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A B S T R A C T   

Medical imaging, and particularly retinal imaging, allows to accurately diagnose many eye pathologies as well as 
some systemic diseases such as hypertension or diabetes. Registering these images is crucial to correctly compare 
key structures, not only within patients, but also to contrast data with a model or among a population. Currently, 
this field is dominated by complex classical methods because the novel deep learning methods cannot compete 
yet in terms of results and commonly used methods are difficult to adapt to the retinal domain. In this work, we 
propose a novel method to register color fundus images based on previous works which employed classical 
approaches to detect domain-specific landmarks. Instead, we propose to use deep learning methods for the 
detection of these highly-specific domain-related landmarks. Our method uses a neural network to detect the 
bifurcations and crossovers of the retinal blood vessels, whose arrangement and location are unique to each eye 
and person. This proposal is the first deep learning feature-based registration method in fundus imaging. These 
keypoints are matched using a method based on RANSAC (Random Sample Consensus) without the requirement 
to calculate complex descriptors. Our method was tested using the public FIRE dataset, although the landmark 
detection network was trained using the DRIVE dataset. Our method provides accurate results, a registration 
score of 0.657 for the whole FIRE dataset (0.908 for category S, 0.293 for category P and 0.660 for category A). 
Therefore, our proposal can compete with complex classical methods and beat the deep learning methods in the 
state of the art.   

1. Introduction 

Registration consists in aligning a pair of images whose content is 
coincident (in part), but under different imaging viewpoints. Each image 
pair consists of a fixed image, which is used as reference, and a moving 
image that is transformed (or deformed) to match the fixed image, with 
the same contents appearing in the same locations after the registration. 
The registration of medical images presents numerous applications in 
clinical practice, playing an important role in common processing 
pipelines for medical image analysis [1]. In particular, registration fa
cilitates the simultaneous analysis of several images, allowing the cli
nicians to draw better conclusions using more data [2]. It also allows the 
comparison of images that were taken at different time frames, which 
helps to monitor the progression of a disease and perform longitudinal 
studies [3]. Additionally, image registration is also useful for aligning 
the images with a model representing the candidate disease, helping to 

provide the correct diagnosis and treatment. 
The development of automated image registration methods is espe

cially important for computer-aided diagnosis (CAD) systems, that 
cannot rely on the manual registration of the images. This is due to the 
time and effort that a clinical expert would have to invest in the manual 
procedure. The inclusion of automated registration methods in CAD 
pipelines facilitates the analysis of multiple imaging modalities [4], and 
even allows the improvement of the quality and resolution of the images 
[5]. Thus, the availability of accurate registration algorithms can play an 
important role in the improvement of future CAD systems. Current state 
of the art in CAD development is dominated by the use of deep learning 
techniques [6,7]. These techniques have allowed to achieve outstanding 
performances and robustness in novel and challenging medical image 
analysis tasks. But, more importantly, deep learning approaches allowed 
to train systems end-to-end, from the raw data to the expected decisions, 
without the need of ad-hoc pre-processing or feature engineering. This 
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enables flexibility and adaptability of methods to the constantly 
evolving imaging devices and modalities, along with adjusting to chal
lenging conditions, as those derived from the evolution of pathological 
lesions. These desirable features of deep learning, in contrast to classical 
methods, should be also pursued and explored in the development of 
automatic image registration methods. 

The application of image registration methods to retinal image 
analysis is of special relevance. The eyes are the only organs in the 
human body that allow non-invasive in vivo observation of the blood 
vessels and neuronal tissue. Furthermore, the retinal imaging tech
niques, like color fundus retinography, are very common and cost- 
effective. In clinical practice, these images are often employed to help 
to diagnose several diseases like Age-Related Macular Degeneration 
(AMD) or Diabetic Retinopathy (DR), among others. However, many 
challenges still persist in the registration of color fundus images. For 
instance, due to the photographic nature of the images, they are subject 
to multiple variations. These include, but are not limited to, spatial 
displacements due to movements of the patient or imperfect placement 
of the machine and the subject, illumination changes, etc. Furthermore, 
some diseases trigger processes like neovascularization, hemorrhages, 
drusen or edema that can substantially alter the appearance of the 
retina. Therefore, morphological changes in the structures of the eyes 
due to the progression or remission of diseases are also very common. 

Existent registration methods can be broadly divided in two groups 
by considering the type of deformation they apply to the images. These 
groups are rigid and elastic deformation methods [8,9]. The rigid 
methods only consider the deformations of rigid bodies under varying 
imaging views while the elastic models also consider the possible de
formations of the imaged objects. Rigid registration methods can use 
different transformation models that are characterized by their number 
of parameters and their complexity. An intuitive comparison of the 
different transformations can be seen in Fig. 1. In increasing order of 
complexity: rigid body transformations, or Euclidean transformations, 
only allow 2D translation and rotation (3 Degrees of Freedom, DOF); 
similarity transformations add isotropic scaling (4 DOF); and affine 
transformations add shearing (6 DOF). Finally, projective trans
formations, contrary to previous transformations, do not preserve 
parallelism as they operate in the projective space (8 DOF) [8,10]. 

The elastic registration methods can also allow local deformations of 
the images using additional parameters. These models are appropriate 
for certain organs or parts of the human body that are subject to size or 
shape changes. For instance, common movements, or body positioning 
during the imaging, can alter the shape of some organs, which motivates 
the wide use of elastic models in the field of medical image registration 
[9]. 

As each transformation is more complex and requires more param
eters, more point matches among image pairs are needed for a method to 
accurately create a suitable deformation model. Therefore, the advan
tage of the simpler models is that, although the produced transformation 
is simpler, they require less reference points. Elastic models require 
many more parameters to be optimized (in the order of tenths of thou
sands [9]) when compared to rigid deformation methods (eight at most). 
However, using a simpler transformation model than the one required to 
model the transformation between the images in each registration pair 

will result in poor performance. The images will be approximately 
registered, but with a low accuracy due to the lack of power of the used 
transformation model. Conversely, using excessively complex trans
formations, allowing for DOFs that are not present in image pairs, results 
in a more complex optimization process and an increase in the risk of 
overfitting. Thus, the selection of the transformations is an important 
step and should be carefully selected for each topic. In terms of retinal 
fundus images, the expected displacements are due to viewpoint varia
tions, and usually not manifesting tissue deformations, therefore the 
rigid transformations are commonly the most appropriate. However, 
state of the art methods use varied transformation functions, depending 
on the particular goal. Some examples are quadratic models to account 
for FOV (Field Of View) deformation of the eyes [11], affine trans
formation [12] or even elastic transformations [13]. 

Registration approaches can also be classified according to the 
methods they use to register images. In this regard, there are two groups, 
classical-methods and the novel deep learning methods. Additionally, 
classical-methods can be divided into two categories: intensity-based 
(IBR) and feature-based (FBR) [14]. 

IBR methods use similarity metrics to maximize the matching be
tween the intensity values of the fixed and moving images being regis
tered. These methods use gradient-descent or similar approaches to 
optimize the similarity over the considered transformation parameter 
space. Commonly used metrics include mutual information (MI) [15], 
normalized cross correlation (NCC) [16], mean squared difference 
(MSD) [17], etc. 

On the other hand, FBR methods use points of interest, called land
marks, to guide the matching between the images to be registered. The 
overall idea is to find a maximal set of correspondences between the 
landmarks in both images that uniquely characterize a valid trans
formation. To ease finding pair-wise landmark correspondences be
tween the images, the landmarks are usually associated to 
transformation-invariant feature representations. These representa
tions describe the image contents around each landmark. FBR ap
proaches have been extensively used in retinal image registration. Most 
approaches use broad-domain landmark detectors, like Harris corner 
detector [18], SIFT [19,20] or SURF [21]. Although the results for these 
algorithms are accurate, they produce many generic points that require 
descriptors to facilitate the matching procedure. The main advantage of 
these methods is that they do not require ground truth or labeled images. 

Other works, instead of using broad-domain methods, solve this issue 
designing domain-specific descriptors [22], although they still rely on 
generic detection algorithms. Conversely, domain-specific detection 
methods rely on the extraction of natural landmarks, such as vessel in
tersections. These methods can greatly reduce the number of detected 
candidate points. This enables descriptor-less matching [14] as it re
duces the complexity of the matching process. This is an advantage as it 
can reduce the execution time and overall computational complexity. 
Furthermore, domain-specific interest points are advantageous as they 
can also be used for multimodal image registration as they are preserved 
across different imaging methodologies [14,23] whereas generic points 
are not guaranteed to be present across the different image modalities. 

In terms of retinal imaging, feature-based approaches are preferable 
over intensity-based methods as the relevant patterns for registration are 

Fig. 1. Appearance of different geometric transformations.  
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sparse and scattered, and the background of the images is usually ho
mogeneous. Furthermore, these image pairs commonly show the pro
gression of diseases which is more detrimental to intensity-based 
methods. Therefore, contrary to other medical image registration areas, 
FBR is preferable over IBR due to the particularities of retinal imaging. 

Due to their advantages, novel deep learning methods are becoming 
more and more widely used, replacing classical methods, specifically in 
the field of medical image registration. For instance, some recent deep 
learning works aimed at computing similarity metrics using Convolu
tional Neural Networks (CNNs) [24]. This allowed to learn the relevant 
features to estimate the matching between images. Nevertheless, the 
registration procedure still requires an iterative process to search for the 
optimal transformation. Other methods can predict the transformation 
matrix directly by relying on parameter regression [25]. However, there 
are very few works in the field of retinal image registration, to the best of 
our knowledge just one [26]. This is due to the specific features of this 
domain, which prevent the direct adoption of widespread methods. 
Commonly used approaches are generally intensity-based and thus not 
adequate and disadvantageous for retinal image registration even if they 
are successful in other medical areas or if they can be adapted for fundus 
registration [26]. 

The specific methodologies for color fundus image registration are 
currently dominated by classical methods [11,27]. Even if new 
deep-learning-based pipelines are starting to appear [26], they still 
cannot compete in performance with the classical proposals. Among 
these classical approaches, most of them use generic point detectors, 
domain-specific keypoints or a combination of both. Generic keypoints 
often require the use of descriptors to properly match those landmark 
points [18,21]. These descriptors allow to perform direct pairwise 
matching of keypoints through representation comparison. This allows 
to reduce the complexity of the matching process. On the other hand, 
methods that only employ domain-specific interest points usually result 
in a lower number of specific detections, which can allow to avoid the 
use of descriptors, while keeping complexity low [14,28]. Retinal image 
domain-specific landmarks are generally related with the arteriovenous 
vessel tree. This vascular tree is a complex network of arteries and veins 
which often intersects and branches. These vessel crossovers and bi
furcations are natural characteristic points for ophthalmological images 
and their relative locations can be used as a biometric pattern due to 
their uniqueness among individuals [28]. 

In this work, we propose the use of deep learning to detect repre
sentative vascular tree landmarks and use them as reference points for 
retinal image registration. Particularly, we employ vessel crossovers and 
bifurcations which have already been successfully exploited as domain- 
specific landmarks for registration using classical methods [29,30]. 
Moreover, deep-learning feature-based detectors have not yet been used 
in retinal image registration despite the fact that this pattern recognition 
technology usually surpasses the performance of classical methods and 
that feature-based approaches are the most adequate for this imaging 
modality. Therefore, combining deep learning methods with 
feature-based registration is highly desirable. Our method intends to 
integrate these two approaches in conjunction with domain-specific 
vascular tree landmarks. Thus, our proposal is the first method of this 
kind in the state of the art. This way, our method has the combined 
advantages of these approaches, such as end-to-end training, robustness 
from deep-learning and the benefits of keypoint-based approaches 
which are inherent to this domain. 

We propose a deep learning method to detect vessel tree landmarks 
and use them as reference points for retinal image registration in com
bination with an approach based on RANSAC (Random Sample 
Consensus). This method is based on proven classical state-of-the-art 
works [14,28]. The use of domain-related landmarks allows for direct 
point matching without the computation of complex descriptors, thus, 
reducing the computational complexity of our approach. This, in turn, 
can enable fast image registration allowing for easier clinical adoption. 
Additionally, we propose to use simple similarity transformations to 

register these images. Similarity transformations assume that the retinal 
fundus is a plane which is a simplification when compared to state of the 
art methods which use more complex transformations, with more de
grees of freedom [11]. Consequently, our method only requires two 
matching points per image pair which allows to register images with 
severe disease progression which can occlude many landmark points, 
thus facilitating clinical uses. This is an advantage over state-of-the-art 
methods that require a larger number of matches to produce their 
transformation models, although it limits the transformation capabilities 
of our approach. 

In summary, our proposal is the first feature-based deep-learning 
registration method for fundus images. Currently, fundus image regis
tration is dominated by classical FBR methods. However, these classical 
methods have several disadvantages when compared to novel deep 
learning approaches. Deep learning methods are highly desirable as they 
allow to train systems end-to-end, from the raw data to the expected 
decisions, without the need of ad-hoc pre-processing or feature engi
neering. This enables flexibility and adaptability of methods to the 
constantly evolving imaging devices and modalities, along with 
adjusting to challenging conditions, like those derived from the evolu
tion of pathological lesions. However, current deep learning methods 
are intensity-based which is not suitable for fundus images, due to the 
sparse relevant structures and homogenous backgrounds. Although 
feature-based approaches are preferable there are no deep learning 
methods of this kind for fundus images. Therefore, using a deep-learning 
feature-based method is highly desirable. Moreover, our approach pro
poses to use domain-specific keypoints. These highly specific points can 
be matched without descriptor computation thus reducing the time 
complexity of our method. 

This manuscript is organized as follows: Section 2 presents the 
related works, detailing their main features and achievements. Next, 
Section 3 presents the whole methodology, explaining the different 
steps, describing the used dataset and the experimental and evaluation 
approaches. Section 4 describes and discusses the results that were ob
tained and the main challenges and limitations of this work. Finally, 
Section 5 includes the conclusions about the proposed method as well as 
potential future lines of work.f 

2. Related work 

Nowadays, there are many methods for registering images either 
medical or non-medical. Specifically, the field of medical image regis
tration has been receiving a lot of attention along the years [1]. In 
particular, the field of retinal images and especially color retinography 
registration, has been the topic of several works [31]. 

Currently, this field is dominated by classical methods, which obtain 
the best performances [11,27]. For instance, REMPE uses a mix of 
generic points (SIFT) and domain-specific landmarks (bifurcations) to 
match the images. This method employs RANSAC to find a first regis
tration approximation and then refines it with Particle Swarm Optimi
zation and with a more complex transformation model. This two-step 
matching is repeated several times to find the optimal solution, which is 
selected from all the candidates. Differently, VOTUS [27] creates graphs 
from the whole arteriovenous tree. These graphs are matched among 
images using a novel algorithm in conjunction with several classical 
image features (like Gabor filters or saliency maps). Finally, the trans
formation is created using DeSAC (Deterministic Sample And 
Consensus). 

Regarding the detection of domain-specific landmarks such as 
crossovers and bifurcations, classical methods usually consider domain- 
specific features of the vascular tree. For example, in Ref. [32] filter 
bank orientations were used to determine the presence of these land
marks. In particular, our proposal is based on previous works [14,28] 
that also use classical methods to detect these landmarks. Specifically, 
these works use a creases-based level set extrinsic curvature (LSEC) to 
segment the blood vessels. From this segmentation, the vessels are 
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labeled, and their discontinuities fixed. Crossovers and bifurcations are 
detected using the angles associated with the blood vessels that form 
them. Finally, a filtering process is used to remove spurious detections. 
Other more recent works proposed deep learning approaches for their 
detection [33–35]. These novel methodologies improve the results of 
classical approaches. However, despite the performance increase and 
the advantages of deep learning in this domain, none of these methods 
have been used in image registration. 

There are specific deep learning pipelines for the registration of 
medical images. For instance, some methods can directly predict the 

transformation for the moving images. These methods create a regres
sion model to recover the transformation matrix parameters and align 
the images [36]. However, due to the lack of training data it is not al
ways possible to use labeled data, therefore it is common for some 
methods to use unsupervised learning [37,38]. These methods map the 
corresponding pair of images to the deformation field that aligns the 
images [38]. 

The work of Zou et al. [26] is an adaptation of this type of methods 
[36,37]. Currently, this is the only deep learning method designed for 
fundus image registration. This work proposes a deep regression 

Fig. 2. Overview of the whole methodology.  
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network (Structure-Driven Regression Network, SDRN), capable of 
creating deformation fields at different scales. This kind of deep 
learning-based methods have yet to achieve the performance of the 
classical ones in fundus images [11,27], contrary to other image regis
tration application fields [38]. This is due to the particular requirements 
and challenges in the registration process of retinal images, like the 
preservation of sparse detailed structures (like blood vessels) over 
relatively uniform backgrounds, the progress of diseases, or the 
expectedly large displacement transformations. These factors often 
impede the straightforward adoption of deep learning methods that 
have been successful in other medical areas. 

3. Materials and methods 

3.1. Methodology 

Our method is schematically described in Fig. 2. Our approach can be 
separated in several parts: 

Landmark detection training: we train a CNN using the DRIVE 
dataset to detect blood vessels and bifurcations. We transform the 
landmark location ground truth to heatmaps as depicted in the top-most 
part of Fig. 2. This has several advantages over using the standard 
location ground truth. The heatmaps predicted by the network are 
compared to the ground truth to compute the loss. The overview of this 
step is detailed in subsection 3.1.1 and the heatmap generation process 
is specified in subsection 3.1.2. The choice of architecture (U-Net) is 
elaborated in subsection 3.1.4. 

Landmark detection inference: The network is tested using the 
FIRE dataset. As shown in the middle section of Fig. 2, each image in the 
pair is given as input to the network, which predicts their landmark 
heatmaps. These heatmaps are then converted to precise landmark lo
cations using a local maxima detection filter. The local maxima filter is 
thoroughly described in subsection 3.1.3. The final result of this step is 
the set of crossovers and bifurcations for each image in the pair. 

Point Matching: The crossovers and bifurcations are matched 
among the images using a RANSAC-based approach. Due to the specific 
landmarks used, this step does not require descriptor computation. A 
similarity transformation with 4 DOF is used, therefore only two point 
matchings are needed to align the images. This step is comprehensively 
explained in subsection 3.1.5 

3.1.1. Landmark detection 
The first step of the proposed methodology is to accurately detect the 

landmarks in each image of the pair using a CNN. The landmark 
detection requires not only the prediction of each landmark location, but 
the distinction among the two types of landmarks, crossovers and bi
furcations. Furthermore, the number of these landmarks is unknown and 
variable among the images. Overall, the use of neural networks instead 
of classical methods to automate this task is desirable as it greatly re
duces the time that is employed in feature engineering and is more 
adaptable to new imaging devices. 

This task can be divided in two separate parts, as represented in 
Fig. 2. Firstly, the landmark detection training which employs the 
DRIVE dataset as input data. During the training, the landmark location 
ground truth is transformed to heatmaps. Therefore, the network learns 
to predict these heatmaps in its training stage. This output is converted 
back to precise locations in the landmark detection inference task. This 
is done through a local maxima filter. It should be noted that this second 
step uses the FIRE dataset to evaluate the performance of the registration 
methodology. Once the inference heatmaps are transformed to precise 
locations, these points can be used by a RANSAC matching algorithm to 
create the suitable transformation models. 

3.1.2. Heatmaps 
The straightforward way to use a neural network which would 

simply be predicting the landmark location (binary maps) from a binary 

ground truth map (the exact pixel-wise location of the landmarks 
marked as positive class). This is not suitable due to the heavy unbalance 
between classes i.e., the negative class (background) is much more 
numerous than the single pixels representing each landmark. On that 
account, we follow the approach in Ref. [33], which trains the network 
using heatmaps generated from the binary ground truth. These heat
maps have maximum values where the binary maps had located a 
landmark, progressively decreasing the values in the surrounding pixels. 

The heatmaps are defined as multi-instance as each one represents 
multiple landmarks. Using heatmaps increases the information that is 
made available to the network from the original hard or binary labels, 
which can improve the feedback in the detection step. Furthermore, the 
use of heatmaps or soft labels is also beneficial in several scenarios as 
they mitigate potential noise in the original, binary, ground truth since 
the patterns that make up each landmark can spawn several pixels like in 
the case of thick blood vessels or in the case of thin vessels with poor 
contrast. To create these maps, two alternatives are tested, a Gaussian 
kernel and a Radial Hyperbolic Tangent kernel (Radial Tanh) [33], by 
convolving the original binary ground truth maps. The saturation dis
tance of the Radial Tanh kernel and the standard deviation of the 
Gaussian kernel allow to control the region of influence for each land
mark, modifying the aspect of the heatmaps. 

To distinguish among the two types of landmarks, the prediction is 
approached as two separate heatmaps, one for each landmark type. 
Therefore, the network would generate a two output channel, gener
ating two independent heatmaps, one for bifurcations and one for 
crossovers. However, using two channels penalizes identifying a land
mark in the wrong category (i.e., detecting a crossover instead of a 
bifurcation). Thus, to avoid the network preferring to miss doubtful 
cases which could penalize it more than simply not predicting a land
mark, we employ a third channel. The third channel includes both 
landmark types, crossovers and bifurcations, encouraging the detection 
of these landmarks regardless of their type [33]. The network for the 
multi-instance heatmap regression is trained using the mean squared 
error (MSE) between the prediction and the target heatmaps as the loss 
function. 

3.1.3. Local maxima detection 
The coordinates of each landmark point can be recovered from the 

predicted heatmaps using a local maxima detection. Specifically, we 
employ a maximum filter coupled with an intensity threshold, which 
allows to retrieve only the most salient local maxima. The intensity 
threshold prevents background noise from being detected as keypoints, 
preserving only the more relevant detections. This threshold is obtained, 
for each image, multiplying the maximum value of the network outputs 
(landmark heatmaps) with a fixed value factor (0.35 in our approach). 
This can compensate for the particular features of different images and 
datasets, as the output of the network is linear and thus not bounded. 
The value of this threshold is selected to maximize the F1-Score in the 
test set of the DRIVE dataset. Several thresholds were tested in intervals 
of 0.05 and we found that 0.35 provided the best F1-Score [33]. 

The maximum filter selects the highest peak in an area. The radius of 
this area needs to be lower than the minimum expected distance be
tween landmarks of the same type in order to correctly detect two 
separate maximal points when there are two close candidate points. 
Mixing crossings and bifurcations does not affect the results as they are 
predicted in two different channels of the network. A high value for the 
radius is appropriate to remove spurious peaks due to the low heatmap 
smoothness. In this work, we select a conservative value of 3 pixels for 
the radius parameter. 

3.1.4. Architecture 
The chosen network architecture to detect landmarks is U-Net, spe

cifically the exact architecture described in Ref. [39], a variation of 
VGG13. This architecture is chosen due to its satisfactory results in 
previous works related to retinal images [40]. Furthermore, U-Net 
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obtains the best results in the detection of vessel crossovers and bi
furcations in retinal images, demonstrated in the public DRIVE dataset 
[33]. This combined with its wide use in medical imaging makes this 
neural network the best candidate for the keypoint detection task. A 
diagram for the chosen U-Net architecture is shown in Fig. 3. The output 
function of the network is linear. The total number of trainable pa
rameters is 31,031,875 from a total of 64 base channels or N. 

3.1.5. Point matching 
Once the landmarks are detected for each image in the pair, they can 

be used to infer a transformation via a point matching procedure 
following state of the art methods [14,28]. The chosen method is 
RANSAC [41], widely used in image registration, even in the top 
state-of-the-art methods [11]. RANSAC is able to estimate the parame
ters of a mathematical model, in this case the transformation of the 
moving image to be aligned with the fixed one, from a set of observed 
data, in our case, the landmark points. To do so, RANSAC separates the 
data into inliers which are points that do explain the mathematical 
model and outliers which are noise and do not fit in the model. 

The number of inlier points that are necessary to create a model 
depends on the complexity of the model [42]. To model the trans
formations that are required to align the image pairs, we propose to use a 
simple similarity transformation. This transformation allows for trans
lation (both X and Y axes) as well as rotation and isotropic scaling [8] 
and thus only requires two matching points. Consequently, our meth
odology needs at least two crossings or bifurcations per image to 
correctly register images. Therefore, it can register images even in cases 
of severe disease progress. As diseases change the aspect of the retina, 
they can occlude some of the crossovers and bifurcations, thus a low 
point requirement can be useful in pathological cases. Additionally, the 
simple transformation model reduces computational complexity and 
execution time. 

Furthermore, our matching method does not require the crossovers 
and bifurcations to be present in equal (or similar) numbers. The pro
posed method only matches each point within its type among the two 
images, which allows for faster execution due to the lower number of 
checks that are required by the RANSAC algorithm. The only informa
tion that is required by the method is the position of the landmark itself, 
and its type (whether they are a crossover or a bifurcation). Therefore, 
there is no need for the computation of expensive and sophisticated 
descriptors for each landmark, a common feat of the state of the art [11, 

18]. The landmark-detector network is tuned towards high specificity 
and thus most points should be accurate which should help the RANSAC 
method to be fast and accurate. 

3.2. Datasets 

Currently, there is no dataset with both crossovers and bifurcations 
as well as registration data as labels. The DRIVE dataset [43] contains 40 
images with binary crossings and bifurcation labeling (i.e., pixels 
marked as landmarks). The FIRE [44] dataset contains 134 image pairs, 
divided into several categories, and contains registration labeling. We 
propose to learn crossings and bifurcations from the DRIVE dataset [43] 
and apply this knowledge to the FIRE [44] dataset, which has the 
appropriate registration labeling to evaluate the method. 

The binary labels from the ground truth of the DRIVE dataset cor
responding to crossovers and bifurcations are converted to heatmaps. 
This allows to improve the likelihood of correctly detecting the land
mark and reducing the noise. As previously mentioned, this is done by 
convolving the original binary ground truth maps with two separate 
alternative kernels: Gaussian kernel and Radial Hyperbolic Tangent. 

Regarding the FIRE dataset, it is divided into three separate cate
gories (S, P, A) depending on the image features. Category S contains 
image pairs with a high degree of overlapping (more than 75%) and 
have no anatomical differences among them. Similarly, images from 
category P lack anatomical differences, however, their overlapping is 
lower (less than 75%). Finally, category A images have large overlaps 
but have anatomical differences among them, associated to the pro
gression of pathologies. The 134 image pairs are divided in 71 from 
category S, 49 from P and 14 from A. Representative images from both 
datasets, FIRE and DRIVE, can be seen in Fig. 4. 

Regarding the FIRE dataset, while its control points are indeed blood 
vessel bifurcations and crossovers they are not suitable as a ground truth 
to learn how to place these points. The FIRE dataset is designed for 
registration validation through the evaluation of distances on few 
landmark positions. These labeled landmarks are only those occupying 
the overlapping portion between image pairs thus most of all the exis
tent bifurcations and crossovers are missing. Therefore, they are too 
incomplete to be used as ground truth for learning landmark detection. 
Instead, for the training stage we use the DRIVE dataset, which has the 
full ground truth of crossings and bifurcations available. Moreover, we 
need an independent test dataset to evaluate the registration, which is 

Fig. 3. Diagram of the chosen U-Net network which shows the number of output channels in each convolutional block.  
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why the whole FIRE dataset is held out for the test. 
The use of different datasets implies certain difficulties, as both 

datasets have different features. For instance, the DRIVE dataset has an 
image resolution of 584 × 565 while the FIRE dataset has a resolution of 
2912 × 2912. Moreover, all the subjects in the DRIVE dataset are di
abetics but only 7 of the 40 images show signs of diabetic retinopathy, an 
eye pathology, in the specific form of background retinopathy. On the 
other hand, FIRE contains 134 image pairs which can be divided in 
several categories depending on the features of the images. In this re
gard, only category A (14 image pairs) shows cases of retinopathy in the 
form of increased vessel tortuosity, microaneurysms, cotton-wool spots, 
etc. This means that, although the source disease is the same, the 
symptoms vary between datasets adding an additional layer of 
complexity. 

3.3. Experimental details 

To train the network, it is initialized following the method by He 
et al. [45], with a zero-centered normal distribution. The chosen opti
mizer algorithm is Adam [46] with decay rates of β1 = 0.9 and β2 =

0.999, the default values proposed by its authors. The network was 
trained from scratch and hyperparameters were set empirically using the 
evolution of the validation loss so that they provide stable learning. The 
learning rate is originally set to α = 1e − 4 with a patience for the 
learning rate schedule of 2500 batches before reducing the learning rate. 
Each batch contains one image and the learning rate is reduced by a 
factor of 0.1. The training stops after the learning rate reaches α = 1e − 7 
given that there are no significant changes in the validation loss after 
that point. 

To train this network we employ the DRIVE dataset, making use of its 
standard partition, that is, a specific set of 20 images is reserved for 
training and the rest for testing. From the test set, 25% of the images 
were used as the validation set. Furthermore, to avoid overfitting in the 
training, spatial data augmentation is used. This augmentation consists 
of random affine transformations that are applied to the original fundus 
images as well as the ground truth coordinates which are then used to 
create the target heatmaps. The parameters for said transformations 
were empirically selected over the training set. Particularly, the images 
can be rotated, randomly, from −90 to 90◦. Each image can also be 
zoomed from 0.9 × to 1.1 × , also randomly. Furthermore, the images 

are randomly sheared between −20◦ and 20◦. Color augmentation is 
also used by randomly changing image components in the HSV color 
space [47]. The network is trained using the full resolution of the DRIVE 
images (584 × 565). It should be noted that the keypoint-detection step 
is completely tested and validated using DRIVE dataset and the method 
was not tuned in the FIRE dataset. 

In this work, we aim at performing a successful registration regard
less of the resolution of the images. This is due to the marked differences 
in image resolution from the dataset used to train the method (DRIVE) 
with a resolution of 584 × 565 while the FIRE dataset, used to test the 
method, has a resolution of 2912 × 2912. The main issue is then that the 
landmark detection network is trained at a fixed image size given by the 
DRIVE dataset, significantly smaller than the FIRE resolution. In order to 
overcome the challenge of facing different image resolutions using the 
same network, we explore several alternatives. 

The first alternative that we considered is to upscale the detected 
points from the resolution in which the landmark detector network 
operates (DRIVE dataset resolution) to the suitable one. We named this 
approach point scaling as it directly scales the points. This is a simple 
approach, and it can incur in some issues if the scaling is not fully ac
curate. The second alternative consists in upscaling the predicted heat
map and then, calculate the local maxima over the heatmap already in 
the suitable resolution, the FIRE resolution. We named this second 
approach heatmap scaling as it scales the heatmap before the calculation 
of the keypoints. While this approach is more complex, it could prevent 
some of the inaccuracies that the point matching method may cause. 

The proposed methodology is implemented in Python 3 and C++. 
The U-Net neural network is implemented using PyTorch, an open 
source Python framework, using CUDA 10.0 and cuDNN 7.5.0. Training, 
testing and development was performed on a virtual machine with 8 
cores from an Intel Xeon Gold 6146 CPU @ 3.20 GHz, a single NVIDIA 
GRID M60-8Q GPU, with 8 GB of VRAM and 12 GB of RAM. 

3.4. Evaluation methodology 

In this work, the registration performance is evaluated using two 
different approaches that are used in the state-of-the-art for the FIRE 
dataset. First, we use the registration score proposed by Hernandez- 
Matas et al., authors of the original dataset [44] and state-of-the-art 
methods [11]. The registration score is based around the idea of 

Fig. 4. (a,b) corresponding image pair from Category S, (c,d) from category P and (e,f) from category A, all from the FIRE dataset. (g,h) from the DRIVE dataset.  
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measuring the error between image pairs after the transformation of the 
moving image, the registration error. This error is calculated regarding 
the control points which are the ground truth for the FIRE dataset. If the 
registration error of an image pair is below a threshold, the registration 
is deemed successful and if it is not, it is unsuccessful. If the registration 
is successful the image pair is added to the positive cases, and as the 
error threshold grows more image pairs should fall into the successful 
category. By plotting the ratio of successfully and unsuccessfully regis
tered images using a 2D graph where the X axis corresponds to the value 
of the error threshold and the Y axis to the percentage of successfully 
registered image pairs, an Area Under Curve (AUC) can be easily 
computed. The AUC’s value as well as the plot serves to easily and 
robustly compare among the methods. The resulting AUC, specifically 
defined within specific boundaries (0–100% success ratio in 0–25 pixels) 
is the final registration score. This registration score is the de-facto 
standard for the works that employ the FIRE fundus dataset. 

Secondly, to facilitate the comparison against all the previous works, 
we also adopt the evaluation approach that is used in Ref. [26]. In 
particular, Zou et al. [26] deviate from the standard for the FIRE dataset 
and use the Root Mean Square Error (RMSE) between the control points 
in the images, instead of the distance as the error metric for each image 
pair. Therefore, the final metric is RMSE averaged for the whole set or 
category of images. 

Both metrics will be computed for each of the categories as well as for 
the whole dataset as specified in other state of the art works as well as 
the FIRE dataset proposal [11,44]. 

It should also be noted that, to compare our results to some state of 
the art works, scaling the images is required. For instance, the work of 
Hernandez-Matas et al. [11] uses the full resolution of the FIRE dataset, 
that is, the standard. On the other hand, Zou et al. [26] use the resolution 
in which their network operates, 256 × 256. This makes direct com
parison between methods complex. In order to compare our proposal 
against all the previous works, we perform our evaluation at different 
resolutions by scaling the results. This way we can compare our results 
using both state of the art methods, the ones that use a registration score 
at 2912 × 2912 and RMSE at 256 × 256. 

4. Results and discussion 

The results and discussion section is structured as follows: first in 
subsection 4.1 we explore the alternatives in scaling the results of the 
landmark detection network (DRIVE dataset resolution) to the operative 
resolution (FIRE dataset). Next, in subsection 4.2 we detail a comparison 
among the proposed approach and a previous classical method, since 
both works share the same point matching method, and therefore, only 
the landmark detector changes. Subsection 4.3 compares our method 
with current state of the art works using the same common dataset, 
FIRE. Finally, in subsection 4.4 we discuss the limitations of our 
approach. 

4.1. Experimental analysis 

We conducted the study on the FIRE dataset to evaluate the effec
tiveness of the proposed method. Furthermore, we compare our method 
with different state-of-the-art approaches, both classical and deep- 
learning-based methods. 

The keypoint detector network was trained and tested using the 
DRIVE dataset as this it provides a suitable ground truth for this task. 
The version trained using the Gaussian kernel obtained 81.22% of pre
cision and 70.80% of recall in the test set. Similarly, the Tanh version 
79.63% of precision and 71.58% of recall in the same set. Thus, we can 
say that neither method holds any advantage above the other. 

The results of different variations of the proposed methodology are 
presented in Table 1, which depicts the registration score, the standard 
way of evaluating the registration in the FIRE dataset. The results for the 
different variations of our method are presented in graphical form in 

Fig. 5. Finally, representative examples of the landmark points detected 
by the CNN are shown in Fig. 6 and examples of registered images in 
Fig. 7. 

The results of the test among the different kernels and scaling 
methods that are shown in Table 1 demonstrate an adequate perfor
mance for every variation of the method. While point scaling methods 
can incur in some errors due to interpolation in the scaling process, 
which is mitigated by using heatmap scaling, they still offer better 
performance in some cases, namely P and A categories. The biggest 
difference between point scaling and heatmap scaling methods is 0.8% 
in the case of the Gaussian kernel in category S and in the Tanh kernel in 
category A, favoring the heatmap scaling method. Therefore, even if 
both methods are very similar in results and their differences are not 
noteworthy, for simplicity we choose the heatmap scaling method, as it 
appears more robust against interpolation artifacts and can, more 
accurately, obtain the correct landmark position in the higher resolution 
image. This is due to imperfections in the scaling from the original 
operating resolution of the landmark detector (the DRIVE image reso
lution) to the full FIRE resolution. Scaling the heatmap and computing 
local maxima in the scaled heatmap, instead of the points directly, de
creases the error, making the landmarks more reliable. Regarding the 
kernels that were used, the results indicate that both methods are 
equivalent. In this case the biggest difference among the kernels is, at 
most, 0.5% in terms of the chosen kernel, in the particular case of 
heatmap scaling in the P category. This coincides with the observation in 
the state of the art [33] which also concludes that both kernels are 
identical in performance. Therefore, based on the slight advantage in the 
global FIRE category, even if it is not relevant, we will use heatmap 
scaling with the Gaussian kernel as our reference to simplify the 
state-of-the-art comparisons. 

Overall, the results of the different kernels and scaling methods are 
very close to one another, as the AUCs for each method are practically 
equivalent. This can be appreciated in the registration scores for the 
experiments in Table 1 and the corresponding graphs that are shown in 
Fig. 5, where all the curves are very similar. Therefore, for simplicity in 
the comparison of our work with previous methods and state o the art 
approaches, we choose the heatmap scaling approach in conjunction 
with the Gaussian kernel. 

4.2. Classical vs. deep learning proposed approach 

We compare our learning-based method to our previous classical 
method [28] in Table 2. As previously explained, this method [28] is 
very similar to the one we use as it detects crossovers and bifurcations 
and uses them to estimate a transformation among a pair of images. It 
shares the point matching algorithm with our proposal, although our 
version does not need advanced features to complete the matching 
procedure. That is, both methods employ a similar matching procedure 
which minimizes the differences of both approaches, reducing it to the 
keypoint-detection stage. Therefore, this allows a direct comparison 
between a classical method and a novel deep-learning-based one for the 
detection of vessel bifurcations and crossovers. This comparison allows 
to validate the proposed approach in relation to a classical method, 
highlighting the advantages of the deep learning approach. It should be 
noted that the chosen classical method has already demonstrated 

Table 1 
Comparison among different variations of the proposed methodology. Metric is 
registration score (AUC values, higher is better).  

Models Registration Score (AUC) 

S P A FIRE 

Point scaling Gaussian 0.900 0.298 0.662 0.655 
Point scaling Tanh 0.904 0.296 0.666 0.656 
Heatmap scaling Gaussian 0.908 0.293 0.660 0.657 
Heatmap scaling Tanh 0.905 0.288 0.658 0.654  
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accurate results in biometry [28] and multimodal registration of fundus 
images [14]. However, as is common with classical methods, it is spe
cifically tuned towards a resolution of 768 × 584, thus, the FIRE images 
need to be scaled down to approximately match that resolution. In this 
case, the FIRE images are converted to 720 × 720 and, later, the 
transformation matrix is scaled back to full-size so the results can be 
compared with the rest of methods, including the proposed one. The 
chosen metric is, again, the registration score. 

As shown in Table 2, the results from our method are clearly superior 
in every category to those of the classical method. Therefore, as the 
matching method is shared among the proposed method and the clas
sical one, we can concur that the landmarks detected by the network are 
more accurate. Furthermore, our version does not require the compu
tation of descriptors or the extraction of any feature around each point, 
contrary to the classical method, thus reducing the amount of compu
tation needed and the overall execution time. A completely fair com
parison is complex as the resolutions that the methods use greatly differ 
(720 × 720 for the classical method and 2912 × 2912 for our proposal). 
The size of the images plays an important role in the execution time of 
any algorithm. For instance, the classical method takes an average of 1.5 
s to align an image pair in the lower 720 × 720 resolution but this in
creases to around 15 min per pair when using the full-size resolution. 
This makes a direct comparison among methods difficult. The proposed 
method employs approximately 0.65 s per image pair using full-size 
resolution. Out of that time, it averages around 0.2 s for the U-Net 
inference and heatmap scaling on both images (keypoint detection) and 
approximately 0.45 s in the matching process. Moreover, as the 

proposed method uses deep learning, it has all of its advantages over 
classical methods. Deep learning can be easily adapted to new images or 
domains and does not require ad-hoc image pre-processing or to 
manually tune hyperparameters and use hand-engineered features, like 
classical methods, which significantly reduces the effort needed to train 
the system and simplifies the whole pipeline. 

Succinctly, our approach obtains better results than our previous 
works in every category of the FIRE dataset. Therefore, this validates the 
use of deep learning to detect domain-specific landmarks as the 
matching method is shared among the two approaches. This means that 
the deep learning detector produces more accurate keypoints than the 
previous method since the registration scores improve. Moreover, our 
proposal is faster than the previous method as it takes 0.65 s to register 
each pair versus the 1.5 s of the classical method. 

4.3. State of the art comparison 

The best results for the proposed method and its variations are 
compared to the state of the art works in Table 3. In this regard, our 
results are compared to the work of Zou et al. [26] in Table 4 due to the 
differences in image resolution and evaluation methodology that this 
paper incurs into. It is important to notice that, in Table 4, the results are 
evaluated using RMSE, the chosen method by Ref. [26], hence lower 
values indicate better performance. In contrast, the results depicted in 
Tables 1 and 3 correspond to the registration score, which indicates 
better performance at higher values. Additionally, to produce a fair 
comparison, the registration performance in Table 4 is evaluated at the 

Fig. 5. Evaluation following the standard registration score, depicting the registration success at different error thresholds. Results depicted for (a) Category S, (b) 
Category P, (c) Category A and (d) the whole FIRE dataset. The curves are smoothed with the Savitzky-Golay Filter [48] to eliminate the edges caused by the low 
number of images, especially notable in Category A. AUC values are, however, calculated with the original curves. 
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Fig. 6. Detected crossovers (black) and bifurcations (white) for different representative images of each category. Top row corresponds to Category S, the middle row 
to category P and the bottom row to category A. 
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Fig. 7. Representative images from the registered FIRE dataset, top row corresponds to Category S, the middle row to category P and the bottom row to category A.  
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same low resolution that is used in the work of Zou et al. [26], i.e., 256 
× 256 pixels. This means that most of the pixel accuracy errors in the 
previously detailed upscaling process are not significant and, further
more, many details are lost thus bringing the overall errors closer to one 
another. Moreover, the average used in RMSE is not robust to outliers, 
which means that even a single failed case, could drastically alter the 
metric. Therefore, while RMSE is useful to compare our results to some 
state of the art works, we believe that the registration score proposed 
with the FIRE dataset is more representative of the actual performance 
of any registration algorithm as it employs AUCs which are more robust 
than average as a metric. 

In any case, it is clear that our algorithm improves the performance 
of the work of Zou et al. [26] as it achieves a RMSE of 0.299 for cate
gories A and S as opposed to the state of the art error of 0.915. It is also 
worth highlighting that our method is capable of registering images in 
the P category, discarded by this work due to their lack of overlapping. 
Therefore, our method improves upon purely deep-learning-based 
methods. 

When comparing our method with ad-hoc classical methods, high
lighted in Table 3, we can see that it surpasses a wide range of methods, 
especially in the categories A and S. Particularly, in category S our 
method is only surpassed by REMPE (0.958) [11] and VOTUS (0.934) 
[27] as it obtains an AUC of 0.908. Similarly in category A, our method 
ties with REMPE producing an AUC of 0.660. In this case our approach is 
only surpassed by VOTUS. However, in category P, despite being able to 
register images unlike [26], the results are not competitive with classical 
methods. Our approach obtains 0.293 of AUC while the best method, 
VOTUS, obtains 0.672. 

Depicted in Table 3 are the reported execution times for each 
method. It is not possible to draw fair comparisons from these times as 
the hardware is not the same. However, we can affirm that, given the 
execution time of our method relative to the rest of the approaches, a key 
advantage of our proposal is its speed. Our method is at least an order of 
magnitude faster than any other approach and two orders of magnitude 
faster than the best-scoring methods in this dataset. This could be key in 
real world uses and clinical applications. 

To summarize, our approach surpasses current deep learning 

methods, and it can compete with the classical approaches. Particularly, 
our method is able to register images in category P unlike previous deep 
learning proposals, although its results are not competitive with the top 
state of the art methods. However, in FIRE categories A and S, our 
proposal obtains comparable results to the best classical methods. 
Moreover, our method is the fastest in the state of the art, being capable 
of registering each image pair in under a second, while current state of 
the art approaches employ minutes. 

4.4. Experimental limitations 

Overall, we can say that our method is able to compete with the best 
available registration methods while using a relatively simple pipeline, 
requiring less parameter tuning, as opposed to the state-of-the-art 
methods. However, it is clear that our method obtains worse results 
than the state of the art. Detailing the results for each category, we can 
see them fluctuate depending on the specific categories. In the category 
S, which has high degrees of overlapping and no morphological changes, 
our method is able to place third in the overall state of the art ranking. 
Similarly, in category A, which has a high degree of overlapping but also 
has morphological changes due to progress in diseases, our method ties 
for the second spot in registration score. On the contrary, in category P, 
our method is not able to compete with the best methods in the state of 
the art. This particular category is the one with the lowest overlapping 
among image pairs and, therefore, the highest expected displacement for 
the moving image. The results for this category negatively impact the 
score for the whole dataset. 

The cause for this decrease in performance in category P is the lack of 
degrees of freedom in the transformation used. As we employ a RANSAC 
without budget, the best available transformation (given the detected 
keypoints) is always found, therefore this is not a limitation in the 
matching process. Furthermore, despite the cross-dataset application of 
our keypoint-detector U-Net, the spatial position of the landmarks is 
accurate, as evidenced by the results in the other categories. Finally, we 
have observed that the registration results in category P are not 
completely wrong, following a qualitative assessment, but they are not 
finely accurate. Thus, we can conclude that the lack of degrees of 
freedom is the cause for the diminished performance in the P category 

Table 2 
Comparison among the proposed learning-based method and a comparable 
classical method across all the categories using registration score. Best results, 
highlighted in bold.  

Models Registration Score (AUC) 

S P A FIRE 

Proposed Method 0.908 0.293 0.660 0.657 
Creases feature matching [28] 0.819 0.166 0.550 0.552  

Table 3 
Results for the different state of the art methods and our proposals. All the SOTA results extracted from Ref. [11]. Results measured in AUC with the standard FIRE 
method, higher is better. Best overall results highlighted in bold, results for the proposed method highlighted in italics. The results are ordered according to their 
performance in the overall FIRE dataset. Execution time measured in seconds. * Indicates execution time extracted from Ref. [27] and † from Ref. [11].  

Name Registration Score (AUC) Execution Time Transformation model 

S P A FIRE   

VOTUS [27] 0.934 0.672 0.681 0.812 106* Quadratic 
REMPE [11] 0.958 0.542 0.660 0.773 198† Ellipsoid eye model 
GFEMR [13] 0.812 0.607 0.474 0.702 10* Elastic 
SIFT + WGTM [49] 0.837 0.544 0.407 0.685 – Quadratic 
Proposed Method 0.908 0.293 0.660 0.657 0.65 Similarity 
GDB-ICP [50] 0.814 0.303 0.303 0.576 19* Quadratic 
Harris-PIIFD [51] 0.900 0.090 0.443 0.553 13* Polynomial 
ED-DB-ICP [20] 0.604 0.441 0.497 0.553 44* Affine 
SURF + WGTM [52] 0.835 0.061 0.069 0.472 – Quadratic 
RIR-BS [12] 0.772 0.004 9 0.124 0.440 – Projective 
EyeSLAM [53] 0.308 0.224 0.269 0.273 7* Rigid 
ATS-RGM [54] 0.369 0.000 0.147 0.211 – Elastic  

Table 4 
Comparison of the proposed method and SDRN [26]. Results measured in RMSE 
at 256 × 256, the operating resolution of SDRN. Best results highlighted in bold.  

Models Registration Error (RMSE) 

S P A A & S FIRE 

SDRN [26] – – – 0.915 – 
Proposed Method 0.203 1.656 0.782 0.299 0.795  
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and, therefore, a limitation of our approach. This is evidenced by the 
comparison of the different transformation models used in the state of 
the art methods, shown in Table 3. The use of similarity transformations 
assumes that the retinal fundus is a plane so that, in images with large 
deformations (like category P), the difference with reality may be more 
noticeable. However, in image pairs with smaller deformations (like 
categories A and S) the inaccuracies are negligible so that the advantages 
that a simpler transformation offers (lower point requirement, less 
computational complexity, etc.) are more relevant. 

Our proposal uses one of the simplest transformations out of all the 
methods. This has advantages, like the low point requirement, which 
could allow to register images with severe pathology progression. 
However, the main disadvantage is the lack of power to align images 
with low overlapping and high expected transformations. 

5. Conclusion and future work 

In this work, we propose a learning-based pipeline, combining deep 
learning for domain-specific landmark detection and a classical method 
for point matching. This pipeline is based around proven state-of-the-art 
methods and provides accurate results. 

Our proposal is the first method in the state of the art to use deep 
learning in a FBR method, detecting domain-specific landmarks and 
using them to register image pairs. FBR methods are advantageous due 
to the appearance of retinal images. These images contain sparse rele
vant structures so that landmark-based methods are preferable over 
intensity-based approaches. Furthermore, detecting domain-specific 
landmarks allows descriptor-less matching, due to the lower number 
of detections, which in turn reduces execution time. Similarly, deep 
learning methods are more robust than classical methods and require no 
ad-hoc pre-processing or feature engineering. Moreover, they can be 
easily adapted to new imaging devices and imaging conditions. There
fore, the combination of deep learning and FBR methods is highly 
desirable yet still unexplored in previous works. The best available 
methods are classical methods and the current deep learning approaches 
are intensity-based. Thus, our proposal is a novel approach to register 
fundus images. 

We propose to use a CNN to detect representative landmarks specific 
to this domain of images. These landmarks can then be matched without 
expensive descriptor computation using RANSAC, which produces the 
desired transformation to register the images. 

We use a deep neural network to detect blood vessel crossovers and 
bifurcations specific to this domain of images. These natural landmarks 
are unique for each person and, therefore, are very reliable for fundus 
image registration. Currently, there are no datasets containing land
marks and registration data, therefore we use two separate datasets. We 
train the landmark detector network using the DRIVE dataset, with 
ground truth for crossovers and bifurcations. We test the proposed 
method using the FIRE dataset, which contains registration labeling. 
This allows to evaluate the performance of the proposed method even if 
no suitable dataset exists. However, it carries several intrinsic compli
cations like changes in the image resolution, the pathologies present in 
the images, etc. which our method is able to overcome. The chosen CNN 
for the landmark detection task is the U-Net. We convert the DRIVE 
ground truth from a point-based location labeling to a heatmap which 
improves the performance of the network. Therefore, the network pre
dicts these heatmaps over the FIRE dataset on inference. The heatmaps 
are converted to the precise location of the landmarks using a local 
maxima filter. 

The landmarks are matched among image pairs using a RANSAC- 
based classical point matching method. The RANSAC confined to simi
larity transformations which are able to transform the images with very 
limited information, just two point matchings. Therefore, our method is 
resistant to image pairs with severe pathology progress, which can 
occlude the blood vessels. Furthermore, our method does not require the 
expensive computation of advanced descriptors for each landmark point 

as we use domain specific landmarks. Due to the lower number of de
tections when compared to generic point detectors, it is computationally 
viable to use RANSAC to test every possible landmark match combina
tion. Therefore, the only information needed by this method is the co
ordinates and the type of the landmark, differentiating between 
crossovers and bifurcations. This allows for less computation than state 
of the art methods. In this regard, our proposal is the fastest in the state 
of the art by orders of magnitude, as our method takes less than a second 
to register each image pair while the competing state-of-the-art methods 
take minutes. 

Finally, the experimental results for the proposed method are satis
factory. We validate our approach comparing it with a previous work of 
ours based on classical methods that detect the same landmarks. As our 
method improves upon the previous one, and as both share the same 
matching mechanism, we can affirm that detecting crossovers and bi
furcations using deep learning outperforms classical approaches. 
Furthermore, the proposed method is able to improve the results from 
purely deep-learning-based state of the art methodologies. Moreover, 
our method can register the images in the FIRE dataset disregarding 
their category, unlike the current deep learning method. Therefore, this 
validates the robustness of our system. In this regard, the proposed 
similarity transformation is limiting in the P category due to its lack of 
degrees of freedom when compared with the large, expected trans
formations. Overall, our proposal shows to be competitive with the best 
state of the art approaches which are complex classical methods, namely 
VOTUS and REMPE. Even if the results of our proposal are lacking in P 
category (0.293 AUC), our method produces accurate results in cate
gories S (0.908 AUC) and A (0.606 AUC). 

As future work, we will test transformations with more degrees of 
freedom than the similarity transformation used in this proposal. The 
higher order transformations may accommodate the larger displace
ments of the category P and thus improve the overall results. Moreover, 
our approach can be extended to detect and describe the crossings and 
bifurcations. Furthermore, the proposal can also be adapted for the 
registration of multimodal retinal images, such as retinography- 
angiography registration. In this regard, domain adaption techniques 
would be worth exploring to mitigate the lack of annotated multimodal 
datasets. Finally, another possibility is to develop novel network archi
tectures capable of obtaining similar results to U-Net but more effi
ciently. This could reduce computational cost, making widespread 
clinical use even more accessible. 
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[14] Álvaro S. Hervella, J. Rouco, J. Novo, M. Ortega, Multimodal registration of retinal 
images using domain-specific landmarks and vessel enhancement, Procedia 
Comput. Sci. 126 (2018) 97–104, knowledge-Based and Intelligent Information & 
Engineering Systems: Proceedings of the 22nd International Conference, KES-2018, 
Belgrade, Serbia. 

[15] J.P.W. Pluim, J.B.A. Maintz, M.A. Viergever, Image registration by maximization of 
combined mutual information and gradient information, in: S.L. Delp, A.M. DiGoia, 
B. Jaramaz (Eds.), Medical Image Computing and Computer-Assisted Intervention 
– MICCAI 2000, Plus 0.5em Minus 0.4emBerlin, Springer Berlin Heidelberg, 
Heidelberg, 2000, pp. 452–461. 

[16] G. Balakrishnan, A. Zhao, M.R. Sabuncu, A.V. Dalca, J. Guttag, An unsupervised 
learning model for deformable medical image registration, in: 2018 IEEE/CVF 
Conference on Computer Vision and Pattern Recognition, 2018, pp. 9252–9260. 

[17] J. Kybic, M. Unser, Fast parametric elastic image registration, IEEE Trans. Image 
Process. 12 (11) (2003) 1427–1442. 

[18] J. Chen, J. Tian, N. Lee, J. Zheng, R.T. Smith, A.F. Laine, A partial intensity 
invariant feature descriptor for multimodal retinal image registration, IEEE (Inst. 
Electr. Electron. Eng.) Trans. Biomed. Eng. 57 (7) (2010) 1707–1718. 

[19] G. Yang, C.V. Stewart, M. Sofka, C. Tsai, Registration of challenging image pairs: 
initialization, estimation, and decision, IEEE Trans. Pattern Anal. Mach. Intell. 29 
(11) (2007) 1973–1989. 

[20] C. Tsai, C. Li, G. Yang, K. Lin, The edge-driven dual-bootstrap iterative closest point 
algorithm for registration of multimodal fluorescein angiogram sequence, IEEE 
Trans. Med. Imag. 29 (3) (2010) 636–649. 

[21] G. Wang, Z. Wang, Y. Chen, W. Zhao, Robust point matching method for 
multimodal retinal image registration, Biomed. Signal Process Control 19 (2015) 
68–76. 

[22] J. Chen, J. Tian, N. Lee, J. Zheng, R.T. Smith, A.F. Laine, A partial intensity 
invariant feature descriptor for multimodal retinal image registration, IEEE (Inst. 
Electr. Electron. Eng.) Trans. Biomed. Eng. 57 (7) (2010) 1707–1718. 

[23] F. Laliberte, L. Gagnon, Yunlong Sheng, Registration and fusion of retinal images- 
an evaluation study, IEEE Trans. Med. Imag. 22 (5) (2003) 661–673. 

[24] X. Cheng, L. Zhang, Y. Zheng, Deep similarity learning for multimodal medical 
images, Comput. Methods Biomech. Biomed. Eng.: Imag. Visual. 6 (3) (2018) 
248–252. 

[25] G. Haskins, U. Kruger, P. Yan, Deep learning in medical image registration: a 
survey, Mach. Vis. Appl. 31 (1) (Jan 2020) 8. 

[26] B. Zou, Z. He, R. Zhao, C. Zhu, W. Liao, S. Li, Non-rigid retinal image registration 
using an unsupervised structure-driven regression network, Neurocomputing 404 
(2020) 14–25. 

[27] D. Motta, W. Casaca, A. Paiva, Vessel optimal transport for automated alignment of 
retinal fundus images, IEEE Trans. Image Process. 28 (12) (2019) 6154–6168. 

[28] M. Ortega, M.G. Penedo, J. Rouco, N. Barreira, M.J. Carreira, Retinal verification 
using a feature points-based biometric pattern, EURASIP J. Appl. Signal Process. 1 
(2009) 235746. Mar 2009. 
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