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Abstract
We present an adaptive visualization tool for unsupervised classification of astronomical objects in a Big Data context such

as the one found in the increasingly popular large spectrophotometric sky surveys. This tool is based on an artificial

intelligence technique, Kohonen’s self-organizing maps, and our goal is to facilitate the analysis work of the experts by

means of oriented domain visualizations, which is impossible to achieve by using a generic tool. We designed a client-

server that handles the data treatment and computational tasks to give responses as quickly as possible, and we used

JavaScript Object Notation to pack the data between server and client. We optimized, parallelized, and evenly distributed

the necessary calculations in a cluster of machines. By applying our clustering tool to several databases, we demonstrated

the main advantages of an unsupervised approach: the classification is not based on pre-established models, thus allowing

the ‘‘natural classes’’ present in the sample to be discovered, and it is suited to isolate atypical cases, with the important

potential for discovery that this entails. Gaia Utility for the Analysis of self-organizing maps is an analysis tool that has

been developed in the context of the Data Processing and Analysis Consortium, which processes and analyzes the

observations made by ESA’s Gaia satellite (European Space Agency) and prepares the mission archive that is presented to

the international community in sequential periodic publications. Our tool is useful not only in the context of the Gaia

mission, but also allows segmenting the information present in any other massive spectroscopic or spectrophotometric

database.

Keywords Big data astronomy � Self-organizing maps visualization � Computational astrophysics � Artificial neural
networks � Astronomical surveys

1 Introduction

It is becoming more and more common for astrophysicists

to search for answers regarding the structure and evolution

of the Universe by analyzing vast portions of the sky,

which contain huge amounts of a variety of astronomical

objects. Typically, they want to determine their physical,

galactic, or extragalactic nature and extract information

about their most relevant properties.

To analyze such data, which are of a complex nature and

appear in sets of the order of hundreds of thousands or

millions of objects, the use of advanced computing tech-

niques is inevitable. Historically, Astronomy has been at

the forefront of the development and implementation of

information management services through the Internet, and

for more than twenty years, both space missions and most

of the large terrestrial observatories have been developing

efficient systems of archiving and accessing scientific data.

Most of these files are open-access, but their analysis is

complex and requires the development of tools based on

Statistics and the use of methodologies such as those

derived from artificial intelligence (AI), in what has come

to be called ‘‘Data Mining in Astronomy.’’
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Data mining deals with the processes necessary to obtain

knowledge in large databases. It is also called KDD

(‘‘Knowledge Data Discovery’’). The term was coined in

the 1990s, when large corporations began to store their data

in digital form. Data mining includes methods from dis-

ciplines such as Statistics, AI, Databases, and the theory of

computational complexity. It focuses mainly on Descrip-

tive Statistics and unsupervised learning, although it also

usually includes predictive models obtained through

supervised learning. It is evident from their definitions that

these fields overlap widely. For example, clustering tech-

niques such as K-means are at the same time Descriptive

Statistics, Data Mining, and unsupervised learning tech-

niques, depending on their use. The important issue when

solving a problem that requires intelligent automatic pro-

cessing is to properly choose which techniques to use and

how to apply them to the domain.

Unsupervised learning refers to the generation of a

model that explains a set of observations without any prior

knowledge. The two main applications of this type of

learning are unsupervised classification and dimensionality

reduction. The vast majority of algorithms that have been

developed to solve this problem coincide in the exploita-

tion of the concept of similarity between objects. In this

way, the algorithms seek to identify object associations that

form partitions of the input dataset. These groups are

generated with the aim of maximizing the similarity

between the objects belonging to the same group and, at the

same time, minimizing the similarity between objects

belonging to different groups.

Dimensionality reduction is defined as the process of

decreasing the number of variables involved in solving a

specific problem, so that it can be addressed more easily,

and it can be performed by selecting or extracting features.

Usually, characteristics selection is based on supervision,

while feature extraction techniques are applied in the field

of unsupervised learning. A classic feature extraction

technique is principal component analysis, PCA [1, 2],

which has been widely used in various fields, including

Astrophysics. However, PCA lacks the ability to capture

nonlinear relationships between variables in the input

space. In recent years, various techniques are commonly

used to try to solve this problem, such as PCAs with

Kernel, the so-called local linear embedding (LLE), mul-

tidimensional scaling (MDS) techniques [3], or t-dis-

tributed stochastic neighbor embedding (t-SNE) [4].

Neural networks also contemplate unsupervised learn-

ing. The main unsupervised neural networks are ART

networks [5], neural gas networks [6] and self-organizing

maps or SOMs [7], and other later alternatives [8]. Such

networks follow a learning process based on model fitting

according to some measurement of similarity. Among all

clustering techniques, SOMs provide an additional feature:

the nonlinear projection of the set of observations in a

space of reduced dimensionality, similar to the LLE, MDS,

and t-SNE algorithms. Therefore, SOMs unite the two main

branches of unsupervised learning: clustering and dimen-

sionality reduction. The probabilistic counterpart of SOM

is the generative topographic maps (GTM) [9], that use a

expectation–maximization algorithm (EM). The compar-

ison between both methods is explained in Sect. 9, showing

that, in the context of the present study, SOM performs

better than GTM.

This work is structured as follows. In Sect. 2, different

works related to data mining, unsupervised learning, and

SOMs are mentioned. Section 3 explains the SOM output

analysis difficulties in Big Data environments and why the

existing tools are not suitable in this context. Sections 4

and 5 describe the fundamentals of SOMs and discuss the

need to develop a specific interface for visualization and

analysis, oriented to astronomical spectrophotometry.

Section 6 describes the operations and data preprocessing

that have been implemented in our tool, named GUASOM,

that are aimed at providing different useful visualizations

of the datasets and their classifications using topologically

ordered neurons. The different visualization environments

will be described using as an example the results obtained

on a set of approximately 82000 spectrophotometric

observations for a wide variety of astronomical objects

from the Gaia mission [10]. Due to the fact that Gaia

spectrophotometric observations are under embargo until

GDR3 will be released in the second half of 2022, we will

show only collective results obtained for the mentioned

sample that we have been analyzing for validation pur-

poses. We will use different sets of data, in particular the

clustering obtained on the SDSS Legacy survey sample of

spectra, to illustrate some of the more specific utilities. In

Sect. 7, we will show how the achieved clustering quality

can be assessed either using clustering quality indices, or

by external validation in the case that well-known repre-

sentative samples of the data were available. Section 8

briefly discusses GUASOM’s performance on a fully

photometric survey, the ALHAMBRA survey [11],

whereas in Sect. 9, the results obtained from a spectro-

scopic survey are presented, the SDSS Legacy survey

[12, 13]. Finally, Sect. 10 summarizes the characteristics of

GUASOM and its implementation as a Web tool and

reviews the results obtained in the tested astronomical

archives.

2 Related work

In the field of Astronomy and Astrophysics, the application

of grouping algorithms is a relatively new concept, despite

being a field in which statistics have a large number of
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applications. The pioneering works in this regard were

those presented by [14] and [15], in which unsupervised

classification of galaxy and star spectra from the SDSS

catalog was carried out. In these works, the authors use the

K-means algorithm [16] to classify hundreds of thousands

of medium resolution spectra.

LLE has been applied by [17] to the classification of

Kepler light curves into morphological types. In the field of

spectral classification, LLE has been applied by [18] to the

classification of massive protostellar spectra and by [19] to

represent SDSS spectra in a three-dimensional space,

which can be easily visualized by experts in the domain.

Although SOM networks are common in different fields,

they have been of little use in Astronomy [20–23]. Some of

our previous works devoted to the analysis of atypical

objects [24–26] demonstrated SOMs ability to reveal the

properties of a set of spectra when there is little or no prior

knowledge.

3 Problem statement

The aim of this work arose from the need to process mil-

lions of objects with a clustering technique explained in

Sect. 4, in a Big Data scenario in the context of the Gaia

mission. In such scenario, we must process all the infor-

mation in a reasonable time and provide to the community

a tool oriented to Astrophysics in order to analyze the

information of SOMs related to the physical and statistical

properties of the clustered objects.

Different applications were developed for the visual-

ization of SOMs such as Viscovery SOMine GmbH [27],

SOMPY [28], SOMToolbox [29], SpiceSOM [30] or

another Python implementation of SOM [31]. The com-

parison presented in Table 1 highlights the fact that most of

them just analyze SOMs in a generic way, or they are

developed with important restrictions that hinder the use of

data from different domains. Furthermore, we are inter-

ested in including a series of features that allow an in-depth

study of the content of the maps and their neurons (sta-

tistical analysis, distance computation, data representation,

etc.).

Note that we need to handle all this information in a Big

Data scenario, which means that the training process will

take several hours or even days, and for that reason, it is

important to separate the visualization of the SOMs from

the training process, in order to train them in a distributed

framework.

We are also interested in developing a versatile tool that

adapts to different representations of the data and allows us

to visualize the usual parameters in an astronomical survey.

The problem with this information is that at present,

there is no visualization tool able to work in a real Big Data

scenario or provide specific domain visualizations.

4 Self-organizing maps (SOM)

The main advantage of SOM networks, as mentioned

before, is to provide a good quality grouping as well as a

non-linear reduction of dimensionality, by projecting the

data in a fixed number of clusters (called neurons or units),

arranged in a 2D structure, generally a grid with N rows by

M columns (Fig. 1). Each neuron has a representative,

called a prototype, which is a virtual pattern that best

Table 1 Comparison of relevant features, for the purpose of this work, between existing tools for visualizing SOMs. The bibliographic references

are included in brackets

Tools

Features Viscovery [27] SOMpy [28] SOMToolbox [29] SpiceSOM [30] SOM [31]

Domain oriented Generic approach Generic approach Generic approach Teaching Biology

License type Commercial Freeware Commercial Freeware Freeware

Big Data Acceleration No Python parallelism No No Python parallelism

3D visualizations No No No Input data No

Deep cluster analysis Advanced Basic Basic Basic Cluster labeling flooding

VO compatibility No No No No No

Crossmatch1 No No No No No

Architecture Desktop Interactive notebook Desktop Desktop Interactive notebook

Import SOM2 False Python Matlab False Python

1The tool allows to perform a crossmatch with external databases.

2The tool allows to import a trained SOM for visualization.
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represents the set of input patterns that belong to that

group.

The problem to be optimized is finding the best proto-

types for all the neurons in the SOM, for which an iterative

optimization procedure is followed from a random initial-

ization of the neuron weights. First, for each input obser-

vation, the neuron that most closely matches the pattern is

activated. This is calculated using the squared Euclidean

distance between the pattern and the neuron prototype.

Then, the activated neuron and their neighbors are updated

according to the activation patterns. The number of neurons

in the vicinity of the activated neuron is large in the first

few iterations, but it decreases as the iterations continue. In

this way, the algorithm begins by ordering the neurons and

then goes on to focus on the grouping process, minimizing

the residuals (also called quantification errors) between the

prototypes and their activation patterns.

An important point in the implementation of SOMs is to

define the learning parameters. The maximum number of

learning iterations and the neighborhood function can be

empirically determined, but the most important parameter

to set, the size of the map (the number of neurons), is more

difficult to estimate, since it depends entirely on the vari-

ance of the data and the size of the dataset. We opted to

also determine it experimentally, using the measurement of

error in the grouping obtained by the mean quantification

error, MQE [32]. MQE measures the average distance

between a cluster prototype and the objects that populate it.

There are two main algorithms for the training of SOMs:

the online (or sequential) and the batch algorithm. In the

online algorithm, the weights are updated with:

wiðt þ 1Þ ¼ wiðtÞ þ aðtÞhðtÞ xðtÞ � wiðtÞð Þ ð1Þ

where a is the learning rate, h is the neighborhood distance

weight, and x is the datapoint at the current iteration t. In

the online learning, the winner for an input is found, and

the weight vectors are updated immediately. In the batch

learning, the updates are deferred to the presentation of the

whole dataset. We decided to use the batch learning mode

instead of the online mode, taking advance of its greater

speed, because it can be parallelized and does not depend

on the order in which the patterns are presented to the SOM

[33].

Although the MQE index measures the quality of the

grouping, we still do not know if the map is correctly

ordered according to the input data sets provided. One way

to evaluate the order is to visualize the topographic dis-

tribution of the data and to compare intercluster and intr-

acluster distances, which leads us to the need to develop a

visualization tool customized to display and analyze the

information in neurons.

5 SOM Visualization

SOM networks retain information on the distribution of

data in their topology, and this fact can help in the analysis

stage, by displaying significant information on the map

grid. A typical visualization tool for SOMs is the U-Matrix,

which shows the distance between prototypes and can serve

as a map for data exploration [34]. Large distances between

prototypes can be interpreted as gaps between data, and

they can help to isolate outlying clusters, while short dis-

tances allow to select several neurons for a joined identi-

fication of the objects that populate them.

This work therefore presents a tool that is specifically

designed for the analysis of massive spectrophotometric

surveys and has its origin in Gaia DPAC consortium

developments. Gaia datasets are of the order of 109 objects,

which translate to approximately 1000 Gigabytes, and lead

us to develop a tool powerful enough to handle enormous

amounts of complex data. Since carrying out calculations

in real time is barely possible, we devoted significant

efforts to calculate in advance the data oriented to the

visualizations. We named this visualization tool ‘‘Gaia

Utility for the Analysis of Self-Organizing Maps’’ (GUA-

SOM), despite the fact that we have adapted it to be useful

in the analysis of spectrophotometric data in general.

Before going into detail about the system design, we

shall introduce some concepts that will be used in what

follows:

– Prototype: Representative spectrum or spectral energy

distribution of a neuron according to the objects

populating it.

Fig. 1 Self-organizing map architecture
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– Templates: Models of spectra that represent types of

astronomical objects. These models can be obtained by

means of real observations or can be provided by

synthetic libraries.

– Object-centroid: Observation or object in a neuron that

is the most similar one to the neuron prototype.

– Outliers: When the prototype does not represent with

sufficient confidence the objects in the neuron because

they are very heterogeneous, those objects are named

outliers.

– Catalog: Consolidated database of astronomical data

that we can use to perform an astrometric crossmatch to

retrieve information about the physical nature of as

many objects as possible in a neuron. This can allow us

to assign a particular label to such a neuron.

– Crossmatch: Search procedure that uses astronomical

coordinates and a search radius to retrieve the astro-

nomical information from a catalog for a particular set

of objects.

– Template matching: Procedure that compares a set of

templates with a given prototype in order to select the

most similar one. We defined the Euclidean distance as

the similarity metric used to make such a comparison.

5.1 System design

Developing a visualization tool for advanced analysis

techniques in a Big Data context is not a simple task. The

response time is crucial for this kind of tool, and the

resources are limited. Taking this into account, we have to

process millions of objects in an acceptable time to the

user, and we have to develop an application that is as user-

friendly as possible, allowing users to appropriately inter-

pret the results.

In order to address the first issue, we developed a soft-

ware that processes in advance all the data that will be

visualized in the application. This is the most important

feature of the visualization tool, and it is explained in

Sect. 6. Regarding the second problem, we decided to

develop the tool with Web technologies, due to their

flexibility and easy access to the information. Such a

development is explained in Sect. 6.1.

The factors that we take into account when we design

this software are the following:

– We defined a set of data models for the neurons as well

as for the map and for some specialized visualizations.

These models contain the relevant information for the

different graphics. Each map will have some properties,

a set of N �M neurons, as well as some precomputed

information for each visualization.

– Processing all the required calculations will involve

data from millions of objects. For that reason, we

decided to optimize, parallelize, and even distribute

these calculations in a cluster of machines.

– The application must load all the information as quickly

as possible. Hence, we store all the models in binary

files, which can be loaded faster. The map information

is stored separately from the information of some

specialized visualizations, because in that way, we have

the data in different structures, and it is easy to generate

and retrieve them.

– The design of the tool is based on a client-server system

[35] with a Web client and a REST server [36]. In that

way, the user can access the application using a Web

browser, and the server can be located in a machine or

in a cluster with enough capabilities to handle all the

data with a short response time.

– We decided that JSON (JavaScript Object Notation) is a

good option to pack the data between server and client,

because it is an easy and light format that is appropriate

to use for the types that we usually manage: numerical

and categorical values.

6 Data preprocessing

Any user of a tool aimed to analyze millions of objects will

not expect to obtain the raw data directly, but some pre-

processed information or even statistical data, and some

graphics that help to perform such an analysis. In a Big

Data environment, those calculations are demanding in

computational power and in processing time. For that

reason, we decided to implement a preprocessing stage and

to store the most relevant results. This considerably reduces

the time required to access such an information, which is

especially important if the application is online and free to

access.

Concurrent access is expected, requesting for different

visualizations involving a wide variety of data, and the

potential users of an interactive tool will not use the

application if they must wait for a long time to obtain the

results; that is why it must run fluid and fast. This way, the

main objective is to prepare the data in a simple, sorted,

and efficient data structures that contain only the infor-

mation that the users request from the application at any

time, allowing a faster processing in the Web browser.

To do so, we analyze all different visualizations to

determine the operations and data required to represent

them. Then, we calculate such operations in advance and

organize data directly in array structures that the visual-

ization tool needs to render. Once the data are prepared, we

store them in binary files in order to load them faster. See

Fig. 2.
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Some of such preprocessing tasks that have to be per-

formed are the following:

– Intercluster distances: Several map visualizations rely

on the concept of distance between neurons. It is

important to pre-calculate the average distance between

a neuron and its neighbors.

– Statistical information about the objects populating a

neuron: In the case of Gaia spectrophotometric data, we

derive basic statistics (mean, standard deviation, bias)

of both astrometric measurements (parallaxes, proper

motions, galactic coordinates, etc.) as well as photo-

metric ones (magnitudes in the different bands). For

other surveys, a different set of observables can be

considered.

– Neuron representatives and some illustrative examples:

Every neuron prototype and centroid need to be

computed from sets containing even millions of objects.

It is not operative to display the full content of a

neuron, we prefer to pre-select a small number of

objects to be displayed, including those that best and

worst fit the prototype.

– Templates: The application manages different sets of

templates whose suitability to fit the prototype is

calculated for each of the neurons. For each set of

templates we need to calculate the distance between the

prototype of a neuron to all the available templates that

are preprocessed separately and stored in independent

files, in order to identify which is the most similar one

that will be represented in the visualization.

– Crossmatch results: The application must store the

information about the physical nature of the objects that

was retrieved after performing a crossmatch with

external catalogs. Such an information is stored in

one file per catalog, and to be able to integrate it with

the visualization tool we have to preprocess it.

All the preprocessing tasks result in several files for each

one of the maps; these files are stored in a hierarchy of

directories on the server side that can be accessed locally,

improving the performance of the system.

6.1 Visualization tool

We decided to develop a visualization tool using Web

technologies because they make things easier for users.

They do not need to care about the platform of the appli-

cation, the format of the data, or how to download and

deploy both the application and the data for the analysis.

All the information will be available through the Internet,

and the server is responsible for all the computational tasks

involved. Any user can connect to the visualization tool

using a Web browser.

Figure 3 shows the interface of the application, where

the left part is devoted to controlling the different features

of the tool and the rest of the area is used to represent the

map of neurons of a SOM.

Several map visualizations are available for the user for

a smooth analysis of the data. Our application provides the

classical representations for SOMs:

– Umatrix: As mentioned before, this representation

shows the distance between the neuron prototypes,

where less distance means more similarity. This is

useful to identify groups of neurons populated by

objects with similar SEDs. In our application, the user

can control the boundaries of the distance between

neurons through a slider, with the objective of explor-

ing the inner structure of the map. Figure 3 shows this

representation, and the slider in the control section.

– Hits: It shows the number of objects for each neuron,

allowing to identify dense regions in the map. An

example of this visualization is shown in Fig. 15.

The specific domain visualizations that we have imple-

mented are:

– Parameter distribution: This visualization shows the

distribution of a particular parameter of the domain in

the map, displaying the average values calculated in

each neuron.

Fig. 2 Data preprocessing scheme representing the transformation of

the data performed in the preprocessing stage

Fig. 3 User interface of GUASOM displaying the Umatrix represen-

tation of a validation spectrophotometric sample of Gaia data
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– Catalog labels (Fig. 4): This graphic shows the repre-

sentative label of each neuron according to a specific

catalog chosen by the user. The labels of the objects

were obtained through the crossmatch procedure men-

tioned before. The user can control the qualified

majority limit that the label has to reach to be

representative through a slider.

– Template labels (Fig. 5): It is similar to the catalog

labels visualization, but in this case, we use the

representative label of each cluster based on a template.

We select the template that best fits with the prototype

using the Euclidean distance. One slider allows the user

to control the distance between the prototype and the

template in order to decide the adjustment threshold

between them that allows assigning the label with

sufficient confidence.

– Category distribution (Fig. 6): In this representation,

the distribution of a unique type of object is shown. The

user can select the category to be displayed between a

set of labels, according to the templates and catalogs

available for the map. With this graphic, the user can

easily observe the regions of the map containing objects

of the chosen type.

– Color distribution (Fig. 7): It shows the distribution of

the color of the objects in the map, derived as the

difference in magnitudes between two photometric

bands. For Gaia, the bands are those corresponding to

the two photometers, BP and RP, and the color is

calculated as GBP � GRP, but for other astronomical

archives other bands could be visualized accordingly.

– Novelty: This visualization shows the distance between

a selected template and the prototype. Less distance

means less novelty because the template associated

with this neuron is quite similar to the prototype, so it

refers to a well-known object type. The user can select

the set of templates to render.

As illustrated in the examples of Gaia spectrophoto-

metric test data shown in Figs. 4, 6, 7, and especially 5,

these visualizations provide a remarkable improvement in

Fig. 4 Map with neurons displaying labels obtained by crossmatch of

a set of Gaia spectrophotometric observations with Simbad database.

The same dataset is used in Figs. 5, 6, and 7

Fig. 5 Map displaying neurons colored according to the template

labels that best fit every neuron for the same test sample of

spectrophotometric Gaia data as in the previous figure

Fig. 6 Example of category ‘‘Star A’’ (objects with stellar spectral

type A) distribution

Fig. 7 Example of GBP � GRP color distribution in a test sample of

Gaia spectrophotometric data
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detection of groups of neurons with similar properties as

well as those areas with atypical objects or artifacts. The

strength of the tool lies in its ability to explore the neurons

and the objects assigned to them by means of some specific

visualizations:

• Spectra (Fig. 8): It shows the matched template, the

object-centroid, and the prototype of a particular

neuron. The user can also visualize the spectra of those

objects in a neuron that best and worst fit the prototype.

• Population (Fig. 9): It shows the frequency of the

different types of objects in the neuron according to the

available templates or catalogs.

• Statistical summary (Fig. 10): The summary shows a

table with the statistical information available for a

neuron.

Some extra functionalities allow a complete interaction

with other tools and databases. The first one is the cross-

match utility, where the user can select any source in a

neuron and perform a crossmatch with a selection of

external catalogs to retrieve the available information about

the source. At this moment, we provide access to three of

the most used database catalogs: Simbad [37], SkyServer

[38], and Aladin [39, 40].

The second utility is the integration of the Simple

Application Messaging Protocol (SAMP) [41], which is the

most common protocol of the Virtual Observatory in

Astrophysics [42], to communicate the visualization with

other astrophysical applications. The user can select several

objects assigned to one or various neurons and send them

to another tool using this protocol. Both the celestial

coordinates or the spectra can be shared.

SAMP has a hub-based architecture, where the hub is a

service used to route all messages between clients, but by

default, it allows only local connections, which means that

only applications on the same machine can communicate.

We improved this protocol by adding new features to the

hub in order to allow communications over the Internet,

exchanging data between applications on different machi-

nes and locations, providing authentication (even central-

ized by means of an LDAP directory server) and an SSL-

ciphered layer.

Carrying out all these changes required developing a

new version of the hub that was named SAMP?. In order

to maintain the backward compatibility with the original

version, which is widely used, we allow users to connect

hubs in a nested fashion using a bridge mode. In that way,

we can place a central hub where our application is con-

nected and other applications and hubs can connect as well

to exchange data.

Table 2 shows the main differences between the original

SAMP hub and the new one.

Figure 11 shows the architecture of the new and the old

version of the connected hub.

Fig. 8 Example of representative spectra of a neuron. The map

contains a test sample of spectrophotometric Gaia data

Fig. 9 Distribution of objects populating a neuron among classes:

galaxy (GAL), star, and quasar (QSO). For GAL class, different sub-

classes are considered based on the redshift range

Fig. 10 Example of a statistical summary of the relevant parameters

of the objects populating a neuron
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7 Clustering quality assessment

We evaluate the quality of the achieved clustering by

means of external and internal criteria, as explained in the

following sections.

7.1 External quality assessment

Verifying the performance of the processing techniques

and, in this case, the quality of the obtained clustering is a

fundamental task to ensure product quality. Although SOM

networks address unsupervised grouping, it is always rec-

ommended to validate the performance in the domain

through a set of labeled reference samples, using any

external evaluation metrics that can be found in the bibli-

ography [43]. Generally, those indices are defined for

binary classification problems, in which a distinction is

made between two possible classes, one positive and one

negative, while for multiclass classification tasks, one of

the most extended methods to analyze the resulting pre-

dictions is the confusion matrix. A confusion matrix is a

useful tool for evaluating the success of a classification

algorithm. It is a table in which each column represents an

object class, for which we compute the percentage of

objects falling into clusters where the predominant class

corresponds to each object represented in the rows. The last

row shows the number of objects per class in the input

dataset. This type of external validation is useful to

evaluate the performance of the clustering algorithm on a

well-known set of data, for instance a validation dataset.

7.2 Internal quality assessment

When it is not possible to resort to any a priori information

about the physical nature of the objects that populate the

neurons, because such nature is unknown, clustering

quality assessment based on classification success rates

cannot be performed. In this case, internal parameters can

be used to measure the quality of the grouping and to

validate the SOM algorithm performance. In a Big Data

environment where large datasets are analyzed, as in the

case of Gaia mission, the computation of distances among

all the observations in the input dataset is not feasible due

to its high computational cost, both in time and memory.

For this reason, we have chosen to carry out a descriptive

approach to analyze the quality of the grouping, based on

the intra-cluster distances.

We have selected three parameters that allow us to

describe the distance distribution of all objects in a par-

ticular neuron: the width of the distribution according to

the value of the FWHM (Full Width at Half Maximum),

the skewness that measures the asymmetry of the distances

distribution, and the kurtosis that measures the level of

concentration of distances. A high quality clustering will

result from neurons with low values for the parameter

FWHM and with large positive values for both the skew-

ness and for the kurtosis. In order to quantify any neuron

clustering quality, we must establish a relative ranking of

the values of those indices in any particular map. Thus, for

example, the quality of the FWHM parameter is established

in relation to the average value obtained for the 10% of

neurons with lower FWHM. To facilitate the interpretation

of these indices, we have defined a new categorical index L

based on the values obtained for the three parameters. We

empirically established seven categories to rank L,

according to the values of each three parameters in 6

quartiles (95, 90, 75, 50, 32, and 10). Thus, if all the indices

are in the 95th quantile, L will take value 0; if all are in the

90th quantile, then L will correspond to category 1, and so

on up to category 6, which will correspond to those neurons

whose quality indicators are outside the lowest quantile

considered, 10. A visualization of L is included in GUA-

SOM, and an example is shown in Fig. 12.

8 SOM clustering of ALHAMBRA survey
photometry

Advanced Large Homogeneous Area Medium Band Red-

shift Astronomical (ALHAMBRA) [11] is a photometric

survey developed in the Calar Alto Observatory (Spain)

Table 2 Comparison between SAMP and SAMP? improved

implementation

SAMP SAMP?

Features

Area Local machine Internet

Authentication None User/Password

Security None SSL

Hub nesting Disabled Enabled

Fig. 11 Architecture of SAMP?, our improved version of SAMP
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between 2005 and 2012. It was conceived to study the

cosmic evolution by measuring photometric redshifts of

galaxies until a visible limiting magnitude close to 23.5 dex

in several selected regions of the sky. ALHAMBRA

archives contain approximately 400,000 sources, mainly

galaxies and stars. They used a set of 20 filters covering the

wavelength interval 3500 to 9700 A, plus three additional

filters in the near infrared and a synthetic optical filter built

from the previous ones. The archives contain the processed

information of the sources which, among others, consist of

the calibrated photometry, redshift determinations, and a

statistical flag which uses information about the point

spread function (PSF) of the sources to provide a proba-

bilistic classification between stars and galaxies.

The input that we used to feed the SOMs consisted in the

magnitudes observed in the 24 filters [44] described above,

while the probabilities provided by the catalog (to be a star,

galaxy, or unknown based on the PSF of the images) served

as external information for labeling the clusters. The

clustering obtained by GUASOM was analyzed in [45]. To

summarize, GUASOM was able to reduce the dimension of

the classification problem to a small number of neurons,

whose prototypes represent the full population. Even more,

when we represent in a color–color diagram (Fig. 13) the

neuron prototypes, we see that GUASOM is capable of

efficiently segmenting both types, without the need to

resort to information on the PSF of the sources.

9 SOM clustering of SDSS legacy survey
spectroscopy

SDSS Legacy survey [13] spectra contain a magnitude-

limited sample of galaxies, a near-volume-limited sample

of galaxies called Luminous Red Galaxies (LRG), a mag-

nitude-limited sample of quasars, and a sample of stars. For

each one of these classes, objects are selected from an

imaging database for subsequent spectroscopic observation

according to a target selection algorithm. In the Legacy

main database, there are almost a million spectra for the

two classes of galaxies and more than 100,000 spectra of

quasars. The spectra have a wavelength coverage of

3800-9200 Å, with spectral resolution in the range

1800-2200 Å. An example is shown in Fig. 14.

SDSS employs a spectroscopic pipeline to automatically

classify a given spectrum during data processing1. All

objects are classified (SDSS ‘‘specClass’’ property) as

either a quasar, high-redshift quasar, galaxy, star, late-type

star, sky or unknown (this class represents those objects

without associated label). Additionally to the spectroscopic

classification, the pipeline provides other properties such as

photometry in bands u, g, r, i, and z, astrometry, and the

value of the spectroscopic redshifts (z) that can be useful to

analyze GUASOM segmentation results.

GUASOM clustering results on SDSS Legacy main

survey are shown in Figs. 14, 15, 16, and Tables 3 and 4.

Figure 9 shows the category distribution within a partic-

ular neuron for the SDSS Legacy labels specified above.

This visualization allows to assess GUASOM clustering

according to the SDSS classification for that specific neu-

ron. Figure 15 displays the hits distribution along the map,

which allows to identify regions of interest according to

their density. Note the region in the lower right part of the

map composed of sparsely populated neurons containing

sky observations and distributed over a rather large area in

the map.

Figure 16 displays the category distribution of objects

among the main astronomical classes, labeled according to

SDSS spectroscopic classification. The ‘‘galaxy’’ object

class contains the largest set of objects, and we combined

SDSS information about the object classification with the

values listed for the spectroscopic redshifts, establishing

three redshift categories, namely z\0:1, 0:1� z� 0:15,

and z[ 0:15. Figure 16 demonstrates that the tool dis-

tributes the different types and sub-types of objects with an

ordered topology. It is remarkable that the sky spectra are

well separated from other object types, precisely in the

low-density region pointed out before, the lower right

corner of the map.

It should be noted that in some places, neurons in gray

color appear near the border of two well-defined categories.

These regions, labeled as ‘‘undefined,’’ are composed by

neurons where the qualified majority necessary to assign a

class label has not reached a pre-established threshold (in

this case 80%).

A quantitative measurement of the quality of the clus-

tering obtained with GUASOM can be obtained through

the confusion matrix, presented in Table 3, as well as from

Fig. 12 GUASOM clustering quality categories obtained for SDSS

legacy survey

1 See https://classic.sdss.org/legacy/ for more details

2002 Neural Computing and Applications (2022) 34:1993–2006

123



the performance metrics figures in Table 4. Without going

into detail about the scientific validation of the results

presented therein, the values displayed in the diagonal cells

are always greater than 87% except for the ‘‘unknown’’

class, but for this class, GUASOM is able to identify a

suitable class for approximately 66% of them, proving that

it is strongly effective in classifying SDSS Legacy obser-

vations in astronomical types as well as in separating useful

astronomical observations from sky spectra or other

observational artifacts.

By way of comparison, Table 4 also shows the classi-

fication results of GUASOM main alternative, GTM tech-

nique, on the same dataset. As we mentioned in the

introduction, GTM technique is the probabilistic counter-

part to SOM, and it can represent an interesting option to

perform unsupervised classification or even to cross-vali-

date GUASOM results. The version of GTM that we have

used runs sequentially in Python, while our GUASOM tool

Fig. 13 Example of color–color visualization for ALHAMBRA

survey. The circles in gray represent stars, and the ones in magenta

represent galaxies

Fig. 14 Example of representative spectra for a galaxy in SDSS Legacy survey

Fig. 15 Hits distribution. SDSS Legacy main survey sample

Fig. 16 GUASOM map of the SDSS Legacy main survey showing the

category distribution of objects among the main astronomical classes

from the SDSS spectral pipeline. For the ‘‘galaxy’’ class, there is a

larger set of objects, and the classification labels have been combined

with three redshift categories, showing that the tool distributes the

different types and subtypes of objects with an ordered topology
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has been optimized and runs in a distributed manner, so it

is difficult to compare the execution times. When we

compare the values of the global metrics that illustrate the

success rate of each of the techniques, we see that in the

present application, SOM clustering quality is considerably

better than GTM.

10 Conclusions

GUASOM, an adaptive visualization tool for unsupervised

classification in large astronomical spectrophotometric

surveys, has been described and its usefulness and perfor-

mance demonstrated by conducting unsupervised classifi-

cation of several large sets of astronomical data, both

spectrophotometric as well as spectroscopic. Our goal was

to facilitate the expert analysis of the clustering results by

means of specialized visualizations, a task impossible to

achieve by means of generic tools. We designed a client-

server that handles the data treatment and computational

tasks to give responses as quickly as possible and used

JSON to pack the data between the server and the client.

We optimized, parallelized, and evenly distributed the

necessary calculations in a cluster of machines. By

applying our clustering tool to several databases, we

demonstrated the main advantages of an unsupervised

approach: the classification is not based on pre-established

models, thus allowing the ‘‘natural classes’’ present in the

sample to be discovered, and it is suited to isolate atypical

cases, with the important potential for discovery that this

Table 3 Confusion matrix obtained by comparing GUASOM clustering results with those published by SDSS spectroscopic classification

software in the SDSS Legacy main survey

Class

Star Star Late Galaxy Z01_LT Galaxy Z01_015 Galaxy Z015_GT Quasar Sky Unknown

Prediction Star 88520 1154 1222 415 757 201 58 1517

88.07% 2.48% 0.35% 0.20% 0.30% 1.94% 0.10% 10.34%

Star Late 2107 42981 77 40 688 254 33 565

2.10% 92.55% 0.02% 0.02% 0.27% 0.24% 0.06% 3.85%

Galaxy Z01_LT 3200 140 333834 15621 7049 6280 34 1348

3.18% 0.30% 95.87% 7.34% 2.77% 6.06% 0.06% 9.18%

Galaxy Z01_015 561 62 7273 188898 6785 1201 0 150

0.56% 0.13% 2.09% 88.78% 2.66% 1.16% 0.00% 1.02%

Galaxy Z015_GT 3133 1554 1489 7101 235622 2953 19 2006

3.12% 3.35% 0.43% 3.34% 92.49% 2.85% 0.03% 13.67%

Quasar 2456 243 4118 630 3197 90417 72 1827

2.44% 0.52% 1.18% 0.30% 1.25% 87.21% 0.13% 12.45%

Sky 33 131 23 12 94 109 56492 2295

0.03% 0.28% 0.01% 0.01% 0.04% 0.11% 98.52% 15.64%

Unknown 497 173 187 62 552 446 628 4966

0.49% 0.37% 0.05% 0.03% 0.22% 0.43% 1.10% 33.83%

Total 100507 46441 348223 212779 254746 103674 57340 14678

8.83% 4.08% 30.59% 18.69% 22.38% 9.11% 5.04% 1.29%

Table 4 Performance metrics obtained by GUASOM on the classi-

fication of SDSS Legacy main survey. Global metrics performance

figures are shown both for GUASOM as well as GTM in order to

compare the clustering quality obtained by both methods

Precision Recall F1-Score

Class metrics

Star 0.93 0.88 0.90

Star Late 0.92 0.93 0.92

Galaxy Z01_LT 0.91 0.96 0.93

Galaxy Z01_015 0.92 0.89 0.90

Galaxy Z015_GT 0.93 0.92 0.93

Quasar 0.88 0.87 0.88

Sky 0.95 0.99 0.97

Unknown 0.66 0.34 0.45

Global metrics

SOM 0.91 0.92 0.91

GTM 0.70 0.70 0.69
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entails. The client-server architecture separates the com-

putational part from the visualization part, making things

much easier for the users, and it also allows us to manage

and secure the data.

As shown, this visualization tool enhances the potential

of the SOMs by allowing an in-depth study of the infor-

mation, giving the experts a tool to perform more complex

analysis. Additionally, we believe that the improvements

made in the SAMP protocol can be of great interest

because they allow us to secure the connection, to

authenticate the users that exchange the information, and to

connect applications running on different machines. Fur-

thermore, it is possible to maintain backward compatibility

while expanding connection possibilities.

At this moment, the Gaia Data Release 1 [46], Data

Release 2 [47], and Early Data Release 3 [48] have been

published, but Gaia spectrophotometry will not be avail-

able until Gaia Data Release 3 (DR3), which is scheduled

for 2022. A specific tool version, called ‘‘GUASOM flavor

DR3,’’ will be published to the community in order to

facilitate the analysis of one of the modules included in the

Gaia software pipeline, the Outlier Analysis module [49],

which is responsible for analyzing the classification out-

liers. GUASOM allows the exchange of data with other

tools by means of the Virtual Observatory standard [42].
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