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Soledad Muniategui b, Purificación López-Mahía b, Bo Shu e, Helga Bettin e, Daniela Klaus e, 
Bert Anders e, Marius Betz f, Ulf Kühne f, Christian Meier f, Peter Eilts f 

a Mestrelab Research S.L. Feliciano Barrera 9B-Baixo, E-15706, Santiago de Compostela, Spain 
b Group of Applied Analytical Chemistry. University of A Coruña. Campus da Zapateira, s/n, E-15071, A Coruña, Spain 
c Regasificadora del Noroeste, S.A. Punta Promontorio, E-15620, Mugardos (Ferrol), Spain 
d Naturgy, Avda. de San Luis 77, 28033, Madrid, Spain 
e Department of Physical Chemistry, Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, 38116, Braunschweig, Germany 
f Technical University of Braunschweig, Institute of Internal Combustion Engines, 38108, Germany   

A R T I C L E  I N F O   

Keywords: 
Methane number 
Liquefied natural gas 
Service methane number 
Infrared spectrometry 

A B S T R A C T   

To assess the knocking properties of natural gas (NG) when it is used as fuel for vehicles is vital to optimize the 
design and functioning of their motors. Analytical efforts in this field are needed as the engines used to define it 
empirically are not available anymore, and existent mathematical algorithms yield different accuracy. The hy-
bridization of gas-phase infrared spectrometry and partial least squares multivariate regression is presented first 
time to address the determination of the methane number (MN) of NG samples. It circumvents the need for the 
previous knowledge of the NG composition required to apply dedicated equations. The use of true NG samples to 
develop the models is also quite new in the field. Proof-of-concept studies were made with synthetic spectra and, 
then, a collection of liquefied NG samples for which MN values were computed by the National Physics Labo-
ratory algorithm (NPL) from their sample composition were used to develop operative models. Additional 
validation was made with a collection of synthetic standard mixtures prepared for two European projects (EMRP 
LNG II and EMPIR LNG III) whose service methane numbers (SMN) were measured with an engine. The FTIR-PLS 
approach yielded statistically unbiased predictions with average standard errors around 0.4% MN when 
compared to the NPL-MN and SMN values, and standard deviations of the means ca. 1% MN. The approach is 
fast, cost effective as it involves standard instrumentation, and can be considered compliant with the green 
chemistry principles.   

1. Introduction 

Natural gas has been used as a fuel for decades and has gained 
increasing interest recently. It produces lower CO2 emissions relative to 
the energy content than any other hydrocarbon because of its low C/H- 
ratio. Furthermore, it is available in large quantities from fossil sources 
but can also be produced from regenerative sources, be it biologically 
(biogas) or via the P2G-path (power to gas production). Natural gas is a 
first step to reduce greenhouse gas emissions and the utilisation of 
compressed natural gas (CNG) for light vehicles, and liquefied natural 
gas (LNG) and liquefied biogas (LBG) for heavy duty and marine 

transport fuels (due to their higher energy content), is one of the pillars 
of the European clean fuel strategy and, in particular, the EU Directive 
on alternative fuels (European Commission, 2014). 

The knock resistance (or antiknock property) is an important prop-
erty of a fuel when used in Otto engines. The higher the knock resistance 
of the fuel is, the higher the compression ratio and the later the ignition 
timing can be set, resulting in an increase in the engine efficiency. The 
knocking properties of gases have been measured empirically by the 
Methane Number (MN), defined as the proportion of methane in a 
mixture of methane and hydrogen that shows the same knock resistance 
as the gas under investigation, in a defined test engine under defined 
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operating conditions. The MN of hydrogen is defined to be 0, for 
methane it is 100 (Andersen, 1999; Gieseking and Brown, 2016; Eilts 
and Klare, 2018). CNG and LNG may differ in their composition due to 
different production procedures. LNG normally has a higher content of 
heavier components (less knock resistance) as the composition changes 
over time and lighter components evaporate first, which is called aging. 

The MN was defined first time by AVL (Anstalt für Ver-
brennungskraftmachinen List) within a large project funded by the FVV 
(Forschungsvereinigung Verbrennungskraftmaschinen, Research Associa-
tion for Combustion Engines) (Leiker et al., 1972; Cartellieri and Pfeifer, 
1971). One of its outputs was a method intended to calculate the MN 
from the gas composition that has been further developed by MWM 
(Motorenwerke Mannheim) and adapted by Euromot (2017). Another 
refinement of the AVL method was developed by Gieseking and Brown 
(2016) within the framework of the European ‘LNG II’ project (Euramet, 
2017). 

The experimentally-measured value of the MN depends on the test 
engine and its operating conditions. Disappointingly, the equipment 
used by AVL in the 1970’s decade does not exist and is not replicable. 
For this reason the MN, according to the original definition, cannot be 
measured anymore. However, a measurement can be made on another 
engine and other operation conditions. To distinguish such a result from 
the MN measured in the phased out reference engine under reference 
conditions AVL introduced the designation ‘Service Methane Number’ 
(SMN) (Leiker et al., 1972; Cartellieri and Pfeifer, 1971) (defined as the 
vol. -% of methane in a mixture of methane and hydrogen that shows the 
same knock resistance as the gas which is investigated in any desired test 
engine under any desired operating conditions). For mixtures of 
methane and hydrogen the SMN is identical to the MN and although they 
show in general the same tendencies, in many cases the absolute values 
differ. Hence, they are comparable in quality but not in quantity (Eilts 
and Klare, 2018) (Euramet, 2017). 

Several algorithms were developed to predict the SMN of the gas 
mixtures using the graphs deployed in the seminal studies (as a matter of 
example, the so-called NPL –National Physics Laboratory, UK- algo-
rithm) (Andersen, 1999; Gieseking and Brown, 2016; Eilts and Klare, 
2018). Efforts were also made to predict the knocking properties of 
ternary blends using kinetic mechanisms (Gómez Montoya et al., 2016). 
All these efforts yield reasonably good results (Eilts and Klare, 2018) 
making it difficult to select the best one for trading, custody and 
provider-customer agreements purposes. It is worth noting that the 
composition of the samples must be known before applying any algo-
rithm to ascertain their MNs. Usually this is done using gas chroma-
tography (GC), which may be slow, ca. 4 min per analysis plus additional 
runs for blanks and test standards, needs frequent calibrations/recali-
brations and/or verification/checks, along with a quite high expenditure 
(to buy the GC devices, consumables, standards, etc.). A rough estima-
tion indicated that a chromatographic composition quantification per-
formed by an ISO17025-accredited laboratory could amount up to 
€600/sample (Ferreiro et al., 2019). Accordingly, a low-cost, fast, reli-
able and easy-to-use analytical methodology would be welcome in the 
field. 

The research presented here stems from efforts undergone in the 
petrochemical arena to accelerate the measurement of the gasoline- 
based Research Octane Number (RON) and Motor Octane Number 
(MON) (Andrade et al., 1997a, 1997b; Daly et al., 2016), and the Cetane 
Number (for diesel fuel) (Santos et al., 2005; Nespeca et al., 2018). This 
paper aims to present a novel analytical methodology to accelerate and, 
potentially, simplify the monitoring of the Methane Number in NG 
samples generated in a standard regasification LNG plant, along with NG 
samples from other different sources. The approach hybridizes 
gas-phase FTIR (Fourier transform mid-infrared) spectrometry and 
multivariate regression (Partial Least Squares, PLSR). Besides being fast, 
the intended approach can be implemented readily in an industrial 
environment and is intended to potentially substitute/complement the 
current algorithmic calculations for common routine applications. To 

the best of our knowledge this is the first time the use FTIR-PLSR 
approach is proposed to address the Methane Number of gas-phase 
LNG samples. 

2. Experimental part 

2.1. FTIR measurements 

Measurements were made with an 8400S Shimadzu FTIR spec-
trometer and a fixed-path gas cell (two external Viton O-rings were 
added to ensure tightness without compromising the optical path). The 
cell setup required customizing a temperature-controlled (25 ◦C), 10 cm 
path, stainless steel Harrick gas cell (Harrick Scientific, USA), equipped 
with 2 mm thick, 25 mm-diameter zinc selenide (ZnSe) windows 
(Fig. 1). All the measurements were made using 0.2 barg of the sample 
and 1.3 barg of argon (Ar), used as a broadening gas in order to increase 
the sensitivity of the measurement; more specific details can be found 
elsewhere (Ferreiro et al., 2019). Note that the ‘g’ after ‘bar’ stands for 
gauge pressure; i.e., the pressure within the system, excluded the at-
mospheric pressure. All references to ‘bar’ hereinafter should be un-
derstood as ‘barg’, otherwise stated. 

The measurements were made in absorbance mode, with a nominal 
resolution of 1 cm− 1, 200 scans per spectrum, a Happ-Genzel apodiza-
tion and in a 5500-480 cm− 1 range. The background was measured in 
the same conditions, before each sample, filling the sample cell with 0.5 
bar of argon. The software used was the Shimadzu IR Solutions 1.30. 

The pressurizing gas, Ar, was from Carburos Metálicos (Barcelona, 
Spain) with 99.9992% purity. The samples used to perform the studies 
were provided by Reganosa (Regasificadora del Noroeste, Mugardos, 
Spain) and correspond to real production batches. Fig. 2 exemplifies the 
spectra obtained throughout, which were digitized to 9375 spectral 
points, equispaced between 479.81 and 5000.14 cm− 1. 

2.2. Gas chromatographic measurements 

The GC measurements were made with an Emerson 575e gas chro-
matograph equipped with a thermal conductivity detector (Emerson, 
Scotland); four packed columns and three chromatographic switch 
valves (all of them into the same oven). Hexane and heavier compounds 
were separated in the first column OPN Porous Sil C (80/100 mesh) with 
a backflush system. 

The backflush valve reverses the flow in the first column so that 
components C6 and heavier elute first, as a single peak, to the detector. 
The second column 20% SF96 Chromosorb P (80/100 mesh) allows the 
separation of propane, butanes and pentanes. The lighter compounds are 
trapped on a Hayesep N (80/100 mesh) column. The last column, Sil-
coport P (80/100), is used mainly to enhance the resolution of the 

Fig. 1. FTIR spectrometer setup used to measure the LNG samples.  
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chromatographic peaks. An isothermal program was used for the sepa-
ration (oven temperature = 80 ± 5 ◦C). Helium was used as carrier gas, 
99.9999% purity (Linde, Barcelona, Spain). 

The samples and the standard mixtures were injected at 1.6 bar and 
the pressure of the carrier was 6.2 bar. The overall analysis time was 4 
min and the time for purging the sampling line was 60 s between sam-
ples. All the standard gas mixtures (see Table 1) were fabricated 
following ISO 6142 (ISO6142-1, 2015) and ISO 6143 (ISO6143, 2001), 
and they were used for the multipoint calibration and further quality 
controls. Samples and standards were subjected to routine quality con-
trol tests under the ISO 17025 (ISO/IEC17025, 2017) accreditation 
scope of the Reganosa’s laboratory. The analytical method was devel-
oped in-house based on ISO 6974-4 (ISO6974-4, 2000). All reported 
results correspond to normalized values (the sum of the concentrations 
of all of the measured components was set to 100%). 

2.3. Methane number, reference methodologies 

As introduced above, the determination of the MN of NG has been a 
matter of controversy and a central objective in this research field. 
Within the framework of the ‘LNG III’ European project, the so-called 
NPL approach (Gieseking and Brown, 2016) was used to calculate a 
reference Methane Number (NPL-MN) for each commercial sample 
employed throughout after measuring its composition. The components 
to be specified are methane, ethane, propane, iso- and n-butane, iso- and 
n-pentane, Cn>6+ hydrocarbons, carbon dioxide and nitrogen. In this 
case the Cn>6+ slot is given only the n-Hexane percentage volume 
fraction, and the iso-pentane one is assigned the sum of iso-pentane and 
neopentane volume percentages. To validate the NPL-MN values a 
reduced set of gas mixtures developed in the framework of two European 
projects (EURAMET-EMRP ‘LNG II’ and EMPIR ‘LNG III’) were measured 
by an operational engine so that SMN values were generated for them. 
The experimental setup, technical details and measurement conditions 
of the operational engine employed to develop the SMN measurements 

are described in the Supplementary Material. 
The correlation between the NPL-MN and the SMN values was 

studied before validating the FTIR-PLS approach. As the line is very 
close to the diagonal (Fig. 3) it was deduced that the SMN and the MN 
values were very similar, despite some particular discrepancies 
appeared. The Supplementary Material details how the confidence in-
tervals depicted in the figure were calculated. 

2.4. Samples 

The samples used in this work came from the production process of a 
regasification terminal (Reganosa, Spain), commercial standard gas 
mixtures, and mixtures provided by two European projects. They were 
measured by IR and GC, and the MN was calculated using the NPL al-
gorithm (Gieseking and Brown, 2016). Only the special mixtures from 
the European projects had SMN values determined by an operational 
engine. 

2.4.1. Samples from the production process 
In total, 114 samples were taken at dedicated locations of the rega-

sification terminal. They were natural gas (NG), vaporized liquefied 
natural gas (LNG), and boil-off-gas (BOG) samples. The origin of the NG 
cargoes varied (Nigeria, Russia, USA, Trinidad and Tobago, etc.) and, so, 
the LNG compositions. LNG samples from tanks of the terminal port 
were also taken. 

The BOG is the continuously evaporated (or boiled) LNG vapor that 
is in contact and equilibrium with the LNG inside the tanks. It is formed 
by the most volatile and lighter LNG compounds, mainly methane, 
ethane, propane (traces) and nitrogen. When samples are taken during 
the unloading of a vessel, the returned BOG can contain up to 9% 
nitrogen. 

2.4.2. Standard gas mixtures 
Eleven standard gas mixtures, some of them including the eleven 

compounds that may be present in NG -including carbon dioxide, were 
purchased and their composition was certified by accredited labora-
tories. Samples from the regasification terminal do not contain CO2 
because at LNG operating temperatures it is solid and is extracted in the 
liquefaction plants before shipping. 

2.4.3. Samples from EURAMET projects 
The SMN of 27 mixtures specially prepared by Nippon Gases 

(formerly Praxair) and Linde Gas Benelux B.V were measured within the 
framework of the EURAMET-EMRP LNG II and EURAMET-EMPIR LNG 
III projects at the Institute of Internal Combustion Engines (Technical 
University of Braunschweig). Their compositions were assessed first by 

Fig. 2. FTIR spectra of three LNG samples.  

Table 1 
Compositional range of the standard gas mixtures employed for calibration 
and instrumental quality control validation.  

Component Calibration range (%, mol/mol) 

Methane 68.0–99.9 
Propane 0.03–3.0 
Ethane 0.01–12.0 
i/n-butane 0.002–0.7 
i/n/neo-pentane 0.002–0.1 
n-hexane 0.003–0.1 
Nitrogen 0.1–13.0 
Carbon dioxide 0.03–2.0  
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accurate weighing of the corresponding mass quantities required to get 
the standard mixtures and finally determined at Physikalisch- 
Technische Bundesanstalt (PTB) by gas chromatography. See Supple-
mentary Material for details on their composition, MN and SMN, and 
how they were prepared, analysed and refilled. This collection is only 
used in the FTIR-PLS approach to study their applicability to such kind 
of samples and to externally validate the models. Recall that multivar-
iate regression models, like partial least squares regression, are ad-hoc 
statistical models which depend on the calibration samples; and in this 
study they were true commercial samples, not synthetic ones. 

2.5. Software 

The freely available PLS package (Mevik and Wehrens, 2007) of the 
CRAN R project (Schmitt, 2016) has been used. Both the HITRAN 
database (High resolution Transmission Molecular Absorption Data-
base) (Gordon et al., 2017) and the Bytran radiative transfer algorithm 
(Pliutau and Roslyakov, 2017) were used to obtain the approximate 
molecular absorption cross sections of the IR-active compounds needed 
to compute synthetic IR spectra. The GNU Octave scientific computing 
environment (Eaton et al., 2017) was used to run the NPL algorithm and 
to compute piecewise cubic interpolations. The Mnova ElViS plugin for 
Electronic and Vibrational Spectroscopies (Mestrelab Research, 2018) 
was used to visualize and pre-process spectral data. 

2.6. Sample sets and chemometric approach 

Many branches of applied Science tackle complex problems by 
means of multivariate calibration models where a physical explicit 
formulation/equation is not required. In multivariate calibration a 
model is developed through training on a number of samples each 
comprising an input (the set of variables that can be measured ‘easily’, i. 
e. the mid-IR spectrum) and an output (the property under study, whose 
numerical qualification is derived from another measurement 
approach). This model then serves to generate predictions of outputs 
corresponding to new input data. 

Among the linear models PLSR has demonstrated outstanding per-
formance in quite different situations (Webster et al., 2017; Cheng and 
Sun, 2005, 2017; Jie et al., 2007), becoming a de facto standard method, 
well-documented (Wold et al., 1987; Martens, 2001), well-known and 

universally accepted in academia and industry nowadays. It has three 
fundamental steps: model development (regression or training), vali-
dation (typically, internal) and testing (typically, external validation 
using a new collection of samples). Training starts once a collection of 
representative samples has been characterized using both a candidate, 
fast measurement analytical technique (e.g. IR spectrometry) and a 
reference procedure (typically, a standardized labour-demanding 
and/or slow methodology). After that, validation is required before 
accepting a model. The test set with totally new samples demonstrates 
the performance of the model in routine use. 

In this work the feasibility of this approach was evaluated by 
considering two different datasets: (i) a collection of synthetic IR 
spectra, developed as detailed next, to comply with MN values set in 
advance (by direct calculation with the NPL algorithm); and (ii) a set of 
experimentally measured FTIR spectra, whose MNs were obtained 
applying the NPL algorithm to the gas compositions derived from GC 
standardized measurements of the samples. Although feasibility studies 
are not common in papers, they are indeed recommended as a proof of 
concept before going on (Broad et al., 2006), especially to address 
problems without previous reported assays, as it is the case here. 

Hereinafter those datasets will be denoted synthetic and experimental. 
Both, apart from having the same spectral dimensions and experimental 
working ranges, are envisaged to be numerically unrelated, though from 
a qualitative point of view they are expected to hold the same major 
patterns within the models to predict the MN. 

2.6.1. Synthetic data 
The working scheme to get the synthetic IR spectra is detailed next. 

First, a set of K different 11-components (methane, ethane, propane, 
isobutane, n-butane, pentane (iso and normal), neopentane, n-hexane, 
carbon dioxide and nitrogen) gas mixtures (compositions expressed in 
volume percentage) are generated and stored: 

%vol(k)i , i= 1,…, 11, k = 1,…,K (1) 

Note that molecular nitrogen is IR inactive, though its presence in the 
mixture does indeed influence its methane number and has to be 
accounted for. Next, for each composition k, the approximate molecular 
absorption cross section of each pure compound i (ACSi) is weighed by 
its corresponding percentage in volume % , so that a synthetic, 

Fig. 3. Comparison of the SMN values with the NPL-MN ones plus their confidence intervals. (TUBS stands for Technical University of Braunschweig; the units of both 
axis are MN). 
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approximate IR spectrum of gas mixture k is 

Sk =
∑10

i=1
ACSi

%vol(k)i

100
(2) 

The molecular absorption cross section is the ability of a molecule to 
absorb a photon of a particular wavenumber and each compound’s 
approximate molecular ACSi was obtained as follows: the working range 
was set from 449.43 to 5501.17 cm− 1. Then the Hitran database (Gor-
don et al., 2017) was used to retrieve the molecular absorption cross 
sections. They were available only for some of the compounds in com-
mon natural gas, while for others only absorption line parameters 
(spectral lines lists) were available. To solve this problem the 
open-source, freely available Bytran algorithm (Pliutau and Roslyakov, 
2017) was used, designed for the calculation of approximate molecular 
and atmospheric absorption of gas mixtures under user-defined condi-
tions and concentrations. Bytran itself is based partially on Hitran, and 
relies on the data provided by its online version. This software imple-
ments a so-called line-by-line method to compute absorption cross sec-
tions using individual spectral line records over a specified spectral 
range for given temperature and pressure (288.15 K and 1 atm in our 
case). Then these absorption profiles are added together to yield the 
total absorption spectrum as a function of the wavenumbers. 

The outcomes of Bytran were processed with the shape-preserving 
piecewise cubic Hermite interpolation (Fritsch and Carlson, 1980) in 
order to obtain an approximation to each molecular absorption spectra, 
matching the aforementioned spectral size and wavenumber bounds. 
Those computations were performed in the GNU Octave scientific pro-
gramming environment (Eaton et al., 2017). A stacked view of the 
resulting absorption cross sections is depicted in Fig. 4. For the purposes 
of this work they can be considered as proxies of the IR spectra of the 
pure commercial gas mixtures. 

Finally, each synthetic FTIR spectra {sk, k = 1, …,K} is processed with 

the Mnova (Mestrelab Research, 2018) software. Two processing actions 
are applied: A normalization to standardize to zero mean and unit 
variance (SNV), followed by a Savitzky-Golay filter (Savitzky and Golay, 
1964) with polynomial degree 3 and kernel width 5 for noise reduction. 

2.6.2. Experimental data 
A grand total of 114 LNG samples were obtained by Reganosa from 

its industrial facilities and their corresponding mid-IR spectra (see 
Fig. 2), GC compositions and NPL-MN were determined as detailed in 
sections 2.1, 2.2 and 2.3 above, respectively. 

3. Results and discussions 

3.1. Relating spectra to the methane number, synthetic data 

Initially, a synthetic dataset comprising 250 different compositions 
similar to the values of those found in the collected true LNG samples 
was generated. The MNs were computed considering their compositions 
(known by design) and the NPL-MN algorithm, which also provides their 
associated expanded uncertainties. These were used to calculate the 
associated 95% confidence intervals shown in Figure SM7 (Supple-
mentary Material). Besides, the robustness of the regression approach 
was evaluated by decreasing the information provided in the training set 
(i.e. the number of realizations comprised). To this end, reduced training 
sets consisting of 200, 100, 50 and 25 synthetic spectra were used. 

To develop the PLS models ten latent variables (LV) were considered 
as a maximum value because this is the number of independent ab-
sorption cross sections weighed to create the synthetic gas mixtures 
compositions. However, it was expected that less factors would be 
needed by PLS due to the strong dependence of the NLP-MN value on the 
chemical composition. A LV in PLS can be explained (in simple terms) as 
a linear combination of spectral variables (wavenumbers) that compile 
as much spectral information as possible under the condition that, at the 

Fig. 4. Approximate, relative absorption cross sections (ACSi) of IR-active compounds comprised in NG (see text for details). Vertical scale units are cm2/molecule. 
Note that absolute vertical scale magnitudes (not shown) are similar except for carbon dioxide, which has larger IR absorption cross sections, so a vertical scale factor 
10 has been applied to plot its graph. 
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same time, it is maximally correlated to the property of interest (the 
MN). The first LV explains the most information, the second less, and so 
forth. Sometimes it is also termed “factor”. That maximization property 
is what makes PLS so powerful. The final number of LVs to be used was 
determined empirically by leave-one-out internal cross-validation (LOO- 
CV). To avoid overfitting due to LOO-CV independent external valida-
tion tests of each model developed using the synthetic spectra were 
considered to confirm the proposed dimensionality. 

Results are presented in Fig. 5. In the second column the term vali-
dation refers to internal validation using the classical LOO-CV approach. 
In the third column, the results for a common validation test set (the 
same 50 samples to simplify the comparison) are presented. It is worth 
noting that the original AVL studies set uncertainties around ±2 MN 
(Andersen, 1999) and therefore this interval was considered as the range 
of values were the PLS predictions should lie. Fig. 5 reveals that, as 
expected, the synthetic datasets needed the same number of LV, irre-
spectively of their number of samples because they have the same 

inherent sources of variation. 
A very positive fact that can be seen in Fig. 5 is that almost all 

samples lie within the target acceptance interval around the NPL-MNs. 
Although a curved shape can be seen in the true vs actual plots for 
training, it was preferred not to include more LV to avoid overfitting. 
This behaviour was expected because the samples with the lowest MNs 
are infrequent in commercial relationships and they were selected, 
precisely, to enlarge the calibration range. In effect, the external vali-
dation test showed very good predictions and that curved shape was not 
observed anymore whenever the samples out of the usual working range 
of true NG/LNG are avoided. This is exemplified at the top rightmost 
subplot of Fig. 5. Only when a very small number of training samples is 
used (25 samples, fourth row of the figure, which will be avoided in the 
experimental study) the curved behaviour was not avoided with a 
reduced number of LVs. 

All RMSECV (root mean square error of cross-validation) and RMSEP 
(root mean square error of prediction) average errors were similar 

Fig. 5. PLS models for the synthetic spectra considering 200, 100, 50 and 25 training samples (top to bottom rows). For comparison, all models used 5 LV. Green 
lines denote perfect agreement between theoretical and predicted MNs. Red lines denote the acceptance interval for the predicted values (see text for details). ‘adjCV’ 
stands for adjusted error of cross-validation, which takes into account the difference between errors of the whole sample set and the mean LOO-CV error (here, a 
negligible correction). 
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between them, and along the different models, in the 0.84–0.96 MN 
range. This strongly suggests that overfitting did not occur. 

3.2. Relating spectra to the methane number, experimental spectra 

The working range expands from 74 to 100 MN. The lowest values 
are unusual in most common gas custody transfers and commercial uses 
(most current samples are between 80 and 99) and they were obtained 
from special samples. They were introduced into the training set only to 
enlarge the working range of the model. A spectrum showed a system-
atic outlying behaviour and was deleted from the studies. 

PLSR was applied to a training set developed with 84 experimentally- 
measured LNG samples. As for the synthetic spectra, the maximum 
number of LV assayed was 10. The external validation (test set) included 
29 independent samples. Two trials were devised to evaluate whether 
some kind of temporal trend could be present in the datasets (see 
Figure SM7, Supplementary Material): i) using the first 84 samples of 
the collection series to constitute the training dataset and the remaining 
ones for external validation, and ii) employing the last 84 samples of the 
collection series for training (the others for external validation). Results 
did not differ between them and, so, no special circumstances seemed to 
appear during the several months that the collection stage lasted for. 
Figure SM8 (Supplementary Material) reveals that the number of LV 
(as determined by LOO-CV) should be around 6 or 7 (highly similar to 
the synthetic data sets). The overall cross-validated error was 0.76 MN 
(7 LV) for trial i) and 0.86 MN (6 LV) for trial ii). Fig. 6 exemplifies the 
predictive performance of each trial, considering 7 LV. The plots show 
that indeed no major differences on prediction capabilities can be seen 
(the logical minor discrepancies were attributed to the different samples 
in the test sets). Hence, it was decided to develop the model with the 84 
first samples of the temporal series and let the others as an independent 
validation test set. The average error for this test set was rather good, 
1.11 MN (7 LV); however, it is a bit different from the training one (ca. 
32% higher) and, besides, some samples seemed not to be properly 

predicted. 
Further in-depth study of the model considered the scores distribu-

tion on the spectral domain, with no relevant problems; and the tradi-
tional Q-residuals and Hotelling’s T2 statistics, for which some values 
appeared too high (plots not shown here). Accordingly, those samples 
showing Q-residuals > 2 (normalized values) and/or T2 values > 99% 
confidence limit were rejected (7 samples in total) and the model rebuilt. 

For the new model, 7 LVs were selected by LOO-CV. The average 
prediction errors were 0.59 MN for LOO-CV (internal validation) and 
0.96 MN for the external validation test (Fig. 7). There was a clear 
improvement on the predictions with respect to the previous model. 
However, the test set yielded an average error ca. 50% higher than the 
training one that was caused by a sample which behaved as a clear 
outlier for each and every model. When that sample was deleted, the 
average error decreased to 0.75 MN, which was considered very satis-
factory (it is worth noting that even considering that outlying sample the 
average error was half that set initially as the target objective). 

Fig. 7 illustrates that all test samples lie well within the target ±2 MN 
range. The residuals of the regression had a random pattern, being the 
highest and lowest ones +1.5 and − 1.3 MN. The regression equation for 
the external validation was PLS_prediction = 0.283 + 0.995⋅NPL_MN, 
with a correlation coefficient of 0.9958 and its slope was statistically 
equal to 1 (95% confidence), which means that the overall bias was not 
statistically significant. Hence, the PLS model is predicting on average 
the same values as the NPL-MN algorithm calculated. Another proof of 
this important statement is to calculate the average residual (consid-
ering its sign) and test its significance by means of a Student’s t-test. 
Here, the average residual was − 0.14 and the experimental t was 1.01, 
which clearly was lower than ttab,95%,27 = 2.06. 

Fig. 8 depicts that all PLS predictions but two at the lowest range 
locate within the 95% confidence intervals associated to the NPL algo-
rithmic calculation of the MN values. Such 95% confidence intervals are 
much smaller than the target objective (±2 MN) as they derive uniquely 
from the NPL-MN algorithm computation, which considered the CG 

Fig. 6. Comparison of the predictive performance of PLS models considering 7 LV and either the first 84 samples (left column) or the last 84 ones (right column) for 
training. (‘validation’ = internal LOO-CV, ‘test’ = external validation test) Green lines denote perfect agreement between the theoretical and predicted MNs. Red lines 
denote the acceptance interval for the predicted values (see text for details). 
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uncertainty negligible when performed in metrological laboratories 
(Gieseking and Brown, 2016). That might not be exactly the case in CG 
industrial laboratories, even those being ISO 17025-accredited. Taking 
this into account, it is considered that even in this case the overall results 
are quite satisfactory. 

3.3. Relating spectra to the service methane number 

Despite NPL values were employed to train the PLS model it was 
considered interesting to study whether predictions close to the SMN of 
the synthetic mixtures could be obtained. Fig. 9 reveals, in general, 

excellent agreements. The five samples situated at the rightmost side in 
Figs. 9 and 10 correspond to binary mixtures of methane and pentane 
and two mixtures whose compositions are clearly different from any 
commercial LNG or NG product (see the last five mixtures in Table SM1, 
Supplementary Material) and they could not be predicted properly, as 
expected. A similar problem has been pointed out recently in a study 
that considered a subset of the samples used here (Sweelssen et al., 
2020). 

To potentiate the robustness of the PLS model all the LNG samples 
used so far were joined so that an overall collection of 112 samples 
constituted an extended PLS model. Then, the FTIR spectra of the LNG II 

Fig. 7. Predictive capability of the refined PLS model, 7 latent variables (‘validation’ = internal LOO-CV, ‘test’ = external validation test).  

Fig. 8. Comparison of the computed NPL-MN values, along with their estimated 95% confidence intervals (CI), for the external validation test samples with the PLS 
predictions (red filled symbols). 
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and LNG III mixtures were used to yield PLS predictions (7 LVs). Posi-
tively enough, less extreme differences were observed when the PLS 
predictions were compared to the SMN values than to the NPL-MN ones 
(see Fig. 9). 

Despite all mixtures are shown for completeness in Fig. 9, it is worth 
stressing that the PLS model should only be applied to mixtures/samples 
whose expected MN is higher than 70 (the lowest working limit of the 
PLS model) and that, in addition, some of the rightmost samples should 
not be considered as their composition is out of the working domain of 
the model. This is detailed in Fig. 10, along with the 95% confidence 
intervals associated to the FTIR-PLS predictions. They were estimated as 

follows: Two samples, at the low and high extremes of the PLS calibra-
tion range each, were replicated in different days, their PLS predictions 
obtained and their ranges averaged. This was considered a proxy for the 
intermediate precision of the overall FTIR-PLS approach, which was 
0.24 MN. 

The 95% confidence intervals of the SMN values were calculated 
during the measurements at TU-Braunschweig (see Table SM1, Sup-
plementary Material). It is worth noting that even for out-of-the-model 
samples the PLS predictions are not so bad, see Fig. 10 (excluding some 
extreme cases, as mentioned above). 

The average prediction errors of the FTIR-PLS approach when 

Fig. 9. Comparison between the FTIR-PLS predictions and the NPL-MN and SMN values. The ±2 MN bands are given for visual information (see text for details).  

Fig. 10. Comparison of the FTIR-PLS predictions and the SMN, including their 95% confidence intervals. Note that the major errors occur for samples out of the 
model domain (denoted with stars) and, as such, are not considered for model validation. 
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compared to the NPL-MN and SMN values, measured as RMSEP, were 
2.2 MN and 1.6 MN, respectively. However, one of the standard mix-
tures (Mix3 of the LNG III mixtures; Table SM1, Supplementary Ma-
terial) had problems to calculate the NPL value (also reported by 
(Sweelssen et al., 2020)) and one of the LNG II samples (Mix2) had large 
prediction errors, c.a. 7.3 and 3.6 MN. These obviously bias any further 
calculation and were therefore rejected as outliers. Then, the new 
RMSEPs were 0.9 MN for the PLS comparisons against both NPL-MN and 
SMN. Furthermore, when only the LNG III mixtures are considered in 
order to compare with (Sweelssen et al., 2020), the RMSEPs were ca. 1.0 
MN and 0.9 MN (when predicting NPL-MN and SMN, respectively). 
These values are highly positive but they are not straightforwardly 
comparable to common error expressions and, thus, more details are 
provided next. 

When all LNG III and LNG II samples (excluding the two outliers) 
were considered the average differences (PLS prediction minus NPL-MN 
or SMN value) and their associated standard deviations amounted ca. 
0.3 & 0.9 MN and 0.5 MN & 0.8 MN for the NPL-MN and SMN com-
parisons, respectively. Moreover, the Student’s test revealed that the 
average differences were not statistically significant (95% confidence 
level; texp = 0.5, ttab(17,2 tails, 95%) = 2.1) and, as a consequence, the FTIR- 
PLS method provides accurate predictions, without bias. When the LNG 
III subset of standard mixtures was considered, the average differences 
and their standard deviations were ca. 0.5 & 1.0 MN and 0.4 MN & 0.8 
MN for the NPL-MN and SMN comparisons, respectively. The average 
values were not statistically different from zero and, so, the predictions 
are again unbiased. 

Noteworthy, these results are totally comparable with previous ef-
forts to develop electronic capacitance and tuneable IR sensors 
(Sweelssen et al., 2020), although with slightly lower precisions here. 
Regarding the operative time, the FTIR-PLS requires about 45 min per 
sample (including a background, which is always done before sample 
measurement), so it is a bit slower than the electronic sensor (ca. 
10–30min/sample); while the tuneable IR is clearly faster (ca. 10 
s/sample). 

4. Conclusions 

This paper presents the use of gas-phase mid-IR spectrometry com-
bined to PLS regression to address the MN of gaseous samples. First, a 
statistical study based on synthetic spectra as a proof of concept dem-
onstrates that the approach is reasonable and that sensible and poten-
tially useful models can only be obtained using more than 50 samples in 
the training set. 

The selected PLS model has no bias and the average predictive error 
is 0.75 MN, well below the target ±2 MN interval set initially (such an 
interval was the estimated expanded uncertainty of the original AVL 
studies develop when the MN was defined). 

Finally, and in order to validate further the model, a collection of 27 
synthetic standard mixtures prepared for two European projects and 
whose SMNs were measured with a service engine, is considered. The 
FTIR-PLS approach yields predictions with average differences around 
0.5 MN and 0.4 MN (when compared to the NPL and SMN reference 
values). These differences are statistically not significant so that the 
FTIR-PLS approach is unbiased and shows the same tendencies than the 
measured SMN and therefore reflects the gas knocking resistance in an 
operating engine. 

From an operative viewpoint the approach is cost effective as it in-
volves standard instrumentation and requires only ca. 45 min of 
instrumental work per sample (if a background is made before 
measuring each sample; otherwise the required time is about half that); 
ca. 10 min dedication of personnel. A drawback of this method –as it is 
based on mid-IR spectrometry-is that it cannot register signals for N2 and 
this gas has a participation in the MN when determined by a motor (or 
alternative algorithms). The methodology presented here can be 
considered within the green chemistry principles since it does not 

require chemical reagents, uses little sample and does not generate 
liquid or solid residues (the exhaust gas and argon are the only gaseous 
residues). 
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