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We study the properties of the free abelian topological group Ad(X) on a metric 
space (X, d) endowed with the topology generated by the Graev extension d̂ of a 
given metric d on X. We find that the group of Lipschitz functions Lip0(X, T) is the 
group of continuous characters of Ad(X). From this fact we derive some interesting 
properties of the metric groups Ad(X) and Lip0(X, T).
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1. Introduction

Let (X, d) and (Y, d′) be metric spaces and let f : (X, d) → (Y, d′) be a mapping. We say that f is a 
Lipschitz mapping if there exists λ ≥ 0 with d′(f(x), f(y)) ≤ λd(x, y) for all x, y ∈ X. The least such λ is 
called the Lipschitz constant ‖f‖L of f . It is clear that ‖f‖L = supx�=y

d′(f(x),f(y))
d(x,y) . The Lipschitz condition 

for functions between metric spaces allows to keep control of the distances in the target space knowing the 
distances in the domain. This is the key to the wide range of uses of this concept. We should mention as a 
fundamental prototype the Picard-Lindelöf theorem on the existence and uniqueness of solutions of ordinary 
differential equations [24].

If (X, d) is a metric space and 0 is a fixed element of X, Lip0(X, R) denotes the Banach space of 
real-valued Lipschitz functions defined on X. It is the dual of the norm-closed subspace of (Lip0(X, R))∗

generated by the Dirac measures, which is denoted by F(X) and called the Lipschitz-free Banach space over 
X. The Banach space F(X) is of interest in its own right: It is the universal Banach space that contains an 
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isometric copy of X (see [25, Chapter 3]). The construction of F(X) can be traced back to the mid-20th 
century with the works of Kantorovich and Rubinstein on optimal transport problems [18]. There is an 
extensive literature on Lipschitz functions which has been growing during the last years (see for example 
[3,15,25]). Some of the recent lines of work have been the study of approximation of uniformly continuous 
real-valued functions by Lipschitz functions [14] and the description of the structure of Lipschitz-free spaces 
over different classes of metric spaces (see e.g. [1,12]). Another current problem is finding out whether the 
linear structure of a Banach or p-Banach space is completely determined by its Lipschitz structure [2].

Despite the importance of the concept of a Lipschitz mapping between metric spaces, Lipschitz functions 
with values in the unit circle T have not been considered yet. This paper comes to fill this gap. Given a 
metric space (X, d) with a fixed element 0 ∈ X, the set Lip0(X, T ) of all Lipschitz functions from X into T
has a group structure with the addition defined pointwise. If we endow it with the canonical metric given 
by the Lipschitz constant, we obtain a metric topological group which is related by duality with the free 
metric group Ad(X) over the metric space X.

The group Ad(X) has been considered by V. Bel’nov [8], O. Sipacheva and V. Uspenskij [22], 
A.V. Arhangel’skii and M. Tkachenko [6] and C. E. McPhail [20]. We establish several properties of this 
metric group. Making use of results of Enflo [13] and McPhail [20] we show in Theorem 2.11 that Ad(X)
is a metric subgroup of the Lipschitz-free Banach space F(X), which in particular implies that Ad(X) is 
locally quasi-convex, and we build its completion in Theorem 2.9.

We prove in Theorem 3.1 that Lip0(X, T ) is exactly the group of continuous characters of the metric 
group Ad(X) endowed with the topology of uniform convergence on the balls of Ad(X). Thus it turns out 
that Lip0(X, T ) admits a predual, analogously to what happens with the Banach space Lip0(X, R) which 
admits as predual the Lipschitz free Banach space F(X). However, the consideration of T -valued functions 
forces us to work in the context of metric groups instead of the more restricted one of Banach spaces.

On the group of continuous characters of a metric group (G, d), the topology of uniform convergence on 
the bounded sets (which is the usual strong topology for the dual in locally convex vector spaces) may not 
coincide with the topology of uniform convergence on the balls defined by the metric d. However, on the 
dual of a Banach space E both topologies coincide. We establish in Theorems 4.2 and 4.5 that if (X, d)
is a totally bounded metric space or a convex subspace of a linear normed space, then the balls of Ad(X)
are bounded and consequently on its dual group Lip0(X, T ), the topologies of uniform convergence on the 
bounded sets and on the balls coincide.

We apply the Pontryagin duality techniques to deduce several properties of the group Lip0(X, T ). In 
particular, we prove in Corollary 3.6 that this group is locally quasi-convex and complete.

1.1. Preliminaries

All the groups we are going to consider will be abelian.
For any metric group (G, d) the symbol d always refers to an invariant metric, and we will denote by ‖ · ‖

the associated group norm, i.e. ‖x‖ = d(x, 0) for every x ∈ G. Further, for every r > 0 we define the closed 
r-ball of (G, d) with center at zero as Br = {x ∈ G : ‖x‖ ≤ r}.

We define the torus T as R/Z and denote by π : R → T the canonical projection. On T we consider the 
group norm |π(r)| = dR(r + Z, 0), where dR is the usual metric on R. Note that |π(r)| ≤ min{|r|, 1/2} for 
every r ∈ R, and |π(r)| = |r| whenever |r| ≤ 1/2. We put T+ = π([−1/4, 1/4]).

A character of an abelian group G is a homomorphism χ : G → T . For any topological abelian group G, 
we denote by Hom(G, T ) the group of characters of G and by G∧ the group of continuous characters of G. 
We will call G∧ the dual group of G. We will say that a topological abelian group G has enough continuous 
characters if for each g �= 0 there is some element χ ∈ G∧ such that χ(g) �= 0.

Let G be a topological abelian group and let A be a subset of G. We say that A is quasi-convex if for any 
x ∈ G \A there exists χ ∈ G∧ with χ(A) ⊆ T+ and χ(x) /∈ T+. We say that a topological abelian group G
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is locally quasi-convex if G has a basis of neighborhoods of zero formed by quasi-convex sets. It is easy to 
see that a Hausdorff locally quasi-convex group has enough continuous characters.

Let G be an abelian group, B ⊆ G a nonempty subset and n ∈ N. Here and below nB will denote the 
set {nx : x ∈ B}. Obviously nB ⊆ B + · · · + B︸ ︷︷ ︸

n times

.

A nonempty family S of subsets of a group G is called well-directed if the following conditions hold:

a) For B1, B2 ∈ S, there exists B3 ∈ S such that B1 ∪B2 ⊆ B3.
b) For B ∈ S and n ∈ N, there exists A ∈ S such that nB ⊆ A.

Examples of well-directed families are the family of all nonempty finite subsets, and the family of all compact 
subsets of a topological group G.

In what follows it will be convenient to fix a group duality (G, H), which consists of an abelian group G
and a subgroup H of Hom(G, T ).

Let (G, H) be a group duality and S a well-directed family of nonempty subsets of G. Since T is a metric 
space, we can consider on H ⊆ TG the topology τS(H, G) of uniform convergence on the sets A ∈ S. 
Clearly it is a group topology. If S covers G, then τS(H, G) is Hausdorff. Moreover, the collection

A = {A� : A ∈ S}

is a fundamental system of neighborhoods of the neutral element eH in the topology τS(H, G), where 
A� = {ψ ∈ H : ψ(A) ∈ T+}. It is easy to prove that all topologies of this kind on H are locally quasi-
convex.

Let G be a topological abelian group. If we consider the duality (G, G∧) and S is the well-directed family 
of compact subsets of G we obtain the classical Pontryagin duality. The Pontryagin-van Kampen Theorem 
says that if G is locally compact, its dual group (G∧, τS(G∧, G)) is locally compact and the bidual group 
is topologically isomorphic to G through the canonical evaluation mapping αG : G → (G∧)∧ defined by 
αG(g)(χ) = χ(g).

In the case of metrizable groups, the topology of uniform convergence on compact sets in the dual group 
is a k-space group topology that can fail to be metrizable (see [10]). As we will see later on, there are 
other well-directed families that we can use in the case of metric groups in order to obtain different metric 
topologies on the dual group.

2. The metric groups Lip0(X, T) and Ad(X)

If (X, d) is a metric space with a fixed element 0 ∈ X, we denote by Lip0(X, T ) the set of all Lipschitz 
mappings f : (X, d) → (T , | · |) which satisfy f(0) = 0. It is clearly an abelian group with the natural 
pointwise addition. We consider the invariant metric (f, g) 
→ ‖f − g‖L on this group. The metric group 
(Lip0(X, T ), ‖ · ‖L) is the natural group analogue of Lip0(X, R). We are going to establish some properties 
of this group along the paper.

First we present some basic facts in the following propositions.
Let TX

0 be the group of all mappings f : X → T with f(0) = 0, and ‖ · ‖∞ the group norm on TX
0

defined by ‖f‖∞ = supx∈X |f(x)|. We say that a metric space (X, d) is uniformly discrete if inf{d(x, y) :
x, y ∈ X, x �= y} > 0.

Proposition 2.1. If X is a uniformly discrete metric space, then Lip0(X, T ) and TX
0 coincide as sets, and 

the identity mapping (TX
0 , ‖ · ‖∞) → Lip0(X, T ) is Lipschitz.
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Proof. Put δ = min{d(x, y) : x, y ∈ X, x �= y}. For every mapping f : X → T we have

sup
x�=y

|f(x) − f(y)|
d(x, y) ≤ 2‖f‖∞

δ

This inequality implies that the sets TX
0 and Lip0(X, T ) coincide algebraically, and the identity mapping 

(TX
0 , ‖ · ‖∞) → Lip0(X, T ) is Lipschitz. �

Proposition 2.2. Let N0 = N ∪ {0}. The mapping Φ : Lip0(N0, T ) → (TN , ‖ · ‖∞) defined by Φ(f)(n) =
f(n) − f(n − 1) is an isometric isomorphism.

Proof. Note that by Proposition 2.1, Lip0(N0, T ) and TN
0 coincide as sets. From this it is easy to deduce 

that Φ is bijective. It is clearly a homomorphism.
Given any f ∈ Lip0(N0, T )

‖f‖L = sup
n,m∈N0, n �=m

|f(n) − f(m)|
|n−m| ≥ sup

n∈N
|f(n) − f(n− 1)| = ‖Φ(f)‖∞.

Conversely, if f ∈ Lip0(N0, T ) and n, m ∈ N0 with n > m,

|f(n) − f(m)|
n−m

≤ 1
n−m

n∑
k=m+1

|f(k) − f(k − 1)|

≤ 1
n−m

(n−m) sup
k∈N

|f(k) − f(k − 1)| = ‖Φ(f)‖∞

This implies that ‖f‖L ≤ ‖Φ(f)‖∞. Hence Φ is an isometry. �
Proposition 2.3. If X is a metric space with bounded metric, then the inclusion mapping Lip0(X, T ) →
(TX

0 , ‖ · ‖∞) is Lipschitz.

Proof. Put M = maxy∈X d(y, 0). For any f ∈ Lip0(X, T ) and every x ∈ X \ {0} we have

|f(x)| ≤ M
|f(x) − f(0)|

d(x, 0) ≤ M‖f‖L.

As |f(x)| ≤ M‖f‖L is trivial for x = 0 we obtain ‖f‖∞ ≤ M‖f‖L. Hence the identity mapping Lip0(X, T ) →
(TX

0 , ‖ · ‖∞) is Lipschitz. �
Corollary 2.4. Let F be a finite metric space with 0 ∈ F and |F | ≥ 2. Then Lip0(F, T ) is Lipschitz isomorphic 
with (Tn, ‖ · ‖∞), where n = |F | − 1.

Proof. This follows from Propositions 2.1 and 2.3. �
Observe that both the examples given in Proposition 2.2 and Corollary 2.4 have analogues for real 

Lipschitz functions. It is known that Lip0(F, R) is isometrically isomorphic to R|F |−1 and Lip0(N0, R) is 
isometrically isomorphic to the Banach space l∞ (see for instance [4, Examples 2.3.6 and 2.3.7]).

Proposition 2.5. Let (X, d) be a metric space with a distinguished point 0 ∈ X. Let D be a dense subspace 
of (X, d) such that 0 ∈ D. Then the restriction mapping f 
→ f�D, with f ∈ Lip0(X, T ), is an isometric 
isomorphism of the metric group Lip0(X, T ) onto Lip0(D, T ).
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Proof. It suffices to show that for every g ∈ Lip0(D, T ), the unique uniformly continuous function g̃ : X → T

extending g is a Lipschitz function with the same Lipschitz constant as g. Recall that for every x ∈ X, 
g̃(x) = limn→∞ g(xn), where {xn : n ∈ N} is any sequence in D converging to x. Fix x, y ∈ X. Find 
sequences {xn : n ∈ N} and {yn : n ∈ N} in D with xn → x, yn → y. Letting n → ∞ in the inequalities 
|g(xn) − g(yn)| ≤ ‖g‖L d(xn, yn) we obtain |g̃(x) − g̃(y)| ≤ ‖g‖L d(x, y). Since x, y ∈ X were arbitrary, we 
get that g̃ is a Lipschitz function and ‖g̃‖L ≤ ‖g‖L. But g̃ extends g, so we have ‖g̃‖L = ‖g‖L. �

Every real-valued Lipschitz function defined on a nonempty subspace of a metric space X can be extended 
to a Lipschitz function defined on X (with the same Lipschitz constant). The well-known fact that the unit 
circle is not a retract of the unit disk shows that the analogous property does not hold for T -valued Lipschitz 
functions. However, the following is true:

Proposition 2.6. Let X be a metric space, X0 be a nonempty subset of X and f0 a Lipschitz function from 
X0 to T . Assume that there is a Lipschitz function g0 : X0 → R with f0 = π ◦ g0. Then there exists a 
Lipschitz function f : X → T which extends f0 and satisfies ‖f‖L ≤ ‖g0‖L.

Proof. By [25, Theorem 1.33] there exists an extension g : X → R of g0 which has the same Lipschitz 
number as g0. Define f = π ◦ g. It is clear that f extends f0. Further, given any x, y ∈ X we have 
|f(x) − f(y)| = |π(g(x) − g(y))| ≤ |g(x) − g(y)| ≤ ‖g‖Ld(x, y) = ‖g0‖Ld(x, y). This completes the proof. �

Note that given a metric space (X, d) and a Lipschitz function f : X → T , in general f may fail to be 
factorizable through R in the sense that there exist a Lipschitz (or even continuous) function g : X → R

with f = π ◦ g. An elementary example of this situation is the identity mapping of T , which cannot be 
extended in this way by the classical Lifting Theorem for covering projections ([9, Theorem III.4.1]).

We now introduce the metric group Ad(X).
Let X be a set with a fixed point 0 ∈ X and A(X) be the Graev free abelian group over X with 

neutral element 0. Every nonzero element in A(X) can be expressed as g =
∑p

k=1 mkzk, where p ≥ 1, 
m1, . . . , mp ∈ Z \ {0} and z1, . . . , zp are pairwise distinct elements of X. We will call this expression the 
normal form of g and l(g) =

∑p
k=1 |mk| the length of g. It is clear that A(X) is algebraically isomorphic 

to the usual free abelian group Z(X\{0}). Of course we have to adopt the convention that 0x = 0 for each 
x ∈ X and m0 = 0 for every m ∈ Z. In particular −0 = 0.

For any given element g ∈ A(X) \ {0} with normal form g =
∑p

k=1 mkzk we denote by supp(g) the set 
{z1, . . . , zp}. We also put supp(0) = ∅.

Let d be a pseudometric on X. Let us outline Graev’s construction of an invariant pseudometric d̂ on the 
group A(X) which extends d. We refer the reader to [16] or [6] for the details.

For every g ∈ A(X) define N(g) = inf
∑n

i=1 d(xi, yi) where the infimum is taken over all finite sets of 
pairs {(x1, y1), . . . , (xn, yn)} ⊆ X2, where n ∈ N and g =

∑n
i=1(xi − yi).

It is clear that N is a group pseudonorm, that is, it satisfies

N(g) ≥ 0, N(−g) = N(g), N(g + h) ≤ N(g) + N(h)

for all g, h ∈ A(X).
Fix g ∈ A(X) \ {0} with normal form g =

∑p
k=1 mkzk. Let I+ = {k ∈ {1, . . . , p} : mk > 0} and 

I− = {k ∈ {1, . . . , p} : mk < 0}. It can be shown by a successive elimination process that the infimum 
defining N(g) is attained on a representation g =

∑n
i=1(xi − yi) such that

(a) each element xi is either 0 or zk for some k ∈ I+. Moreover each one of these zk appears exactly mk

times in the representation.
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(b) each yi is either 0 or zk for some k ∈ I−. Moreover each one of these zk appears exactly |mk| times in 
the representation.

(c) n = max{
∑

k∈I+
mk, 

∑
k∈I−

|mk|} ≤ l(g) and in particular either xi �= 0 for every i ∈ {1, . . . , n} or 
yi �= 0 for every i ∈ {1, . . . , n}.

For instance, if h = x + y − z, where x, y, z ∈ X \ {0}, then the minimum defining N(h) is attained at 
one of the following two representations of h:

h = (x− z) + (y − 0), h = (y − z) + (x− 0)

and consequently, N(h) = min{d(x, z) + d(y, 0), d(y, z) + d(x, 0)}.
Define d̂(g, h) = N(g − h) for every g, h ∈ A(X). It is clear from the preceding considerations that d̂ is 

a maximal invariant pseudometric on A(X) which extends d, and that if d is a metric, so is d̂. The group 
A(X) with metric d̂ is a Hausdorff topological group with a base of neighborhoods of 0 formed by the sets

Bε = {g ∈ A(X) : d̂(g, 0) ≤ ε}, (1)

where ε is an arbitrary positive real number. For brevity, the metric group (A(X), d̂) will be denoted 
by Ad(X) and will be called the Lipschitz-free metric group over X. We denote by ı : X → Ad(X) the 
corresponding (isometric) inclusion mapping.

Proposition 2.7. Let (X, d) be a metric space with a distinguished point 0 ∈ X. If f : X → H is a Lipschitz 
mapping to a metric group H with f(0) = 0 and f̄ : Ad(X) → H is the group homomorphism extending f , 
then f̄ is a Lipschitz mapping with the same Lipschitz constant as f .

Proof. Fix g ∈ Ad(X) and let g = (x1 − y1) + · · · + (xn − yn) be a representation of g such that d̂(g, 0) =∑n
i=1 d(xi, yi). Then

‖f̄(g)‖ = ‖
n∑

i=1
(f(xi) − f(yi))‖ ≤

n∑
i=1

‖f(xi) − f(yi)‖ ≤
n∑

i=1
‖f‖Ld(xi, yi) = ‖f‖Ld̂(g, 0).

This implies that f̄ is Lipschitz and ‖f̄‖L ≤ ‖f‖L. Since f̄ extends f it is clear that ‖f̄‖L = ‖f‖L. �
The above result justifies the name “Lipschitz-free metric group” that we will use for Ad(X).

Corollary 2.8. Let (X, d) and (Y, d′) be metric spaces with distinguished points 0 ∈ X and 0′ ∈ Y . Let 
Ad(X) and Ad′(Y ) be the respective Lipschitz-free metric groups. Any Lipschitz function h : X → Y with 
h(0) = 0 extends uniquely to a Lipschitz homomorphism h̃ : Ad(X) → Ad′(Y ). Moreover h and h̃ have the 
same Lipschitz constant.

Proof. This follows easily from Proposition 2.7 by taking h̃ = ıY ◦ h. �
The extension property described in Proposition 2.7 and Corollary 2.8 allows us to carry the structure of 

an arbitrary Lipschitz mapping over the domain and range of a simpler mapping, namely a homomorphism 
between the corresponding Lipschitz-free metric groups. This construction can be invoked when trying to 
rule out the existence of bi-Lipschitz homeomorphisms between two metric spaces, by proving that their 
Lipschitz-free metric groups are not isomorphic to each other.

Next we will describe the (Răıkov) completion of the metric group Ad(X), which will be denoted by GX . 
First we consider the set SX which consists of formal infinite sums
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(s1
1 − s2

1) + · · · + (s1
n − s2

n) + · · · ,

where s1
n, s

2
n ∈ X for each n ≥ 1, and the sum

∞∑
n=1

d(s1
n, s

2
n)

converges.
For every integer n ≥ 1, we define the truncating mapping ϕn : SX → Ad(X) by ϕn(s) =

∑n
i=1(s1

i − s2
i ), 

where s =
∑∞

i=1(s1
i − s2

i ) ∈ SX . Consider the mapping

(s, t) ∈ SX × SX 
→ lim
n→∞

N(ϕn(s) − ϕn(t)) ∈ [0,∞),

where N denotes the above defined group norm on Ad(X) corresponding to the metric d on X. Note that 
this limit is well defined since (N(ϕn(s) − ϕn(t)))n∈N is a Cauchy sequence for all s, t ∈ SX . Indeed, given 
any m, n ∈ N with m > n we have

|N(ϕm(s) − ϕm(t)) −N(ϕn(s) − ϕn(t))| ≤ N(ϕm(s) − ϕm(t) − ϕn(s) + ϕn(t))

≤ N(ϕm(s) − ϕn(s)) + N(ϕm(t) − ϕn(t)) = N(
m∑

i=n+1
(s1

i − s2
i )) + N(

m∑
i=n+1

(t1i − t2i ))

≤
m∑

i=n+1
d(s1

i , s
2
i ) +

m∑
i=n+1

d(t1i , t2i ).

It is clear that the above defined mapping is a pseudometric. In particular, it induces an equivalence relation 
on SX given by

s ≈ t ⇔ lim
n→∞

N(ϕn(s) − ϕn(t)) = 0 ⇔ lim
n→∞

d̂
( n∑

i=1
(s1

i − s2
i ),

n∑
i=1

(t1i − t2i )
)

= 0.

We denote by d∗ the corresponding quotient metric on the quotient set GX := SX/ ≈.
Next we will define a sum on GX . Given s, t ∈ SX we put

s + t := (s1
1 − s2

1) + (t11 − t21) + · · · + (s1
n − s2

n) + (t1n − t2n) + · · ·

It is not difficult to show that the binary operation on GX given by [s] + [t] = [s + t] is well defined, and 
gives GX an abelian group structure. Here [s] denotes the equivalence class of an element s ∈ SX w.r.t. ≈. 
The neutral element of GX is [(0 − 0) + (0 − 0) + · · · ]. Given any s = (s1

1 − s2
1) + · · · + (s1

n − s2
n) + · · · in 

SX , the inverse of [s] is [−s], where −s = (s2
1 − s1

1) + · · ·+ (s2
n − s1

n) + · · · . Clearly the metric d∗ is invariant 
with respect to the sum operation thus defined.

Consider the mapping jX : Ad(X) → GX defined by

jX(g) = [(x1 − y1) + · · · + (xn − yn) + (0 − 0) + (0 − 0) + · · · ]

where g = (x1 − y1) + · · · + (xn − yn) with xi, yi ∈ X. This mapping is well defined (i.e. does not depend 
on the chosen representation of g) and it is an isometric monomorphism. In what follows we identify Ad(X)
with its image jX(Ad(X)) in GX .

It is easy to see that if [s] ∈ GX , where s = (s1
1−s2

1) +(s1
2−s2

2) + · · · , then the sequence [ϕn(s)] converges 
to [s]. This shows that Ad(X) is a dense subgroup of GX .
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Theorem 2.9. For every metric space (X, d), the group (GX , d∗) is complete.

Proof. Take an arbitrary Cauchy sequence {[sn] : n ∈ N} in (GX , d∗). Choosing a subsequence of this 
sequence, if necessary, we can assume that d∗([sn], [sm]) < 1/2n if n < m. For every n ∈ N, let 
sn =

∑∞
i=1(s1

n,i − s2
n,i), where s1

n,i, s
2
n,i ∈ X. Given n ∈ N there exists an integer kn ≥ 1 such that ∑∞

i=kn
d(s1

n,i, s
2
n,i) < 1/2n. Note that for every n ∈ N we have

d̂(ϕkn+1(sn+1), ϕkn
(sn)) = d∗([ϕkn+1(sn+1)], [ϕkn

(sn)])

≤ d∗([ϕkn+1(sn+1)], [sn+1]) + d∗([sn+1], [sn]) + d∗([sn], [ϕkn
(sn)])

< 3/2n.

By the definition of the metric d̂ on Ad(X), this means that for every n ∈ N we can represent the difference 
ϕkn+1(sn+1) − ϕkn

(sn) in the form

ϕkn+1(sn+1) − ϕkn
(sn) = (an,1 − bn,1) + · · · + (an,ln − bn,ln), (2)

where ln ∈ N, an,i, bn,i ∈ X and

ln∑
i=1

d(an,i, bni
) < 3/2n. (3)

For every integer n ≥ 1, let

tn =
n∑

j=1

lj∑
i=1

(aj,i − bj,i) and t =
∞∑
j=1

lj∑
i=1

(aj,i − bj,i).

It follows from (3) that 
∑∞

j=1
∑lj

i=1 d(aj,i − bj,i) ≤ 3, so [t] ∈ GX and by our proof of the density claim, 
[tn] → [t] in (GX , d∗). Also, (2) and the definition of tn together imply that tn =

∑n
j=1(ϕkj+1(sj+1) −

ϕkj
(sj)) = ϕkn+1(sn+1) − ϕk1(s1). This implies that the sequence 

(
[ϕkn

(sn)]
)
n∈N converges in (GX , d∗). 

Finally, it follows from the inequality d∗([ϕkn
(sn)], [sn]) < 1/2n that 

(
[sn]

)
n∈N is convergent, too. Hence 

the group (GX , d∗) is complete. �
We devote the remaining of this section to proving that Ad(X) is isometrically embedded in the Lipschitz-

free Banach space F(X). (We only consider real vector spaces in this paper.) The following fact was 
established in [20] by applying a criterion due to Enflo [13] to the metric group Ad(X):

Proposition 2.10. [20] The metric group Ad(X) is isometrically isomorphic to a subgroup of a Banach space.

We follow the definition of the Lipschitz-free Banach space F(X) given in [25, Chapter 3] (see also [5,21]). 
Recall that X is isometrically embedded in F(X) in such a way that the point 0 ∈ X is in correspondence 
with the zero element of F(X), and every Lipschitz mapping f : X → E to a Banach space E that sends 0
to the zero element of E extends to a unique linear operator f̃ : F(X) → E with norm ‖f‖L.

Theorem 2.11. The group Ad(X) is isometrically isomorphic to a subgroup of the Lipschitz-free Banach 
space F(X).

Proof. By Proposition 2.10, there exists an isometric isomorphism ϕ : Ad(X) → E of Ad(X) to a Banach 
space E. We identify (X, d) with the corresponding subspaces of Ad(X) and F(X). The mapping f = ϕ �X
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of X to E is an isometry, so it extends to a linear operator f̃ : F(X) → E with ‖f̃‖ = 1. By Proposition 2.7, 
the canonical isometric embedding of X to F(X) extends to a homomorphism h : Ad(X) → F(X) with 
‖h‖L = 1. Then ϕ = f̃ ◦ h, because both homomorphisms coincide on the subset X of Ad(X).

Ad(X)

h

ϕ
E

F(X)
f̃

Let || · || and || · ||E be the respective norms of F(X) and E. Take arbitrary elements u, v ∈ Ad(X). Since 
‖h‖L = 1 we obtain ||h(u) − h(v)|| ≤ d̂(u, v). On the other hand, ϕ(u) = f̃(h(u)) and ϕ(v) = f̃(h(v)), so

d̂(u, v) = d̂(u− v, 0) = ||ϕ(u) − ϕ(v)||E ≤ ||h(u) − h(v)||

We conclude that d̂(u, v) = ||h(u) − h(v)|| and, hence, h is an isometric isomorphic embedding. �
In order to establish further properties of the groups Lip0(X, T ) and Ad(X) we will use some duality 

techniques that we present in the next section.

3. Duality of metric groups

Let us introduce the b-duality in the class of metric groups.
If (G, d) is a metric group, the family of all balls Br (r > 0) of G is well-directed. The symbol G∧

b denotes 
the group G∧ endowed with the topology τS(G∧, G) of uniform convergence on the balls of G. In the next 
result we introduce a natural metric on G∧ which is compatible with this topology.

Theorem 3.1. Let (G, d) be a metric group with invariant metric d. Then every continuous character of (G, d)
is Lipschitz. The topology τb of the dual group G∧

b is the one induced by the norm ‖χ‖L = supx�=0 |χ(x)|/‖x‖. 
In other words, G∧ ⊆ Lip0(G, T ) and G∧

b carries the topology induced by the restriction of the natural metric 
on Lip0(G, T ).

Proof. Given a character χ ∈ G∧
b , we choose r > 0 such that χ(Br) ⊆ T+. Let us show that |χ(x)| ≤ 1

2r‖x‖
for every x ∈ G. Indeed, the case x = 0 is trivial. If 0 < ‖x‖ ≤ r we fix n ∈ N with r

n+1 < ‖x‖ ≤ r
n . 

Then for every k ∈ {1, 2, . . . , n}, we have ‖kx‖ ≤ r, hence χ(kx) = kχ(x) ∈ T+. This implies |χ(x)| ≤
1/4n < (1/2r)‖x‖. Finally if ‖x‖ > r the inequality |χ(x)| ≤ 1

2r‖x‖ is a simple consequence of the fact that 
| · | is bounded by 1/2. This shows that G∧ ⊆ Lip0(G, T ), and actually the polar (Br)� is contained in the 
‖ ·‖L-ball B1/2r for any r > 0. Conversely, it is immediate that the ‖ ·‖L-ball Br is contained in (B1/4r)�, for 
every r > 0. Since, by the above observations, the family of sets (Br)� (r > 0) is a basis of neighborhoods 
of zero for the topology τb on the dual group G∧

b , the proof is complete. �
In what follows we will always consider on G∧

b the metric structure described in Theorem 3.1. Some 
properties of the metric dual group G∧

b are collected in the following result:

Proposition 3.2. Let (G, d) be a metric group with invariant metric d. Then,

(a) If d is bounded then G∧
b is discrete. If (G, d) is discrete then the metric on G∧

b is bounded.
(b) The metric group 

(
Z, | ·|

)∧
b

is naturally isometric with (T , | ·|) and the metric group 
(
T , | ·|

)∧
b

is naturally 
isometric with (Z, | · |).
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(c) The group G∧
b is locally quasi-convex.

(d) The group G∧
b is complete.

Proof. (a) Assume that the metric d is bounded. Let M > 0 be such that G = BM . Then B�
M = {0} is a 

neighborhood of zero in G∧
b , so G∧

b is discrete.
Assume that (G, d) is discrete. Since the metric d is invariant (G, d) is a uniformly discrete metric space, 

and from Proposition 2.1 it easily follows that the metric on Lip0(G, T ) is bounded. Hence its metric 
subgroup G∧

b has a bounded metric, too.

(b) Let ϕ : (Z, | · |)∧ → T be defined by χ(n) = nϕ(χ) for every χ ∈ (Z, ‖ · ‖)∧ and every n ∈ Z. It is known 
that ϕ is a well-defined algebraic isomorphism. We have ‖χ‖L = supn �=0 |χ(n)|/|n| = supn �=0 |nϕ(χ)|/|n| =
|ϕ(χ)|. We have used the elementary fact that |t| = supn �=0 |nt|/|n| for every t ∈ T .

Let ψ : (T , | · |)∧ → Z be defined by χ(t) = ψ(χ) · t for every χ ∈ (T , | · |)∧ and t ∈ T . It is known that 
ψ is a well-defined algebraic isomorphism. We have ‖χ‖L = supt�=0 |χ(t)|/|t| = supt�=0 |ψ(χ) · t|/|t| = |ψ(χ)|. 
We have used the elementary fact that |n| = supt�=0 |nt|/|t| for every n ∈ Z.

(c) This is a consequence of Proposition 3.4(b) in [11].

(d) Fix a Cauchy sequence (χn) in G∧
b . Let χ ∈ Hom(G, T ) be the pointwise limit of (χn). Fix any r > 0. 

The sequence (χn�Br
) is a Cauchy sequence in the group C(Br, T ) with the uniform convergence topology. 

This group is complete (see for instance [19, Theorem 7.8]). It is clear that the limit of the sequence (χn�Br
)

is the restriction of χ to Br. Since this limit is continuous on the neighborhood of zero Br, we conclude that 
χ ∈ G∧. Letting r run over (0, ∞) we deduce that (χn) converges to χ in G∧

b . �
We next show that the metric group Ad(X) is a b-predual for the Lipschitz group Lip0(X, T ).

Theorem 3.3. The restriction mapping Ψ: Ad(X)∧b → Lip0(X, T ) defined by Ψ(χ)(x) = χ(x) for each 
χ ∈ Ad(X)∧, is a well defined isometry with respect to the corresponding Lipschitz metrics. In particular, 
the topological groups Ad(X)∧b and Lip0(X, T ) are topologically isomorphic.

Proof. By Theorem 3.1, Ad(X)∧ ⊆ Lip0(Ad(X), T ). Since X is isometrically embedded in Ad(X), it is clear 
that χ �X is a Lipschitz mapping for every χ ∈ Ad(X)∧ and thus Ψ is well defined. Conversely, for any 
f ∈ Lip0(X, T ) its homomorphic extension to Ad(X) is unique and it is a continuous character with the 
same Lipschitz constant, by Proposition 2.7. �
Proposition 3.4. For every metric space (X, d), the metric groups Ad(X) and GX are locally quasi-convex.

Proof. Since every Banach space is a locally quasi–convex topological group [7, Proposition 2.4] and every 
subgroup of a locally quasi-convex group is locally quasi-convex, we obtain from Theorem 2.11 that Ad(X)
is locally quasi-convex and so is its completion GX . �
Remark 3.5. Note that the fact that Ad(X) has enough continuous characters, which is a corollary of 
Proposition 3.4, admits a simpler proof: Fix g ∈ Ad(X) with g �= 0. Let g =

∑n
i=1 mixi be the normal form 

of g. From Proposition 2.6 it is clear that there exists f ∈ Lip0(X, T ) with m1f(x1) �= 0 and f(xi) = 0 for 
every i ∈ {2, . . . , n}. With the notation of Theorem 3.3, we have Ψ−1(f)(g) =

∑n
i=1 mif(xi) = m1f(x1) �= 0.

Corollary 3.6. Let X be a metric space. Then

(a) Lip0(X, T ) is locally quasi-convex.
(b) Lip0(X, T ) is complete.
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Proof. By Theorem 3.3, the topological group Lip0(X, T ) is topologically isomorphic to the dual group of 
Ad(X) endowed with the topology of uniform convergence on the balls of Ad(X). By Proposition 3.2, this 
group is locally quasi-convex and complete. �
Proposition 3.7. Let (X, d) be a metric space. The mapping Φ: (X, d) → Lip0(X, T )∧b defined by Φ(x)(f) =
f(x) is an isometric embedding.

Proof. The mapping Φ is well defined— it is clear that Φ(x) is a character of Lip0(X, T ), for every x ∈ X. 
Let us check that Φ(x) is continuous. For every x ∈ X and f ∈ Lip0(X, T ) with f �= 0, we have

|Φ(x)(f)|
‖f‖L

= |f(x)|
‖f‖L

≤ d(x, 0).

Thus Φ(x) is a Lipschitz mapping and in particular it is continuous.
Fix x, y ∈ X and let us show that ‖Φ(x) − Φ(y)‖ = d(x, y). We have

‖Φ(x) − Φ(y)‖ = sup
f �=0

|f(x) − f(y)|
‖f‖L

≤ d(x, y).

Let us prove the opposite inequality. Fix M ∈ R such that M > 2d(x, y). Define

f(z) = π
( 1
M

(
d(x, z) − d(x, 0)

))

The mapping f is clearly an element of Lip0(X, T ). Given any z1, z2 ∈ X we have

f(z1) − f(z2) = π( 1
M

(d(x, z1) − d(x, z2)))

Hence

|f(z1) − f(z2)| ≤
1
M

|d(x, z1) − d(x, z2)| ≤
d(z1, z2)

M

and we deduce that ‖f‖L ≤ 1/M . Note that

|f(x) − f(y)| = |π(d(x, y)
M

)| = d(x, y)
M

(the last equality follows from d(x, y)/M < 1/2). We finally obtain

|f(x) − f(y)|
‖f‖L

≥ d(x, y). �
4. Metric duality and bounded subsets

Duality of locally convex spaces constitutes a well-established topic in Functional Analysis. M.F. Smith 
[23] was the first to relate the Pontryagin dual of a locally convex space X to the traditional notion of 
duality in the Functional Analysis sense. By the dual of X it is commonly understood the linear space X∗

of continuous linear functionals on X endowed with the topology of uniform convergence on the family of all 
bounded subsets of X. If X∗

β denotes the dual so topologized then X is said to be reflexive if the canonical 
mapping from X to (X∗

β)∗β is a topological isomorphism. Smith points out that X∗ and X∧ are algebraically 
isomorphic as groups. Once the algebraic isomorphism is proved, it is easy to see that X∗

β and X∧
β are 
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also isomorphic as topological groups. In [23,7] it is also proved that all reflexive locally convex spaces 
and all Banach spaces are Pontryagin reflexive as topological groups. The result is valid for completely 
metrizable locally convex spaces as well [7, Proposition 15.2]. Thus Pontryagin reflexivity is strictly weaker 
than reflexivity in the sense of Functional Analysis.

In the framework of topological groups there exists a different notion of boundedness that we recall here.
Let G be a topological group. We say that a subset B of G is bounded (notion introduced by Hejcman 

[17] for uniform spaces) if for every neighborhood U of zero there exist a finite set F ⊆ G and some n ∈ N

such that B ⊆ F + U + · · · + U︸ ︷︷ ︸
n times

.

If G is metrizable, a set B ⊆ G is bounded according to this definition if and only if it is d-bounded for 
any compatible invariant metric d on G [17, Theorem 2.6]. If X is a locally convex space, a set B ⊆ X is 
bounded according to this definition if and only if it is bounded in the usual sense.

The family of bounded subsets of G is well-directed and we can endow the group G∧ with the topology of 
uniform convergence on the bounded subsets of G. We denote that group by G∧

β . Observe that for a metric 
group (G, d), the identity mapping G∧

b → G∧
β is always continuous. If every ball in (G, d) is bounded, then 

the identity mapping G∧
b → G∧

β is a topological isomorphism. That happens of course if G is a normed 
vector space. In the latter case the following result is valid.

Proposition 4.1. If (Y, ‖ · ‖) is a normed space, then

(a) The groups (Y, ‖ · ‖)∧β and (Y, ‖ · ‖)∧b are topologically isomorphic.
(b) The mapping Φ: Y ∗ → (Y, ‖ · ‖)∧ defined by Φ(f)(x) = π(f(x)) for every x ∈ Y and f ∈ Y ∗ is an 

isometry between (Y ∗, ‖ · ‖∗) and (Y, ‖ · ‖)∧b . In particular, the metric groups (R, ‖ · ‖), (R, ‖ · ‖)∧b and 
(R, ‖ · ‖)∧β are isometric.

Proof. (a) Observe that a normed space is a metric group in which every ball is bounded.
(b) It is known that Φ is an algebraic isomorphism [23]. Let us show that ‖Φ(f)‖L = ‖f‖∗ for every 

f ∈ Y ∗. Indeed,

‖Φ(f)‖L = sup
x�=0

|Φ(f)(x)|/‖x‖ = sup
x�=0

|π(f(x))|/‖x‖.

We claim that the latter supremum is ‖f‖∗. The case f = 0 is trivial. Assume ‖f‖∗ > 0. On the one hand, 
supx�=0 |π(f(x))|/‖x‖ ≤ supx�=0 |f(x)|/‖x‖ = ‖f‖∗. On the other hand, given any ε > 0 with ε < ‖f‖∗ we 
can find x ∈ Y with 0 < ‖x‖ ≤ 1

2‖f‖∗ such that |f(x)|/‖x‖ ≥ ‖f‖∗ − ε; since |f(x)| ≤ ‖f‖∗‖x‖ ≤ 1/2
we have |π(f(x))| = |f(x)| and hence |π(f(x))|/‖x‖ = |f(x)|/‖x‖ ≥ ‖f‖∗ − ε. Since ε > 0 can be taken 
arbitrarily small, we have proved that supx�=0 |π(f(x))|/‖x‖ ≥ ‖f‖∗. �

We next consider the same problem (equivalence of metric boundedness and boundedness in Hejcman 
sense) on a different class of metric groups: those of the form Ad(X) where (X, d) is a metric space.

Let us say that a subset B of a topological group G is strongly bounded if for every neighborhood U of 
zero in G, there exists an integer n ≥ 1 such that B ⊆ U + · · · + U︸ ︷︷ ︸

n times

.

Theorem 4.2. Let X be a convex subspace of a linear normed space L and d be a metric on X induced by the 
norm of L. Then for every number t > 0, the ball Bt ⊆ Ad(X) is strongly bounded in Ad(X). In particular, 
the group Ad(X) has a base at zero of strongly bounded open sets.

Proof. Let || · || be the norm of L. Then the metric d on X is defined by d(x, y) = ||x − y||, for all x, y ∈ X. 
For a given number t > 0, we will show that the ball
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Bt = {g ∈ Ad(X) : d̂(g, 0) ≤ t}

is strongly bounded in Ad(X), where 0 is the neutral element of Ad(X) and d̂ is Graev’s extension of d over 
Ad(X). We can assume without loss of generality that X contains the zero element of L which is identified 
with the neutral element of the group Ad(X).

Let U be a neighborhood of 0 in Ad(X). By our definition of the topology of Ad(X), there exists ε > 0
such that Bε = {g ∈ Ad(X) : d̂(g, 0) ≤ ε} ⊆ U . Choose an integer n ≥ 1 such that t ≤ nε. We claim 
that Bt ⊆ U + · · · + U︸ ︷︷ ︸

n times

. Indeed, take an arbitrary element g ∈ Bt. Then one can find an integer p > 0 and 

elements xi, yi ∈ X for i = 1, . . . , p such that

g = (x1 − y1) + · · · + (xp − yp) (4)

and 
∑p

i=1 d(xi, yi) ≤ t. Since X is a convex subspace of L, the segment [xi, yi] in L connecting the elements 
xi and yi is a subset of X, for each i ≤ p. Let {ai,0, ai,1, . . . , ai,n}, with ai,0 = xi and ai,n = yi, be the 
uniform partition of [xi, yi], so d(ai,j , ai,j+1) = d(xi, yi)/n for each j = 0, . . . , n − 1. Clearly we have the 
equality

xi − yi = (ai,0 − ai,1) + · · · + (ai,n−1 − ai,n). (5)

For each j ∈ {0, 1, . . . , n − 1}, let

hj = (a0,j − a0,j+1) + · · · + (ap,j − ap,j+1). (6)

Then 
∑p

i=0 d(ai,j , ai,j+1) = 1
n

∑p
i=0 d(xi, yi) ≤ t

n ≤ ε, whence it follows that hj ∈ Bε for each j ≤ n − 1. 
Combining (4), (5) and (6), we see that g = h0 + · · ·+hn−1 ∈ Bε + · · · + Bε︸ ︷︷ ︸

n times

. This completes the proof since 

Bε ⊆ U . �
In Theorem 4.5 below, we present a weaker version of Theorem 4.2 for totally bounded metric spaces. 

First we prove an auxiliary combinatorial lemma.

Lemma 4.3. Let k, n ≥ 1 be integers, t > 0 and r1, . . . , rk be real numbers satisfying 0 ≤ ri ≤ t/n for each 
i ≤ k. If 

∑k
i=1 ri ≤ t, then one can find a positive integer m ≤ 2n − 1 and a partition {A1, . . . , Am} of the 

set {1, . . . , k} such that 
∑

i∈Aj
ri ≤ t/n, for each j = 1, . . . , m.

Proof. The conclusion of the lemma is trivially valid for k = 1. Assuming the validity of the lemma for a 
given integer k ≥ 1, we will show that it is also valid for k + 1. So let r1, . . . , rk, rk+1 be non-negative real 
numbers such that 0 ≤ ri ≤ t/n for each i ≤ k+1 and 

∑k+1
i=1 ri ≤ t. We can assume that rk+1 ≤ ri for every 

i ∈ {1, . . . , k}. Since 
∑k

i=1 ri ≤
∑k+1

i=1 ri ≤ t, our induction hypothesis implies that there exists a partition 
{B1, . . . , Bm} of {1, . . . , k} with m ≤ 2n − 1 and 

∑
i∈Bj

ri ≤ t/n for every j ∈ {1, . . . , m}. Let us consider 
the following two cases:

Case 1. m ≤ 2n − 2. We define a partition {A1, . . . , Am, Am+1} of {1, . . . , k, k + 1} by letting Aj = Bj

for each j ≤ m and Am+1 = {k + 1}. Clearly this partition satisfies the requirements of the lemma.
Case 2. m = 2n − 1. Let us show that rk+1 ≤ t

2n . Indeed, rk+1 > t
2n implies ri > t

2n for every 
i ∈ {1, . . . , k + 1} and

t ≥
k+1∑

ri > (k + 1) t

2n ⇒ k + 1 < 2n ⇒ m + 1 < 2n,

i=1
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which is a contradiction.
Put Sj =

∑
i∈Bj

ri. Let j∗ ∈ {1, . . . , m} be such Sj∗ ≤ Sj for every j ∈ {1, . . . , m}. We next show that 
rk+1 + Sj∗ ≤ t/n. Once we have this, it is easy to see that the partition {A1, . . . , Am} of {1, . . . , k, k + 1}
defined by letting Aj = Bj if j �= j∗ and Aj∗ = Bj∗ ∪ {k + 1} is as required.

So, assume by way of a contradiction that

rk+1 + Sj∗ > t/n. (7)

It follows from our assumptions that

rk+1 + mSj∗ ≤ rk+1 +
m∑
j=1

Sj =
k+1∑
i=1

ri ≤ t. (8)

From (7) and (8) we deduce

(m− 1)Sj∗ < t(n− 1)/n.

By replacing m = 2n − 1 we obtain Sj∗ < t
2n . Since rk+1 ≤ t

2n we arrive at rk+1 + Sj∗ < t/n, which 
contradicts (7). �
Remark 4.4. The upper bound 2n − 1 in the above proof is sharp. Indeed, consider the case ri = t

2n−1 for 
every i ≤ k = 2n − 1. Since t

2n−1 + t
2n−1 > t

n , the only partition satisfying the conditions of Lemma 4.3 is 
the one formed by one-element sets, and its size is exactly 2n − 1.

Theorem 4.5. Let (X, d) be a totally bounded metric space. Then for every t > 0, the ball Bt ⊆ Ad(X) is 
bounded in Ad(X). In particular, the group Ad(X) has a local base at zero consisting of bounded open sets.

Proof. Fix any t > 0 and n ∈ N. Since (X, d) is totally bounded, there exists a finite t
2n -net C in (X, d). 

Let F0 = C ∪ {0}, where 0 is a distinguished point of X, and F = {x − y : x, y ∈ F0}. Clearly F is a finite 
subset of Ad(X). To complete the proof it suffices to show that

Bt ⊆ F + · · · + F︸ ︷︷ ︸
n−1 times

+Bt/n + · · · + Bt/n︸ ︷︷ ︸
4n−2 times

. (9)

Take an arbitrary element

g = (x1 − y1) + · · · + (xp − yp) ∈ Bt, (10)

where p ≥ 1 is an integer, xi, yi ∈ X, xi �= yi for each i ≤ p and 
∑p

i=1 d(xi, yi) ≤ t. We can assume 
without loss of generality that there exists an integer k ≤ p such that d(xi, yi) ≤ t/n for i = 1, . . . , k and 
d(xi, yi) > t/n if k < i ≤ p. It is clear that p − k < n otherwise we would have

t = n · t
n
<

p∑
i=k+1

d(xi, yi) ≤
p∑

i=1
d(xi, yi),

which contradicts our choice of the element g ∈ Bt.
According to Lemma 4.3 there exists a partition {A1, . . . , Am} of the set {1, . . . , k}, where m ≤ 2n − 1, 

such that 
∑

d(xi, yi) ≤ t/n for each j ≤ m. Therefore the element aj =
∑

(xi − yi) is in Bt/n and
i∈Aj i∈Aj
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(x1 − y1) + · · · + (xk − yk) =
m∑
j=1

aj . (11)

For every integer i with k < i ≤ p, choose elements zi, ti ∈ F0 such that d(xi, zi) ≤ t
2n and d(yi, ti) ≤ t

2n . 
Let h = (zk+1 − tk+1) + · · · + (zp − tp). It is clear that h ∈ F + · · · + F︸ ︷︷ ︸

n−1 times

.

Replacing in (10) the summand xi− yi with (xi− zi) +(zi− ti) +(ti− yi), for each i satisfying k < i ≤ p, 
we obtain the representation of the element g in the form

g = h + (x1 − y1) + · · · + (xk − yk) +
p∑

i=k+1

[
(xi − zi) + (ti − yi)

]
. (12)

Note that 
∑p

i=k+1
[
d(xi, zi) + d(ti, yi)

]
≤ (p − k)( t

2n + t
2n ) < t. Let ri = d(xi+k, zi+k) + d(ti+k, yi+k), for 

each i with 1 ≤ i ≤ p − k. It is clear that ri ≤ t
n for each i ≤ p − k and 

∑p−k
i=1 ri ≤ t. Hence we can apply 

Lemma 4.3 to the numbers r1, . . . , rp−k and find a positive integer l ≤ 2n − 1 and a partition {B1, . . . , Bl}
of the set {1, . . . , p − k} such that 

∑
i∈Bj

ri ≤ t/n for each j ≤ l.
Let bj =

∑
i∈Bj

[
(xi − zi) + (ti − yi)

]
, where 1 ≤ j ≤ l. Then bj ∈ Bt/n, so (11) and (12) together imply 

that

g = h +
m∑
j=1

aj +
l∑

j=1
bj ∈ F + · · · + F︸ ︷︷ ︸

n−1 times

+Bt/n + · · · + Bt/n︸ ︷︷ ︸
m+l times

.

Since g is an arbitrary element of Bt, we conclude that

Bt ⊆ F + · · · + F︸ ︷︷ ︸
n−1 times

+Bt/n + · · · + Bt/n︸ ︷︷ ︸
m+l times

.

Finally, it follows from m ≤ 2n − 1 and l ≤ 2n − 1 that m + l ≤ 4n − 2. This completes the proof of the 
theorem. �
Corollary 4.6.

(a) Let X be a convex subspace of a normed space L with 0 ∈ X and let d be the metric on X induced by 
the norm of L. Then A(X)∧β ∼= A(X)∧b ∼= Lip0(X, T ).

(b) Let (X, d) be a totally bounded metric space with a distinguished point 0. Then A(X)∧β ∼= A(X)∧b ∼=
Lip0(X, T ).
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