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Abstract

We analyze the transitional dynamics of an endogenous growth model with
physical capital, human capital, and R&D. We provide conditions for the ex-
istence of a feasible steady state equilibrium with positive long-run growth.
For appropriate parameter values, the transitional dynamics of the model is
represented by a two-dimensional stable manifold. This provides much richer
dynamics than that of the standard two-sector endogenous growth model which
is characterized by a one-dimensional stable manifold. We also show how the
adjustment paths can be correctly computed by noting that the continuity of
the shadow prices involves the continuity of transitional paths.
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1. Introduction 

Physical capital accumulation, knowledge formation, and R&D-based 
technological progress are considered the three main sources of growth. Although 
they have been usually considered as alternative rather than complementary 
explanations in the theoretical literature, recently, Funke and Strulik (2000) have 
combined them into an endogenous growth model with physical capital, human 
capital and R&D. They show that along the adjustment path for a developing 
economy, different stages of development can be distinguished. At the first stage 
(the standard neoclassical model), physical capital is the only factor being 
accumulated; at the second stage (a developing economy in the Uzawa-Lucas 
framework), human capital is also being accumulated, and at the third stage (the 
fully industrialized or innovative economy), research is actively being conducted 
as well, which results in an increasing variety of goods. Transition to a higher 
stage of development is explained endogenously. 
 The purpose of this paper is to analyze the equilibrium dynamics of this 
model. In doing so, we generalize and correct the analyses in the papers of Funke 
and Strulik (2000) and Arnold (2000). We provide a necessary and sufficient 
condition for the existence of a feasible steady-state equilibrium with positive 
long-run growth that generalizes the condition stated in Funke and Strulik (2000, 
Proposition 1) and puts right a slight incorrectness in Arnold (2000, Theorem 1). 
We then analyze the local dynamics generated by the model. Under the 
assumptions stated by Arnold (2000, Theorem 2) and Funke and Strulik (2000, 
Proposition 1), the system that describes the dynamics of the model has “too 
many” unstable roots, i.e., the number of unstable roots exceeds the number of 
jump variables. Thus, it is not possible to make the system stable for arbitrary 
initial values of the predetermined variables. We then re-elaborate the conditions 
for the stability of the model, and show that its transitional dynamics is 
represented by a two-dimensional stable manifold. This provides a much richer 
dynamics for the transition paths, where variables can exhibit non-monotonic 
behaviour throughout the transition to the balanced growth path, relative to that of 
the standard two-sector endogenous growth model which is characterized by a 
one-dimensional stable manifold (see, e.g., Bond et al., 1996). However, it cannot 
be guaranteed that the stable manifold is transversal to the directions in which the 
system can jump for arbitrary initial values of the predetermined variables. 
Therefore, saddlepoint stability of the steady state cannot be ensured even if the 
conditions that guarantee that there exists the right number of stable roots are 
fulfilled. 
 Numerical computation of transitional paths is a difficult task when the 
economy evolves through different stages of development, so structural changes 
take place. Actually, adjustment paths are incorrectly computed in Funke and 
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Strulik (2000). They calculate the stable saddle-paths of the developing economy 
and the innovative economy towards their respective steady-state positions. Then, 
they use the fact that state variables cannot jump to calculate the point of 
transition, and cut the relevant time paths of the developing economy up to the 
value of the connecting state variable and link them with the already obtained 
paths for the innovating economy. Proceeding in this way, discontinuities at the 
point of transition from the developing economy to the fully industrialized 
economy arise that violate the continuity of the costate variables of the 
households’ utility maximization problem. We then show how the transitional 
paths may be correctly computed. 
 The remainder of this paper is organized as follows. Section 2 recapitulates 
the model. Section 3 analyzes the balanced growth equilibrium, and Section 4 the 
stability of the model. Section 5 considers the computation of adjustment paths. 
Section 6 concludes. 

2. The model 

This section recapitulates the Funke and Strulik’s (2000) model of endogenous 
growth. For further details, see that reference and Arnold (2000). 

2.1. Setup of the model 

Consider a closed economy inhabited by a constant population, normalized to 
one, of identical infinitely-lived households that maximize the intertemporal 
utility function 

∫
∞ −

−

−
−

0

1

e
1

1 dtC tρ
θ

θ
,  ρ > 0,  θ > 0, 

where C denotes consumption, subject to the budget constraint and the knowledge 
accumulation technology. Human capital, H, can be devoted to production, 
education and R&D, respectively: 

nHY HHHH ++= , 
and is accumulated according to 

HHH ξ= ,  ξ > 0. 
 The budget constraint faced by the household is 

CHHwrAA H −−+= )( , 
where r is the return per unit of aggregate wealth, A, and w the wage rate per unit 
of employed human capital. Let gz = ż/z denote the growth rate of any variable z. 
In this paper, we will concentrate on the regimes where human capital is being 
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accumulated and, hence, HH > 0. The first-order conditions of the household’s 
utility maximization problem give then 
 θρ)( −= rgC , (2.1) 
 ξ−= rg w . (2.2) 
 A single homogenous final good Y is produced with Cobb-Douglas 
technology 

ηβηβ −−= 1
1 YHDKAY ,  A1 > 0,  β > 0,  η > 0,  β +η < 1. 

Here K is physical capital and D is an index of intermediate goods, 
α

α
1

0
)( ⎥⎦

⎤
⎢⎣
⎡= ∫

n
diixD ,  10 <<α , 

where x(i) is the amount used for each one of the n intermediate goods. The 
market for final goods is perfectly competitive and the price for final goods is 
normalized to one. Profit maximization delivers the factor demands 
 KYr β= , (2.3a) 
 YHYw )1( ηβ −−= , (2.3b) 
 ααη DiYxip 1)()( −= , (2.3c) 
where p(i) represents the price of intermediate i. 
 Invention of new intermediates is determined solely by the aggregate 
knowledge devoted to R&D according to 

nHn δ= ,  δ > 0. 
Firms are granted infinitely-lived patents, so that there is monopolistic 
competition in the intermediate-goods sector. Suppose that an intermediate good 
costs one unit of Y to produce. Facing the price elasticity of demand for the 
intermediates 1/(1–α), firms maximize operating profits, π(i) = (p(i) – 1)x(i), by 
charging a constant markup price p(i) = 1/α. Since both technology and demand 
are the same for all intermediates, the equilibrium is symmetric: x(i) = x, p(i) = p. 
Using (2.3c), this yields the quantity of intermediates employed as xn = αηY, 
firms profits as 
 nYηαπ )1( −= , (2.4) 
and YnxnD αηααα )1(1 −== . Substituting this expression into the production 
function yields 
 ηβαηαβηη αη −−−− = 1

1
)1(

1
1 )()( HunKAY , (2.5) 

where u1 = HY /H is the proportion of human capital employed in production. 
 The value of an innovation υ is the present value of the stream of monopoly 
profits, 

ττπυ τ det
t

tr )()( ),(∫
∞ −= , 

3Gómez: Endogenous Growth with Physical Capital, Human Capital and R&D

Produced by The Berkeley Electronic Press, 2005



 

with ∫=
τ

τ
t

dssrtr )(),( . Log-differentiating this expression with respect to time 

gives the no-arbitrage equation 
 υπυ −= rg . (2.6) 
 Finally, free-entry into R&D requires 
 υδ=w   and  , (2.7) 0>nH
in an equilibrium with innovation, or 
 υδ>w   and  0=nH .  
 Some equations will be needed for solving the model. Log-differentiating the 
expressions for r in (2.3a), w in (2.3b), and Y in (2.5) provides, respectively, 
 KYr ggg −= , (2.8) 
 HuYw gggg −−=

1
, (2.9) 

and 

 )()1()1()1(
1 HunKY ggggg +−−+

−
+=− ηβ

α
ηα

βη . (2.10) 

 Let χ ≡ C/K denote the consumption to physical capital ratio, ω ≡ K/H, the 
physical to human capital ratio, and ψ ≡ H/n, the knowledge-ideas ratio. The 
economy’s resource constraint, 

CYnxCYK −−=−−= )1( αη , 
can be expressed as 

 χ
β
αη

−
−

= rg K
)1( . (2.11) 

2.2. The developing economy 

The developing economy is characterized by the presence of human capital 
accumulation ( ) but R&D is not profitable (0>H 0=n ). As long as ξ > ρ, the 
economy necessarily arrives at a point from which on households will invest 
permanently in human capital formation (see Funke and Strulik, 2000). The 
following system of differential equations describes the dynamics of the 
developing economy: 

 
θ
ρχ

β
αη

θχ −+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−= rg 11 , (2.12a) 

 
β

ξηβ
ξχ

β
ηα )1()1(

11

−−
++−

−
= urgu , (2.12b) 

 )()1(
ξ

β
ηβ

−
−−

−= rg r . (2.12c) 
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 From (2.1) and (2.11), we obtain (2.12a). From (2.2), (2.8), (2.9), (2.10), 
(2.11), together with gH = ξ (1 – u1) and gn = 0, we obtain (2.12b) and (2.12c). 
 From (2.12c), the interest rate r converges to ξ > 0 independently of the 
remaining system dynamics as ∂gr /∂r < 0, whereas the growth rate of wages 
converges to zero from (2.2). Hence, there must be a point in time at which the 
value of an innovation, υ, equals its cost, w/δ. Up from this point, the economy 
enters the innovative stage. 

2.3. The innovative economy 

The fully industrialized economy is characterized by the presence of both human 
capital accumulation ( ) and R&D ( ). The following system of 
differential equations describes the dynamics of the fully industrialized economy: 

0>H 0>n

 
θ
ρχ

β
αη

θχ −+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−= rg 11 , (2.13a) 

 
⎭
⎬
⎫

⎩
⎨
⎧

−−⎥
⎦

⎤
⎢
⎣

⎡
−

−−
+−

−
⎥
⎦

⎤
⎢
⎣

⎡
−

−−
=

−

χξ
ηα
ηβα

β
αη

ηα
ηαβα

)(
)1(

)1(
11

)1(
)1(

1

rrg r , (2.13b) 

 nn ggg −
⎭
⎬
⎫

⎩
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
+

−
−−

−=
δψηα

ξηβ
ξψ

1
)1(

)1(1 , (2.13c) 

where the growth rate of n can be expressed as a function of r and χ as 

 
)1(

))1()1((
αηαβ

βχξηηαα
−−

−−+−
=

rg n . (2.14) 

The system (2.13) characterizes the dynamics of the economy in terms of r, χ and 
ψ, after substituting gn from (2.14) into (2.13c). 
 Log-differentiating the free-entry condition (2.7) with respect to time, and 
substituting gυ from (2.6), π from (2.4), and w from (2.3b), we get 

 
n

H
gr Y

w ηβ
ηδα
−−

−
=−

1
)1( ,  

which using (2.2) gives 

 
ηδψα

ξηβ
)1(

)1(
1 −

−−
=u . (2.15) 

 From (2.1) and (2.11), we derive (2.13a). Log-differentiating (2.15) with 
respect to time delivers Hnu ggg −=

1
, which together with (2.2), (2.8), (2.9), 

(2.10) and (2.11) give (2.13b) and (2.14). Equation (2.13c) is obtained from 
gψ = gH – gn, gH = ξ (1 – u1 – u2), gn = δu2ψ and (2.15), where u2 = Hn /H is the 
proportion of human capital employed in R&D. 
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3. Balanced growth equilibrium 

In this section, we shall focus on a balanced growth equilibrium in which all 
variables grow at constant, but possibly different, rates, and the shares of human 
capital in its different uses are constant. The next theorem states a necessary and 
sufficient condition for the existence of a feasible steady-state equilibrium with 
positive long-run growth, which generalizes the conditions stated in Funke and 
Strulik (2000, Proposition 1), and puts right a slight incorrectness in Arnold 
(2000, Theorem 1). 

Theorem 1. Let ρξ > . For the innovating economy, there exists a unique positive 
steady-state equilibrium with positive long-run growth rate: 

 
1)))1()()1((1(

)))1()()1((1(
*

−−−−+
−−−−+

=
ηηβααθ

ρξηηβααθ
r , (3.1a) 

 
θ
ρ

θβ
αηχ +⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

−
= *11* r , (3.1b) 

 
*)()1(

))1()1(*(
*

n

n

g
g

−−
−−+−

=
ξδηα

ξηβηαξ
ψ , (3.1c) 

where the steady-state growth rate of knowledge and human capital equals 

 
))1()()1()(1(

**
ηβηααθθ

ρξ
−−−−+

−
== Hn gg , (3.2) 

and the steady-state growth rate of income, consumption, and physical capital 
equals 
 *)))1()()1((1(*** nCYK gggg ηβηαα −−−+=== , (3.3) 
if and only if 

 
)1()1(

)1)(1()1(
min ηβααη

ξρηβααη
θθ

−−+−
−−−+−

=> . (3.4) 

Proof. According to (2.15), constancy of u1 implies 0* =ψg , and hence . 
Constancy of  implies, by the Ramsey rule (2.1), the constancy of r, i.e., 

. Therefore, , from (2.3a), and χ is also constant in the steady state, 
i.e., , from (2.13a). Hence, 

** nH gg =

*Cg
0*=rg ** KY gg =

0*=χg *** CKY ggg == . 
 Solving for the steady state of the system (2.13a)-(2.13c) yields (3.1a)-(3.1c). 
Substitution of (3.1a) and (3.1b) into (2.14) gives (3.2). Now, ρξ >  entails 

0* >> ρr . If , the condition 0* >ng 0*>ψ  is satisfied if and only if ξ<*ng , which 
is equivalent to (3.4). Condition (3.4) also ensures . The ratio of 
consumption to physical capital can be expressed as 

0* >ng
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)1)1((
))(1())1)((1(*

−Φ+
−Φ+−−Φ+−

=
θβ

ρξβρθξαη
χ , 

where ))1(())1(( ηαηβα −−−=Φ . As (3.4) can be equivalently expressed as 
)()1( ρξξθξ −Φ+>Φ+ , the denominator of χ* is positive. Its numerator is also 

positive, and hence χ* > 0, since 
 >−Φ+−−Φ+− ))(1())1)((1( ρξβρθξαη  
 0))(1)(1())(1()))(1)((1( >−Φ+−−=−Φ+−−Φ+−> ρξβαηρξβρξαη . 
 As ,  and ** nH gg = ** KY gg = 0*

1
=ug , from (2.10) we obtain (3.3). Finally,  

and ψ*>0 entail that  using (2.15), 
0* >ng

0*1 >u * 0*)(*)(*2 >== δψnn gHHu , and 
**)(*3 >== 0ξnH gHHu . Thus, the steady state is feasible. The transversality 

conditions of the household’s optimization problem can be readily shown to be 
equivalent to *ng>ξ . This completes the proof.  ■ 

 A sufficient, but not necessary, condition for (3.4) to hold is θ > 1, which is 
assumed by Funke and Strulik (2000). Hence, condition (i), (1 – αη)/β > 1, in 
Funke and Strulik (2000, Proposition 1) is not required to guarantee the existence 
of a positive steady-state equilibrium with positive long-run growth. Arnold 
(2000, Theorem 1) assumes instead the fulfilment of the condition 

))1(()1(11 ηαηβαθ −−−+< , which is equivalent to 

 
)1()1(

)1(
ηβααη

αη
θθ

−−+−
−

=> . (3.5) 

Condition (3.4) implies, but is not necessary for, the validity of (3.5). Although 
(3.5) ensures that , it does not guarantee that 0* >ng ξ<*ng , and so, it does not 
guarantee the positivity of ψ* (and ). Hence, (3.5) is not a sufficient condition 
for the steady state to be feasible. 

*1u

4. Stability analysis 

We shall now analyze the dynamics of the model in the neighbourhood of the 
steady state. As usual, we assume that the stocks of physical and human capital, 
and the number of intermediates move sluggishly, so that K(0), H(0) and n(0) are 
given by their historical values. The knowledge-ideas ratio, ψ = H/n, is therefore a 
predetermined variable. Although one might expect the interest rate, r, to be a 
jump variable, it is a predetermined variable in the innovative economy as well 
since, substituting u1 from (2.15) into (2.5), and using (2.3a), it can be expressed 
as a function of K and n as 
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η
ηβ

ηα
ηβαηα

η
ηβ

η
η

η

ηδα
ξηβ

αηβ
−
−−

−
−−+−

−
−−

−
−−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−−
=

1
1

)1(
)1()1(

1
1

11
1

1 )1(
)1()( nKAr .  

Thus, the consumption to physical capital ratio, χ, is the unique jump variable. 
Hence, the system (2.13) has two predetermined variables, r and ψ, and only one 
jump variable, χ. To ensure local saddlepoint stability of the steady state 
(r*,χ*,ψ*), we should first look for conditions that guarantee that the coefficient 
matrix of the linearized system around the steady state has two stable and one 
unstable eigenvalues, and then, check whether the stable manifold is transversal to 
the directions in which the system can jump for arbitrary initial values of the 
predetermined variables (see, e.g., Buiter, 1984). In the following discussion, the 
condition (3.4) in Theorem 1 will be assumed to hold. 
 Linearizing the system (2.13) around its steady state (r*,χ*,ψ*), the dynamics 
may be approximated by the following third-order system: 

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

−

−

−

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

−••

−−
−−

−−
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −−
−

−−
−

=

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

*

*

*

*

0**))1(1(

0*
)1(

)1(*1
)1(
)1(

ψψ

χχ

ξ

χχβαηθ
ηαβα

ηα
β
αηβ

ηαβα
ααη

ψ

χ

rr

g

rrr

n

, (4.1) 

where dots replace those elements that are irrelevant for the analysis. Let J denote 
the coefficient matrix of (4.1), and let J2 denote the upper left 2×2 submatrix of J. 
The structure of J entails that its eigenvalues are the two eigenvalues of J2, and 
the third eigenvalue of J is its last diagonal element, which is positive since 

ξ<*ng  if (3.4) holds. 
 The real parts of the eigenvalues of J2 are negative if and only if its 
determinant is positive and its trace negative. The determinant of J2 is calculated 
as 

 **
))1((

)1()1)(1(
2 χ

θηαβα
θηβαθαη r

−−
−−−−−

=∆ . (4.2) 

Since the numerator of the former expression is negative if condition (3.4), and 
therefore (3.5), holds, ∆2 is positive if and only if 
 ηααβ )1( −< . (4.3) 
The trace of J2 is calculated as T = T1 + T2, where 

))1())1()1((())1((
)))1(()1(())1()1(( 2

1 αηθαηηβααβαη
ξθαβηααηαβηβααη

−−−+−−−−
−−+−−−−+−

=T , 

and 
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))1())1()1((())1((
))1()1)(1((

2 αηθαηηβααβαη
αρηβαβαηβαη

−−−+−−−−
−−−−−−

=T . 

The denominator of T is positive if (4.3) and (3.4), and therefore (3.5), are 
satisfied. Now, two cases may arise. 
 i) If the coefficient of θ in the numerator of T is nonpositive, i.e., 

, the fact that ηααβ 2)1( −≥ minθθ >  implies that the trace is negative if (3.4) is 
satisfied since its numerator is less than 

)))(1()1()(1( ρξηβααηααη −−−+−−− , 
which is negative. 
 ii) If the coefficient of θ in the numerator of T is positive, i.e., 

, the numerator of T is increasing in θ. Equalizing the numerator of 
T to zero, the value of θ such that the trace T is zero, 

ηααβ 2)1( −<

0=Tθ , is found to be 

 
αβηα
αβαη

ξαβηαηβααη
αραηβαηηβαβ

θ
−−
−−

+
−−−−+−

−−−−−−
== 220 )1(

)1(
))1(())1()1((

))1)(1()1((
T . (4.4) 

Hence, the trace T is negative if and only if 0=< Tθθ . Note that 0min =< Tθθ , as 

 0
))1((
))(1(

20min <
−−

−−
=− = ξηααβ

ρξααη
θθ T .  

 Under the former conditions, there are a single unstable and two stable roots. 
The Stable Manifold Theorem (e.g., Guckenheimer and Holmes, 1983) entails that 
there exists a two-dimensional differentiable stable manifold M containing 
(r*,χ*,ψ*) such that for any point (r,χ,ψ) in M the solution through this point 
converges to the steady state. The following theorem summarizes the former 
findings. 

Theorem 2. In the conditions of Theorem 1, if ηααβ )1( −<  and one of the 
following conditions is verified: 
 i) , or ηααβ 2)1( −≥
 ii)   and  ηααβ 2)1( −< 0=< Tθθ , with 0=Tθ  defined by Eq. (4.4), 
then there exists a two-dimensional differentiable stable manifold M tangent to 
the stable space of (4.1) at (r*,χ*,ψ*), that is invariant under the flow of system 
(2.13) and such that for any point in M the solution through this point converges 
to the steady state. 

 Numerical simulations show that the two stable eigenvalues may be complex 
conjugate or real. For instance, under the baseline β = 0.4, η = 0.5, α = 0.5, 
ξ = 0.05, ρ = 0.03, θ = 1, δ = 0.1, and A1 = 1, the eigenvalues of J are 
λ1 = −0.2471, λ2 = −0.0979, and λ3 = 0.03. Under the baseline β = 0.34, η = 0.34, 
α = 0.4, ξ = 0.05, ρ = 0.023, θ = 1, δ = 0.1, and A1 = 1, the eigenvalues of J are 
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θρ

θξ

*r r

χ

*χ

0=χg

0=rg

Figure 1. Convergence of r and χ in the innovative economy 

λ1 = −0.044 + 0.165i, λ2 = −0.044 − 0.165i, and λ3 = 0.023. Our numerical 
simulations suggest, however, that the stable eigenvalues are more likely to be 
complex conjugate for plausible parameter values. 
 Whereas Theorem 2 gives conditions that guarantee that there exists the right 
number of stable eigenvalues, this is not sufficient for saddlepoint stability. It 
should also be checked whether the stable manifold is transversal to the directions 
in which the system can jump for arbitrary initial values of the predetermined 
variables. It can be readily shown that the stable space of the linear system (4.1), 
which is the eigenspace corresponding to the two negative eigenvalues of J, is 
equal to the hyperplane defined by ψ = ψ*. Since ψ is a predetermined variable, 
its initial value ψ(0) will generally be different from ψ*. In this case, ψ(0) ≠ ψ*, 
there does not exist any χ such that (r,χ,ψ) is contained in the two-dimensional 
stable space of the system (4.1). In other words, given the initial values r(0) and 
ψ(0), if ψ(0) ≠ ψ* a jump in χ cannot move the system onto the stable eigenspace 
of the system (4.1). Hence, saddlepoint stability of the steady state (r*,χ*,ψ*) 
cannot be ensured even if the conditions of Theorem 2 hold. So, we cannot be 
confident that for arbitrary initial values, the predetermined variables r and ψ pick 
off a (unique) point in the stable manifold. 
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 From (2.13a), the gχ = 0 – locus is given by 
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and from (2.13b), the gr = 0 – locus is calculated as 
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Note that gχ > 0 above the gχ = 0 – locus, and gχ < 0 below. The condition (4.3) 
assumed in Theorem 2 implies that the factor ))1(())1(( ηαηαβα −−−  in 
(2.13b) is negative, and hence, gr > 0 above the gr = 0 – locus, and gr < 0 below. 
Given the condition (3.4) stated in Theorem 1, the gχ = 0 – locus is located below 
the gr = 0 – locus at r = 0 and, furthermore, the slope of the gχ = 0 – locus is 
greater than that of the gr = 0 – locus. The gr = 0 – locus is increasing, and hence 
so the gχ = 0 – locus is, if (4.3) is satisfied since the coefficient of r is positive as 
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 Figure 1 depicts the phase diagram in the (r,χ) – plane. It should be noted that 
one needs full stability of the steady state (r*,χ*), not saddle-path stability as 
assumed by Arnold (2000) and Funke and Strulik (2000). The steady state (r*,χ*) 
is a stable spiral point if both stable roots are complex conjugate, and a stable 
node if they are real. A particular adjustment path is depicted when both stable 
roots are assumed to be complex. 
 Figure 2 depicts a phase diagram in the (gn,ψ) – plane. From (2.13c), the 
gψ = 0 – locus is given by 

 
)()1(
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n g
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+

−
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ξδ
ξ
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The gψ = 0 – locus is upward sloping with a positive ordinate intersection, and a 
pole at gn = ξ. It can be easily shown that gψ > 0 above the gψ = 0 – locus, and 
gψ < 0 below. The – locus is vertical at 0=ng *nn gg =  in the (gn,ψ) – plane. Note 
that (2.14) entails that gn converges since r and χ do so. However, we cannot 
ensure that the arrows point west (east) if  ( **nn gg > nn gg < ), as Funke and Strulik 
(2000) and Arnold (2000) do, since it cannot be ensured that convergence to  is 
monotonic. The reason is that, as shown before, r and χ may exhibit a non-
monotonic convergence to their steady-state values, and so, (2.14) entails that gn 
may also converge in a non-monotonic fashion. Actually, the adjustment paths 
depicted in Figures 1 and 2 arise under the parametrization β = 0.34, η = 0.34, 
α = 0.4, ξ = 0.05, ρ = 0.023, θ = 1, δ = 0.1, and A1 = 1. 

*ng
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Figure 2. Convergence of ψ and gn in the innovative economy 

 Figure 2 shows that, although the stable manifold of the system (2.13) is 
tangent to the stable eigenspace of the system (4.1) at the steady state (r*,χ*,ψ*), 
they cannot be equal. If it were the case, the direction of the arrows shows that the 
system would leave the ‘supposedly stable’ manifold ψ = ψ*, unless we were 
effectively at the steady state at the initial time. Thus, although the stable 
eigenspace of the linear system (4.1) is not transversal to the directions in which 
the system can jump, it might be the case that the stable manifold of the nonlinear 
system (2.13) be so. Actually, this is the case in all of our numerical simulations. 
 Figure 3 displays adjustment paths in the innovative economy, computed by 
backward integration (Brunner and Strulik, 2002), along the stable two-
dimensional manifold in the (r,χ,ψ) – space when parameter values are β = 0.36, 
η = 0.36, α = 0.4, ξ = 0.05, ρ = 0.023, θ = 2, δ = 0.1, A1 = 1. Note that this 
parametrization differs from that considered by Funke and Strulik (2000) only in 
the value of the parameter α, and fulfils the conditions in Theorems 1 and 2. For a 
better illustration of the two-dimensional stable manifold, the constraint Hn ≥ 0 
has been ignored. The fact that the system features two stable roots provides a 
much richer dynamics for the transition paths relative to that of the standard two-
sector endogenous growth model which is characterized by a one-dimensional 
stable manifold (see, e.g., Bond et al., 1996). Figures 1, 2 and 3 illustrate that the 
economy can exhibit non-monotonic behaviour throughout the transition, and 
grow through damped oscillations around the balanced growth path. 
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Figure 3. Adjustment dynamics along a two-dimensional stable 
manifold in the innovative economy. 

 Arnold (2000, Theorem 2) and Funke and Strulik (2000, Proposition 1) 
assume that the condition αβ > (1–α)η holds, which is exactly the reverse of the 
condition assumed in Theorem 2. With this assumption, the determinant of J2 is 
negative when (3.4) is satisfied, and so, J has two unstable and one stable roots. 
Thus, the system that describes the dynamics of the model has “too many” 
unstable roots, i.e., the number of unstable roots exceeds the number of jump 
variables, and the dimension of the stable manifold is smaller than the number of 
predetermined variables. So it is not possible to make the system stable for 
arbitrary initial values of the predetermined variables: The system has ‘too many’ 
initial conditions, and would start in the stable manifold only by coincidence. The 
problem is that Arnold (2000) and Funke and Strulik (2000) fail to acknowledge 
that the interest rate is a state variable, not a jump variable. So, they look for 
parameter values that yield the wrong number of stable eigenvalues needed for 
stability. 
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5. Computation of adjustment paths 

Funke and Strulik (2000) show that along the adjustment path for a evolving 
economy, different stages of development can be distinguished, and analyze 
growth in stages via simulations. In this section, we show that transition paths are 
incorrectly computed in their paper. By means of the backward integration 
method (Mulligan and Sala-i-Martín, 1993, and Brunner and Strulik, 2002), they 
calculate the stable saddle-paths of the developing economy and the innovative 
economy towards their respective steady-state positions. Then, they use the fact 
that state variables cannot jump to calculate the point of transition, and cut the 
relevant time paths of the developing economy up to the value of the connecting 
state variable and link them with the already obtained paths for the innovating 
economy. Proceeding in this way, however, discontinuities arise at the point of a 
regime switch that violate the continuity of the shadow prices. We shall show how 
the correct paths can be computed. As Funke and Strulik (2000), we shall focus 
on the transition from the developing to the innovative economy. 
 Note first that along the transition path, ψ(t) is continuous as the state 
variables H(t) and n(t) are so. The current value Hamiltonian, Π, for the 
household’s utility maximization problem is 

)())((
1

11

HH HCHHwrACΠ ξµλ
θ

θ

+−−++
−
−

=
−

, 

where λ and µ are costate variables. Among the necessary conditions, we have 

 0=−=
∂
∂ − λθC

C
Π .  

Since the costate variable λ(t) is continuous (e.g., Seierstad and Sydsæter, 1987), 
this equation implies that C(t) must be continuous. Hence, the continuity of the 
state variable K(t) entails that χ(t) must be continuous as well. If  (i.e., 
HH > 0), we also obtain the following condition: 

0>H

 0=+−=
∂
∂ µξλw
H
Π

H

.  

By the continuity of the costate variables λ(t) and µ(t), this equation implies that 
the wage rate w(t) is continuous. Using (2.3a), (2.3b) and (2.5), the wage rate can 
be expressed as a function of K, n and u1, and therefore u1 is continuous. Eqs. 
(2.3a) and (2.5) entail that r and Y are continuous as well. Hence, r, χ, and u1 (and 
the remaining variables too) must be continuous at the point of transition from the 
developing economy to the fully industrialized economy. 
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Figure 4. Transitional dynamics of several variables: the case of two 
stable roots 
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 Figures 2–6 in Funke and Strulik (2000) display the transitional paths of 
several variables of the model under the base run scenario β = 0.36, η = 0.36, 
α = 0.54, ξ = 0.05, ρ = 0.023, θ = 2, δ = 0.1, and A1 = 1. These Figures clearly 
show that several variables are discontinuous at the point of the regime switch 
(e.g., their Figure 3 shows that r and u1 are discontinuous at the transition point). 
Hence, adjustment paths have been incorrectly calculated. The correct transition 
paths can be computed as follows. First, we calculate the stable saddle-paths of 
the innovative economy towards their steady-state position, (r*,χ*,ψ*). Backward 
looking from the steady state (r*,χ*,ψ*), the adjustment paths come to an end at 
the transition point from the developing economy to the innovating economy, 
where Hn = 0. From that point backward, the system (2.12) describes the 
dynamics of the developing economy. We have shown that r, χ, and u1 must be 
continuous at the transition point. Hence, we compute the unique trajectories 
determined by the system (2.12) that pass through the computed values of r, χ, 
and u1 at the transition point, and link them with the already obtained for the 
innovative economy. A similar argument, based on the continuity of the costate 
variables, has been recently used by Gómez (2003) to determine the transitional 
dynamics in the one-sector endogenous growth model with physical and human 
capital when investments are irreversible. 
 The numerical simulations performed by Funke and Strulik (2000) are 
characterized by one-dimensional stable manifolds, and do not satisfy the 
conditions stated in Theorem 2. Thus, Figure 4 displays the transition paths of 
several variables under the parametrization β = 0.36, η = 0.36, α = 0.4, ξ = 0.05, 
ρ = 0.023, θ = 2, δ = 0.1, A1 = 1, used before to depict Figure 3. Now, the Uzawa–
Lucas framework serves as a description of development dynamics for about 30 
years, in which adjustment dynamics is monotonic, but oscillatory adjustment 
dynamics occurs when the economy enters the innovative stage. 

6. Conclusions 

In this paper, we examined the equilibrium dynamics of an endogenous growth 
model with physical capital, human capital and R&D. First, we provided a 
necessary and sufficient condition for the existence of a feasible steady-state 
equilibrium with positive long-run growth. We then analyzed the local dynamics 
generated by the model. The dynamics of the economy is described by a third-
order system. For appropriate parameter values, this dynamical system features 
two stable roots, rather than only one as in the standard two-sector endogenous 
growth model, and two predetermined variables. Hence, the equilibrium dynamics 
is characterized by a two-dimensional stable manifold. This provides a much 
richer dynamics for the transition paths. The economy can exhibit non-monotonic 
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behaviour throughout the transition and grow through damped oscillations around 
the balanced growth path. However, it cannot be guaranteed that the stable 
manifold is transversal to the directions in which the system can jump for 
arbitrary initial values of the predetermined variables. Therefore, saddlepoint 
stability cannot be ensured even if the conditions that guarantee that there exists 
the right number of stable roots are fulfilled. 
 Numerical computation of adjustment paths is a difficult task when the 
economy evolves through different stages of development, so structural changes 
take place. One could be tempted to calculate the stable saddle-paths of each 
development stage towards its respective steady state, cut the relevant saddle-
paths up to the transition point and link them with the saddle-paths computed for 
the next stage of development. Computing in this way the transition paths in the 
model considered in this paper discontinuities at the point of transition from the 
developing economy to the fully industrialized economy arise that violate the 
continuity of the costate variables of the households’ utility maximization 
problem. We then showed how the transitional paths could be correctly computed. 
Similar arguments may be applicable to other models of endogenous growth with 
temporally binding constraints. 
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