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a b s t r a c t 

In this article we present a valuation method for Renewable Energy Certificates (RECs) or 

green certificates. For this purpose, we propose a non-linear PDE model with two stochas- 

tic factors: the accumulated green certificates sold by an authorized generator and the 

natural logarithm of the renewable electricity generation rate. One novelty of the work 

comes from the numerical treatment of the non-linear convective term in the PDE. Thus, 

we use the Bermdez-Moreno algorithm to deal with this non-linear term. This duality al- 

gorithm is based on the Yosida regularization of non-linear maximal monotone operators. 

In order to solve the obtained linearized problem, we use numerical methods based on 

semi-Lagrangian schemes in the direction without diffusion while we consider an implicit 

second order finite differences scheme in the direction with diffusion term. Finally, we 

show illustrative results of the performance of the proposed model and numerical meth- 

ods that have been implemented. 

© 2021 The Authors. Published by Elsevier Inc. 

This is an open access article under the CC BY license 

( http://creativecommons.org/licenses/by/4.0/ ) 

 

 

1. Introduction 

In recent years, several governments have encouraged environmental policies for promoting renewable energy sources 

and have established targets for renewable energy growth. Nevertheless, renewable energy technologies often require a 

large investment, hence alternative market tools are required to achieve these targets. One tool to implement these policies 

and to incentivize investing in renewables is the use of renewable energy certificates or RECs (often called green certificates 

or GCs in Europe). When renewable energy generators meet certain criteria, they receive one certificate for a specific unit, 

typically 1 MWh of renewable electricity produced. This REC can be sold to a Load Serving Entity (LSE) that is subject to

the annual requirement of some percentage of electricity procured from renewables. If this quota obligation is not met by 

the LSE, a non-compliance penalty applies. This penalty is called the Alternative Compliance Payment (ACP). 

Many countries or states have adopted renewable portfolio standards (RPSs) and trading of RECs. These instruments can 

also be linked to the generation of a particular type of energy, as is the case of the New Jersey (NJ) market for SRECs (solar

renewable energy certificates) presented in [13] . Similar markets exist around the world (eg, Italy, UK, Sweden, Norway, 

US or Australia) and are considered an important alternative to implementing other environmental policies such as taxes 
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or regulatory limits, thus helping to address climate change, especially in countries with an absence of carbon emissions 

markets, such as the US. 

The academic treatment of REC markets is more recent than the study of cap-and-trade schemes for carbon emissions 

(see [9 , 12 , 16 , 17 , 22 , 26 , 27] ). Although related, there are several differences between carbon and REC markets: supply and

demand in opposite roles, different inter-temporal connecting mechanisms (such as withdrawal or unlimited banking) or 

external and underlying factors (such as fuel prices, power demand or renewable energy generation). Nonetheless, related 

approaches exist for the mathematical modelling of the valuation problem of green certificates. Some models of REC markets 

are obtained by using a stochastic dynamic setting, thus replicating the price volatility (see [21] and [18] ). 

In the present work, we address the valuation of green certificates as the solution to a coupled system of forward-

backward stochastic differential equations (FBSDE). This type of equations have been used for the pricing of financial instru- 

ments in emission markets in [10] and [17] . More precisely, we consider a forward stochastic differential equation (SDE) for

the renewable generation rate and another one for the accumulated green certificates, and a backward stochastic differential 

equation (BSDE) for the green certificate price. This backward component of the FBSDE can be formulated in terms of a

semilinear partial differential equation (PDE). As the analytical expression of a solution for the PDE is not available, in the

present article we propose a set of numerical techniques to solve this non-linear equation. More precisely, the difficulty 

associated to the non-linear convection term has been solved by means of a duality method, which is known as Bermdez

Moreno algorithm (see [6] ). This algorithm is based on the Yosida approximation of non-linear maximal monotone oper- 

ators. In [2] this method has been applied to solve a non-linear diffusion problem, while in [7] it has been used for the

multivalued maximal monotone operator arising in the solution of complementarity problems related to Asian options with 

early exercise opportunity, also referred as Amerasian options. At each step of this algorithm, we need to solve a degener-

ated linear PDE problem. For this purpose, we use a characteristics scheme to discretize the material derivative operator in 

one of the spatial directions combined with the use of a second order implicit finite differences scheme in the other spatial

direction. 

This article is organized as follows. In Section 2 , we introduce the mathematical modeling corresponding to the two 

stochastic factors. In Section 3 , we describe the numerical methods, including the treatment of the non-linear convective 

term, the analysis of boundary conditions and the full discretization of the PDE. Section 4 shows some illustrative numerical

results. Finally, some conclusions are presented in Section 5 . 

2. Mathematical modelling 

In order to model the price of a REC we assume that it is given by a stochastic process, which is denoted at time t by

P t and depends on two stochastic factors. More precisely, these factors are the renewable generation rate and the number 

of accumulated green certificates, which are denoted by G t and B t , respectively. We assume that the values of these two

factors are known at the initial time t = t 0 . 

Specifically, for t ∈ [ t 0 , T ] , the generation rate G t is most influenced by weather patterns and by the construction of new

renewable capacity. It is therefore natural to assume that the dynamics of G t is given by 

G t = exp ( ̃  G t ) , (1) 

where ˜ G t is a Ornstein-Uhlenbeck (OU) process which satisfies the following stochastic differential equation (SDE): 

d ̃  G t = μg (t, ˜ G t , P t ) d t + σg d W 

0 
t , 

˜ G t 0 = g 0 , (2) 

where μg (t, ˜ G t , P t ) and σg are the drift and the volatility, respectively, and W 

0 
t is an F t -adapted Q -Brownian motion, where

Q denotes the probability measure. In particular, we assume that the drift is linear with respect to P and given by the

expression 

μg (t, ˜ G , P ) = αg 

(
f (t) + 

βg 

αg 
P − ˜ G 

)
, (3) 

where αg is the mean reversion speed of the process and βg is the parameter which controls the level of feedback from

the price of the certificate. This feedback parameter captures the elasticity of supply to price, meaning the tendency of new

renewable generation to be installed at times when certificate prices are high. Moreover, the seasonality is represented by 

the deterministic function f, which depends on time t . This function f is a combination of cosine and sine functions to

represent the influence of weather on prices. For this purpose, there are more options to represent these seasonal patterns, 

such as the time series used in the particular case of Swedish-Norwegian market (see [4] ). 

Similarly to some methodologies used in the pricing of Asian options, the number of accumulated green certificates at 

time t, B t , satisfies the following equation: 

d B t = G t d t, B t 0 = 0 . (4) 

Moreover, as accumulation is measured from the beginning of the compliance period, t 0 , we assume that B t 0 = 0 . Note that

since the process B t represents an accumulated quantity, it turns out to be positive and non-decreasing. 

The main objective of the model is to characterize the price of the renewable energy certificate, P t , at time t . In our

formulation in terms of a PDE problem, we assume the existence of a function P, such that P t = P (t, B t , G t ) . Once the function

P is obtained as the solution of the PDE problem, we can compute the value of P t for given values of t, G t and B t . 
2 
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2.1. Single period case 

We denote by T the maturity of the certificate and by γ the number of life years of the certificate (i.e. the number

years since issuance for which the REC is valid to submit for compliance). Then, we initialize the life of the certificate at

t 0 = T − γ . In the single period case (i.e. assuming one year with no intermediary compliance before T ), we take γ = 1 . The

value of the REC at time t = t 0 is unknown. However, its value at maturity, P T , is given by the terminal condition: 

P T = ψ(B T ) , (5) 

where ψ : R 

+ −→ R 

+ is a bounded measurable and decreasing function. More precisely, it is given by ψ(·) := πT 1 [0 ,R T ) (·) ,
where πT is the penalty amount at time T and R T is the requirement at time T . 

Since the discounted price of the REC is a martingale under Q (a ‘no arbitrage’ condition), the price of the certificate at

time t is equal to the discounted value of the conditional expectation of its terminal value, i.e. 

P t = e −r(T −t)) E 

Q [ ψ(B T ) |F t ] , for t ∈ [ T − γ , T ] , (6) 

where r is the constant risk free interest rate. The previous expression implies that the process P t is bounded, taking values

in [0 , πT ] . Moreover, since the filtration F t is generated by the Brownian motion W 

0 
t , the price of the renewable energy

certificate can be represented as an Ito integral with respect to W 

0 
t as follows 

d P t = rP t d t + Z 0 t d W 

0 
t , for t ∈ [ T − γ , T ] , (7)

for some F t -adapted square integrable process Z 0 t . 

Next, by using Eqs. (2) , (4) and (7) , the price process of a renewable energy certificate P t in a single period can be

described by the solution of the following FBSDE in the time interval [ t 0 , T ] : { 

d ̃  G t = μg (t, ˜ G t , P t ) d t + σg d W 

0 
t , 

˜ G t 0 = g 0 , 

d B t = exp ( ̃  G t ) d t, B t 0 = 0 , 

d P t = rP t d t + Z 0 t d W 

0 
t , P T = ψ(B T ) . 

(8) 

Note that there are two kinds of stochastic differential equations in (8) depending on the direction of time: the first two

equations are forward ones while the last is a backward equation. Analogous equations have been considered for carbon 

emission prices in [17] . 

Assuming the existence of a solution for (8) and that P t = P (t, B t , ˜ G t ) , where P t is a traded asset with a drift equal to risk

neutral rate under the risk neutral measure (as indicated in the third equation of (8) ), we can use Ito’s formula for a process

depending on the two Ito processes B t and 

˜ G t (see [19] , for example) to obtain: 

dP t = 

(
∂P 

∂t 
+ 

σ 2 
g 

2 

∂ 2 P 

∂ ˜ G 

2 
+ μg (t, ˜ G , P ) 

∂P 

∂ ˜ G 

+ exp ( ̃  G ) 
∂P 

∂B 

)
(t, B t , ˜ G t ) dt + σg 

∂P 

∂ ˜ G 

(t, B t , ˜ G t ) dW 

0 
t . 

Therefore, identifying the drift coefficient of the previous expression and the corresponding one of the third equation in 

(8) , the function P = P (t, B, ˜ G ) satisfies the following non-linear PDE: 

L 1 [ P ] = 

∂P 

∂t 
+ 

1 

2 

σ 2 
g 

∂ 2 P 

∂ ˜ G 

2 
+ μg (t, ˜ G , P ) 

∂P 

∂ ̃  G 

+ exp ( ̃  G ) 
∂P 

∂B 

− rP = 0 . (9) 

Taking into account that the value of the REC at maturity is given by (5) , then PDE (9) jointly with the final condition 

P (T , B, ˜ G ) = ψ(B ) (10) 

defines the final value problem for the single period case. 

2.2. Multiple periods case 

The previously presented arguments for the single period case can be extended to an arbitrary number of compliance 

periods. In the multiple period case, the price of the certificate at maturity T is equal to the payoff (5) , while a jump

condition must be applied at each compliance date T i , i = 1 , . . . , γ − 1 . Thus, the value of the certificate at the compliance

date T i is given by 

P (T i , B, ˜ G ) = max 
(
ψ(B ) , P 

(
T i + , max (0 , B − R i ) , ˜ G 

))
, (11) 

where ψ(·) = πi 1 [0 ,R i ) (·) and R i is the requirement at time T i . In this case, a sequence of linked final value problems is

defined by Eqs. (9) and (11) . 

The existence and uniqueness of solution for the final value non-linear PDE problem (9) - (10) is an open question (anal-

ogously for the final value problems (9) - (11) ), that could be addressed in a future research. Although this issue is not ad-

dressed this article, first we note that the FBSDE (8) is non-standard and similar to the one appearing in emission markets

in [17] , the existence and uniqueness of solution of which is rigorously analyzed in [25] . So, the ideas in [25] could be used

to address existence and uniqueness of solution of (8) . Concerning the existence and uniqueness for the PDE problem (9) -

(10) , the governing PDE is parabolic degenerate in one direction and semilinear. As indicated in [25] for the case of emission

certificates, the connection between the FBSDE and the PDE is based on an extension of the Feynman-Kac formula that 

appears in [23] and that requires the regularity of the classical solution of the PDE, which we are not able to prove yet. 
3 
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3. Numerical methods 

Once the final value problems associated to the single period and multiple period cases have been posed in the previous

section, since there are no analytical expressions for their respective solutions, we propose a set of numerical methods to 

approximate them. 

For this purpose, first note that the PDE (9) is initially posed in a spatial unbounded domain, so that a truncation of the

domain to a bounded one is required for the numerical solution. This domain truncation is very common in option pricing

problems, for example, and requires an appropriate selection of the truncation boundaries and the corresponding boundary 

conditions to obtain a proper approximation of the solution in the region of actual financial interest [20] . Secondly, as

the drift term (3) depends linearly on the unknown P, the corresponding first order (convective) term introduces a non- 

linear aspect that needs to be solved. In the present work we will take advantage of the fact that the non-linear term can

be written in terms of a maximal monotone operator to apply a duality method. A third aspect is related to the lack of

second order derivative with respect to variable B, which makes the second order PDE degenerate. In order to overcome the

difficulties associated to this last aspect, we propose a semi-Lagrangian numerical scheme to jointly discretize the terms of 

time derivative and the first order derivative with respect to B . 

Clearly, in view of these important specific characteristics of the PDE (9) suitable and efficient numerical techniques need 

to be applied. 

3.1. Treatment of the non-linear convective term 

As previously pointed out, the PDE problem (9) includes a non-linear convective term. One possibility to deal with this 

non-linearity is based on the Bermdez-Moreno algorithm, which involves the Yosida regularization of non-linear maximal 

monotone operators (see [6] ). In [2] , the here proposed techniques have been applied to a one-dimensional problem with

non-linear diffusion term instead of the non-linear convection one. Next, in [1] the convergence of the method has been

analysed and in [3] extended to two spatial dimensions. 

Thus, following the idea used in [2] , let us first introduce the maximal monotone operator m, defined by 

m (P ) = 

{
0 , if P < 0 

P 2 , if P ≥ 0 , 
(12) 

so that 

P 
∂P 

∂ ˜ G 

= 

1 

2 

∂m (P ) 

∂ ˜ G 

. (13) 

Therefore, Eq. (9) can be written in the equivalent form: 

∂P 

∂t 
+ 

σ 2 
g 

2 

∂ 2 P 

∂ ˜ G 

2 
+ αg 

(
f ( t ) − ˜ G 

) ∂P 

∂ ˜ G 

+ 

βg 

2 

∂m ( P ) 

∂ ˜ G 

+ exp 

(
˜ G 

)∂P 

∂B 

− rP = 0 . (14) 

Following the duality technique developed by Bermúdez and Moreno in [6] , for the constant parameter ω > 0 , we intro-

duce the new additional unknown 

θ = (m − ωI)(P ) , (15) 

where I denotes the identity operator. So, we have 

1 

2 

∂m (P ) 

∂ ˜ G 

= 

1 

2 

∂θ

∂ ˜ G 

+ 

ω 

2 

∂P 

∂ ˜ G 

. (16) 

Next, by using the Bermúdez-Moreno lemma from [6] , also applied in [3] , for λω < 1 , we can obtain the equivalence 

θ = m (P ) − ωP ⇔ θ = m 

ω 
λ (P + λθ ) , (17) 

where m 

ω 
λ

denotes the Yosida approximation of the operator m ω = m − ωI with parameter λ. This Yosida approximation is 

given by m 

ω 
λ

= (I − J ω 
λ
) /λ, where J ω 

λ
= (I + λm ω ) 

−1 is the resolvent operator of m ω , which is defined for λω < 1 and it is a

monotone Lipschitz function with constant (1 − λω) −1 . It is easy to prove the equivalence (17) . For this purpose, starting

from its right hand side of (17) , first we have: 

θ = m 

ω 
λ (P + λθ ) = 

1 

λ
(I − J ω λ )(P + λθ ) = 

P 

λ
+ θ − 1 

λ
J ω λ (P + λθ ) , 

which is equivalent to 

P = J ω λ (P + λθ ) = (I + λm ω ) 
−1 (P + λθ ) , 

or equivalently: 

(I + λm ω )(P ) = P + λθ ⇔ θ = m (P ) − ωP, 
4 
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this last identity being the left hand side of (17) . For details about Yosida approximation of maximal monotone operators,

we address the reader to [8] . In [1] , the convergence of the method for a model with the same nonlinear term in the

diffusion part of an elliptic operator in one dimension has been analyzed, obtaining that the optimal choice for convergence 

comes from condition 2 λω = 1 . Although we have not addressed this theoretical analysis for the here treated problem,

we consider also this relation between both parameters. Also this choice is theoretically obtained in [6] for some elliptic

variational inequalities formulated in terms of a multivalued subdifferential operator. Under this choice, the expression of 

Yosida approximation can be computed and is given by [2] : 

m 

ω 
λ

(
P + 

θ

2 ω 

)
= 

{
−θ − 2 ωP, if P + 

θ
2 ω ≤ 0 , 

θ + 2 ωP + ω 

2 − ω 

√ 

4 θ + 8 ωP + ω 

2 , if P + 

θ
2 ω ≥ 0 . 

Next, if we introduce the linear differential operator 

L 2 [ P ] = 

∂P 

∂t 
+ 

σ 2 
g 

2 

∂ 2 P 

∂ ˜ G 

2 
+ αg 

(
f (t) − ˜ G 

) ∂P 

∂ ˜ G 

+ 

βg ω 

2 

∂P 

∂ ˜ G 

+ exp ( ̃  G ) 
∂P 

∂B 

− rP. (18) 

and take into account the expressions (15) and (16) , then Eq. (14) can be rewritten in the equivalent form: 

L 2 [ P ] = −βg 

2 

∂θ

∂ ˜ G 

. (19) 

Moreover, from the equivalence stated in (17) , Eq. (19) is coupled with the following non-linear equation: 

θ = m 

ω 
λ (P + λθ ) . (20) 

In order to solve the non-linear system given by (19) - (20) , we propose a fixed point iteration which mainly starts with

an initial value of θ to solve the linear PDE (19) . Then, we replace the obtained P and the last computed value of θ in

the right hand side of (20) to update the value of θ and start solving again the PDE (19) in the next step. This fixed point

algorithm will be explicitly written in a forthcoming section once the discretized problem has been introduced. 

3.2. Localization and analysis of boundary conditions 

In order to apply the numerical discretization using finite differences to the PDE problem, it is necessary to consider 

a bounded computational domain. Thus, for a given value of θ we approximate the linear PDE problem (19) through a

localization procedure, which consists in truncating the initial unbounded domain to a bounded one and introducing the 

appropriate conditions at the boundaries of the bounded domain. 

Let � = (T − γ , T ) × (0 , + ∞ ) × R be the initial unbounded domain. Moreover, let �̄ = (T − γ , T ) × (0 , ̂  b ) × (−ḡ , ̄g ) be the

truncated bounded domain where ˆ b and ḡ are large enough real numbers, which are influenced by the requirement of the 

payoff function and the jump conditions at compliance dates. Now, we introduce the changes of variables: 

ˆ B = 

B 

ˆ b 
, ˆ G = 

˜ G + ḡ 

ˆ g 
, 

with ˆ g = 2 ̄g , so that the truncated domain �∗ = (T − γ , T ) × (0 , 1) × (0 , 1) in the new variables (t, ˆ B , ˆ G ) is considered. 

In order to establish the boundaries of the truncated domain which require boundary conditions to be imposed, we 

follow the results in [24] and introduce the following notation 

y 0 = t, y 1 = 

ˆ B , y 2 = 

ˆ G , (21) 

so that Eq. (18) can be equivalently written as 

2 ∑ 

i, j=0 

a i j 

∂ 2 P 

∂y i y j 
+ 

2 ∑ 

j=0 

a j 
∂P 

∂y j 
+ b 0 P = 0 , in �∗, (22) 

where 

A = 

(
a i j 

)
= 

⎛ 

⎝ 

0 0 0 

0 0 0 

0 0 

ˆ g 2 σ 2 
g 

2 

⎞ 

⎠ , � a = 

(
a j 

)
= 

⎛ 

⎜ ⎝ 

1 

ˆ b exp (y 2 ̂  g − ḡ ) 

ˆ g αg 

(
f (y 0 ) − (y 2 ̂  g − ḡ ) + 

βg ω 
2 αg 

)
⎞ 

⎟ ⎠ 

, b 0 = −r, (23) 

and we use the notation 

�∗ = 

2 ∏ 

i =0 

(
y 

i 
, y i 

)
, ∗ = ∂�∗, ∗, −

i 
= 

{
y ∈ ∗/y i = y 

i 

}
, ∗, + 

i 
= { y ∈ ∗/y i = y i } , i = 0 , 1 , 2 . 

Next, we denote by � n = (n 0 , n 1 , n 2 ) the normal vector to ∗ pointing inwards �∗. Let us define the following subsets of

∗: 

�0 = 

{ 

y ∈ ∗/ 
2 ∑ 

i, j=0 

a ij n i n j = 0 

} 

, �1 = ∗ − �0 , �2 = 

{ 

y ∈ �0 / 

2 ∑ 

i =0 

( 

a i −
2 ∑ 

j=0 

∂a ij 

∂y j 

) 

n i < 0 

} 

. 
5 
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Following [24] , we need to impose boundary conditions at �1 ∪ �2 . Thus, for (21) , we conclude: 

�0 = ∗, −
0 

∪ ∗, + 
0 

∪ ∗, −
1 

∪ ∗, + 
1 

, �1 = ∗, −
2 

∪ ∗, + 
2 

, �2 = ∗, + 
0 

∪ ∗, + 
1 

, 

so that 

�1 ∪ �2 = ∗, + 
0 

∪ ∗, + 
1 

∪ ∗, −
2 

∪ ∗, + 
2 

. 

Hence, we impose the following homogeneous Neumann boundary conditions at the spatial boundaries: 

∂P 

∂y 1 
= 0 , on ∗, + 

1 
, 

∂P 

∂y 2 
= 0 , on ∗, −

2 
∪ ∗, + 

2 
, (24) 

jointly with the final condition at the boundary y 0 = T in the single period case. In addition, in the multiple period case the

condition (11) is applied at the boundaries y 0 = T i , which represent each compliance date. 

3.3. Discretization of the PDE 

In order to choose an appropriate time discretization scheme for the PDE (19) , we note that the linear differential opera-

tor (18) is degenerate. Therefore, PDE (19) can be considered as a limit case of a convection dominated PDE, especially in the

direction without diffusion term. Therefore, in order to avoid spurious oscillations related to the use of standard finite differ- 

ences schemes, we propose a suitable version of the method of characteristics (see [5] or [14] , for example). Note that PDE

(19) turns out to be similar to the one arising in the pricing of Asian options with continuous arithmetic averaging. Thus, we

follow the idea first proposed in [15] for this kind of problem, which consists of choosing a semi-Lagrangian method (also

referred as the characteristics method) in the direction without diffusion combined with a Crank-Nicolson finite differences 

scheme in the direction with diffusion. This method has been also used for solving PDE models for the valuation of business

companies in [11] . Note that in our coupled non-linear problem (19) - (20) we apply the proposed time discretization scheme

to the step of solving Eq. (19) . 

For the time discretization, we first consider the change of time variable τ = T − t, where τ represents the time to

maturity. Therefore, Eq. (19) can be equivalently written in the domain 

˜ � = (0 , γ ) × (0 , 1) × (0 , 1) as follows 

D P 

D τ
− A P = 0 , (25) 

where the involved differential operators are given by 

D P 

D τ
= 

∂P 

∂τ
− ˆ b exp ( ̂  G ̂

 g − ḡ ) 
∂P 

∂ ̂  B 

, 

A P = 

ˆ g 2 σ 2 
g 

2 

∂ 2 P 

∂ ˆ G 

2 
+ 

ˆ g αg 

(
f (T − τ ) −

(
ˆ G ̂

 g − ḡ 
)

+ 

βg ω 

2 αg 

)
∂P 

∂ ˆ G 

+ 

ˆ g βg 

2 

∂θ

∂ ˆ G 

− rP. 

Note that D P 
D τ represents the material derivative of P in the direction 

ˆ B associated to the one-dimensional velocity field 

v = −ˆ b exp ( ̂  G ̂ g − ḡ ) , which does not depend on B . Moreover, A denotes the second order convection-diffusion-reaction differ-

ential operator in the direction 

ˆ G . Note that this splitting of the differential operator governing equation (19) is the departure

point of the proposed time discretization scheme. 

First, we use a characteristics scheme to discretize in time the term associated to the material derivative. This semi- 

Lagrangian scheme is based on a finite difference discretization of the time derivative along the characteristic lines (see 

[5 , 14 , 28] ). For this purpose, we introduce N T > 0 and a time step �τ = γ /N T for considering a uniform time mesh with

nodes given by τ n = n �τ for n = 0 , 1 , . . . , N T . At each time step we consider the initial value ODE problem satisfied by the

trajectory associated to the velocity field v through the point (τ n +1 , ˆ B ) : {
dχ
ds 

(s ) = −ˆ b exp 

(
ˆ G ̂

 g − ḡ 
)
, 

χ
(
τ n +1 

)
= 

ˆ B . 

Note that the solution of this ODE problem is given by 

χ(s ) = 

ˆ B + (τ n +1 − s ) ̂ b exp 

(
ˆ G ̂

 g − ḡ 
)
. 

In order to build the finite differences approximation of the material derivative along the characteristics, we introduce 

χn = χ(τ n ) , which is given by 

χn 
(

ˆ B , ˆ G 

)
= 

ˆ B + �τ ˆ b exp 

(
ˆ G ̂

 g − ḡ 
)
, 

and represents the position at time τ n of the point placed at 
(

ˆ B , ˆ G 

)
at time τ n +1 and moving according to the velocity field

v . 
Next, we introduce the approximation for the material derivative: 

D P (
τ n +1 , ˆ B , ˆ G 

)
≈

P 
(
τ n +1 , ˆ B , ˆ G 

)
− P 

(
τ n , χn 

(
ˆ B , ˆ G 

)
, ˆ G 

)
. (26) 
D τ �τ

6 
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Secondly, by using a Crank-Nicolson scheme ( ̂  θ = 0 . 5 in the so called 

ˆ θ-method) for the second order differential term

A P in Eq. (25) , we obtain: 

P n +1 −P n ◦χn 

�τ − ˆ θ ˆ g 2 σ 2 
g 

2 
∂ 2 P n +1 

∂ ̂  G 2 
− (1 − ˆ θ ) ̂ g 2 σ 2 

g 

2 
∂ 2 ( P n ◦χn ) 

∂ ̂  G 2 

− ˆ θ ˆ g αg 

(
f (T − τ ) −

(
ˆ G ̂

 g − ḡ 
)

+ 

βg ω 
2 αg 

)
∂P n +1 

∂ ̂  G 

−(1 − ˆ θ ) ̂  g αg 

(
f (T − τ ) −

(
ˆ G ̂

 g − ḡ 
)

+ 

βg ω 
2 αg 

)
∂ ( P n ◦χn ) 

∂ ̂  G 

+ r ̂  θP n +1 + r(1 − ˆ θ ) ( P n ◦ χn ) = 

ˆ θ ˆ g βg 

2 
∂θn +1 

∂ ̂  G 
+ 

(1 − ˆ θ ) ̂ g βg 

2 
∂θn 

∂ ̂  G 
, 

(27) 

At each time step, the evaluation of the term P n ◦ χn in (27) at the quadrature nodes is approximated by using a biquadratic

interpolation formula from the values of P n at the mesh nodes. 

Note that at each time step, Eq. (27) is coupled with the following non-linear relation between P n +1 and θn +1 : 

θn +1 = m 

ω 
λ (P n +1 + λθn +1 ) . (28) 

Next, we propose a fixed point algorithm to approximate the solution of the non-linear problem (27) - (28) . This fixed point

algorithm mainly consists of solving Eq. (27) to obtain P n +1 for a previously computed value of θn +1 , and next updating

θn +1 according to (28) with the more recent values of P n +1 and θn +1 . Thus, the algorithm can be sketched as follows: 

1. Let P 0 and θ0 be initialized (for example θ0 = 1 ). 

2. For n = 0 , 1 , . . . , N T − 1 . 

(a) Let θn +1 , 0 = θn . 

(b) For k = 0 , 1 , 2 , . . . 
• For a given θn +1 ,k , we obtain P n +1 ,k +1 by solving ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

(
1 + r ̂  θ�τ

)
P n +1 ,k +1 − θ ˆ g 2 σ 2 

g �τ

2 
∂ 2 P n +1 ,k +1 

∂ ̂  G 2 

− ˆ θ ˆ g αg �τ
(

f (T − τ n +1 ) − ( ̂  G ̂

 g − ḡ ) 
)

∂P n +1 ,k +1 

∂ ̂  G 

− ˆ θ ˆ g αg �τ
(

βg ω 
2 αg 

)
∂P n +1 ,k +1 

∂ ̂  G 

= [ 1 − r�τ( 1 − ˆ θ ) ] ( P n ◦ χn ) (29) 

+ 

(
1 − ˆ θ

)
ˆ g 2 σ 2 

g �τ

2 
∂ 2 ( P n ◦χn ) 

∂ ̂  G 2 

+ 

(
1 − ˆ θ

)
ˆ g αg �τ( f (T − τ n ) ) 

∂ ( P n ◦χn ) 

∂ ̂  G 

−
(

1 − ˆ θ
)

ˆ g αg �τ( ̂  G ̂

 g − ḡ ) ∂ ( P 
n ◦χn ) 

∂ ̂  G 

+ 

(
1 − ˆ θ

)
ˆ g αg �τ

[ 
βg 

αg 
( P n ◦ χn ) 

] 
∂ ( P n ◦χn ) 

∂ ̂  G 

+ 

(1 − ˆ θ ) ̂ g βg �τ
2 

∂θn 

∂ ̂  G 
+ 

θ ˆ g βg �τ
2 

∂θn +1 ,k 

∂ ̂  G 
, 

jointly with the boundary conditions. 
• We update θn +1 ,k +1 by using the identity 

θn +1 ,k +1 = m 

ω 
λ

(
P n +1 ,k +1 + λθn +1 ,k 

)
. 

• We check the stopping test 

|| θn +1 ,k +1 − θn +1 ,k || ∞ 

|| θn +1 ,k +1 || ∞ 

< ε. 

(c) If the stopping test is satisfied then go to 2, otherwise go to (b). 

In order to describe the solution of the fully discretized problem, let us introduce the notation (τ n , ˆ B i , ˆ G j ) = 

(
n �τ, i � ˆ B , j� ˆ G 

)
to represent a generic node of the uniform finite differences time-space mesh with time step �τ and spatial steps � ˆ B and

� ˆ G , for indexes n = 0 , 1 , . . . , N T , i = 0 , 1 , . . . , N ˆ B 
and j = 0 , 1 , . . . , N ˆ G 

. 

At each fixed point iteration, the full discretization of problem (29) can be written as follows: 

P n +1 ,k +1 
i, j 

−P n 
i, j 

◦χn 

�τ − ˆ θ ˆ g 2 σ 2 
g 

2 

(
P n +1 ,k +1 

i, j+1 
−2 P n +1 ,k +1 

i, j 
+ P n +1 ,k +1 

i, j−1 

( � ˆ G ) 
2 

)
− (1 − ˆ θ ) ̂ g 2 σ 2 

g 

2 

(
P n 
χn , j+1 

−2 P n 
χn , j 

+ P n 
χn , j−1 

( � ˆ G ) 
2 

)
− ˆ θ ˆ g αg 

(
f (T − τ n +1 ) −

(
ˆ G j ̂  g − ḡ 

)
+ 

βg ω 
2 αg 

)(
P n +1 ,k +1 

i, j+1 
−P n +1 ,k +1 

i, j−1 

2� ˆ G 

)
−(1 − ˆ θ ) ̂  g αg 

(
f (T − τ n ) −

(
ˆ G j ̂  g − ḡ 

)
+ 

βg ω 
2 αg 

)(
P n 
χn , j+1 

−P n 
χn , j−1 

2� ˆ G 

)
− ˆ θ ˆ g βg 

2 

(
θn +1 ,k 

i, j+1 
−θn +1 ,k 

i, j−1 

2� ˆ G 

)
− (1 − ˆ θ ) ̂ g βg 

2 

(
θn 

i, j+1 
−θn 

i, j−1 

2� ˆ G 

)
+ r ̂  θP n +1 

i, j 
+ r(1 − ˆ θ ) P n χn , j 

= 0 , 
7 
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where ˆ θ = 0 . 5 for the Crank-Nicolson time discretization, and P l,m 

r,s ≈ P m (τ l , ˆ B r , ˆ G s ) , P l,m 

χ l ,s 
≈ P m (τ l , χ l , ˆ G s ) and θ l,m 

r,s ≈
θm (τ l , ˆ B r , ˆ G s ) denote the corresponding approximations with the numerical method at the mesh nodes. 

By taking into account the previous expression of the fully discretized problem, we have to solve a linear system with

(N ˆ B 
− 1) × (N ˆ G 

− 1) unknowns at each time step. Moreover, if we order the finite differences mesh nodes in lexicographical

order, the resulting matrix is block diagonal with N ˆ B 
− 1 blocks of tridiagonal matrices of order N ˆ G 

− 1 each. So, by applying

the classical Thomas algorithm for tridiagonal matrices, each N ˆ B 
− 1 linear system can be efficiently solved. Thus, at each 

time step and for each value of i = 1 , . . . , N ˆ B 
− 1 , we have the following linear system: 

C( ̂  G ) P n +1 
i 

= b n i , 

where P n +1 
i 

= 

(
P n +1 

i, 1 
, P n +1 

i, 2 
, . . . , P n +1 

i,N ˆ G 
−2 

, P n +1 
i,N ˆ G 

−1 

)
is the appr oximation of the solution at the finite differ ences mesh nodes with 

coordinate ˆ B = 

ˆ B i , and the matrix C( ̂  G ) is given by 

C( ̂  G ) = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

c 1 ( ̂  G 1 ) c 2 ( ̂  G 1 ) 0 · · · 0 

c 3 ( ̂  G 2 ) c 1 ( ̂  G 2 ) c 2 ( ̂  G 2 ) 
. . . 

. . . 

0 

. . . 
. . . 

. . . 0 

. . . 
. . . 

. . . c 1 ( ̂  G N ˆ G 
−2 ) c 2 ( ̂  G N ˆ G 

−2 ) 

0 · · · 0 c 3 ( ̂  G N ˆ G 
−1 ) c 1 ( ̂  G N ˆ G 

−1 ) 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

where 

c 1 ( ̂  G j ) = 1 + r ̂  θ�τ + 

ˆ θ ˆ g 2 σ 2 
g �τ

( � ˆ G ) 
2 , 

c 2 ( ̂  G j ) = − ˆ θ ˆ g 2 σ 2 
g �τ

2 ( � ˆ G ) 
2 −

ˆ θ ˆ g αg �τ
(

f ( T −τ n +1 ) −( ̂ G j ̂ g −ḡ )+ βg ω 

2 αg 

)
2� ˆ G 

, 

c 3 ( ̂  G j ) = − ˆ θ ˆ g 2 σ 2 
g �τ

2 ( � ˆ G ) 
2 + 

ˆ θ ˆ g αg �τ
(

f ( T −τ n +1 ) −( ̂ G j ̂ g −ḡ )+ βg ω 

2 αg 

)
2� ˆ G 

. 

Moreover, for j = 1 , . . . , N ˆ G 
− 1 , the jth component of the second member vector b n 

i 
of the linear system is given by 

(b n 
i 
) j = 

([ 
1 − r�τ

(
1 − ˆ θ

)] 
−

σ 2 
g ̂  g 2 �τ

(
1 − ˆ θ

)
( � ˆ G ) 

2 

)
P n χn , j 

+ 

(
αg ̂ g �τ(1 − ˆ θ ) 

[ 
f (T −τ n ) −( ̂ G j ̂ g −ḡ ) + βg 

αg 
P n 
χn , j 

] 
2� ˆ G 

)
P n χn , j+1 

+ 

(
σ 2 

g ̂  g 2 �τ
(

1 − ˆ θ
)

2 ( � ˆ G ) 
2 

)
P n χn , j+1 

+ 

(
σ 2 

g ̂  g 2 �τ
(

1 − ˆ θ
)

2 ( � ˆ G ) 
2 

)
P n χn , j−1 

−
(

αg ̂ g �τ(1 − ˆ θ ) 
[ 

f (T −τ n ) −( ̂ G j ̂ g −ḡ ) + βg 
αg 

P n 
χn , j 

] 
2� ˆ G 

)
P n χn , j−1 

+ 

(1 − ˆ θ ) ̂ g �τβg 

2 

(
θn 

i, j+1 
−θn 

i, j−1 

2� ˆ G 

)
+ 

ˆ θ ˆ g �τβg 

2 

(
θn +1 ,k 

i, j+1 
−θn +1 ,k 

i, j−1 

2� ˆ G 

)
. 

4. Numerical examples 

In this section we present some numerical results to illustrate the performance of the proposed numerical method, as 

well as to discuss some quantitative and qualitative results for a real problem. 

4.1. Academic test 

As a sanity check of the code and numerical methods, in the first example we show an academic test with known

analytical solution. For this purpose, we consider the following non homogeneous non-linear PDE: 

L 1 [ P ] = h, (30) 

where the differential operator L 1 is defined by (9) and h is given by 

h 

(
t, B, ˜ G 

)
= exp 

(
( T − t ) B ̃

 G 

)
×

[
−B ̃

 G + 

1 

2 

σ 2 
g t 

2 B 

2 − tB αg 

(
f ( t ) + 

βg 

αg 
exp 

(
( T − t ) B ̃

 G 

)
− ˜ G 

)
− exp 

(
˜ G 

)
t ̃  G − r 

]
, 

so that P (t, B, ˜ G ) = exp 

(
(T − t) B ̃  G 

)
is the analytical solution of the PDE (30) . Moreover, we consider a single period ( γ = 1 ),

T = 1 and the final condition provided by the evaluation of the known solution at time t = T . 
8 
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Table 1 

Parameters in the PDE model for the academic test. 

Parameter T γ αg βg σg r

Value 1 1 2 1 . 27 × 10 −3 0.1863 0.02 

Table 2 

Relative errors and empirical convergence order in academic test. 

Time steps Space steps Er r ∞ (�τ ) R (�τ ) Order 

40 32 0.0108651 - - 

80 64 0.0055962 1.9415 0.9572 

160 128 0.0028748 1.9466 0.9610 

320 256 0.0014710 1.9543 0.9667 

640 512 0.0007474 1.9681 0.9768 

1280 1024 0.0003780 1.9771 0.9834 

2560 2048 0.0001906 1.9832 0.9879 

Table 3 

Parameters in the PDE model for the real test. 

Parameter T γ αg βg σg r

Value 13 3 2 1 . 27 × 10 −3 0.1863 0.02 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

By choosing ˆ b = 1 and ḡ = 0 . 5 (so that ˆ g = 1 ) for the change of variables, we pose the PDE problem in the bounded

domain 

˜ � = [0 , 1] × [0 , 1] × [0 , 1] with Dirichlet boundary conditions on ∗, + 
1 

, ∗, −
2 

and ∗, + 
2 

that are given by the evaluation

of the solution at the corresponding boundaries. 

In this first academic test we do not include the seasonality effect, so that we take f = 0 . Parameters in the PDE are

collected in Table 1 and mostly taken from [13] . 

For the duality method we consider the parameter ω = 2 and the stopping test ε = 10 −5 . In order to assess the per-

formance of the proposed numerical methods, we consider a constant relationship between the time and spatial steps, i.e. 

�τ = c� ˆ B = c� ˆ G . Next, we compute the discrete L 

∞ relative error between the exact solution and the numerical approxi-

mation at the time step n as follows: 

er r ∞ 

n (�τ ) = 

max i, j | P (τ n , ˆ B i , ˆ G j ) − P n 
i, j 

| 
max i, j | P ( τ n , ˆ B i , ˆ G j ) | 

, (31) 

Next, we consider the maximum of errors defined in (31) , Er r ∞ (�τ ) = max n (er r ∞ 

n (�τ )) . Moreover, the radius of the con-

vergence is given by 

R (�τ ) = 

Er r ∞ (�τ ) 

Er r ∞ (�τ/ 2) 
(32) 

for the stepsize �τ, and the empirical order of convergence is given by log 2 (R ) . Table 2 shows the errors, convergence ratio

and empirical order of convergence with different time and spatial discretizations computed as in [15] . 

Thus, taking into account the relative errors and the convergence ratio in Table 2 , we can conclude that a first order

convergence is achieved. 

4.2. Real case 

In this example we analyze the evolution of the price of a real green certificate. For this purpose, we have used the real

New Jersey market data presented for SREC markets, i.e., markets for solar renewable energy certificates, in [13] . 

In this market, the energy year refers to the 12-month period ending on May 31. We assume that the maturity is T = 13 ,

i.e., May 31, 2013. For convenience, the energy year 2013 is defined as the time interval (12,13]. Thus, we consider the

requirement schedule 2010–2013, i.e., γ = 3 , with initial year t = t 0 = T − γ = 10 and the first compliance date at t = 11 (at

the end of the year 2011) which corresponds to τ = 2 . For the PDE parameters we consider those ones in Table 3 . 

Moreover, the seasonality function f represents the influence of weather conditions and is chosen as follows: 

f (s ) = a 1 sin (4 πs ) + a 2 cos (4 πs ) + a 3 sin (2 πs ) + a 4 cos (2 πs ) , (33)

the parameters of which are provided in Table 4 . 

Table 5 shows the requirement, R i , and the penalty, �i , values at the end of each year for i = 1 , 2 , 3 . 

For the numerical methods, we start by choosing ˆ b = 7 × 10 5 and ḡ = ln (7 × 10 5 ) , so that ˆ g = 2 × ln (7 × 10 5 ) . By using

these values we pose the PDE problem in the bounded domain 

ˆ � = (0 , γ ) × (0 , 1) × (0 , 1) . Concerning the discretization

parameters, we consider 100 time steps per month for the time discretization, i.e. �τ = 

1 , and a uniform mesh with
1200 

9 
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Table 4 

Parameters in the seasonality function for the real test. 

Parameter a 1 a 2 a 3 a 4 

Value −0.1209 0.0900 0.2151 0.3859 

Table 5 

Requeriments and penalty values 

for each energy year in the real 

test. 

Energy year R i �i 

2011 306,000 675 

2012 442,000 658 

2013 596,000 641 

Fig. 1. Renewable energy certificate price at time t = T − 2 / 3 in the real test. 

Fig. 2. Renewable energy certificate price at time t = T − 1 / 3 in the real test. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

� ˆ B = � ˆ G = 1 / 32 . Moreover, in the duality method we choose the parameter ω = 2 and the value ε = 10 −5 as tolerance for

the convergence test. 

Next, we show the computed results in the variables (t, B, G ) that are obtained with the model data and the parameters

related to the numerical methods. Firstly, in Fig. 1 we show the price of the certificate eight months before maturity, that is

at time t = T − 2 / 3 (or at τ = 2 / 3 , equivalently). We can observe that the price of the certificate takes values between zero

and the penalty amount. When the accumulated supply (B) becomes very high, the price of course becomes very low, and

when supply is very low, the price turns out to be very high. Moreover, when the number of accumulated certificates (B)

and the renewable energy rate (G = exp ( ̃  G )) tend to zero, the price approaches to penalty value π . That is, for low values

of both variables, B and G, the price of the certificate is almost equal to the penalty. Moreover, we also point out that the

price of the certificate decreases when we increase the value of both state variables since, as it is indicated in [13] , for high

values of the variables, supply of certificates is high so the market can achieve the requirement easily and an additional

certificate will not be needed for compliance. Therefore, when only B tends to zero, the price tends towards the penalty

unless high values of G offset this, as it is illustrated in Fig. 1 . 

When we represent the value of the certificate for a time closer to maturity, for instance at time t = T − 1 / 3 (i.e. four

months before expiry date), as is shown in Fig. 2 , we observe that low values of generation rate are associated with prices

equal to the penalty amount even for values of accumulated certificates nearer to requirement since time is running out 

before compliance. High values of generation rate are linked to prices equal to the penalty only for lower values of banked
10 
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Fig. 3. Price curves for different times in the real test. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

certificates. As expected, a high current production of renewable energy compensates for a low number of accumulated 

renewable energy certificates. 

Finally, if we want to show the price of the certificate versus the accumulated renewable energy certificates for different 

times, we can create cross-sectional plots as the ones in Fig. 3 . In order to obtain these curves we have chosen appropriate

large values of renewable energy rate. At maturity, t = T , the price of the certificate is equal to the penalty if the requirement

is not met, otherwise the price is zero. Then, as we move backwards in time we can observe that the curves move to the

left and take lower values, due to the diffusion of the final value. When we arrive at a compliance date there is a jump

to the right and the price increases again due to the jump condition imposed. In such figure we show the value at the

first compliance date as well. Note that at maturity and compliance dates there exists a discontinuity when the number of

accumulated certificates meets the requirement, because of the indicator function multiplied by the penalty, as it is pointed 

out in [13] . 

The CPU time is 223 seconds for this real case example. The CPU of the laptop we use is a Intel(R) Core(TM) i7-10750H

at 2,6 GHz with 32 GB 2933 MHz DDR4 RAM. The implementation has been developed in Matlab. 

5. Conclusions 

Climate change policy and the growth of renewables have led to the creation of many new tradeable certificate markets 

for which price modelling and derivative pricing remains particularly challenging. Complicated market designs produce feed- 

back mechanisms whereby higher certificate prices lead to higher incentives to build more renewables, ultimately increasing 

long-term certificate supply, and lowering expected prices. We have provided in this paper a new PDE formulation for the 

resulting equilibrium price, building on earlier work on REC or green certificate prices. As we have seen, an interesting PDE 

problem emerges for the certificate price in this setting, with a non-linear convective term in a PDE which is also degener-

ate. A set of numerical methods is proposed to handle these issues, and the performance of the approach is confirmed via

a real world example, taken from the NJ SREC market. Such a model is particularly valuable for renewable energy investors

to better understand their certificate price risk, as well as the potential benefits of a new investment. It may also be an

informative tool to regulators and policy makers and they continue to improve market design to further incentivise global 

renewable energy growth. 
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