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Abstract
We devise an endogenous growth model with private and
public physical capital, and human capital, which allows for
relative and absolute congestion. According to empirical ev-
idence, long-run growth is invariant to fiscal policy. Despite
its complexity, the dynamics of the market economy and the
centralized economy are analyzed in detail. We show that an
increase in absolute congestion reduces the long-run growth
rate of output. In contrast, relative congestion does not affect
long-run growth. In the absence of congestion, it is optimal
to use lump-sum taxation, and with congestion it is optimal
to also tax income.

1. Introduction

Since the stimulating work of Aschauer (1989a,b), the effect of public invest-
ment has been the subject of active research in the literature on endogenous
growth. Following the seminal work of Barro (1990), the bulk of this literature
has regarded the current flow of public investment as a productive input in
private production (e.g., Barro and Sala-i-Martin 1992; Jones, Manuelli, and
Rossi 1993; Turnovsky 1996a, 1996b, 2000; Eicher and Turnovsky 2000). How-
ever, as long as productive government expenditures are intended to repre-
sent public infrastructure, it is the accumulated stock, rather than the current
flow, that should be considered as the source of contribution to productive ca-
pacity. Futagami, Morita, and Shibata (1993) modify the Barro (1990) model
by introducing the stock of public capital as a purely public good affecting
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the productivity of firms. They analyze a decentralized economy and show
that it features transitional dynamics, in contrast to models in which public
expenditure enters production as a flow, when the economy is always on its
balanced growth path. Glomm and Ravikumar (1994, 1997) take account of
the congestion associated with public goods. In their model, private and pub-
lic capital fully depreciates each period, and so, the model behaves like the
Barro’s (1990) model. In particular, it does not feature transitional dynamics.
Turnovsky (1997) extends the model of Futagami et al. (1993) to consider
congestion and a more complete array of fiscal instruments. Gómez (2004)
devises a fiscal policy that allows the optimal growth path to be decentralized
when investment is irreversible.

The models of Futagami et al. (1993) and Turnovsky (1997) are limited in
some respects. First, they use the simplest one-sector Ak endogenous growth
model as a framework to analyze the effect of public investment. Therefore,
it would be interesting to examine whether the results obtained carry over to
a more general setting. Recent endogenous growth theories have attributed
human capital an important role in the process of economic growth (e.g.,
Lucas 1988; Caballe and Santos 1993) and, although the empirical evidence
is somewhat mixed, it seems to be ultimately encouraging that human capital
does have a substantial impact on productivity (e.g., Krueger and Lindahl
2002). Thus, we shall analyze the effect of public capital and congestion in
a model of endogenous growth that features human capital accumulation.
Second, the knife-edge assumption of constant returns-to-scale in the accumu-
lated factors of the Ak model allowed Turnovsky (1997) to introduce relative
congestion but not absolute congestion in the analysis. With relative conges-
tion, the service of public capital to the agent depends on the usage of her
capital stock relative to the aggregate capital stock; with absolute congestion,
the services derived by the agent from the provision of a public good de-
pend on the aggregate capital stock. This issue is important because it has
been shown (e.g., Barro and Sala-i-Martin 1992; Eicher and Turnovsky 2000)
that relative and absolute congestion can have rather different effects on
many aspects of the growth process. Third, the empirical evidence reported,
e.g., by Levine and Renelt (1992), Stokey and Rebelo (1995), Jones (1995a),
Mendoza, Milesi-Ferretti, and Asea (1997), and Tanzi and Zee (1997), sup-
ports the invariance of long-run growth to fiscal policy. This result differs
from the theoretical implications of the models of Futagami et al. (1993) and
Turnovsky (1997).

This paper extends the Turnovsky (1997) model to overcome the
shortcomings pointed out above. We develop a model with human capi-
tal as well as public and private physical capital as productive inputs in
the economy, in which public capital is allowed to be subject to absolute
congestion as well as relative congestion. The theoretical implications of
our model will be shown to be consistent with the invariance of long-run
growth to fiscal policy, which is supported by the empirical evidence cited
previously.
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First, we analyze the equilibrium dynamics of the market economy. The
transitional dynamics of the model is represented by a two-dimensional stable
saddle-path. As Eicher and Turnovsky (2001) point out, this provides a much
richer dynamics for the transition paths relative to the standard endogenous
growth model (e.g., Bond, Wang, and Yip 1996), and also to the models of
Turnovsky (1997) and Eicher and Turnovsky (2000), which feature a single
stable root and a one-dimensional stable manifold. Stability of the steady
state is independent of the level of relative congestion, and also of the level of
absolute congestion in the (plausible) case that the elasticity of intertemporal
substitution is lower than or equal to one. In accordance with the empirical
evidence cited above, changes in public investment and income taxation do
not affect long-run growth. We also examine the effects of both types of
congestion on long-run growth. An increase in absolute congestion reduces
the long-run growth rate of output and physical capital, while the positive
or negative effect on the long-run growth rate of human capital depends on
the size of the elasticity of intertemporal substitution. In contrast, relative
congestion does not affect long-run growth if population is constant.

Next, we analyze how the optimal growth path attainable by a central
planner can be decentralized. We show that an income tax, combined with
lump-sum taxation, can correct for the negative external effects caused by
both absolute and relative congestion. The optimal income tax is constant
both along the transition and in the steady state. It is positive as long as there
is congestion because the agent ignores the negative externality caused by
congestion and overaccumulates physical capital relative to the optimum. In
the absence of relative and absolute congestion, the optimal income tax is
zero so public investment should be financed with lump-sum taxation.

The remainder of this paper is organized as follows. Section 2 analyzes the
equilibrium dynamics of the decentralized economy. Section 3 analyzes the
optimal growth path attainable by a central planner. Section 4 determines
an optimal fiscal policy capable of decentralizing the optimal growth path.
Finally, some concluding remarks are provided in Section 5.

2. The Decentralized Economy

The economy is inhabited by a large but fixed number N of identical infinitely
lived agents, each of whom has an infinite planning horizon and possesses
perfect foresight. The agent is endowed with one unit of time per period
which can be allocated to work, u, or learning, 1 − u.

2.1. Goods Production

Each individual firm produces output, y, in accordance with the Cobb–
Douglas technology

y = Akα(uh)βK φ
s 0 < α < 1, 0 < β < 1, α + β ≤ 1, 0 ≤ φ, (1)
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where k is the agent’s stock of physical capital, h is the agent’s stock of human
capital, and Ks denotes the services derived by the agent from the stock of
public physical capital. The term uh is referred to as effective labor. Following
Eicher and Turnovsky (2000), the services derived by the individual firm from
the aggregate public capital stock, Kg , are represented by

Ks = Kg (k/K)θR K −θA , θR ≥ 0, θA ≥ 0, (2)

where K = Nk denotes the aggregate private physical capital stock.
As Eicher and Turnovsky (2000) argue, the specification of public services

(2) comprises three categories. The first one is the no-congestion case, θ A =
θ R = 0, so that Ks = Kg . This case corresponds to a nonrival and nonexcludable
public capital good that is available equally to each agent, independent of the
usage of others. As Barro and Sala-i-Martin (1992) argue, almost all public
services are subject to some degree of congestion, so that the pure public
good should be viewed as only a benchmark.

The second category, θ R > 0 and θ A = 0, is referred to as pure relative
congestion.1 With relative congestion, a fixed level of public capital stock, Kg ,
would provide a constant level of public services, Ks , to the agent if and only if
the usage of her individual capital stock increases in proportion to the usage of
the aggregate capital stock. Congestion increases if aggregate usage increases
relative to individual usage. The specification (2) entails that the agent can
maintain a constant level of public services, given her private capital stock k, if
and only if public capital grows in proportion to the aggregate private capital
in accordance with K̇g/Kg = θRK̇/K . Therefore, the parameter θ R measures
the degree of relative congestion. As Eicher and Turnovsky (2000) argue, an
example of public good subject to relative congestion might be highways. In
the special case of proportional relative congestion, θ R = 1, θ A = 0, congestion
increases in direct proportion to the size of the economy, and the public good
is like a private good in that the individual receives her proportional share of
public capital, Ks = Kg/N .

The third category, θ A > 0 and θ R = 0, corresponds to pure absolute
congestion, in which congestion is directly proportional to the aggregate
level of private capital.2 An example of public good subject to absolute con-
gestion might be local policy services or fire protection services. The case
θ A > 0 and θ R > 0 corresponds to a combination of both absolute and
relative congestion. Although other specifications of congestion have been

1This specification of relative congestion has also been used by Turnovsky (1996b, 1997,
1998), who points out that it is the standard formulation of the median voter model of
congestion (e.g., Edwards 1990).
2Barro and Sala-i-Martin (1992) and Glomm and Ravikumar (1994, 1997) also consider
absolute congestion.
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considered in the literature,3 the specification (2) is relatively standard and
general.4

Combining (1) and (2), output of the individual firm can be expressed
as

y = Akα+φθR (uh)βK φ
g K −φ(θR+θA). (3a)

Thus, the productivity of individual physical capital depends upon the usual
elasticity of private physical capital, α, and a component, φθ R , which reflects
the fact that, from the perspective of the individual agent, increasing her stock
of physical capital will increase the level of government services she derives
in the presence of relative congestion. Aggregate output, Y = Ny, is given by

Y = AN 1−α−β−φθR K α−φθA (uH )βK φ
g = ĀK α−φθA (uH )βK φ

g , (3b)

where H = Nh is the aggregate stock of human capital. We assume that the pro-
duction function of the individual firm (3a) exhibits nonincreasing returns-
to-scale to private inputs,

α + β + φθR ≤ 1. (4a)

Furthermore, to ensure that private physical capital is productive in the ag-
gregate economy, we impose the following condition:

α − φθA > 0. (4b)

Note that the presence of congestion introduces a distortion because the
individual firm takes aggregate capital K as given in her production func-
tion (3a). However, the central planner takes into account that K = Nk, and
thus she considers the aggregate production function (3b).

2.2. The Government

We shall assume that the government claims a fraction g of output for invest-
ment. The evolution of public capital is given by

K̇g = gY, 0 ≤ g < 1. (5)

The government finances its investment by using either income taxation at a
rate τ , or lump-sum taxation, s, in accordance with its flow budget constraint:

τ y + s = gy . (6)

3For example, public capital might be congested by aggregate output (Turnovsky 1996a)
or employment (Glomm and Ravikumar 1994, 1997).
4As Eicher and Turnovsky (2000) show, it encompasses as particular cases the three speci-
fications adopted by Barro and Sala-i-Martin (1992).
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2.3. Individual Optimization

The agent derives utility from the consumption of a private consumption
good, c, according to the isoelastic utility function

∫ ∞

0
e−ρt c1−σ − 1

1 − σ
dt ρ > 0, σ > 0. (7)

Here, ρ is the rate of time preference and 1/σ is the elasticity of intertemporal
substitution.

Human capital, h, accumulates according to the Uzawa (1965)–Lucas
(1988) technology, so that effective time is the only input in human capital
accumulation,

ḣ = δ(1 − u)h δ > 0, (8)

where δ is the productivity parameter in the educational sector.5 The agent
maximizes her utility function (7) subject to the constraint on private physical
capital accumulation,

k̇ = ik, (9)

where ik denotes private investment on physical capital, the constraint on
human capital accumulation (8), and the agent’s budget constraint

(1 − τ)y = ik + c + s, (10)

taking as given the aggregate stocks of private physical capital K and public
physical capital Kg in (3a), and the initial conditions k(0) > 0 and h(0) >

0.6

2.4. Equilibrium Dynamics

A competitive equilibrium for this economy is as a set of paths {c(t), ik(t), u(t),
k(t), h(t)} that solves the agent’s utility maximization problem and such that
the government obeys its budget constraint. The current value Lagrangian
of the agent’s problem is

L = (c1−σ − 1)/(1 − σ) + λik + µδ(1 − u)h + η[(1 − τ)y − ik − c − s],

where λ and µ are the shadow prices of private physical capital and human
capital, respectively, and η is the multiplier associated with the agent’s budget
constraint. The first-order conditions are

5Using such technology in the educational sector allows endogenous growth to be compat-
ible with any arbitrary degree of returns to scale to the reproducible factors in the goods
producing technology (see, e.g., Mulligan and Sala-i-Martin 1993). Therefore, we can con-
sider the case in which public capital is subject to absolute congestion as well as relative
congestion.
6For simplicity, we have abstracted from the depreciation of the stocks of physical and
human capital.
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∂L/∂c = c−σ − η = 0, (11a)

∂L/∂ik = λ − η ≤ 0, ik ≥ 0, (λ − η)ik = 0, (11b)

∂L/∂u = η(1 − τ)βy/u − µδh = 0, (11c)

∂L/∂k = η(1 − τ)(α + φθR)y/k = ρλ − λ̇, (11d)

∂L/∂h = η(1 − τ)βy/h + µδ(1 − u) = ρµ − µ̇, (11e)

and the transversality condition is

lim
t→∞ λke −ρt = lim

t→∞ µhe −ρt = 0. (11f)

Suppose that the constraint on nonnegative gross investment is not bind-
ing, so that (11b) entails that λ = η, and let w = µ/λ denote the value of
human capital measured in terms of private physical capital. Equation (11a)
equates marginal utility to the shadow value of an additional unit of private
physical capital. Equation (11c) can be expressed as

(1 − τ)β
y

uh
= wδ, (12a)

which states that the after-tax rate of return on effective time, valued in terms
of private physical capital as numeraire, must be the same in both sectors.
Equation (11d), which can be expressed as

(1 − τ)(α + φθR)
y
k

= ρ − λ̇

λ
, (12b)

equates the after-tax rate of return on private physical capital to the rate
of return on consumption. This expression takes into consideration that a
higher relative congestion raises the productivity of private physical capital
since increasing the agent’s private capital entails an increase in the quantity
of productive services derived from public capital. Equation (11e), which can
be expressed as

1
w

(1 − τ)β
y
h

+ δ(1 − u) + ẇ
w

= ρ − λ̇

λ
, (12c)

equates the rate of return on human capital, both in the goods and the
educational sectors, to the rate of return on consumption. Now, the return
to investing in human capital includes the rate of capital gains, ẇ/w .

In what follows, the aggregation conditions Ny = Y , Nk = K , Nh = H ,
and Nc = C will be imposed. Hereafter, let γp = ṗ/p denote the growth rate
of a variable p. Log-differentiating (11a), (11c), and (3b) with respect to time
we obtain, respectively,

γC = −γη/σ , (13)
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γY − γu + γη − τ̇/(1 − τ) = γµ + γH , (14)

γY = (α − φθA)γK + βγu + βγH + φγKg . (15)

From (11c) and (11e), we get

γµ = ρ − δ. (16)

When the constraint on nonnegative gross investment, ik ≥ 0, is not bind-
ing, (11b) entails that λ = η. Combining the individual budget constraint (10)
with the government budget constraint (6), multiplying by N , and substitut-
ing the private investment in physical capital from the resulting expression
into (9), aggregate private physical capital in the economy is accumulated in
accordance with the product market equilibrium condition:

γK = (1 − g)Y/K − C/K . (17)

Since γ λ = γ η, from (13) and (11d) we derive the Keynes–Ramsey rule
of optimal consumption as

γC = 1
σ

[(1 − τ)(α + φθR)Y/K − ρ]. (18)

The system that characterizes the dynamics of the decentralized econ-
omy in terms of the variables q = C/K , z = K/Kg , u, and r = Y/K , that are
constant in the steady state, is

γq = γC − γK = 1
σ

(1 − τ)(α + φθR)r − (1 − g)r + q − ρ

σ
, (19a)

γz = γK − γKg = (1 − g)r − q − gr z, (19b)

γu = δu − [φ(θA + θR) + g(α − φθA) − τ(α + φθR)]r
1 − β

−(α − φθA)q
1 − β

+ gφzr
1 − β

+ δβ

1 − β
− τ̇

(1 − τ)(1 − β)
, (19c)

γr = γY − γK = −[(1 − g)(1 − α − β + φθA) + β(1 − τ)(α + φθR)]r
1 − β

+(1 − α − β + φθA)q
1 − β

+ gφzr
1 − β

+ δβ

1 − β
− βτ̇

(1 − τ)(1 − β)
. (19d)

Equation (19a) is obtained from (17) and (18). Equation (19b) results
from (17) and (5). Solving the system (14)–(15) for γu and γY , and substitut-
ing γ η = γ λ from (11d), γµ from (16), γK from (17), γH from (8), and γKg

from (5), after some algebra, we get (19c) and (19d).
When the constraint on nonnegative private investment, ik ≥ 0, is binding,

log-differentiating the overall resources constraint, (1 − g)Y = C , with respect
to time yields

γC = γY − ġ/(1 − g). (20)
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The system that drives the dynamics of the decentralized economy is q =
(1 − g)r , and

γz = −gr z, (21a)

γu = δu + (1 − σ)φ
1 − β + βσ

gr z + δβ(1 − σ) − ρ

1 − β + βσ

+ σ ġ
(1 − g)(1 − β + βσ)

− τ̇

(1 − τ)(1 − β + βσ)
, (21b)

γr = φgr z
1 − β + βσ

+ β(δ − ρ)
1 − β + βσ

+ βσ ġ
(1 − g)(1 − β + βσ)

− βτ̇

(1 − τ)(1 − β + βσ)
. (21c)

Equation (21a) results from (5) and γ K = 0. Substituting γC from (20)
into (13), we get γη = −σγY + σ ġ/(1 − g). Substituting γη from this equation
into (14), solving the system (14)–(15) for γu and γY , and substituting γµ from
(16), γH from (8), γKg from (5), and γK = 0, into the resulting expressions,
we obtain (21b) and (21c), using that γ r = γY .

2.5. Balanced Growth Path

Now, we focus on an interior balanced growth path (or steady state) in which
all variables grow at constant but possibly different rates, the shares of labor
in its different uses are constant, and the fiscal policy parameters, g and τ ,
are stationary, i.e., ˙̂τ = 0 and ˙̂g = 0. A hat ‘ˆ’ over a variable will denote its
steady-state value. The following proposition examines the existence of an
interior steady state with positive long-run growth in which, therefore, the
nonnegativity constraint on gross investment must be not binding.

PROPOSITION 1: Let 1 − α − φ + φθ A > 0. The decentralized economy has a
unique steady-state with positive long-run growth,

r̂ = δβ(σ − 1) + ρ(1 − α − φ + φθA) + (δ − ρ)β
(1 − τ)(α + φθR)(1 − α − β − φ + φθA + βσ)

, (22a)

q̂ = (1 − g)[δβ(σ − 1) + ρ(1 − α − φ + φθA) + β(δ − ρ)] − (1 − τ)β(δ − ρ)(α + φθR )
(1 − τ)(α + φθR )(1 − α − β − φ + φθA + βσ)

,

(22b)

ẑ = (1 − τ)β(δ − ρ)(α + φθR)
g[δβ(σ − 1) + ρ(1 − α − φ + φθA) + (δ − ρ)β]

. (22c)

û = δβ(σ − 1) + ρ(1 − α − φ + φθA)
δ(1 − α − β − φ + φθA + βσ)

, (22d)
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where the long-run growth rate of human capital equals

γ̂H = δ(1 − û) = (δ − ρ)(1 − α − φ + φθA)
1 − α − β − φ + φθA + βσ

, (23a)

and the long-run growth rate of income, consumption, private and public physical
capital is

γ̂K = β

1 − α − φ + φθA
γ̂H = β(δ − ρ)

1 − α − β − φ + φθA + βσ
= γ̂C = γ̂Y = γ̂Kg ,

(23b)

if and only if

sign(δ − ρ) = sign(1 − α − β − φ + φθA + βσ)

= sign[δβ(σ − 1) + ρ(1 − α − φ + φθA)]

= sign{(1 − g)[δβ(σ − 1) + ρ(1 − α − φ + φθA) + β(δ − ρ)]

− (1 − τ)β(δ − ρ)(α + φθR)}. (24)

Proof: See Appendix.

When there are constant returns to scale to private inputs in goods pro-
duction and no externalities, the long-run growth rate in the Uzawa-Lucas
model is independent of technological parameters in the goods sector (see,
e.g., Barro and Sala-i-Martin 2004, section 5.2.2). However, when the Uzawa-
Lucas model is extended to include public capital, Equations (23a) and (23b)
show that the long-run growth rates depend on technological parameters of
the production function in the goods sector even if there are constant returns
to scale in private inputs both at the private level, α + φθ R + β = 1, or at the
social level, α −φθ A +β = 1. In this latter case, the long-run growth rate of out-
put would be γ̂K = β(δ − ρ)/(βσ − φ). Only if there are constant returns to
scale in the reproducible inputs, K , H , and Kg , in the aggregate, α −φθ A +β +
φ = 1, long-run growth would be independent on the technological parame-
ters of the goods sector, and the long-run growth rate would be simply given,
as in the Uzawa-Lucas model, by γ̂K = γ̂H = (δ − ρ)/σ .

It should be noted that the long-run growth rates of physical and human
capital, along with the after-tax marginal return on private physical capital,
î = (1 − τ)(α + φθR)r̂ , can be obtained by solving the following system:

γ̂K = (î − ρ)/σ , (25a)

γ̂K = βγ̂H /(1 − α − φ + φθA), (25b)

γ̂K − γ̂H = î − δ, (25c)

where (25a) comes from (18) using that at the steady state γ̂K = γ̂C ; (25b)
results from evaluating (15) at the steady state using that γ̂K = γ̂Y = γ̂Kg and
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γ̂u = 0, and (25c) results from evaluating (14) at the steady state, using (16)
and (11d) (with η = λ).

Equations (23a) and (23b) show that changes in income taxation and
public investment do not affect the long-run growth rates. The invariance of
long-run growth to fiscal policy follows from the assumption that the tech-
nology in the educational sector is linear in effective time. The intuition
behind this result can be more easily ascertained by focusing on the case
that the goods producing technology exhibit constant returns to scale to the
reproducible factors K , H , and Kg , in the aggregate, α − φθ A + β + φ = 1.
In this case, Equation (25b) shows that the long-run growth rates of physical
and human capital coincide, γ̂K = γ̂H . Equation (25c) states then that in the
steady state the after-tax marginal return on private physical capital in goods
production is equal to the marginal return on effective time in the educa-
tion sector which, given the linearity assumption, is the constant δ. There-
fore, the common long-run growth rate of income, capital and consumption
would be given simply by the Keynes–Ramsey rule of optimal consumption
as γ̂K = (δ − ρ)/σ , and would not depend upon fiscal policy parameters. If
goods production does not exhibit constant returns to scale to the repro-
ducible factors, a similar reasoning applies, as the simultaneous determina-
tion of γ̂K , γ̂H , and î via (25a)–(25c) only involves technology and preference
parameters (and not fiscal policy parameters). It should be stressed that the
invariance of long-run growth to fiscal policy does not mean that it has no im-
pact on the economy. Actually, fiscal policy affects the transitional dynamics
of the economy, as system (19) clearly shows. Furthermore, Equations (22a)–
(22c) show that fiscal policy also affects the steady state ratios of output to
private physical capital, r̂ , consumption to private physical capital, q̂ , and
private to public physical capital, ẑ.

From (23a) and (23b), we can derive the effect of absolute congestion
on long-run growth,

∂γ̂K /∂θA = −φγ̂K /(1 − α − β − φ + φθA + βσ) < 0, (26a)

∂γ̂H /∂θA = (1 − σ)(∂γ̂K /∂θA), (26b)

where the sign in (26a) has been derived by assuming that the condition (28)
for local saddle-path stability derived later is fulfilled. Hence, an increase
in absolute congestion adversely affects the long-run growth rate of physical
capital (and income) since it lowers the aggregate productivity in the econ-
omy, as in the model of Eicher and Turnovsky (2000). However, its effect
on the growth rate of human capital depends on the elasticity of intertem-
poral substitution.7 As the value of σ increases the agents are less inclined
to substitute intertemporally and are less responsive to changes in the inter-
est rate. Since the net marginal return on private physical capital is given

7Note that Eicher and Turnovsky (2000) do not consider human capital in their model.
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by î = (1 − τ)(α + φθR)r̂ , we can get that ∂ î/∂θA = σ(∂γ̂K /∂θA). Therefore,
after an increase in absolute congestion, the reduction of γ̂K will be lower
(greater) than that of î if σ > 1 (σ < 1). Given that γ̂K − γ̂H = î − δ from
(25c), an increase in absolute congestion will reduce γ̂H if σ < 1, and will
increase γ̂H in the more plausible case that σ > 1. In the logarithmic utility
case, σ = 1, absolute congestion does not affect γ̂H .

An increase in relative congestion does not affect the aggregate produc-
tivity in the economy (see Equation (3b)) and, therefore, does not affect
long-run growth,8

∂γ̂K /∂θR = ∂γ̂H /∂θR = 0. (27)

Eicher and Turnovsky (2000) find instead that relative congestion adversely
affects the long-run growth rate of (physical) capital and income, but this
would also be the case in our model if population grows at a constant rate (see
footnote 8). In contrast, relative congestion positively affects long-run growth
in the model of Turnovsky (1997), but this result depends on the assumption
that population is constant and normalized to unity (see Turnovsky 1997,
footnote 18).

2.6. Stability Analysis

As usual, we assume that the capital stocks move sluggishly, so that K(0), H (0),
and Kg (0) are given by their historical values. Local saddle-path stability of
the steady state can be ensured if the coefficient matrix of the linearization of
the system (19) around its steady state (r̂ , q̂ , û, ẑ) has two stable eigenvalues.
We can state the following proposition.

PROPOSITION 2: The steady state of the decentralized economy is locally saddle-path
stable if and only if

sign(δ − ρ) = sign[δβ(σ − 1) + ρ(1 − α − φ + φθA)] = +1. (28)

Proof: See Appendix.

Propositions 1 and 2 demonstrate that there exists a unique locally saddle-
path stable steady-state equilibrium with positive long-run growth under mild
assumptions. The transitional dynamics of the model are then represented

8This result relies on the assumption that population is constant. If population grows at
a constant rate, it can be easily shown that ∂γ̂K /∂θR < 0, so that relative congestion would
adversely affect the long-run growth rate of aggregate physical capital, and ∂γ̂H /∂θR =
(1 − σ)∂γ̂K /∂θR , so that its effect on the long-run growth rate of H would depend upon the
elasticity of intertemporal substitution. The effect of absolute congestion on the long-run
growth rates would be described again by (26).
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by a two-dimensional stable saddle-path. This provides a much richer dy-
namics for the transition paths relative to the models of Turnovsky (1997)
and Eicher and Turnovsky (2000), which feature a single stable root and a
one-dimensional stable manifold. Proposition 2 also shows that stability is in-
dependent of relative congestion, as in the models of Turnovsky (1997) and
Eicher and Turnovsky (2000), and is also independent of absolute congestion
in the (empirically more plausible) case that σ ≥ 1, given the assumption that
α − φθ A + φ < 1 (see Proposition 1).9 If σ < 1, for given parameter values,
stability is more likely the greater the absolute congestion parameter is.

3. The Centrally Planned Economy

The central planner possesses complete information and chooses all
quantities directly, taking all the relevant information into account. In partic-
ular, the social planner takes into account that K = Nk, and thus she considers
the aggregate production function (3b). The central planner maximizes the
utility of the representative agent

∫ ∞

0
e−ρt (C/N )1−σ − 1

1 − σ
dt, (29a)

where C denotes aggregate consumption, subject to the constraints on hu-
man capital, private and public physical capital accumulation, and the overall
resources constraint,

Ḣ = δ(1 − u)H, (29b)

K̇ = IK , (29c)

K̇g = G, (29d)

Y = IK + G + C, (29e)

and the irreversibility constraints IK ≥ 0 and G ≥ 0, where IK and G denote
private and public investment in physical capital. An optimal growth path is
as a set of paths {C(t), IK (t), G(t), u(t), K(t), Kg (t), H (t)} that solves the
planner’s utility maximization problem. The central planner sets public in-
vestment, G , in an optimal manner, which is equivalent to setting optimally
the ratio of public investment to output, g = G/Y . Hence, Equation (29d)
can be expressed equivalently as K̇g = gY , and the resource constraint Equa-
tion (29e) as (1 − g)Y = IK + C . The constraint on nonnegative public
investment is then G = gY ≥ 0.

9This is precisely the stability condition in the model of Eicher and Turnovsky (2000).
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Let L be the current value Lagrangian of the planner’s problem,

L = [(C/N )1−σ − 1]/(1 − σ) + λIK + µδ(1 − u)H

+ ψgY + η[(1 − g)Y − IK − C],

where λ, µ, and ψ are the shadow prices of private physical capital, human
capital and public physical capital, respectively, and η is the multiplier asso-
ciated with the economy’s resources constraint. The first-order conditions
are

∂L/∂C = N σ−1C−σ − η = 0, (30a)

∂L/∂IK = λ − η ≤ 0, IK ≥ 0, (λ − η)IK = 0, (30b)

∂L/∂g = (ψ − η)Y ≤ 0, g ≥ 0, (ψ − η)gY = 0, (30c)

∂L/∂u = [η(1 − g) + ψg]βY /u − µδH = 0, (30d)

∂L/∂K = [η(1 − g) + ψg](α − φθA)Y /K = ρλ − λ̇, (30e)

∂L/∂H = [η(1 − g) + ψg]βY /H + µδ(1 − u) = ρµ − µ̇, (30f)

∂L/∂Kg = [η(1 − g) + ψg]φY /Kg = ρψ − ψ̇, (30g)

and the transversality condition

lim
t→∞ λKe −ρt = lim

t→∞ µH e −ρt = lim
t→∞ ψKg e −ρt = 0. (30h)

As in the case of the market economy, suppose that the nonnegativity
constraint on private investment in physical capital is not binding, so that
Equation (30b) entails that η = λ. Let v = ψ/λ and w = µ/λ denote the
value of public physical capital and human capital, respectively, measured
in terms of units of private physical capital. Comparing (30) with (11), it can
be observed that the main difference is that the relevant rates of return in
the market economy are the private ones, while in the centralized economy
they are the social ones. Equation (30a) equates the marginal utility of con-
sumption to the (social) shadow value of an additional unit of private physical
capital. Equation (30d) can be expressed as

(1 − g + vg)β
Y

uH
= wδ, (31a)

which states that the (social) rate of return on effective time, valued in terms
of private physical capital as numeraire, must be the same in both sectors.
The left-hand side of (31a) comprises three components. The first is the
marginal productivity of human capital employed in the production of goods,
βY /(uH ). As government expenditure is tied to output according to G = gY ,
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an increase in human capital employed in the goods sector also induces an
increase in public physical capital, gβY/(uH ), which is valued at its imputed
real price v. The third term, −gβY/(uH ), accounts for the resource costs
embodied in the public physical capital valued at its price of unity. In equilib-
rium, the sum of these components must equal the return on human capital
employed in the educational sector, δ, measured in terms of private physical
capital as numeraire. Equation (30e), which can be expressed as

(1 − g + vg)(α − φθA)
Y
K

= ρ − λ̇

λ
, (31b)

equates the rate of return on private physical capital to the rate of return on
consumption. The former relationship takes again into account that private
investment also induces an increase in public physical capital. Equations (30f)
and (30g) can be expressed as

1
w

(1 − g + vg)β
Y
H

+ δ(1 − u) + ẇ
w

= ρ − λ̇

λ
, (31c)

1
v

(1 − g + vg)φ
Y
Kg

+ v̇
v

= ρ − λ̇

λ
, (31d)

and describe the analogous relationships for human capital and public phys-
ical capital, respectively, with the only difference that the returns to investing
in human capital and public physical capital include the rate of capital gains
ẇ/w and v̇/v, respectively.

3.1. Transitional Dynamics

We shall find it convenient to express the dynamics of the centrally planned
economy in terms of variables that are constant in the steady state: the ratio
of consumption to private physical capital, q = C/K , the ratio of output to
private physical capital, r = Y/K , the ratio of private to public physical capital,
z = K/Kg , and the value of public physical capital measured in terms of units
of private physical capital, v = ψ/λ.

The interior solution, when the nonnegativity constraints on investment
in private and public physical capital are not binding (IK > 0, G > 0), can be
easily obtained. Now, Equations (30b) and (30c) entail that λ = ψ = η, and
thus the value of public physical capital measured in terms of units of private
physical capital, v = ψ/λ, must be constant and equal to

v = 1 = v∗, (32a)

and (30e) and (30g) imply that the net returns on each type of physical capital
are equalized. Hence, z = K/Kg must be constant and equal to the ratio of the
elasticity of private physical capital to the elasticity of public physical capital:

z = (α − φθA)/φ = z∗. (32b)
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Since z is constant, we can derive the (time-varying) optimal public in-
vestment in physical capital from γK = γKg as G = φ(Y − C)/(α − φθA + φ).
Since Y − C = IK + G , the former expression simply states that the optimal
expenditure policy for the government consists on investing in physical cap-
ital a fraction of total investment equal to the ratio of the elasticity of public
physical capital in production to the sum of the elasticities of private and pub-
lic physical capital. The optimal ratio of public investment to output would
then be given by

g = φ

α − φθA + φ
(1 − q/r ), (33)

which obviously satisfies that 0 < g < 1, and is therefore not constant but
time-varying.

Using that λ = ψ = η, the consumption growth rate can be derived from
(30a) and (30e) as

γC = 1
σ

[(α − φθA)Y/K − ρ] = 1
σ

[(α − φθA)r − ρ]. (34)

From (29c) and (29e), we obtain

γK = (1 − g)
Y
K

− C
K

= (1 − g)r − q . (35)

Using (30d) and (30f) the growth rate of µ is given by

γµ = ρ − δ. (36)

Log-differentiating (3b) with respect to time yields

γY = (α − φθA)γK + βγu + βγH + φγKg (37)

Log-differentiating (30d), using that λ = ψ = η, we get

γY − γu + γλ = γµ + γH . (38)

The system that characterizes the dynamics of the centrally planned econ-
omy in terms of the variables q = C/K , r = Y/K , and u that are constant in
the steady state is

γr = −(α − φθA)(1 − α + φθA − φ)
α − φθA + φ

r

+(α − φθA)(1 − α + φθA − β − φ)
(1 − β)(α − φθA + φ)

q + δβ

1 − β
, (39a)

γu = δu − (α − φθA)q
1 − β

+ δβ

1 − β
, (39b)

γq = γC − γK = (α − φθA)(α − φθA + φ − σ)r
σ(α − φθA + φ)

+ (α − φθA)q
α − φθA + φ

− ρ

σ
. (39c)



Fiscal Policy, Congestion and Growth 611

From (34) and (35), after substituting g for (33), we obtain (39c). Solving
(37) and (38) for γY and γu, substituting γλ from (30e), γµ from (36), γK

from (35), γH from (29b), γKg from (29d), and g from (33), we get (39b) and
(39a), using that γ r = γ Y − γ K .

Hence, if the initial ratio z(0) equals its steady state, z(0) = z∗, the ratio
of private to public physical capital, z, remains constant at its stationary value
z∗, and the economy evolves along the transitional path of system (39). Alter-
natively, if private and public investments in physical capital are assumed to
be reversible and the government can choose the ratio of private to public
physical capital, z jumps immediately to its optimal value z∗, in which the net
returns on each type of physical capital are equalized. After that, the economy
moves along the transitional path of system (39).

Suppose that z(0) > z∗, so that K is initially abundant relative to Kg .
Without nonnegativity constraints on investment, the adjustment entails in-
creasing Kg and decreasing K by discrete amounts so that the ratio of private
to public physical capital jumps at the initial time to its steady state, z∗, and
the economy evolves along the transitional path of system (39) after that.
This solution requires negative private investment at an infinite rate. Thus,
when the nonnegativity constraints are considered, the one corresponding
to private physical capital would be violated. The desire to lower K entails
that the inequality IK ≥ 0 will be binding in an interval [0,T], whereas G >

0. Now, (30c) entails that ψ = η. Hence, from (30a) and (30g), we obtain

γC = 1
σ

(φY/Kg − ρ) = 1
σ

(φr z − ρ).

Log-differentiating (30d) with respect to time yields

γY − γu + γψ = γµ + γH . (40)

Solving the system (37) and (40) for γY and γu, substituting γψ from
(30g), γµ from (36), γH from (29b), γKg from (29d) and γ K = 0, we can
obtain the growth rates of r = Y/K and u as

γr = γY = φr z − φq z
1 − β

+ δβ

1 − β
, (41a)

γu = δu − φq z
1 − β

+ δβ

1 − β
. (41b)

The growth rates of q = C/K and z = K/Kg can be easily obtained as

γq = γC = 1
σ

(φr z − ρ), (41c)

γz = −γKg = (q − r )z, (41d)

where it has been used that the overall resource constraint, (1 − g)Y = IK +
C , entails that g = 1 − q/r . As the economy evolves, the ratio of private to
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public physical capital, z, decreases. At time T , it reaches its steady state value,
that is, z(T) = z∗, and the nonnegativity constraint on private investment, IK

≥ 0, becomes nonbinding. From t = T on, the solution is given by z(t) = z∗

and v(t) = v∗, and the economy evolves along the stable saddle-path of (39),
where g is given by (33).

Suppose now that z(0) < z∗, so that Kg is initially abundant relative to
K . Without nonnegativity constraints on investment, the adjustment entails
increasing K and decreasing Kg by discrete amounts so that the ratio of private
to public physical capital jumps at the initial time to its steady state value z∗,
and the economy evolves along the transitional path of (39) after that. This
solution requires negative public investment at an infinite rate. Thus, with
irreversibility constraints, the one corresponding to public capital would be
violated. The desire to lower Kg entails that the inequality G ≥ 0 will be
binding in an interval [0, T], whereas IK > 0. Now, Equation (30b) entails
that λ = η. Hence, from (30a) and (30e), we obtain

γC = 1
σ

[(α − φθA)Y/K − ρ] = 1
σ

[(α − φθA)r − ρ].

Log-differentiating (30d), using that λ = η, yields (38). Solving the system
(37) and (38) for γ Y and γ u, substituting γ λ from (30e), γ µ from (36), γ K

from (35), γ H from (29b), and γKg = 0, we can obtain the growth rates of r
and u as

γr = γY − γK = −(1 − α + φθA)r + (1 − α + φθA − β)q
1 − β

+ δβ

1 − β
, (42a)

γu = δu − (α − φθA)q
1 − β

+ δβ

1 − β
. (42b)

The growth rates of q = C/K and z = K/Kg can be easily obtained as:

γq = q + 1
σ

(α − φθA − σ)r − ρ

σ
, (42c)

γz = γK = r − q , (42d)

whereas g = 0. As the economy evolves, z increases until, at time T , it reaches
its steady state value, z∗, i.e., z(T) = z∗, and the nonnegativity constraint on
public investment, G ≥ 0, becomes nonbinding. From t = T on, the solution
is given by z(t) = z∗ and v(t) = v∗, and the economy evolves along the saddle-
path of (39), with g given by (33). A similar reasoning to that in Gómez (2004)
may be used to show that the continuity of the shadow prices involves the
continuity of the consumption and work time paths on the optimal solution.

3.2. Balanced Growth Path

Now, we focus on an interior balanced growth path (or steady state) in which
all variables grow at constant but possibly different rates and the shares of
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labor in its different uses are constant. An asterisk ‘∗’ will denote the steady
state of a variable in the centrally planned economy. We have shown above
that once z reaches its steady state value, z∗, the solution is given by z(t) = z∗,
the nonnegativity constraints on investment in physical capital are not bind-
ing, and the economy evolves along the stable saddle-path of (39), where g is
given by (33). This would also be the case if private and public investments in
physical capital are assumed to be reversible and the government can choose
the ratio of private to public physical capital. The following proposition ex-
amines the existence of an interior steady state with positive long-run growth
in which, therefore, the nonnegativity constraints on private and public in-
vestment must be not binding.

PROPOSITION 3: Let 1 − α + φθ A − φ > 0. The centrally planned economy has
a unique positive steady state with positive long-run growth,

v∗ = 1, (43a)

z∗ = (α − φθA)/φ, (43b)

r ∗ = δβ(σ − 1) + ρ(1 − α + φθA − φ) + β(δ − ρ)
(α − φθA)(1 − α + φθA − β − φ + βσ)

, (43c)

q ∗ = δβ(σ − 1) + ρ(1 − α + φθA − φ) + β(δ − ρ)(1 − α + φθA − φ)
(α − φθA)(1 − α + φθA − β − φ + βσ)

, (43d)

u∗ = δβ(σ − 1) + ρ(1 − α + φθA − φ)
δ(1 − α + φθA − β − φ + βσ)

, (43e)

g∗ = φ

α − φθA + φ
(1 − q ∗/r ∗)

= φβ(δ − ρ)
δβ(σ − 1) + ρ(1 − α + φθA − φ) + β(δ − ρ)

, (43f)

where the long-run growth rate of human capital is

γ ∗
H = δ(1 − u∗) = (δ − ρ)(1 − α + φθA − φ)

1 − α + φθA − β − φ + βσ
, (44a)

and the long-run growth rate of income, consumption, private and public physical
capital is

γ ∗
K = β

1 − α + φθA − φ
γ ∗

H = β(δ − ρ)
1 − α + φθA − β − φ + βσ

= γ ∗
C = γ ∗

Y = γ ∗
Kg

, (44b)

if and only if

sign(δ − ρ) = sign(1 − α + φθA − β − φ + βσ)

= sign[δβ(σ − 1) + ρ(1 − α + φθA − φ)]. (45)

Proof: See Appendix.
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As in the case of the market economy, it can be easily shown that the
long-run growth rates of physical and human capital along with the (social)
rate of return on private physical capital, i∗ = (α − φθ A)r ∗, can be obtained
by solving the system (similar to (25)):

γ ∗
K = (i∗ − ρ)/σ , (46a)

γ ∗
K = βγ ∗

H

/
(1 − α − φ + φθA), (46b)

γ ∗
K − γ ∗

H = i∗ − δ. (46c)

The assumption that the technology in the educational sector is linear in
effective time explains why the long-run growth rates in the market economy
(23a)–(23b) coincide with those of the centrally planned economy (44a)–
(44b), because the private and the social return on effective time in the
educational sector, which is the constant δ, coincide.

Local saddle-path stability of the steady state can be ensured if the coef-
ficient matrix of the linearization of (39) at its steady state (r ∗,q∗,u∗) has one
unstable root. We can state the following Proposition.

PROPOSITION 4: The steady state of the centrally planned economy is locally
saddle-path stable if and only if (28) is satisfied.

Proof: See Appendix.

4. Decentralization of the Optimal Growth Path

This section devises a fiscal policy by means of which the optimal growth path
attainable by a central planner can be decentralized.

Suppose first that z(0) = z∗, so that the nonnegativity constraints on
private and public investment in physical capital are not binding. As shown
above, the solution is given by z(t) = z∗, and the economy evolves along the
transitional path of system (39), where g is given by (33). Since the nonneg-
ativity constraint on private investment in physical capital is not binding, the
dynamics of the market economy is driven by system (19). Comparing (19a)
with (39c), using that the optimal ratio of public investment to output, g , is
given by (33), we observe that the evolution of the ratio of consumption to
private physical capital, q, will be the same for both the market economy and
the centrally planned economy if and only if the tax rate on income is chosen
as10

10This result can also be obtained by comparing the growth rate of consumption in the mar-
ket economy given by (18) with the corresponding one in the centrally planned economy
given by (34).
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(1 − τ ∗)(α + φθR) = α − φθA. (47)

Hence, the optimal income tax can be derived as

τ ∗ = φ(θR + θA)
α + φθR

. (48)

It can be readily shown that substituting g for its optimal value given
by (33), z for z∗ = (α − φθA)/φ, and τ for its optimal value given by (48)
(and so, τ̇ = 0) into (19c), (19d), and (19b), the expressions for γ u and
γ r in the market economy coincide with their counterparts (39b) and (39a),
respectively, in the centrally planned economy, and γ z = 0 as in the centralized
economy, since z = z∗ (a constant). It should be noted that the optimal income
tax rate is constant, and 0 ≤ τ ∗ < 1, where the second inequality follows
from α − φθ A > 0. Having set the income tax rate in an optimal manner,
lump-sum taxes (or transfers) should be set so as to balance the government
budget.

The optimal income tax (48) corrects for the negative external effects
caused by both absolute and relative congestion. The intuition is straightfor-
ward: It ensures that the social marginal return to private physical capital, as
viewed by the central planner, (α − φθ A)r , coincides with the private after-tax
return, as viewed by the individual agent, (1 − τ)(α + φθ R)r . It is constant
since the degree of congestion is constant as well, and is positive as long as
there is congestion. This is because the individual agent ignores the negative
externality caused by congestion and overaccumulates physical capital rela-
tive to the optimum. Therefore, the accumulation of physical capital should
be discouraged through an income tax.11 The optimal income tax is zero as
long as there is no congestion. In this case, there is no externality, so capital
income should be untaxed. The first-best optimum requires resorting solely
to lump-sum taxation to finance public investment.

Both types of congestion raise the optimal income tax as

∂τ ∗

∂θA
= φ

α + φθR
> 0, (49a)

∂τ ∗

∂θR
= (α − φθA)

(α + φθR)
∂τ ∗

∂θA
> 0. (49b)

Intuitively, an increase in either form of congestion raises the correspond-
ing externality, and therefore, raises the optimal income tax needed for its
correction. Equation (47) shows that an increase in relative congestion in-
creases the (before-tax) private rate of return on private physical capital, but
does not affect its social rate of return. In contrast, an increase in absolute

11As pointed out in Section 2, income taxation affects the transitional dynamics and the
steady state of the economy, and thus may affect welfare and restore efficiency even if it
does not affect long-run growth.
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congestion does not affect the (before-tax) private rate of return on private
physical capital, but it decreases its social rate of return. Therefore, an in-
crease in congestion entails that a higher income tax is required to restore
the equality between the private and the social rates of return. Furthermore,
the effect of absolute congestion is greater than that of relative congestion,
∂τ ∗/∂θA > ∂τ ∗/∂θR > 0. This is because an increase in absolute congestion
drives a larger wedge between social and private marginal rates of return to
physical capital than an increase in relative congestion does and, therefore,
requires a larger tax to correct.

So far we have considered the case in which z(0) = z∗. Suppose now
that z(0) > z∗, so that IK = 0 and the optimal growth path is described by
system (41) up to the point in which z = z∗. The corresponding system in
the decentralized economy is (21). First note that (21a) and (41d), which
describe the dynamics of the ratio of private to public capital, z, in the decen-
tralized and centralized economies, respectively, coincide. Substituting the
optimal value of g = 1 − q/r into (21b) and (21c), it can be easily shown
that they coincide with (41b) and (41a), respectively, if the income tax is
constant, i.e., τ̇ = 0. It should be emphasized that ġ in (21b) and (21c)
should be replaced with ġ = q (γr − γq )/r , with γ r and γ q given by (41a)
and (41c), respectively. Thus, the optimal growth path can be achieved by
setting the optimal share of government to output equal to g = 1 − q/r , with
γ q given by (41c), and can be sustained by any combination of (constant)
income taxation and lump-sum taxation that satisfy the government budget
constraint, up to the point in which z = z∗. After that, the economy evolves
according to the system (39), with z = z∗, the income tax rate should be
set according to (48), and the public investment share of output, g , is given
by (33).

If z(0) < z∗, then G = 0 and the optimal growth path is described by
(42) up to the point at which z = z∗. The corresponding system in the de-
centralized economy is (19). First note that Equations (19b) and (42d), that
describe the dynamics of z in the decentralized and centralized economy,
respectively, coincide after substituting the optimal value of g = 0. Compar-
ing (19a) and (42c), with g = 0, we see that the market economy will fully
replicate the dynamic path of q in the optimal solution if and only if the
tax rate on income is set according to (48). It can be easily shown that set-
ting the income tax rate in this way, also ensures that the growth rate of u
and r in the decentralized economy, Equations (19c) and (19d), coincide
with their counterparts in the centrally planned economy, Equations (42b)
and (42a), respectively, noting that τ̇ = ġ = 0. Thus, tax revenue must be re-
bated as lump-sum transfers to consumers in order to the government budget
constraint be met, up to the point at which z = z∗. After that, the economy
evolves according to (39), with z = z∗, the tax rate on income must be kept at
its value given in (48), and the public investment share of output, g , is given
by (33).
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The previous discussion has assumed that private and public investments
in physical capital are irreversible; (i.e., nonnegative). Alternatively, if in-
vestments are assumed to be reversible and the government can choose
the ratio of private to public physical capital z, it jumps immediately to
its optimal value z∗ = (α − φθA)/φ. After that, the economy evolves along
the saddle path of system (39). As shown above, in this case the optimal
growth path can be decentralized by setting the income tax rate according
to (48), and lump-sum taxes (or transfers) so as to balance the government
budget.

5. Concluding Remarks

This paper analyzes the effect of public investment in an endogenous growth
model with private and public physical capital, and human capital. Productive
government expenditures are intended to represent public infrastructure,
and so, the accumulated stock of public capital, rather than the current flow
of public investment, is regarded as a productive input in private production.
Differently to previous literature, public capital may be subject to absolute
congestion as well as relative congestion. In spite of the complexity of the dy-
namical systems involved, the paper provides a detailed analysis of the equilib-
rium dynamics of the market economy, and also of the optimal growth path at-
tainable by a central planner. In this last case, it is shown that the irreversibility
constraints on private and public investment in physical capital play a crucial
role when deriving the optimal growth path. According to empirical evidence,
long-run growth is found to be invariant to fiscal policy. The paper also ana-
lyzes the effect of congestion on long-run growth, and derives an optimal tax
policy capable of decentralizing the first-best solution attainable by a central
planner. An interesting extension would be to analyze whether the results ob-
tained carry over to other settings; in particular, to endogenous growth models
with R&D (e.g., Aghion and Howitt 1992; Grossman and Helpman 1991; Jones
1995b).

Appendix

Proof of Proposition 1: From γ̂C = γ̂K = γ̂Y it follows that γ̂r = 0 and γ̂q = 0.
Rewriting (5) as γKg = gr z, we get γ̂z = 0; i.e., γ̂K = γ̂Kg . The steady state
of (19) is (22). From γ̂H = δ(1 − û) and γ̂K = βγ̂H /(1 − α − φ + φθA),
which results from (15), we obtain (23). If 1 − û > 0 then γ̂H > 0, and to
ensure the positivity of γ̂K , we must have that 1 − α − φ + φθ A > 0. The
condition 0 < û < 1 holds if and only if the first two equalities in (24) are
satisfied, which also ensure that ẑ > 0 and r̂ > 0. However, q̂ > 0 entails
that the latter equality in (24) must be met. It can be easily shown that
transversality conditions (11f) are satisfied if 0 < û < 1. �
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Proof of Proposition 2: Linearizing (19) around its steady state (r̂ ,q̂ ,û,ẑ), we
obtain


ṙ

q̇

u̇

ż




=




J11 (1 − α − β + φθA)r̂ /(1 − β) 0 gφr̂ 2/(1 − β)

J21 q̂ 0 0

J31 −(α − φθA)û/(1 − β) δû gφr̂ û/(1 − β)

q̂ ẑ/r̂ −ẑ 0 −gr̂ ẑ


×




r − r̂

q − q̂

u − û

z − ẑ


,

where J = (Jij) denotes the coefficient matrix of the former system,

J11 = −((1 − α − β + φθA)q̂ + βδ)/(1 − β), J21 = (ρ/σ − q̂ )q̂/r̂ ,

and J 31 is unnecessary for the subsequent analysis. The structure of the
third column of J entails that δû is an eigenvalue. The remaining eigen-
values of J are those of the matrix J̄ resultant from deleting the third row
and column. After simplification we get

det( J̄ )

= g[βδ(σ − 1) + ρ(1 − α − φ + φθA) + β(δ − ρ)]q̂ ẑ r̂ /[(1 − β)σ].

Stability requires that there be two eigenvalues with negative real
parts and, therefore, det( J̄ ) > 0; i.e., βδ(σ − 1) + ρ(1 − α − φ +
φθ A) + β(δ − ρ) > 0 which, combined with (24), entails that (28) be
met. In turn, (28) entails that 1 − α − β − φ + φθ A + βσ > 0 (which
comes from (24)) as

0 < δβ(σ − 1) + ρ(1 − α − φ + φθA) < δ[β(σ − 1) + 1 − α − φ + φθ]

= δ(1 − α − β − φ + φθA + βσ).

Since det( J̄ ) > 0, there are 0 or 2 eigenvalues with negative real parts.
The characteristic equation for the matrix J̄ is p (λ) = −λ3 + π 2λ

2 +
π 1λ + π 0 = 0, where π2 = tr( J̄ ), π 1 is the opposite of the sum of all
the leading principal minors of order 2 of J̄ , and π0 = det( J̄ ) > 0. After
simplification, we get

π2 = tr( J̄ ) = q̂ − gr̂ ẑ − (1 − α − β + φθA)q̂ + βδ

1 − β
,

π1 = g(α − φθA + φ)q̂ r̂ ẑ
1 − β

+ (1 − α − β + φθA)ρq̂
(1 − β)σ

+ βδ(q̂ − gr̂ ẑ)
1 − β

.

The first two terms on the right-hand side of π 1 are positive. If π 2 ≥ 0, it
must be that q̂ > gr̂ ẑ, so that the third term on the right-hand side of π 1

is also positive, and so, π 1 > 0.
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The number of roots of the characteristic equation for the matrix J̄ with
negative real parts is equal to the number of the roots of the polynomial
p (−λ) = λ3 + π 2λ

2 − π 1λ + π 0 with positive real parts. Using the Routh-
Hurwitz theorem (e.g., Gantmacher 1959), the number of stable roots
of the matrix J̄ is then equal to the number of variations of sign in the
scheme

1 π2 ψ1 π0,

where ψ1 = −(π2π1 + π0)/π2. Now, if π 2 > 0 then π 1 > 0, and so, ψ 1 <

0. Hence, we have the configuration

+ + − +

so that there are two variations in sign. If π 2 < 0, we have the configuration

+ − ? +,

where a question mark represents the (unknown) sign of ψ 1, which could
be even zero. Irrespective of the unknown sign, there are two variations
in sign. Finally, if π 2 = 0, which entails that π 1 > 0, we substitute π 2 for
a positive constant ε than tends to zero from above, and we obtain the
following configuration

+ 0 − +

so that there are two variations in sign. Hence, irrespective of the sign of
π 2, there are two variations in sign in the preceding scheme, and so, the
matrix J̄ has one unstable and two stable roots. Thus, J has also two stable
roots and, therefore, the steady state is locally saddle-path stable. �

Proof of Proposition 3: Equations (43a)–(43b) have been obtained in the text
(see (32a) and (32b)). The steady state of (39a)–(39c) is given by (43c)–
(43e), and g ∗ follows then from (33), which satisfies 0 ≤ g∗ < 1 if (45)
holds. From γ ∗

H = δ(1 − u∗) and γ ∗
K = βγ ∗

H /(1 − α + φθA − φ), which
results from (37), we get (44). If 1 − u∗ > 0 then γ ∗

H > 0, and to ensure
γ ∗

K > 0, it must be that 1 − α + φθ A − φ > 0. The condition 0 < u∗ <

1 holds if and only if (45) is satisfied. If 1 − α + φθ A − φ > 0 and (45)
are satisfied, it can be shown that r ∗ > 0 and q ∗ > 0, and thus the steady
state is feasible. It can be readily shown that the transversality conditions
(30h) are satisfied if 0 < u∗ < 1. �
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Proof of Proposition 4: Linearizing (39) around its steady state (r ∗, q∗, u∗), we
get



ṙ

q̇

u̇




=




−(α − φθA)(1 − α + φθA − φ)
α − φθA + φ

r ∗ (α − φθA)(1 − α + φθA − β − φ)
(1 − β)(α − φθA + φ)

r ∗ 0

(α − φθA)(α − φθA + φ − σ)
σ(α − φθA + φ)

q ∗ α − φθA

α − φθA + φ
q ∗ 0

0 −α − φθA

1 − β
u∗ δu∗




×




r − r ∗

q − q ∗

u − u∗


 .

Let J denote the coefficient matrix of the former system. The struc-
ture of the third column of J entails that δu∗ is an eigenvalue. The re-
maining eigenvalues of J are those of the matrix J̄ resultant from deleting
the third row and column of J . After simplification, we get

det( J̄ ) = −(α − φθA)2(1 − α + φθA − β − φ + βσ)q ∗r ∗/

[(1 − β)σ(α − φθA + φ)].

Stability requires that there must be one eigenvalue with negative real
part, and so, det( J̄ ) < 0; i.e., 1 − α + φθ A − β − φ + βσ > 0, which
combined with (45), entails that (28) is met. In turn, (28) entails that
1 − α + φθ A − β − φ + βσ > 0 as

0 < δβ(σ − 1) + ρ(1 − α + φθA − φ) < δ(β(σ − 1) + δ(1 − α + φθA − φ))

= δ(1 − α + φθA − β − φ + βσ).

Thus, the steady state is locally saddle-path stable if and only if (28)
holds. �
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