each of the algorithms and classifier configurations 
implemented in our research to both select the most relevant 
features and to determine their actual discrimination power.

3.1 � Dataset

The dataset used in this work consists of 83 OCT images 
captured by means of a CIRRUS™ HD-OCT-Carl Zeiss 
Meditec. In order to better represent the case study, the 
dataset contains images of both the left and right eye, var-
ying in resolution from 750 × 500 pixels to 1680 × 1050 
pixels. In addition, they have been captured using differ-
ent device configurations and used without any kind of 
preprocessing in order to preserve the original properties 
and features of the eye fundus tissues. Clinical experts 
established the ground truth to be used for the extraction 
of the representative samples from the images, resulting 
in a total of 806 and 803 windows with and without the 
presence of cysts, respectively, summing a total of 1609 
samples.

From each coordinate in the image deemed as having rel-
evant patterns for the study, different windows sizes were 
extracted. In this work, the window sizes considered were 
11 × 11 pixels, 15 × 15 pixels, 21 × 21 pixels, 31 × 31 pixels, 
41 × 41 pixels, 51 × 51 pixels and 61 × 61 pixels. The non-
linear rate of increments in window size has been considered 
due to the progressively lower information contribution with 
respect to the one already contained in the smaller sample 
sizes.

3.2 � Feature library

Below, we list and describe each of the feature families used 
in the development of this manuscript. The index numbers of 
the descriptor in the final feature vector generated for each 
sample are also indicated.

3.2.1 � Global intensity‑based features (GIBS) [1–15]

Basic descriptor of the statistical gray level distribution, 
ignoring spatial properties: maximum, minimum, mean, 
median, standard deviation, variance, entropy, 25th & 75th 
percentile and maximum likelihood estimates for a normal 
distribution.

3.2.2 � Axis intensity statistics (AIS) [16–27]

Minimum, mean and maximum skewness and kurtosis of the 
sample along both vertical and horizontal axis. Despite tech-
nically not considering the spatial distribution of the gray 
levels, this descriptor compares the tendency of the patterns 
in each of the axis of the sample toward lighter or darker 
textures. By doing so, we could be able (in theory) to dis-
tinguish between the vertical patterns of a shadow, uniform 
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shapes of spongiform fluid accumulations and oval/round 
structures formed by cystoid leakages.

3.2.3 � Eigenvalues [28–55]

We calculated the eigenvalues of the analyzed region and 
selected the 4 highest ( �maxi

 ) and the 4 lowest ( �mini
 ) val-

ues. Additionally, the ratios among them and their 25 and 
75 percentile were also included as markers to simplify the 
future abstraction needed to be made by the classifiers. If 
the sample is not square, it is divided into multiple square 
windows to extract these eigenvalues.

3.2.4 � Local energy‑based shape histogram (LESH) [56–183]

Based on the Gabor descriptor [38], we analyze the texture 
energy using the phase congruency approximation by Kovesi 
[24, 25] as metric. By finding the maximal phase congru-
ency, this metric becomes quite robust against samples with 
a high rate of noise [23].

3.2.5 � Gray‑level co‑occurrence matrix (GLCM) [184–199]

This descriptor measures the occurrence of gray levels i and 
j in pairs of pixels ( p1, p2 ) of the analyzed OCT image I, 
separated by a displacement vector � = ( �x , �y ) into a 2D 
matrix, given by the following:

From the resulting matrix, we can extract the contrast, cor-
relation, energy and homogeneity of the textures [18] In this 
case, the pixel distance was set to two pixels and in four 
directions: 0 ◦ , 45◦ , 90◦ and 135◦.

3.2.6 � Histogram of oriented gradients (HOG) [200–280]

As the name suggests, this descriptor describes the texture 
present in a particular image or sample by generating a histo-
gram of the detected gradients in the image [9]. Each sample 
is divided into 9 hog windows, from where the gradient ori-
entations are extracted. A gray level resolution of 9 bins was 
chosen as a balance between granularity and abstraction of 
information. This descriptor presents invariance to rotation, 
translation and scale.

3.2.7 � Gabor filters [281–408]

This orientation-sensitive filter works in a similar way to the 
Fourier transform, but applied to the image domain [14]. 
This filter is able to decompose the image into its constitu-
ents, by generating a library of convolutional masks that 
specially react to textures in certain orientations and with 

(1)C
�
(i, j) =

||
|

{
p1, p2 ∶ I(p1) = i;I(p2) = j;p2 = p1 ± �

}||
|

certain pixel frequencies. These filters are two-dimensional 
sinusoids of a given frequency and orientation. Furthermore, 
a normal distribution of a given mean and standard deviation 
is used to mask the two-dimensional sinusoid of convolu-
tional filter, to balance the relevance of the central region of 
the convolutional filter. Thus, following the parametrization 
defined in [17], we obtain a bank of filters with 8 scales 
of frequencies and in 8 orientations, invariable to scale or 
translation. As we obtain the mean and standard deviation of 
each marker, we obtain a vector of 128 features.

3.2.8 � Local binary patterns (LBP)[409–472]

Texture descriptor based on the analysis of a circular neigh-
bor of pixels. Based on the binary comparison between 
these radial pixels and the center one in illumination, we 
can obtain a binary descriptor of the underlying texture [33]. 
In this work, the mean and standard deviation of four filter 
sizes (4, 8, 12 and 16 pixels) in 8 different equidistant ori-
entations are used. Based on previous experiments, a non-
rotation invariant version of the descriptor was employed 
as the orientations of the textures plays an important role 
in their class.

3.2.9 � Laws texture filters [473–500]

This descriptor consists of a series of 2D convolution filters 
generated from a set of one dimensional kernels [27]. In this 
work, we considered the following kernels for window of 
sizes 3 × 3 and 5 × 5 : L3 = [1 2 1], E3 = [−1 0 1], S3 = [−1 
2 −1], L5 =[1 4 6 4 1], E5 = [−1 −2 0 2 1], S5 = [−1 0 2 0 
−1] and R5 =[1 −4 6 −4 1]. L kernels focus on obtaining the 
center weighted gray level mean, E kernels respond to edge 
features, S extract spots and R focus on ripple patterns in 
the texture. From the result of applying these convolutional 
kernels, we extract the mean and the standard deviation to 
generate the final descriptor.

3.2.10 � Fractal dimension [501–503]

Descriptor based on the analysis of the texture self-similarity 
[1]. Using the box-counting algorithm [6] we can study how 
the patterns are similar to themselves on different scales. We 
analyze the mean, standard deviation and the lacunarity of 
the texture (how well the pattern fills the space occupied by 
the texture).

3.2.11 � Gray level run length image statistics (GLRL) 
[504–510]

This family of features describes the texture in terms of the 
different homogeneous chains of similar gray-level pixels 
in a given set of orientations [29]. In our case, the images 
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were reduced to a set of 51 bins to improve the robustness 
against intensity variations due to noise or capture device 
artifacts. The final descriptor consists of the Short Run 
Emphasis (SRE), Long Run Emphasis (LRE), Gray Level 
Non-uniformity (GLN), Run Percentage (RP), Run Length 
Non-uniformity (RLN), Low Gray Level Run Emphasis 
(LGRE) and High Gray Level Run Emphasis (HGRE).

3.3 � Feature selectors

In this work, three feature selector strategies were used: 
Trace ratio estimator [28, 31], Relief-F [28, 36] and an 
ensemble-learning model which uses the random forest algo-
rithm. In our case, this ensemble-learning model was based 
on the randomized trees variation [15, 34] with 1.000 esti-
mators. For the Trace ratio estimation, we used the approach 
of Nie et al. [31] as it tries to optimize the feature subset 
score, resulting in more robust feature rankings that other 
feature selection strategies. Finally, for the Relief-F estima-
tor, we used a number of neighbors of 10, as higher number 
of neighbors proved to be detrimental to feature subsets with 
less feature descriptors.

3.4 � Classifiers

To perform the classification stage, seven different classi-
fier configurations were employed based on their classifica-
tion capabilities and kernel functions: three linear models, a 
Gaussian, a nonparametric classifier and two ensemble strat-
egies. The three linear models were a Linear Discriminant 
Analysis or LDA, a Support Vector Machine (SVM) without 
kernel trick and a Ridge Classifier. The employed LDA uses 
Bayes’ rule to fit a Gaussian density to each class. The main 
objective of this classifier is to maximize the ratio between 
the inner scatter and the outer scatter of the classes. On the 
other hand, the linear SVM [8] establishes an hyperplane 
between the two most closest samples (support vectors) from 
both classes, optimized by quadratic programming. Finally, 
the Ridge-regularized linear model is a linear regression 

model, used for classification but with an added constraint 
to the loss function that prevents overfitting. This is done 
by imposing a penalty on the size of the linear regression 
coefficients.

The Gaussian model is based on a SVM by employing 
the kernel trick. This consists on applying a function to the 
search space, so the previously non-separable data is now 
separable in the new synthetic dimension applied to the 
dataset. In our case, our model optimizes the radial basis 
function.

As nonparametric model, we use a k-Nearest Neighbors 
(kNN) classifier that approximates the class probability 
based on the neighbor density that belongs to that same 
class. We tested different configurations, and for our large 
library of features a k = 15 offered a good balance between 
generalization and accuracy without overfitting [10]. Addi-
tionally, for each query, the points are weighted by the 
inverse of their distance, making closer points more influ-
ential when determining the resulting class.

Finally, as ensemble methods, we used two variations 
of an implementation of the Random Forest. As its name 
implies, it creates a forest of classifiers with random subsets 
of features and picking the best splits [4, 5]. The classifiers 
are combined by averaging their probabilistic prediction. 
The Gradient Tree Boosting classifier [13], instead, sequen-
tially builds an additive model. A total of 100 fixed size 
regression trees are trained and the log-likelihood optimized 
in each iteration via gradient descent toward the negative 
gradient of the loss function.

4 � Results

In the first place, in order to begin the analysis, we per-
formed a preliminary initial test with a reduced number of 
classifiers and features. This experiment was tested with lin-
ear, nonparametric and quadratic classifiers and a reduced 
number of features. The result, presented in Fig. 4, shows 
how no significant variation is exhibited from a window size 

Fig. 4   Mean and standard 
deviation of the tested models to 
assess the optimal window size
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greater than 2500–3000 pixels. For this reason, larger sizes 
were not analyzed and we consider 61 × 61 the optimal size 
for future experimentation.

First, after feature extraction, we analyzed the correlation 
between the extracted marker classes. Many of the vectors 
used consider features similar to each other. For example, 
LAWS and Gabor include similar convolutional masks in 
some cases. For this reason, as seen in Fig. 5, the correlation 
between these classes appears to be strong.

In the same way, we see how Gabor, GLCM and GIBS are 
very sensitive to intensity changes, so both show high cor-
relation coefficients. However, we can see that in most cases 
the correlation levels are considerably low (highlighting the 
case of LESH with correlation levels lower than all the other 
categories). Another aspect to note is the high degree of 
autocorrelation of GIBS, LBP and FD. It is normal for a 
certain degree of correlation to exist within the same family 
of features when addressing complementary points of view. 

However, such high levels of correlation indicate that there 
is a high level of potential redundancy. This is likely to result 
in that, within these feature families, few markers will be 
selected. This is critical especially when a family of features 
has a low number of markers per se, as is the case with FD.

Nonetheless, correlation does not directly imply relevance 
for the considered issue. As shown in Fig. 6, while LESH 
has an extremely low correlation coefficient, the feature 
selectors have hardly selected a lot of its features as relevant 
from the total available for this family. This does not nec-
essarily indicate that it is a poor choice as a marker. What 
these two figures say (Figs. 5 and 6) say is that it is a very 
heterogeneous marker, and a few of its features are actually 
relevant to the problem under consideration. On the other 
hand, the opposite case is the one of FD. This feature has 
not been chosen at all by any of the three selection strate-
gies. Possibly due to the fact that it is quite correlated with 
LBP and LAWS.

Fig. 5   Mean correlation by 
feature classes

Fig. 6   Percentage of features 
chosen over total available for 
each feature family
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By examining from another point of view in Fig. 7, we 
can see how LAWS also suffers in terms of positioning of 
its markers. In this figure, the score accumulated by the 
three selectors for each family and LESH (even not taking 
into account the fact that it has not even been chosen by the 
Trace ratio) does not usually appear in the top positions. As 
we mentioned, possibly because it is correlated with better 
positioned characteristics such as LAWS that return similar 
and more information with less markers needed (that is, they 
are more information-efficient). Similarly, we see how the 
selectors clearly favor GLRL and HOG in the top positions 
even though HOG was proportionally less chosen. This is 
a similar case to the one we were previously discussing: a 
selector from which we do not take many features, but the 
ones we do take are the ones that are truly relevant to the 
problem.

As for the training results, we can see in Figs. 8, 9 and 
10 the results of the progressive training. For each num-
ber of features a model has been trained with the subset of 
the ranking up to that position. In these figures, we can see 
three main factors to consider. The first is that classifiers of 

any complexity stabilize at 50 features or more. Therefore, 
from that point onward, we are directly sacrificing gener-
alization capability (by resorting to more complex models) 
in order to gain a minimum of accuracy. Secondly, we see 
how complex models such as those based on ensemble clas-
sifiers have shown a tendency to obtain better results in the 
initial training stages, but converging with the simpler linear 
models toward the end. For this reason, and in order to favor 
generalization capacity, we consider linear models to be the 
appropriate ones for the case currently under consideration. 
Finally, we can see how only the ensemble-based selector 
has been able to maintain a certain level of stability in early 
epochs along all classifiers, while with few features the other 
selectors obtained, in general, worse results.

In Fig. 11, we can see a comparison between the best 
results of each model and selector together with their stand-
ard deviation. We can observe how the linear models have 
obtained a higher mean accuracy than the rest, while at the 
same time they have obtained the lowest standard devia-
tions. On the other hand, classifiers such as Random Forest, 
considered more prone to overfitting, have obtained some of 

Fig. 7   Accumulated maximum 
feature relevance for each fea-
ture family

Fig. 8   Evolution of the mean 
accuracy (and its standard 
deviation along all repetitions) 
for each classifier family tested 
with an increasing subset of 
features obtained with the trace 
ratio selector
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the worst results in all selectors with a high standard devia-
tion. Ultimately, and taking into account that the models 
considered for the evaluation in this figure of the best accu-
racy include all the trained ones (up to 100 features), we can 

see how clearly the complex models have ended up being 
over-trained while the linear models have been able to infer 
correctly in spite of the higher dimensionality burden. That 

Fig. 9   Evolution of the mean 
accuracy (and its standard 
deviation along all repetitions) 
for each classifier family tested 
with an increasing subset of fea-
tures obtained with the random 
forest selector

Fig. 10   Evolution of the mean 
accuracy (and its standard 
deviation along all repetitions) 
for each classifier family tested 
with an increasing subset of fea-
tures obtained with the ReliefF 
selector

Fig. 11   Best mean accuracy (a) 
and its standard deviation (b) 
achieved by each classifier and 
selector

(a) (b)
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is, their own limitations have prevented the dimensionality 
problem.

5 � Discussion

As we could observe, the tests clearly favor feature fami-
lies based on gradient learning such as HOG, LAWS and 
GABOR. In addition, we see how GLRL is also in these 
privileged positions. In Fig. 12, we can see some exam-
ples of correctly classified positive and negative samples. 
By looking at these samples, we can see why the choices 
were made. As we commented earlier, vertical patterns 
clearly indicate shadowing, and horizontal patterns tend to 
belong to healthy tissue samples (being characteristic of the 
histological organization of the retina). Similarly, cystoid 
regions ought to be those with patterns that are either undi-
rected (homogeneous tissue) or present in a larger number 

of directions (as these tend to have oval or heterogeneous 
shapes). However, looking at the examples given, we can 
observe that this is not sufficient for all the cases presented. 
This is where the other family highlighted in the previous 
tests comes in: GIBS. The combination of intensity-based 
samples together with gradient descriptors makes it easy 
to identify pathological regions. Healthy tissues usually 
manifest themselves with hyper-reflective patterns, clearer 
on OCT images (except in rare cases with artifacts). These 
homogeneous regions in given directions are also the reason 
for why GLRL was among the top descriptors. Homogene-
ous patterns in all directions are a probable indicative of a 
fluid accumulation of considerable size.

In Fig. 13, we can see some samples where the pro-
posed system was not able to correctly predict the sample 
category. For example, in Fig. 13a, the region is marked 
as healthy despite having a clear presence of pathological 
fluid. This is due to the appearance of white dots that are 

Fig. 12   Examples of regions that were correctly identified. 1st row, non-cystoid regions. 2nd row, cystoid regions

Fig. 13   Examples of regions that were incorrectly identified. a & b, Cystoid regions classified as non-cystoid. c & d, Non-cystoid regions classi-
fied as cystoid
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quite characteristic of healthy regions of tissue. However, 
this mistake is due to the lack of representative samples of 
this particular case in the training dataset. On the other hand, 
the results shown in Fig. 13b are the product of the presence 
of numerous horizontal patterns and a cyst with fairly regu-
lar borders. Given that most of the top descriptors examine 
gradients, an image with low gradients like this one might 
confuse the classifiers that use almost exclusively this point 
of view. The next case, Fig. 13c, illustrates a situation in 
which the sample has just fallen into a particular cyst-like 
pattern, from the point of view of gradients: an oval-shaped 
high-contrast artifact. Finally, Fig. 13d presents a texture 
pattern very similar to that of healthy tissue intermixed with 
pathological fluid. It is a particular case that even experts in 
the domain would not be able to differentiate, a borderline 
case between both categories. Thus, the proposed system 
acted correctly in benefiting (in case of doubt) the patho-
logical class.

6 � Conclusions

One of the main current challenges in medical imaging is 
the analysis of patterns in structures that, due to their diffuse 
nature, present a great variability of patterns. This is the case 
of fluid accumulations in retinal layers. These accumula-
tions, which are the result of diseases considered the main 
causes of blindness in developed countries, present a wide 
range of patterns; either due to artifacts produced by the 
capturing device or complications of the pathology.

These eye diseases require, for proper recovery of the 
patient, an exhaustive analysis of a large number of OCT 
images, which is highly reliant on the subjectivity of the 
clinical expert. Methodologies have been proposed in the 
state of the art to address this problem, but either they do 
not offer results that are explainable to experts or the design 
may result in missing real pathological fluid accumulations.

In this manuscript, we present a complete detailed analy-
sis of what characterizes these pathological intraretinal fluid 
accumulations. By using a complete library of features, 
selectors and classifiers, we determine (with very promising 
metrics in the results) that the minimum amount of informa-
tion needed for the analysis of these fluid accumulations is a 
window size of 61× 61 pixels. Furthermore, in this context, 
we considered the optimal number of features for the solu-
tion of the problem to be 50, since any addition only serves 
to decrease significantly the generalization capability at the 
cost of a negligible gain in classification power. Finally, the 
most relevant factors for classification of these fluid accumu-
lations were selectors based on gradient orientations (such as 
Gabor or the Histogram of Oriented Gradients), closely fol-
lowed by selectors based on purely non-spatial distribution 

of gray levels in the samples (such as an analysis of the dif-
ferent quartiles in the image).

With this work, we intend to show not only relevant fea-
tures for the domain under study, but also a methodologi-
cal proposal for the analysis in other similar fields, medical 
imaging modalities and pathologies. Thanks to this analy-
sis we will be able to perform, as future work, more robust 
systems to the different vicissitudes of capture devices as 
idiosyncrasies of the studied tissues.
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