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a b s t r a c t

The automated analysis of eye fundus images is crucial towards facilitating the screening and early
diagnosis of glaucoma. Nowadays, there are two common alternatives for the diagnosis of this disease
using deep neural networks. One is the segmentation of the optic disc and cup followed by the
morphological analysis of these structures. The other is to directly address the diagnosis as an image
classification task. The segmentation approach presents the advantage of using pixel-level labels with
precise morphological information for training. However, while this detailed training feedback is not
available for the classification approach, in this case the image-level labels may allow the discovery
of additional non-morphological cues that are also relevant for the diagnosis.

In this work, we propose a novel multi-task approach for the simultaneous classification of
glaucoma and segmentation of the optic disc and cup. This approach can improve the overall
performance by taking advantage of both pixel-level and image-level labels during the network
training. Additionally, the segmentation maps that are predicted together with the diagnosis allow the
extraction of relevant biomarkers such as the cup-to-disc ratio. The proposed methodology presents
two relevant technical novelties. First, a network architecture for simultaneous segmentation and
classification that increases the number of shared parameters between both tasks. Second, a multi-
adaptive optimization strategy that ensures that both tasks contribute similarly to the parameter
updates during training, avoiding the use of loss weighting hyperparameters.

To validate our proposal, an exhaustive experimentation was performed on the public REFUGE and
DRISHTI-GS datasets. The results show that our proposal outperforms comparable multi-task baselines
and is highly competitive with existing state-of-the-art approaches. Additionally, the provided ablation
study shows that both the network architecture and the optimization approach are independently
advantageous for multi-task learning.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Glaucoma represents the leading cause of irreversible vision
oss in the world [1]. This eye condition is characterized by an
ncreased intra-ocular pressure that produces damage to different
etinal tissues. However, it usually remains asymptomatic until
here is noticeable vision loss, hence being typically diagnosed
t advanced stages [2]. This motivates the development of auto-
ated methods that may facilitate the diagnosis at early stages,
hen the onset of vision loss can be prevented [2].
In order to diagnose glaucoma, ophthalmologists can per-

orm visual field tests [2] and measure parameters such as the
ntra-ocular pressure or corneal thickness [3]. Additionally, im-
ortant signs of the disease, such as optic disc deformations,
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peripapillary atrophy, or retinal nerve fiber layer defects, can be
directly observed using color retinography, a widely available
retinal imaging technique. Among these signs, the deformation
of the optic disc has been the most widely studied for the early
diagnosis of glaucoma [4]. The optic disc represents the head
of the optic nerve and it can be divided into two regions: the
optic cup and the neuroretinal rim. As reference, Fig. 1 depicts a
representative example of retinography, including a detailed view
of the optic disc region. An extensively studied change in the optic
disc of glaucomatous eyes is the enlargement of the cup and the
reduction of the rim [4].

The most common approach for the automated diagnosis of
glaucoma is the segmentation of the optic disc and the optic cup
followed by the extraction of relevant biomarkers [5]. For in-
stance, the vertical Cup-to-Disc Ratio (CDR) has been extensively
studied as a means of diagnosing and studying the progression

of glaucoma [5]. However, in recent years, several works have
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Fig. 1. (a) Retinography and (b) detailed view of the optic disc.
lso explored the diagnosis of glaucoma as a classification task di-
ectly performed over the raw retinographies using Deep Neural
etworks (DNNs) [6]. This approach can exploit additional cues
esides the optic disc and cup morphology and typically offers
superior performance. However, it requires a larger amount of
nnotated training images and lacks the interpretability of the
orphological biomarkers.
In this work, we propose a novel multi-task learning approach

or the diagnosis of glaucoma. In particular, we propose to si-
ultaneously learn the optic disc and cup segmentation and the
laucoma classification using the same DNN. This way, the seg-
entation can benefit from the high level representations learned

rom the image-level classification labels while the classification
an exploit the cues and detailed feedback provided by the pixel-
evel segmentation annotations. In order to successfully apply
his approach, we propose novel alternatives in different key
reas regarding multi-task learning. First, regarding the network
rchitecture, we propose an alternative to effectively perform
oth pixel-level and image-level predictions while sharing most
f the learned representations. Second, regarding the joint opti-
ization of both tasks, we propose a multi-adaptive optimization
trategy that avoids the use and fine-tuning of task-balancing
yperparameters. Finally, the complete methodology as well as
he different components that we propose are extensively val-
dated on different public datasets presenting complementary
linical scenarios. In this regard, we analyze the performance of
he proposed methodology for both glaucoma classification and
ptic disc and cup segmentation, including the extraction of a
elevant biomarker such as the CDR.

The rest of the manuscript is structured as follows. Section 2
resents a discussion of related works regarding the automated
nalysis of glaucoma and multi-task learning. The proposed
ethodology is described in Section 3, including (Section 3.1) the

proposed multi-task neural network as well as (Section 3.2) the
training approach and proposed optimization strategy. Section 4
describes the experimentation setup, whereas the results of our
experiments are presented and discussed in Section 5. Finally,
conclusions are drawn in Section 6.

2. Related work

2.1. Glaucoma diagnosis

In the literature, numerous works have approached the auto-
mated diagnosis of glaucoma from color retinography. Most of the
existing works are focused on the analysis of the optic disc and
optic cup [4], although there are examples of methods focused
on other structures or lesions as well, such as the retinal nerve
fiber layer [7] or the possible peripapillary atrophy [8]. Regarding
2

the different techniques that are used, existing approaches can
be roughly divided into deep learning and classical/non-deep
learning approaches [4,6]. A comprehensive analysis of classical
approaches can be found in Sarhan et al. [4]. Regarding the deep
learning-based approaches, a brief discussion of relevant works is
presented hereafter.

The diagnosis of glaucoma has been addressed as an image
classification task using DNNs in several works [6,9,10]. In these
cases, it is common to use state-of-the-art network architectures
that have already been demonstrated to be successful for image
classification in other application domains [6]. Additionally, these
networks are typically pre-trained on a large-scale annotated
dataset of natural images, such as ImageNet [9–11], although
the pre-training in an optic disc segmentation task was also
explored [9]. The importance of the optic disc for the study of
glaucoma is usually considered by restricting the input domain
to this particular region of the image [10,11]. However, although
this approach may facilitate the training of the network, it can
potentially discard some valuable cues for the diagnosis of the
disease. Moreover, it makes the methods reliant on an additional
processing step for the localization or segmentation of the optic
disc. For those reasons, in the proposed methodology, the whole
unprocessed retinal image is used as input to the network. Then,
the particular relevance of the optic disc region is considered by
incorporating the segmentation of the optic disc and cup as a
complementary task within the same neural network.

Another approach for the diagnosis of glaucoma using DNNs
is the segmentation of the optic disc and cup followed by the ex-
traction of relevant biomarkers, typically the CDR. In this case, it
is also common to use state-of-the-art network architectures and
pre-training the networks on large-scale annotated datasets of
natural images [12–14]. Although there are also several examples
of custom network architectures being proposed [14,15]. Addi-
tionally, the input domain is usually restricted by cropping the
optic disc region [12,14–16], which facilitates the segmentation
but requires the previous localization of the optic disc.

Given that the optic cup is an internal part of the optic disc,
there is a spatial overlap between both regions in the image
(see Fig. 1). Consequently, there exist two possible alternatives
for formulating the segmentation task. One is the multi-label
segmentation [12,15], where the task is split into two binary
problems (disc vs. background and cup vs. background). The
other, which is the one followed in this work, is the multi-class
segmentation [14,16,17]. In this case, the network must predict
the most likely of three mutually exclusive classes: background,
neuroretinal rim, and optic cup. Then, the optic disc can be recov-
ered by adding the cup and rim predictions. Alternatively, Jiang
et al. [13] approach the segmentation as a minimal bounding box

prediction. In this case, taking advantage of the expected shape
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or the optic disc and cup, the segmented regions are defined
s the inscribed ellipses in the predicted bounding boxes. The
xpected morphology of the optic disc and cup is also exploited
n other works by refining the network predictions in a post-
rocessing stage [12,14–16], e.g., filling holes [12] or computing
he convex hull [16]. However, the methodology proposed in this
ork avoids such assumptions about the expected morphology
f the segmentation output. Thus, in our case, both the seg-
entation and classification are learned end-to-end, from the

aw image to the final predictions, avoiding additional processing
tages.
In contrast to other works that focus on the segmentation

nd perform the morphological analysis at a later stage, Zhao
nd Li [18] propose to directly estimate several morphological
ndices together with the segmentation in a multi-task setting.
hen, the predicted indices can be used to elaborate a diagnosis
r risk index for glaucoma. Nevertheless, in this case, the anal-
sis is restricted to the morphological features of the optic disc.
ifferently, we propose a multi-task methodology that directly
stimates the diagnosis together with the segmentation, hence
ntegrating into the same network all the different features that
ay be useful for the study of glaucoma. This presents the poten-

ial of improving the predicted diagnosis as well as the predicted
egmentations and the morphological biomarkers that may be
xtracted from them.

.2. Multi-task learning

Several prior works have specifically focused on addressing
he particular challenges of multi-task learning, such as the net-
ork architecture design and the optimization procedure. A com-
rehensive analysis of these aspects can be found in Vanden-
ende et al. [19].
Regarding the network architecture, most of the existing pro-

osals are focused on the combination of multiple pixel-level
rediction tasks, such as is e.g. semantic segmentation [19,20].
owever, the combination of image-level and pixel-level pre-
iction tasks, such as classification and segmentation, presents
dditional challenges due to the different output characteristics
f both tasks. In this case, the most common approach in the
iterature is to apply those network designs that are known to
e successful for single-task learning, i.e. encoder and encoder–
ecoder architectures for image-level and pixel-level prediction
asks, respectively. Thus, the typical approach is an encoder–
ecoder network where the pixel-level output is obtained from
he decoder and the image-level output from the encoder [21,22].
owever, this design limits the number of learned represen-
ations that can be shared between tasks. This motivates the
etwork design that is proposed in this work, which aims at pro-
iding an increased number of shared representations between
he tasks.

With regards to the optimization procedure, challenges arise
ue to the uneven back-propagated gradients that are provided
y the different tasks [23]. In those cases, the training will
e biased towards the task that provides stronger gradients,
.e. stronger supervisory signals. This issue is even more ac-
entuated in cases of conflicting feedback among tasks, further
enalizing those tasks with weaker back-propagated gradients.
he common approach to face these issues is the use of loss
eighting hyperparameters that aim at balancing the feedback
rovided by the training losses [19]. Usually, these hyperpa-
ameters are set empirically by the researchers, which requires
xtensive experimentation to obtain the best performance [24,
5]. However, there are also several proposals to estimate the
dequate hyperparameters during the network training, attend-
ng to different criteria [19,23]. For instance, Kendall et al. [26]
3

propose to increase the weight of those tasks with lower inherent
uncertainty, whereas Guo et al. [27] increases the weight of the
tasks that are performing worse. In this vein, DWA [14] takes
into account the decreasing rate of the individual task losses.
In contrast to previous alternatives, in this work we propose a
task-balancing approach that does not use loss weighting hy-
perparameters. Instead, following a multi-adaptive optimization,
our proposal directly balances the individual parameter updates
during training, regardless of the original balance among the
supervisory signals.

Instead of balancing the training feedback, other proposals
have focused on mitigating the conflicting supervision. This is
usually addressed by directly manipulating the gradients such
that the number of conflicting cases is reduced [28,29]. In that
regard, we hypothesize that an adequate balance will also reduce
the negative impact of the conflicting cases.

3. Methodology

The proposed multi-task methodology for classification and
segmentation in the context of the glaucoma diagnosis is divided
into two main areas: (1) the network architecture, and (2) the
training and optimization strategy. The procedure and proposals
for each of these areas are described in detail below.

3.1. Multi-task neural network

Regarding the network architecture, the aim of this work is to
provide a viable and effective alternative for applying multi-task
learning to the problem at hand. To that end, we first consider, as
base network, the segmentation-guided architecture proposed in
the work of Fu et al. [9]. This base architecture is an encoder–
decoder network where the segmentation predictions are ob-
tained from the decoder output and the classification predictions
from the encoder output (Fig. 2(a)), which is a common setting in
multi-task learning [21,22]. However, in this case, only part of the
learned representations is shared between tasks. In this regard,
we propose an alternative design based on the idea of sharing
most of the learned representations, allowing to further exploit
the complementary feedback during the training.

The proposed multi-task network, depicted in Fig. 2(b), mainly
consists of an encoder–decoder structure where the predictions
for both the segmentation and classification are derived from
the decoder. Thus, both encoder and decoder are shared be-
tween tasks. In order to adequately generate the classification
predictions, a classification head shaped as a mini-encoder is
added after the main network. This classification head presents
a minimal number of parameters and reduced capacity. Thus, the
relevant representations must still be learned in the main net-
work shared between tasks. A detailed diagram of the proposed
multi-task network is depicted in Fig. 3. For the encoder–decoder
part, we adopt the U-Net architecture [30], which is a well-proven
and commonly used neural network [31,32]. Moreover, the en-
coder of U-Net is that of VGG-B [33], which also represents a
well-proven baseline for image classification. The main character-
istic of U-Net is the use of skip connections between the encoder
and the decoder. These connections concatenate feature maps
from the encoder with those of the same spatial resolution in the
decoder. This way, the decoder not only receives the high level
representations of the encoder output but a complete collection
of multi-scale representations. This facilitates the prediction of
pixel-level details in the segmentation task. In contrast to this,
classification tasks typically benefit from the availability of high
level and low spatial resolution representations near the network
output, as in an encoder network. Motivated by this and following
the idea of U-Net, the proposed multi-task network presents skip
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Fig. 2. Diagrams of multi-task neural networks. (a) Base network. (b) Proposed network.
Fig. 3. Detailed diagram of the proposed multi-task neural network. The blocks of the main encoder and decoder follow the structure of U-Net [30] and VGG [33]. The
numbers above the different blocks indicate the number of output channels, which are used as input to the next block. The concatenations in the classification head
are performed after the downsampling (average pooling), whereas the concatenations in the decoder are performed after the upsampling (transposed convolution).
Additionally, each convolutional layer, excluding the last ones, is followed by a ReLU activation function. The last layer before the segmentation output uses a softmax
function whereas the last layer before the classification output uses a sigmoid.
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connections between the decoder and the classification head.
During the training, the network learns to combine these multi-
scale representations in the most adequate way, as it does for the
segmentation.

The objective of the classification head in the proposed multi-
ask network is to simultaneously perform an aggregation of
ulti-scale representations and a progressive reduction of the
patial dimensions. In order to achieve this with the minimum
arameters, 1 × 1 convolutions are used for the aggregation
f multiple channels and average pooling for the reduction of
he spatial dimensions. As depicted in Fig. 3, the last 64 feature
aps from U-Net are used as input to the classification head.
hese feature maps are downsampled and concatenated with
hose other of the same resolution in the decoder of U-Net. Then,
1 × 1 convolution is applied. This process is repeated at 4

different spatial resolutions, matching those in the decoder of U-
Net. Then, global average pooling is used to reduce the feature
maps to a fixed size of 1 × 1 regardless of the input image size.
The final prediction is obtained using a 1 × 1 convolution, which,
in this case, is equivalent to a fully connected layer. Using this
configuration, the classification head only accounts for a 2.89% of
the network parameters. Finally, in order to adequately generate
the network predictions, the last segmentation layer uses a multi-
class softmax activation function whereas the last classification
layer uses sigmoid.

3.2. Multi-task training

In the proposed multi-task approach, classification and seg-
mentation are simultaneously trained to take advantage of the
complementary feedback provided by the image-level and pixel-
level labels. The training for each of these tasks is formulated
4

according to the common approaches in the literature. In par-
ticular, the diagnosis of glaucoma is approached as a binary
classification and the training is conducted using cross-entropy
as the loss function. Thus, the loss for the classification task is
defined as:

LC
= − yc log(pc) − (1 − yc) log(1 − pc) (1)

where pc denotes the classification output of the network and yc
the corresponding ground truth label.

The joint segmentation of the optic disc and cup is approached
as a multi-class semantic segmentation [17]. In particular, the
optic disc region is split into its two constituent parts, the optic
cup and the neuroretinal rim (see Fig. 1). This way, the network is
trained in a three-class segmentation problem (background, cup,
and rim). Then, the optic disc can be recovered from the network
output by adding the cup and rim predictions. The training is
conducted using cross-entropy as the loss function. Thus, the loss
for the segmentation task is defined as:

LS
= −

1
N

N∑
n

K∑
k

yk,ns log(pk,ns ) (2)

where ps denotes the segmentation output of the network, ys the
orresponding ground truth label, N the number of pixels in the
mage, and K the number of classes, which is 3 in this case.

Finally, the multi-task training is conducted by simultaneously
ptimizing the classification and segmentation losses. In general,
he simultaneous optimization of complementary tasks repre-
ents a complex issue due to different factors. For instance, the
nvolved tasks may present a different level of difficulty, resulting
n different learning dynamics. Also, the use of different loss
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unctions or task-specific layers can affect the relative magni-
ude of gradients back-propagated to the shared layers of the
etwork. These situations can make that one task prevail over
he other, resulting in an unbalanced training and not successfully
xploiting the complementary multi-task feedback. To overcome
hese challenges, we propose a novel multi-adaptive optimization
pproach that aims at providing a well-balanced training between
asks without the use of loss weighting hyperparameters.

Nowadays, adaptive gradient-based optimization algorithms,
uch as Adam [34] or RMSprop [35], are commonly used for the
raining of DNNs. These adaptive algorithms provide an online
er-parameter tuning of the learning rate, resulting in an smaller
ffective learning rate for frequently updated parameters and a
arger one for the most infrequent. This is performed by divid-
ng the global learning rate by a function of past gradients for
ach parameter. Thus, as reference, the effective per-parameter
earning rate is defined as:

t
θi

=
η

f (g t
θi
, g t−1

θi
, . . . , g0

θi
)

(3)

where η denotes the global learning rate, ηt
θi
the effective learning

rate for parameter θi at time t , and g t
θi

the gradient component
for parameter θi at time t . The form of the function f represents
the main difference among the different adaptive algorithms that
have been proposed in the literature.

Considering that the parameter updates are typically com-
puted as the product of the effective learning rates by the gradi-
ents, the adaptive algorithms implicitly provide a normalization
of the gradients at the parameter level. Particularly, the gradient
component for each parameter is always divided by a func-
tion of accumulated past gradients at that same parameter. This
implicit normalization can be taken advantage of in multi-task
learning for ensuring a balanced training without using any addi-
tional hyperparameter. In the proposed approach, this is achieved
by decoupling the gradients of both tasks and computing task-
specific per-parameter learning rates, only considering the past
gradients of each specific task. Thus, the gradients of each task are
normalized independently, resulting in a balanced contribution
of the different tasks to the final parameter updates. In the case
of the classification/segmentation multi-task training, the task-
specific effective learning rates for a parameter θi at time t are
obtained as:

ηt
θi,C

=
η

f (g t
θi,C

, g t−1
θi,C

, . . . , g0
θi,C

)
(4)

ηt
θi,S

=
η

f (g t
θi,S

, g t−1
θi,S

, . . . , g0
θi,S

)
(5)

where ηt
θi,C

and ηt
θi,S

denote the effective learning rates for the
classification and segmentation tasks, respectively, and g t

θi,C
and

g t
θi,S

the gradient components for the classification and segmen-

tation tasks at time t , respectively. This results in normalized
task-specific parameters updates that avoid the imbalance due
to the potentially different magnitude of the gradients between
tasks. Also, the task-specific effective learning rates could ar-
guably provide additional benefits in cases of different learning
speeds among tasks. Finally, the global parameters update is
performed as:

θ t+1
i = θ t

i + ∆θ t
i,C (η

t
θi,C

) + ∆θ t
i,S(η

t
θi,S

) (6)

here ∆θ t
i,C and ∆θ t

i,S denote the parameter updates due to the
classification and segmentation tasks, respectively. These param-
eter updates, which depend on the task-specific effective learning
rates, are obtained by applying the particular formulation of the

desired adaptive algorithm.

5

Fig. 4 depicts a flowchart for the application of the multi-
daptive optimization. In practice, the proposed approach can be
pplied by using two independent instances of the desired adap-
ive optimization algorithm, one for each task, and following the
rocedure depicted in Fig. 4(b). In this work, we use Adam [34]
s optimization algorithm, which is commonly used for both
egmentation and classification tasks [10,36]. In the case of Adam,
he function f in Eqs. (3), (4), and (5) is the square root of
the exponential moving average of squared gradients. Additional
details of the algorithm are described in the work of Kingma and
Ba [34]. Regarding the computational requirements, the proposed
approach requires additional operations to compute the task-
specific gradients and parameter updates. Particularly, whereas
the number of operations in the forward pass is kept the same,
the number of operations in the backward pass is duplicated. Ad-
ditionally, in terms of memory footprint, the proposed approach
requires to keep in memory an additional set of values, including
the gradients and the state of the function f for each task. In
practice, the exact increase in execution time and memory foot-
print depends on the particular experimental setup being used.
For the experiments in this work, this information is detailed in
Section 4.2.

4. Experimental setup

4.1. Datasets

For the experiments of this work, we used the public datasets
REFUGE [32] and DRISHTI-GS [37]. The first dataset is named
after the REFUGE Challenge [32] and consists of 1200 annotated
retinographies, of which 121 correspond to glaucomatous eyes.
The retinographies in this dataset are centered on the macula and
present a size of 1634 × 1634 or 2124 × 2056 pixels. The default
split of the dataset consists of 400 images for test and 800 for
training and validation.

The DRISHTI-GS dataset consists of 101 annotated retinogra-
phies, of which 70 correspond to glaucomatous eyes. The retino-
graphies in this dataset are centered on the optic disc and present
a size of 2896 × 1944 pixels. The default split of the dataset
consists of 51 images for test and 50 for training and validation.

These two datasets provide complementary clinical scenar-
ios, representing the two most common configurations regarding
the capture of the images (centered at the macula or the optic
disc). This allows for a more robust evaluation of the proposed
methodology.

4.2. Training details

For the experiments in this work, the networks are pre-trained
using the self-supervised multimodal reconstruction approach
that was proposed in [36]. Instead of requiring manually anno-
tated data, this self-supervised pre-training relies on the avail-
ability of paired multimodal retinal images, namely retinogra-
phy and fluorescein angiography. Additionally, these image pairs
do not need to be related to the specific application at hand
(e.g. glaucoma diagnosis), which facilitates the gathering and
reuse of the same small set of multimodal images for any target
application in retinography [36,38]. In particular, we use the pub-
licly available multimodal dataset provided by Alipour et al. [39],
consisting of 59 image pairs. The pre-training methodology is de-
scribed in detail in [40]. The multimodal reconstruction consists
in the prediction of fluorescein angiography from retinography.
This represents a pixel-level prediction task, such as the seg-
mentation, hence the pre-training is applied to the main encoder
and decoder in the networks. Each retinography–angiography

pair in the dataset is registered using the methodology described
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Fig. 4. Flowchart for the application of the multi-adaptive approach in the classification/segmentation multi-task training. For reference, a flowchart of the standard
pproach is also included. λC and λS in (a) indicate optional weighting hyperparameters.
in [40]. Then, the network is trained using the negative Structural
Similarity as loss function [40]. The optimization is performed
with the Adam algorithm [34] with the default decay rates of
β1 = 0.9 and β2 = 0.999, and batch size of 1 image. The learning
rate is initially set to α = 1e − 4 and is reduced by a factor of
0 each time the validation loss ceases to improve for 50 epochs.
inally, early stopping is applied with patience of 100 epochs. 9
f the 50 image pairs are used as validation data.
For the multi-task training of the target tasks, we use the

dam algorithm [34] with the default decay rates of β1 = 0.9
and β2 = 0.999, and batch size of 1 image. In order to apply a
learning rate schedule and early stopping, 25% of the training data
is used as validation subset. In the case of the REFUGE dataset,
the initial learning rate is set to α = 1e − 5. For each task, this
learning rate is reduced to α = 1e − 6 after 10 epochs with-
ut improvement in the validation data. Finally, after 20 epochs
ithout any improvement for both tasks, the training is stopped.
hese values are set by taking as reference previous works in the
iterature [36] as well as monitoring the learning curves. In the
ase of DRISHTI-GS, we follow a common approach in the litera-
ure that consists in fine-tuning a network previously trained in a
arger dataset [15,16]. Thus, the experiments for DRISHTI-GS are
erformed by fine-tuning the networks previously trained on the
EFUGE dataset. The fine-tuning is performed on all the training
ata at a constant learning rate of α = 1e−6 during 1000 epochs,

which was deemed enough for convergence in all the cases.
The adequate number of training epochs was empirically set by
performing some initial experiments with 25% of the training data
as validation subset.

In all the experiments, the images are rescaled so that the
width of the visible retina in the images is always 720 pixels. In
order to avoid overfitting, we apply data augmentation consisting
of random spatial transformations of the input images and the
target segmentation maps. In particular, we use affine trans-
formations including scaling and rotation components, which
are commonly used in medical imaging [41,42]. We use a scal-
ing factor of 2S where S is uniformly distributed in the range
[−0.25, 0.25]. Likewise, the rotations are uniformly distributed
in the range [−45◦, 45◦

].
The proposed methodology and the experiments in this work

were implemented in Python 3, using the open source framework
PyTorch for the parts specific to deep learning. In particular, we
used PyTorch 1.1.0 with CUDA 10.0. The training of the neural
networks was performed in GPU using an NVIDIA GTX 1070 with
memory size of 8 GB. Regarding the computational requirements,
6

using the experimental setup herein described, the proposed
multi-adaptive optimization strategy increases the memory foot-
print from 4051 MB to 4473 MB and the execution time during
training from 398 ms to 526 ms per iteration on average.

4.3. Evaluation methods

The evaluation is performed following the common meth-
ods in the related literature [32]. In particular, the classification
task is evaluated using Receiver Operator Characteristic (ROC)
curves, which plot the sensitivity and specificity for different de-
cision thresholds. Additionally, we also compute the Area Under
Curve (AUC) for ROC, which is commonly used to summarize the
performance into a single value.

The segmentation task is evaluated independently for the optic
disc and the optic cup. For this purpose, the predicted optic
disc is recovered from the optic cup and the neuroretinal rim
predictions described in Section 3.2. Then, each segmentation is
evaluated using Precision–Recall curves and the Dice coefficient.
The Precision–Recall analysis allows the study of the performance
at different decision thresholds whereas the Dice coefficient is
typically computed for a single threshold. In this regard, the
binary prediction for the Dice evaluation is directly obtained by
assigning to each pixel the class with the highest likelihood in the
network output.

Additionally, the extraction of morphological biomarkers from
the optic disc and cup segmentation is also evaluated. This com-
plementary evaluation is based on the vertical Cup-to-Disc Ratio
(CDR), which is a broadly extended biomarker for the diagnosis of
glaucoma. Similarly to the Dice coefficient, the CDR is computed
for a particular threshold only. The CDR is defined as:

CDR =
OCheight

ODheight
(7)

where OCheight and ODheight denote the height of the optic cup
and optic disc, respectively. To perform the evaluation, the CDR
is measured in both the predicted segmentations and the ground
truth annotations. Then, the CDR error, δCDR, is measured as the
absolute difference between the predicted and ground truth CDR.

The Dice coefficient and the δCDR are computed for each im-
age and then the mean and standard deviation of the measures
are reported. Additionally, given the expected high inter-dataset
variability regarding these measures [32], a Wilcoxon signed-rank
test is used to evaluate whether the differences between the
distributions are statistically significant [43].
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Fig. 5. Quantitative results and comparison of different methods for the (1st row) REFUGE and (2nd row) DRISHTI-GS datasets. MT denotes multi-task and ST
single-task. In the segmentation results, black markers indicate the operating point at which the Dice coefficient is computed.
4.4. Alternative approaches in the experimentation

In order to comprehensively evaluate the proposed method-
logy, we perform several experiments including common al-
ernative approaches. In particular, the experiments include the
ollowing alternatives:

• MT Proposed: The proposed multi-task methodology con-
sisting of the Proposed network (Fig. 3) and the Multi-
Adaptive (M-Ada) optimization (Fig. 4(b))

• MT Base: The multi-task baseline consisting of a Standard
network (Fig. 2(a)) and the Standard optimization (Fig. 4(a)).
This approach employs loss weighting hyperparameters for
balancing the tasks. The optimal values are empirically found
by grid search in the REFUGE dataset. In particular, the av-
erage performance on the validation set is used as selection
criteria.

• ST: The single-task baseline consisting of an encoder net-
work for classification and an encoder–decoder network for
segmentation.

Additionally, we perform an ablation study considering all the
ossible combinations of network architectures and optimization
trategies. In this case, we also tested two variants of the Standard
ptimization:

• S-GS: The optimal loss weighting hyperparameters found by
grid search in MT Base.

• S-EW: Equal weighting of the two tasks. This is a more naive
variant that does not require additional experimentation.
Thus, in contrast to S-GS, presents a reduced training budget
similar to that of M-Ada.

All the experiments are performed using the same encoder
nd decoder components described in Section 3.1.
7

5. Results

5.1. Experimental results

Fig. 5 and Table 1 depict the main results of our experiments
in the REFUGE and DRISHTI-GS datasets. In general, it is observed
that MT Proposed offers the best overall performance in both
datasets. This demonstrates that MT Proposed successfully lever-
ages the complementary multi-task feedback provided during
the training. Meanwhile, ST results in the second best overall
alternative. This shows that the use of specialized networks for
each particular task can outperform a multi-task setting.

In comparison to MT Base, the greatest improvement when
applying MT Proposed is obtained for the classification task. Ad-
ditionally, regarding the segmentation task, the greatest improve-
ment is obtained for the optic cup. Both these results indicate
that the harder problems benefit more from the MT Proposed
approach. In the first case, it must be noticed that the image-level
annotations provide significantly less feedback than the pixel-
level counterparts for training a DNN. Thus, for the same number
of annotated images, the classification task is expected to be a
harder problem. In the second case, the boundary of the optic
cup is significantly less defined than the outer boundary of the
optic disc. Additionally, in comparison to the optic disc, the optic
cup morphology is more affected in the glaucomatous eyes, which
increases the variability of this structure. For these reasons, the
segmentation of the optic cup is a harder problem, which is also
reflected in the obtained results.

Finally, considering the datasets, the greatest improvement
when applying MT Proposed is obtained for DRISHTI-GS. Similarly
to the previous analysis, we argue that this is a consequence of
the DRISHTI-GS being a harder scenario, especially for the classi-
fication task. This is mainly due to the limited number of training
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Table 1
Quantitative results and comparison of different methods for the REFUGE and DRISHTI-GS datasets. MT denotes
multi-task and ST single-task. The best result for each evaluation metric is always highlighted in bold. For cup
segmentation, disc segmentation, and cup-to-disc ratio, asterisks denote whether the difference with respect to the
best result is statistical significant (* denotes p value < 0.05; ** p value < 0.01; and *** p value < 0.001).
Method Classification Cup segmentation Disc segmentation Cup-to-disc ratio

AUCROC (%) Dice (%) Dice (%) δCDR

REFUGE

MT Proposed 97.60 88.25 ± 5.96 95.85 ± 1.92 0.0373 ± 0.0313
MT Base 93.25 86.02 ± 7.94*** 94.88 ± 2.43*** 0.0438 ± 0.0394***
ST 93.75 88.13 ± 5.80 95.68 ± 1.91*** 0.0367 ± 0.0312
DRISHTI-GS

MT Proposed 94.74 91.03 ± 6.08 97.18 ± 1.37 0.0413 ± 0.0481
MT Base 74.90 87.40 ± 9.11*** 95.98 ± 2.70*** 0.0747 ± 0.0747**
ST 73.18 90.55 ± 6.73 97.19 ± 1.70 0.0447 ± 0.0431
Fig. 6. Examples of predicted optic disc and cup regions for images of the (a,b,c) REFUGE and (d,e,f) DRISHTI-GS test sets. The first row depicts the input images and
each of the next rows depicts the corresponding results for a different method. For a better appreciation, the results are depicted on a cropped square around the
optic disc region. However, all the methods generate full-sized predictions. Green lines indicate the boundaries of the predicted regions whereas black lines indicate
the boundaries of the ground truth regions.
images and the significantly higher proportion of pathological
samples in this dataset. In this regard, it must be noticed that, as
explained in Section 4.2, the results in DRISHTI-GS were obtained
after fine-tuning the networks previously trained in the REFUGE
dataset. However, there is a significant domain gap between
datasets due to the different spatial positioning of the retina and
the general visual appearance. In this case, MT Proposed was able
to better adapt the previously acquired knowledge to the new
scenario with limited annotations.

Fig. 6 depicts examples of predicted optic disc and cup seg-
mentations from the test sets of REFUGE and DRISHTI-GS. The
examples show that MT Proposed and ST produce the most ac-
curate results across the different scenarios. The performance of
the different approaches is closer in the scenarios that, a priori,
are less complex. This is the case of examples (a) and (b), which
correspond to healthy retinas and display adequate illumination.
In contrast, example (c), despite having a similar illumination,
presents significant peripapillary atrophy, a lesion that changes
the general appearance of the optic disc region. Additionally,
there is a limited number of samples of this kind of lesion in
the training data. Another challenging case is that of example
8

(f). In this example, the optic disc boundary seems well-defined
but the visual characteristics of the image are very different from
the other examples. In these more challenging scenarios, MT
Proposed clearly outperforms MT Base.

5.2. Ablation study of the proposed methodology

The results of the ablation study on the REFUGE and DRISHTI-
GS datasets are depicted in Fig. 7 and Table 2. First of all, the
results show that the best performance is always achieved by MT
Proposed, i.e the M-Ada optimization and the Proposed network
applied together. However, the individual applications of these
two components does not always produce an overall improve-
ment with respect to the baseline approach. On the one hand, the
addition of the M-Ada optimization always improves or, at least,
keeps a similar performance with respect to the Standard coun-
terpart. However, on the other hand, the addition of the Proposed
network architecture does not always provide an improvement.
Particularly, when using the Standard optimization strategies,
the Base network achieves a better segmentation performance
in several cases. Nevertheless, the Proposed network is always
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Fig. 7. Ablation study of the proposed methodology in the (1st row) REFUGE and (2nd row) DRISHTI-GS datasets. M-Ada denotes Multi-Adaptive, S-GS denotes
tandard with Grid Search, and S-EW denotes Standard with Equal Weights.
able 2
blation study of the proposed methodology in the (1st row) REFUGE and (2nd row) DRISHTI-GS datasets. M-Ada denotes Multi-Adaptive, S-GS denotes Standard
ith Grid Search, and S-EW denotes Standard with Equal Weights. The best result for each evaluation metric is always highlighted in bold. For cup segmentation,
isc segmentation, and cup-to-disc ratio, asterisks denote whether the difference with respect to the best result is statistical significant (* denotes p value < 0.05;

** p value < 0.01; and *** p value < 0.001).
Optimization Network Classification Cup segmentation Disc segmentation Cup-to-disc ratio

AUCROC (%) Dice (%) Dice (%) δCDR

REFUGE

Proposed (M-Ada) Proposed 97.60 88.25 ± 5.96 95.85 ± 1.92 0.0373 ± 0.0313
Base 93.75 87.94 ± 6.05*** 95.39 ± 2.04*** 0.0381 ± 0.0332

Standard (S-GS) Proposed 96.50 87.68 ± 6.05*** 95.72 ± 1.88*** 0.0392 ± 0.0313*
Base 93.25 86.02 ± 7.94*** 94.88 ± 2.43*** 0.0438 ± 0.0394**

Standard (S-EW) Proposed 93.87 78.11 ± 14.49*** 91.44 ± 4.91*** 0.0778 ± 0.0664***
Base 93.18 82.63 ± 12.4*** 93.0 ± 4.32*** 0.0517 ± 0.0491***

DRISHTI-GS

Proposed (M-Ada) Proposed 94.74 91.03 ± 6.08 97.18 ± 1.37 0.0413 ± 0.0481
Base 88.26 90.31 ± 7.05 96.95 ± 1.73 0.0429 ± 0.048

Standard (S-GS) Proposed 90.08 88.7 ± 8.56*** 96.1 ± 2.01*** 0.0622 ± 0.0554***
Base 74.90 87.4 ± 9.11*** 95.98 ± 2.70*** 0.0747 ± 0.0747***

Standard (S-EW) Proposed 80.67 85.15 ± 8.81*** 94.58 ± 2.94*** 0.0794 ± 0.0691***
Base 69.43 87.21 ± 6.69*** 95.68 ± 2.20*** 0.0665 ± 0.0507***
the best alternative for the classification task, regardless of the
optimization approach.

In order to better analyze the differences between architec-
ures and their interaction with the optimization approaches,
ig. 8 and Table 3 show the effect of varying the loss weight-
ng hyperparameters of the Standard optimization in the perfor-
ance of each network. It is observed that the Proposed network

s able to reach a better performance, especially in the classi-
ication task. However, this network is also significantly more
ensitive to the balance between tasks. For instance, the seg-
entation performance degrades drastically when the weight
f the classification loss is increased. In that regard, the best
9

segmentation results are achieved at a very low weight for the
classification loss. However, the best classification results are also
achieved at a low weight for this task. Thus, the Proposed net-
work is able to simultaneously achieve a successful performance
in the classification and the segmentation. Additionally, these
results indicate that the advantage of the Proposed network in
the classification is not due to the mere increase of layers that
are available for that task, but to the increased availability of
relevant representations that were successfully learned for the
segmentation. In that regard, when combined with an adequate
balance between tasks, the Proposed network allows to further
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Fig. 8. Effect of the loss weighting hyperparameters in the classification and segmentation performance when using a Standard optimization strategy. The performance
when using M-Ada (without loss weighting hyperparameters) is included as a reference point. The segmentation results correspond to the average performance
between the optic disc and the optic cup.
Table 3
Effect of the loss weighting hyperparameters in the classification and segmentation performance when using a Standard optimization strategy. The performance using
M-Ada is included as a reference. The segmentation results correspond to the average performance between the optic disc and the optic cup. Bold denotes the best
results overall for each task and network. Underline denotes the best results of the Standard approach for each task and network.
Task Metric Standard at a given classification loss weight M-Ada

1% 10% 20% 30% 40% 50% 60% 70% 80% 90% 99%

Proposed network

Classification AUCROC (%) 96.50 97.05 95.26 94.20 93.56 93.87 93.26 94.35 94.62 93.40 95.46 97.60
Segmentation Avg. Dice (%) 91.70 90.31 88.55 87.78 86.34 84.77 81.69 80.26 74.04 55.92 22.65 92.05
Base network

Classification AUCROC (%) 90.78 92.97 93.25 93.05 93.36 93.18 92.82 92.87 92.12 93.04 93.05 93.75
Segmentation Avg. Dice (%) 91.56 90.69 90.45 90.41 89.79 87.82 89.34 89.61 89.22 89.11 88.50 91.66
Table 4
State-of-the-art comparison for the REFUGE dataset.
Methods Classification Cup segmentation Disc segmentation CDR

AUCROC (%) Avg. Dice (%) Avg. Dice (%) Avg. δCDR

Wang et al. [12] (CUHKMED)a 96.44 88.26 96.02 0.0450
Orlando et al. [32] (VRT) 98.85 86.00 95.32 0.0525
Orlando et al. [32] (Masker) 95.24 88.37 94.64 0.0414
Orlando et al. [32] (SDSAIRC) 98.17 83.15 94.36 0.0674
Orlando et al. [32] (BUCT) 93.48 87.28 95.25 0.0456

Ours (Multi-task Proposed) 97.60 88.25 95.85 0.0373

aThe classification results are reported in Orlando et al. [32].
take advantage of the multi-task training, providing an overall
better performance than the baseline alternative.

5.3. State-of-the-art comparison

In this section, we provide a comparison of the proposed
ulti-task approach against relevant works in the literature. In

his regard, it must be noticed that our proposal is the first to
uccessfully take advantage of the multi-task learning paradigm
or segmentation and classification in the context of glaucoma
iagnosis. Thus, the state-of-the-art works that are included in
he comparison either are focused on one of the tasks or address
oth tasks but applying different specific approaches.
The comparison for the REFUGE dataset is depicted in Ta-

le 4. In the comparison, we include the three top performing
eams for classification and segmentation from the REFUGE chal-
enge [32]. Nevertheless, it must be considered that, in general,
hese methods are finely tuned to obtain the best performance
n the challenge. Thus, it is common the use of different ad-
oc processing stages and network ensembles [32]. In contrast,
e propose an end-to-end multi-task learning approach without
ny ad-hoc processing. Regarding the results in Table 4, it is
bserved that our multi-task approach offers a very competitive
erformance for both the classification and the segmentation
asks. In this regard, there are a pair of methods that produce bet-
er results in classification but, coincidentally, the corresponding
10
segmentation methods have a worse performance, especially for
the optic cup.

Regarding the segmentation, our approach practically equals
the best results, for both the optic cup and the optic disc. Ad-
ditionally, our approach provides the lowest mean CDR error,
which indicates the best clinical interpretability of the predicted
segmentations by means of the CDR. Considering these results,
our approach is arguably the most well-balanced between classi-
fication and segmentation. In this sense, it can be seen in Table 4
that only one team in the challenge, CUHKMED, is placed top
three for both classification and segmentation.

The comparison for the DRISHTI-GS dataset is depicted in
Table 5. In this case, most of the works focus only on the clas-
sification or the segmentation. In this regard, our approach is
again the only one consisting of a single neural network that is
trained end-to-end for both tasks. It is observed that our multi-
task approach produces the best results for classification and a
very competitive performance for segmentation, including the
best results for the optic cup. Additionally, in comparison with
our method, the state-of-the-art works that obtain better results
for the optic disc present worse results for the optic cup. Hence,
our approach provides a more balanced performance regarding
the segmentation.

Regarding the CDR, our approach provides again the lowest
δCDR, which indicates the best clinical interpretability of the pre-
dicted segmentations by means of the CDR. In this regard, the
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tate-of-the-art comparison for the DRISHTI-GS dataset.
Methods Classification Cup segmentation Disc segmentation CDR

AUCROC (%) Avg. Dice (%) Avg. Dice (%) Avg. δCDR

Shankaranarayana et al. [16] – 84.8 96.3 0.1045
Yu et al. [15] – 88.77 97.38 –
Liu et al. [14] – 89 98 –
Wang et al. [12] 85.83 90.1 97.4 0.048
Sreng et al. [10] 92.06 – 91.73 -

Ours (Multi-task Proposed) 94.74 91.03 97.18 0.0413
classification results reported by Wang et al. [12] are directly
obtained by using the CDR as risk index, which is a common
approach in the literature. For comparison, we performed the
same evaluation using the CDR as risk index for glaucoma di-
agnosis. The obtained result is 89.88 AUCROC(%). Therefore, our
lower δCDR also translates to a significantly better separability
of the healthy and pathological cases. Nevertheless, the result
obtained by the classification output of the multi-task network
is even better by a significant margin. This also happens for the
REFUGE dataset, where the result obtained by the CDR-based
classification is 94.18 AUCROC(%), again lower than the result of
the classification output in the multi-task network. This indicates
that the prediction of the network is based on additional relevant
information besides the optic disc and optic cup morphology (at
least as measured by the CDR).

6. Discussion

6.1. Main results and advantages

The results presented in Section 5.1 demonstrate that the
roposed methodology is advantageous for simultaneous classifi-
ation and segmentation in the context of glaucoma diagnosis. In
his regard, the proposed methodology always outperforms the
tandard multi-task methodology that is used as baseline and
ignificantly improves the classification performance with respect
o the single-task approach. In particular, the results indicate that
ur proposal is particularly advantageous in the most challenging
cenarios, such as the classification task or the smaller DRISHTI-
S dataset. These satisfactory results are achieved due to the
ombination of the two main technical novelties in our methodol-
gy. First, the Proposed network provides a significant increase in
he number of shared representations, which seems to be partic-
larly beneficial for the classification task. Then, the M-Ada opti-
ization ensures a balanced training between tasks while avoid-

ng any additional hyperparameter tuning. The conducted exper-
ments demonstrate that these two approaches are advantageous
or multi-task learning independently of each other.

The comparison with the state-of-the-art also shows that
he proposed methodology is highly competitive with previ-
us approaches that are specialized for either classification or
egmentation. Additionally, besides the rescaling of the images,
ur methodology does not involve any pre-processing or post-
rocessing stage. In the state-of-the-art, however, it is common
he use of pre-processing stages, including in several cases the
revious extraction of the optic disc region. This unnecessarily
omplicates the methodology by adding the optic disc detec-
ion [12,14–16] or segmentation [10] as an additional step. Ad-
itionally, the detection failure rates of this additional step are
sually not integrated in the reported performances. Also, several
orks post-process the predicted segmentations to adequate the
utput to the expected optic disc and cup morphology [12,14–16].
n comparison to all these alternatives, our methodology consists
f a single neural network that simultaneously learns to predict

he final classification and segmentation from the raw images.

11
6.2. Optimization and network architecture analyses

In Section 5.2, we provide a detailed ablation study of the
proposed optimization approach and network architecture. The
results show that, while the M-Ada optimization is always advan-
tageous for multi-task learning, the Proposed network requires
an adequate balance between tasks to outperform the Base net-
work. In our methodology, this adequate balance is automatically
achieved by using the M-Ada optimization.

The success of the M-Ada optimization and the higher sensi-
tivity of the Proposed network to the balance between tasks can
be explained by a combination of different factors. First, it must
be considered that the parameter updates during the network
training are directly obtained from the back-propagated gradi-
ents. In this regard, following a Standard optimization strategy,
those tasks that provide relatively stronger gradients will have
a larger influence in the direction of training. Second, adaptive
optimization algorithms, such as Adam, rely on the recent history
of past gradients to tune the effective learning rates for each
parameter (Eq. (3)). In the Standard optimization procedure, the
gradients of the different tasks are integrated together before
computing the gradients history and the effective learning rates
(Fig. 4). Thus, in the shared layers, the optimization of each task
is also directly influenced by the past gradients of the other tasks.
These effects are more pronounced in the Proposed network
because both encoder and decoder are shared between tasks.

Another factor that should be considered is the effect of the
skip connections. One of the roles of the skip connections is to fa-
cilitate the back-propagation of gradients to the bottom layers of
the network. Besides the skip connections between encoder and
decoder, the Proposed network presents several skip connections
to the classification head. This facilitates the back-propagation of
the classification gradients. Thus, relative to the Base network, the
Proposed architecture makes it easier for the classification task to
dominate the training of the shared layers, which comprise both
encoder and decoder in this network.

The previous issues, which are evident when using the S-
EW optimization strategy, are partially mitigated by the S-GS
alternative and corrected by the proposed M-Ada optimization.
In this regard, M-Ada usually provides the best performance, for
both Proposed and Base networks. This may be explained by
the fact that S-GS can only act on the balance between tasks
at a single point (the network output), whereas M-Ada acts at
each layer of the network. Thus, the latter approach presents
a higher capacity to manipulate the balance between tasks. In
particular, M-Ada allows the simultaneous application of inde-
pendent corrective actions at different layers (and parameters) of
the network. In contrast, the approaches that are based on the
use of loss weighting hyperparameters, such as S-GS, necessarily
assume that a single corrective action is enough for balancing the
tasks throughout the network. The results obtained in Section 5.2
show that this is not necessarily the case. Additionally, this issue
may be accentuated by the presence of skip connections that

explicitly provide different paths for the back-propagation of the
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radients of each task. In this scenario, the results show that
-Ada is the most successful of the studied approaches.

.3. Limitations and future works

Besides the improved performance, the proposed methodol-
gy also presents different computational requirements in com-
arison to the baseline multi-task approach. First, the Proposed
etwork has additional operations due to the mini-encoder clas-
ification head with skip connections. However, this classification
ead has been precisely designed to minimize the increase in
he number of parameters. Second, the M-Ada optimization re-
uires additional memory as well as additional operations to
ompute the task-specific gradients and parameter updates. Thus,
he computational time for each training experiment is extended
n comparison to the use of fixed loss weighting hyperparameters.
owever, in practice, a grid search is typically used to find the
ptimum hyperparameters. In that case, our proposal still pro-
ides a significant reduction of the computational time due to the
act that only a single training experiment is required. Neverthe-
ess, future works could explore different alternatives to further
mprove the computational efficiency of the proposed approach.
lso, regarding the M-Ada optimization, in this work we provide
n extensive comparison against the use of fixed loss weighting
yperparameters, which represents the most commonly used
lternative for multi-task learning. However, in the literature,
here are also additional approaches that allow the automated
stimation of the loss weighting hyperparameters during a single
raining experiment. The proposed M-Ada optimization can be
een as a novel alternative to these approaches and presents the
otential of being successfully applied in different application
omains and multi-task scenarios. Similarly, the Proposed net-
ork also shows remarkable potential for being advantageous in
ther multi-task settings combining pixel-level and image-level
rediction tasks. In that regard, future works could explore the
pplication of our proposals in other domains and tasks as well
s perform extended comparisons with related approaches in the
iterature.

. Conclusions

In this work, we propose a novel methodology that allows the
imultaneous classification of glaucoma and segmentation of the
ptic disc and cup in retinal images. Our proposal presents two
ain novelties regarding multi-task learning. First, we propose a
etwork design that shares most of the layers and learned rep-
esentations between the classification and segmentation tasks.
econd, we propose a multi-adaptive optimization approach that
rovides a well-balanced multi-task training without using loss
eighting hyperparameters.
The proposed methodology is exhaustively validated on two

ifferent public datasets, taking into consideration the diagnosis
f glaucoma, the segmentation of the optic disc and cup, and
he extraction of a relevant biomarker such as the CDR. The
btained results show that, in general, the proposed methodology
utperforms comparable multi-task and single-task alternatives.
dditionally, the proposal is competitive with the best state-
f-the-art approaches, which are specialized for each task and
ypically rely on additional ad-hoc processing. Finally, we also
rovide a detailed ablation study and analysis of the methodol-
gy. This analysis demonstrates that both the proposed network
rchitecture and the optimization procedure are advantageous for
ulti-task learning regardless of each other. Consequently, both
roposals could be individually considered for other applications
f multi-task learning in future works.
12
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