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Abstract 

Although Weber’s law is the most firmly established regularity in sensation, no principled way has been 

identified to choose between its many proposed explanations. We investigated Weber’s law by training 

rats to discriminate the relative intensity of sounds at the two ears at various absolute levels. These 

experiments revealed the existence of a psychophysical regularity, which we term time–intensity 

equivalence in discrimination (TIED), describing how reaction times change as a function of absolute 

level. The TIED enables the mathematical specification of the computational basis of Weber’s law, 

placing strict requirements on how stimulus intensity is encoded in the stochastic activity of sensory 

neurons and revealing that discriminative choices must be based on bounded exact accumulation of 

evidence. We further demonstrate that this mechanism is not only necessary for the TIED to hold but is 

also sufficient to provide a virtually complete quantitative description of the behavior of the rats. 

Main 

In 1834, Weber reported that the just-noticeable-difference (JND) between the 

magnitudes of two stimuli is a fractional increment1. For instance, to identify with 0.75 

probability the stronger of two pressure-stimuli applied to the skin, one must be 12% 

more intense than the other2. The fractional nature of the JND, termed Weber’s law 

(WL) by Fechner3, has been replicated in hundreds of studies across all sensory 

modalities and many animal species over the last two centuries1,2,3,4,5. The strong form 

of WL states that the probability of a correct discrimination between two stimuli—not 

just the JND—depends only on the ratio between their intensities. 

 

WL embodies a non-trivial computation, since sensory receptors encode absolute 

stimulus magnitude explicitly in the form of monotonic increases in firing rate. How is 

the absolute magnitude of the stimulus factored out during discrimination? Although 

many explanations have been proposed2,3,4,6,7,8,9,10, even the strong form of WL does not 

provide a sufficiently robust constraint to uniquely identify a particular mechanism. In 

our view, this insufficiency is because WL is a statement about a single aspect of 

discrimination: its accuracy. Surprisingly, although it was recognized early that reaction 

time (RT) is a key diagnostic in sensory discrimination11, few studies have explored RT 

correlates of WL, and most models of WL have been cast within Signal Detection 

Theory7 (SDT), which does not describe RTs. An exception is the work of Link4, who 

proposed an explanation of WL in terms of bounded accumulation of sensory evidence, 



a key concept in the modern study of perception and perceptual decision-making12,13,14. 

Although Link’s model describes both accuracy and RT, it is only recently that the 

connection between WL and RT has started to be systematically explored9,10. 

Nevertheless, no clear empirical evidence currently exists that allows an unambiguous 

identification of the mechanistic foundation of WL. 

 

Here, we report the existence of a psychophysical regularity—the TIED—which allows 

a tight quantitative specification of the effects of intensity ratios and absolute intensities 

on the process of sensory discrimination. 

The TIED 

We trained rats to discriminate the lateralization of binaural broadband (5–20 KHz) 

noise bursts, which were played through headphones to minimize uncontrolled stimulus 

variations (Methods and Supplementary Fig. 1a). Rodents use inter-aural level 

differences (ILDs) caused by the acoustic shadow of the head as the main binaural cue 

to localize sound in the horizontal plane15. ILD discrimination therefore engages a 

circuit for the comparison of sound intensities16 that can be used to study WL17. We 

manipulated discrimination difficulty by varying ILDs pseudo-randomly across trials at 

a fixed average binaural level (ABL; Fig. 1c). To probe the effect of the overall sound 

level on ILD discrimination, ABLs were varied pseudo-randomly in blocks of 80 trials. 

We used a RT paradigm in which sound termination was triggered by the exit of the rat 

from a central port (Fig. 1a,b; Methods). 

 

Because WL states that discrimination accuracy should only depend on intensity ratios, 

and since pressure root mean squared (RMS) ratios and ILDs (in dB) are equivalent 

(Fig. 1c), WL predicts that the accuracy of a given ILD discrimination should not 

depend on the ABL. Consistent with this prediction, psychometric functions at different 

ABLs overlapped (Fig. 2a,b). Differences in sensitivity (d′ index7) for ILD 

discriminations at ABLs of 40 and 60 dB sound pressure levels (SPLs) did not reach 

statistical significance for any rat (all statistical comparisons of accuracy were based on 

Fisher’s exact permutation tests, Bonferroni-corrected and evaluated at the 0.05 
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significance level, n = 5; Methods). For two out of the five rats, the d′ index for 

ABL = 20 dB SPL was significantly different from that for 40 and 60 dB SPLs (in one 

case larger and in the other smaller; Supplementary Table 1). At the group level, 

differences in the d′ values were again not statistically significant for any of the three 

ABLs. Thus, as shown previously for other species17,18,19, rats display level-invariant 

ILD discrimination; that is, ILD discrimination in rats obeys WL. 

 

Harder discriminations had longer RTs12,13,14 (Fig. 2c), but discriminations of the same 

difficulty between sounds of lower ABL also took longer on average9,10,18 (Fig. 2c). 

Both ILD and ABL had a significant impact on the mean RT on each individual rat 

(Supplementary Table 1) as well as at the group level (two-way repeated measures 

analysis of variance (RM-ANOVA); significant effect of 

ILD: F(3,12) = 17.54, P = 0.0001; of ABL: F(2,8) = 77.12, P < 0.0001). We found that 

changes in the ABL appeared to rigidly stretch the reaction-time distributions (RTDs) 

without changing their shape (Fig. 2d). Indeed, an appropriate uniform scaling of time 

(Methods and Supplementary Figs. 2 and 3) revealed that the RTDs are almost perfectly 

scale-invariant as a function of ABL for each difficulty and for all difficulties combined 

(Fig. 2e). In each case, more than 99% of the variance in the shape of the RTD for one 

ABL could be explained by a uniform stretching of the RTD for a different ABL 

(Fig. 2e, inset; mean R2 = 0.996; Methods). Thus, for any given intensity ratio, 

discriminations appear to run faster when the absolute stimulus intensities are larger. 

This suggests the following general principle, which we refer to as time–intensity 

equivalence in discrimination or TIED: changes in the absolute intensity of two stimuli 

being discriminated under a fixed intensity ratio are completely equivalent to a change 

in the effective unit of time with which the discrimination duration is measured. 

 

To probe the generality of the TIED, we first tested ILD discrimination accuracy in 

human subjects at two different ABLs (40 and 60 dB SPLs) with an effectively identical 

version of our rodent task. Of the 13 subjects tested, 9 were sufficiently unbiased and 

displayed level-invariant ILD discrimination (Methods) and were further analyzed. 

Human subjects were more variable than rats, and their RTs were more strongly 

affected by ILD than ABL. For the nine subjects with level-invariant accuracy (no 
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significant difference between the d′ values across the two ABLs; Fisher’s exact 

permutation test, P = 0.98), the TIED held well (Supplementary Fig. 4), although with 

slightly less precision than for rats. Still, RTDs at one ABL explained more than 99% of 

the variance in the shape of the RTDs for the other ABL (mean R2 = 0.992). We also 

examined the RTDs from four rats performing an odor-mixture discrimination task, in 

which both the mixture contrast (ratio) and the overall concentration of the two odors 

were varied across trials20. This setup allowed comparisons of discrimination accuracy 

and RT for a given mixture ratio across different overall odor ‘intensities’. We analyzed 

data from the conditions with the two highest concentrations, across which WL held (no 

significant difference between the d′ values across the two concentrations; Fisher’s 

exact permutation test, P = 0.40, n = 4). The data were again well described by the TIED 

(Supplementary Fig. 5; mean R2 = 0.994). These results provide support for the 

generality of the TIED across two different species and sensory modalities. 

The TIED specifies the mechanism underlying discriminations 

The TIED is a stronger constraint than WL. Whereas WL effectively constrains the 

accuracy of an ILD discrimination at one ABL given its value at a different ABL, the 

TIED constrains not only the accuracy of this discrimination but also the full shape of 

its associated RTD. Thus, the TIED represents an opportunity to remove the ambiguity 

between different proposed explanations for WL. We pursued this approach by 

formalizing the TIED into a mathematical statement, and then searching for which 

mechanistic implementations of the discrimination process were compatible with it. To 

do this, the first step involved specifying a space of candidate models, ideally as large as 

possible. We considered the space of models in which choices are triggered when a 

decision variable (DV) hits for the first time either of two (possibly time-dependent) 

bounds—thus endowing the model with a well-defined RT—and where the DV evolves 

in time as a continuous Markov process (CMP)21. CMPs are very expressive and allow a 

variety of relationships between the DV and the sensory input, including close tracking 

of the instantaneous value of the evidence, attractor dynamics or perfect temporal 

integration. Most proposed models for perceptual decision-making are, or can be 

construed as, CMPs4,8,22,23,24,25.  
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In a CMP, if one knows the value DV(t) of the DV at a given time t, then an instant 

later, the DV will be close to DV(t) and have a Gaussian distribution21. The mean and 

variance of this distribution are written as DV(t) + A(DV, t, s)dt and D(DV, t, s)dt, 

respectively, and can depend on DV(t), on time t and on the sensory input s, which 

confer the CMP framework its large flexibility. The quantities A and D are referred to as 

drift and diffusion coefficients of the process, respectively, and completely characterize 

the full temporal evolution of the DV. Our strategy to investigate the restrictions 

imposed by the TIED (see Supplementary Note) was to write down the expression for 

the drift and diffusion coefficients for two different CMPs associated with a 

discrimination between stimuli of magnitudes s1 and s2. The first CMP corresponds to a 

discrimination in which the overall intensity of the stimulus is changed while the 

intensity ratio is kept constant; that is, between stimuli of magnitudes ks1 and ks2. The 

second CMP corresponds to a discrimination between the original stimuli, but 

proceeding under a rescaled temporal variable t′ = αt. If the constant k is given and 

arbitrary, the form of all drift and diffusion coefficients such that the two CMPs are 

identical for some constant α quantitatively specifies the space of all CMPs consistent 

with the TIED. Mathematically, we seek functions A and D such that 

 

𝐴(DV, 𝑡, 𝑘𝑠1, 𝑘𝑠2)𝑑𝑡 = 𝛼𝐴(DV, 𝛼𝑡, 𝑠1, 𝑠2)𝑑𝑡
𝐷(DV, 𝑡, 𝑘𝑠1, 𝑘𝑠2)𝑑𝑡 = 𝛼𝐷(DV, 𝛼𝑡, 𝑠1, 𝑠2)𝑑𝑡

 

 

Intuitively, equation (1) says that although the stimulus magnitude and the units of time 

have, in principle, different effects on the dynamics of the DV, the quantitative nature of 

these effects should be such that a constant scaling of the former can be perfectly 

emulated by a change in the latter. 

 

We found that equation (1) is very restrictive, allowing only two types of solutions 

(Supplementary Note). The first type requires parameter fine-tuning and tight 

relationships between disparate, seemingly unrelated processes (for example, spiking 

statistics, rates of decay of the DV and time-varying decision bounds). While 

mathematically interesting, we deem this solution biologically implausible and do not 

consider it further. The only alternative solution requires the following four conditions: 

(1) a linear relationship between the variance and the mean of the sensory evidence, (2) 
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a power-law relationship between physical stimulus intensity and its internal 

representation, (3) a constant decision bound, and (4) perfect accumulation of evidence 

(that is, no intrinsic decay of the DV across time). 

 

Condition (1) states that, effectively, the statistics of the sensory evidence should 

behave like a Poisson process. This is because the spike count statistics of a Poisson 

process are completely invariant if the rate and the count window are modified by 

multiplicative factors c and 1/c, respectively. Thus, scaling the rate of a Poisson process 

can always be compensated by a rescaling of time. Of course, the TIED implies a 

scaling of stimulus magnitude, not firing rates, so an extra requirement is needed. This 

is provided by condition (2), as a power-law is the most general transformation between 

stimulus magnitude and firing rate such that multiplicative transformations in the 

physical intensity of sensory stimuli result in multiplicative changes in firing rate. The 

last two conditions effectively forbid any form of intrinsic dynamics of the DV or 

explicit time dependence in the discrimination process. As soon as these exist (barring 

the implausible solution we just discarded), it becomes impossible to find a rescaling of 

time that preserves the relative contribution of intrinsic and stimulus-dependent factors 

to the dynamics of the DV across all absolute stimulus magnitudes. For instance, if 

there is an intrinsic linear decay in the DV, as in leaky-accumulator models23, the 

temporal rescaling factors that are necessary to compensate two different overall 

stimulus magnitudes will translate into two different effective intrinsic decay rates for 

the DV, thus destroying the scale invariance of the RTD across these two conditions. 

 

We have tested that the same four conditions described above are sufficient for the 

TIED to hold in several of the most commonly used race models (two accumulators 

instead of one) in which the DV is higher dimensional24. 
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The TIED predicts a breakdown of WL for short sounds 

What do we exactly mean when we say that the effective unit of time of an ILD 

discrimination changes with the overall stimulus intensity? Larger sound intensities 

result in more activity in both sensory channels, leading to faster accumulation of 

sensory evidence toward the bound and faster RTs. However, as long as the four 

conditions described in the previous section are satisfied, the relative probabilities 

across time of hitting the bound at any particular moment become independent of 

overall intensity (Fig. 3a; Supplementary Note). This is formally equivalent to a change 

in the units of time of the discrimination process. 

 

This mechanism makes the following counterintuitive qualitative prediction: if the DV 

reflects the temporal accumulation of evidence and if the DV is effectively evolving 

faster for louder sounds, then it should be the case that stopping the stimulus at times 

that are short compared with the typical RT will break the ABL invariance of 

performance, even at fixed intensity ratios. This is because, according to the TIED, the 

distributions of the DV at the offset of two short fixed-duration sounds of different 

ABLs should be the same as the distributions of the DV for two sounds of the same 

ABL but different durations (Fig. 3b). Since longer fixed-duration stimuli are expected 

to lead to higher discrimination accuracies under evidence accumulation26,27, the TIED 

predicts that WL should break down for short fixed-duration sounds. Furthermore, this 

breakdown should become less pronounced as the fixed-duration stimuli become longer, 

because the likelihood that the DV will reach the bound approaches unity as the 

stimulus duration grows, and WL ensues. 

 

We tested this prediction using low-intensity sounds (ABL = 20 and 40 dB SPLs) in a 

series of sessions in which the rats were still free to choose when to exit the central port, 

but the sounds terminated at a maximum sound duration (SDmax) if the rats were still at 

the central port by that time (Methods). Both aspects of the prediction were verified 

(Fig. 3c,d). Discrimination accuracy degraded for short SDmax for both ABLs (n = 4, 

two-way RM-ANOVA, significant effect of SDmax, F(5,15) = 50.59, P < 0.0001) but it 

degraded faster for the lower ABL (significant interaction between SDmax and 

ABL, F(5,15) = 4.18, P = 0.014; Supplementary Table 2), demonstrating that WL breaks 
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down in a sound-duration-dependent fashion (Fig. 3c,d). This result provides strong 

evidence to indicate that WL is the result of bounded accumulation of evidence. In fact, 

the data presented in Figs. 2 and 3 rule out an explanation of WL within SDT. 

Sufficiency of the identified mechanism 

How well is the behavior of the rats quantitatively specified by the mechanism inferred 

from the TIED? This is still an open question because only two qualitative properties of 

the behavior (level invariance of accuracy and scale invariance of RTDs) have been 

used to derive it. To address this issue, we constructed the simplest possible 

implementation of a CMP that obeys the four conditions identified above. Because the 

model is as simple as possible, this approach will not produce the best possible fits, but 

is instead intended to clarify the sufficiency of the mechanism to account for our 

observations at a quantitative level. 

 

In our implementation (Fig. 4a; Supplementary Note), the evidence is the difference 

between the instantaneous activities of two sensory channels of N neurons. Neurons in 

each channel fire with Poisson statistics and have firing rates that grow as a power-law 

of the sound intensity at the corresponding ear. Accuracy and decision time in the model 

depend only on the following three parameters (Fig. 4a, equations (2) and (3)): the net 

gain (Nr0) and the power-law exponent (λ) of the transformation between sound 

intensity and firing rate of each sensory channel, and the decision bound in units of the 

single-spike quantum of evidence (θe). To compare the model with the data, we also 

needed to specify a stimulus-independent non-decision time (tNDT), which accounts for 

sensory and motor delays that contribute to the measured RTs. This is the absolute 

minimum number of parameters necessary to fit a bounded accumulation model with 

nonlinear stimulus encoding. Close to psychophysical threshold, the choice dynamics in 

this model are captured by a single-parameter diffusion equation (Supplementary Note) 

as follows: 

 

𝑑𝑧

𝑑𝜏
= ΓILD + 𝜂(𝜏)𝜃𝑧 = ±1; 𝑧(𝜏 = 0) = 0 
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where z is a normalized DV (in units of θe), and the single 

parameter Γ = λθe/(40/log(10)) specifies the map between the stimulus ILD and the 

strength of evidence. The ABL of the stimuli does not appear in equation (2), which 

implies that all the non-trivial properties of the discrimination depend exclusively on the 

intensity ratio. The temporal variable τ in equation (2) measures the duration of the 

discrimination in an ABL-dependent effective unit of time tθ (ABL). 

Therefore, τ = t/tθ (ABL) with 

 

𝑡𝜃(ABL) =
𝜃e
2

2𝑁𝑟0
10−𝜆ABL/20 

 

The prediction of the model for the RTs is therefore RT = tNDT + τDTtθ(ABL), 

where τDT is the stochastic decision time associated with equation (2). Equations (2) and 

(3) specify the effect of difficulty and absolute intensity on sensory discrimination (see 

also Supplementary Fig. 6). The equivalence between time and absolute intensity, 

which defines the TIED, is explicitly captured by equation (3). 

 

In addition to having the least possible number of parameters, the model is easily 

falsifiable, since the psychometric function and the shape of the RTDs for each 

difficulty all depend on the single parameter Γ. We specified the value of Γ from fits to 

the discrimination accuracy of the rats. The single-parameter fit accounted for 99.2% of 

the variance in the psychometric data of the rats (Fig. 4b). The JND of our rats was 

~2.2 dB (Fig. 4b; Supplementary Table 3), which is similar to that measured in several 

other species28,29. At this point, the shape of the RTDs and their dependency on 

difficulty are fully specified, and can therefore be seen as model predictions. The only 

remaining degrees of freedom in our fit are tNDT, which shifts all the RTDs by the same 

amount, and tθ(ABL), which can rigidly stretch the RTDs for each ABL separately. We 

used the empirical RTDs to infer the parameters specifying tNDT and tθ(ABL) 

(Methods), but we again challenged the predictive power of the model by using only 

data from the ABL = 20 and 60 dB SPL conditions. Still, the full shape of the RTDs for 

all conditions—including those for ABL = 40 dB SPL, which are a pure model 

prediction—are accurately captured by the model (Fig. 4c; see Supplementary Fig. 7 for 
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fits of single-rat data), with model RTDs accounting for 97.7 ± 2.3% of the variance of 

the observed RTDs (mean ± s.d. across the 12 conditions; Methods). The accuracy of 

these predictions on data that were not used for the fits suggests that the relationship 

between RT and accuracy on the one hand and RT and intensity on the other is of the 

same nature in the model and in the experiments. 

 

The fitted value of the power-law exponent λ = 0.089 ± 0.004 (see Supplementary 

Table 3 for all parameter values, which were robust using various fitting methods; 

Supplementary Figs. 8 and 9), indicates a large degree of compression, which results in 

a relatively mild dependence of the RTs with ABL. The value of θe = 48.3 ± 2.3 implies 

that each sensory spike contributes a few percent of the evidence necessary to reach 

threshold. Finally, the value of Nr0 implies a range of firing rates of ~4 to 7 KHz on 

each sensory channel across the stimuli in our experiment. 

 

Further controls and analyses demonstrated that the behavior of the rats is consistent 

with our implicit modeling assumptions. Rats could discriminate the ILD of 10 KHz 

pure tones at 60 dB SPL and broadband noise with the same accuracy (Fig. 5a), which 

shows that they exclusively use the ILD of the sound to perform the task. The 

discrimination accuracy for ‘frozen noise’ bursts was identical to control conditions 

(Fig. 5b), thus showing that performance-limiting noise has an internal origin. 

Unexpectedly, the behavior of the rats was virtually independent of the trial history, 

establishing that choices on a given trial depend almost exclusively on the nature of the 

sensory stimulus (Fig. 5c; Supplementary Fig. 10). These findings confirm that the ILD 

discrimination task we are using is an appropriate paradigm to read out the percepts of 

subjects from their behavioral choices with minimal confounding factors. 
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The Weber fraction in ILD discrimination 

The Weber fraction (WF) is typically used to quantify the minimal discriminable 

stimulus increment at the psychophysical threshold; that is, when accuracy is not limited 

by motivational factors. To investigate what determines the WF in ILD discrimination, 

we performed a series of behavioral manipulations with the goals of establishing 

whether our rats are indeed at the psychophysical threshold and of clarifying other 

potential factors, beyond motivation, that might be limiting choice accuracy in our task. 

First, we attempted to increase the discrimination accuracy by increasing the reward 

magnitude for correct discriminations in the hardest conditions relative to the easiest 

ones (Methods), but this failed to induce changes in performance (Fig. 5d, comparison 

of d′ values between uneven reward and control conditions: P = 0.9, Fisher’s exact 

test, n = 4). Next, we presented blocks with only the two most difficult conditions, a 

manipulation expected to improve discriminability due to a motivation-enhancing 

decrease in reward rate, a narrower prior on stimulus difficulty25 and a potential removal 

of uncertainty about the location of the categorization boundary20. Nevertheless, 

accuracy again did not change (Fig. 5e, comparison of d′ values between only hard and 

control conditions: P = 0.5, Fisher’s exact test, n = 3). To confirm this result, we 

performed longer-lasting (more sessions) manipulations of stimulus difficulty, and we 

also presented only easy (in addition to only hard) blocks of stimuli (inducing changes 

in experienced reward rate of more than 100%; Fig. 5f, inset), but we observed the same 

negative results (Fig. 5f; see Supplementary Table 2 for statistics for all behavioral 

manipulations). These findings show that accuracy in our task is not significantly 

limited by the uncertainty of the rats about the indifference point or by stimulus priors. 

They also show that accuracy is not limited by motivation, which indicates that rats are 

performing the task at the psychophysical threshold. 

 

Can the TIED, together with inferences drawn from these behavioral manipulations, be 

used to shed light on the mechanism that sets the WF in our task? At a mechanistic 

level, the precision of a decision maker trying to maximize accuracy at the expense of 

RT can be limited in the following three qualitatively different ways: through the 

accumulation mechanism (that is, in the presence of leak), by the statistics of the 

evidence (that is, in the presence of temporal correlations) or by the magnitude of the 
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decision bound (as accuracy increases with the magnitude of the bound). Which of these 

three mechanisms are at play in our task? 

 

Both leak and a fixed τcorr ~ RT are incompatible with the temporal scale-invariance 

required for the TIED and are also not necessary to provide a satisfactory account of the 

choice and RT data (Fig. 4b,c), which suggests that they do not play a large role in 

setting the WF in our task. Across-trial variability in the evidence can result from trial-

to-trial updating of the categorization boundary20, but the ILD = 0 boundary is 

hardwired, and we found no evidence of updating (Fig. 5c,e,f; Supplementary Fig. 10), 

again suggesting that this process is not a critical source of uncertainty in our task. Slow 

fluctuations in the excitability, or baseline firing rate, of the sensory neurons encoding 

the stimulus will also produce across-trial variability in the evidence. Multiplicative (but 

not additive) noise in baseline firing rates is consistent with the TIED (Supplementary 

Note), so we considered its effect quantitatively, despite the fact that it also did not 

seem necessary for a good fit (Fig. 4b,c). We modeled the firing rates in the two 

channels in trial i as 𝑟L,R
𝑖 = 𝑟L,R(ABL, ILD)(1 + 𝜎𝑟𝑛L,R

𝑖 ), where rL,R(ABL,ILD) are the 

sensory firing rates in the absence of baseline variability, niL,RnL,Ri are normal 

random variables and σr measures the magnitude of the multiplicative noise (Methods). 

Adding trial-to-trial variability only marginally affected the value of the model 

parameters. The best fit value of σr was 0.0063 ± 0.0091 (95% bootstrap confidence 

intervals (CI)). The decision bound changed from 45.7 ± 2.0 to 46.7 ± 4.1 (both 95% 

bootstrap CI). If we artificially set σr to zero and left all other parameters at their best-fit 

values, the JND decreased by just 1.7%. If, on the other hand, we doubled the 

magnitude of the bound, the JND decreased by 47%. We therefore conclude that trial-

to-trial variability in baseline rates makes, at most, a marginal contribution to the WF in 

our data. Having ruled out a significant contribution from inefficiencies in the process 

of accumulation or from non-averageable sources of variability in the evidence, the 

alternative is that the WF is simply set by an upper limit of the evidence bound. Such a 

limit is consistent with the apparent inability of the rats to improve discriminability in 

response to changes in reward magnitude (Fig. 5d) or reward rate (Fig. 5e,f).  
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Discussion 

We have shown that while, in agreement with WL, changes in the absolute magnitude 

of stimuli being discriminated at fixed intensity ratios have no effect on discrimination 

accuracy, they have a clear and quantitatively precise effect on RT, leading to an 

almost-perfect rescaling of the RTD (Fig. 2a,d,e; Supplementary Figs. 3–5). Thus, 

changes in absolute stimulus intensity have the same effect as changes in the units of 

time within a trial, a phenomenon we have referred to as TIED. The TIED is consistent 

with the well-known fact that more intense sensory stimuli are perceived as lasting 

longer30. 

 

Unlike WL, the TIED is sufficiently restrictive to narrowly specify the computational 

mechanism underlying ILD discrimination, which is characterized by bounded exact 

temporal accumulation of evidence, Poisson-like variability and power-law encoding of 

stimulus intensity. This mechanism is not only necessary to account for the TIED: in its 

simplest possible implementation it is also sufficient to account for 98–99% of the 

variance in the accuracy and RT of the rats (Fig. 4b,c; Supplementary Fig. 7). To 

interpret this number, note that there are many model modifications that would have 

quantitatively improved the accuracy of our fits at the cost of more parameters—such as 

trial-to-trial variability in the bound or in the baseline sensory rates (Supplementary 

Note)—or of small quantitative violations of the TIED—such as trial-to-trial variability 

in non-decision time. We show that only a very small fraction of the variance in the full 

choice and RT data remains to be accounted for by elaborations of the simplest 

mechanism consistent with the TIED. 

 

Effect of overall stimulus intensity in sensory discrimination 

Overall sound level can be considered a ‘nuisance parameter’ for the identification of 

the location of a sound source. Indeed, ABL changes the gain of ILD on the average 

sensory evidence (equation (40), Supplementary Note). Gain normalization31 is often 

used to remove the nonspecific effect of overall stimulus intensity, including in ILD 

discrimination28. Interestingly, the mechanism we studied can be interpreted as a form 

of gain control that does not require explicit normalization. Under Poisson variability 

(observed in the auditory localization pathway32,33), although drift rates increase with 
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ABL, so does the noise in the trajectories, resulting in exactly the same probabilities of 

hitting either bound4. This ensures level-invariant accuracy (Fig. 3a) without the need of 

any explicit normalization mechanism. 

 

Studies of the neural basis of level-invariant ILD discrimination have focused on 

finding explicit level-invariant codes (for example, neurons with the same ILD tuning 

regardless of ABL). Neurons in the lateral superior olive, the inferior colliculus or the 

auditory cortex under anesthesia do not tend to be explicitly level-invariant34,35,36, 

although opponent-process models (which consider linear decoders subtracting the 

activity of neurons with opposite ILD tuning) achieve higher levels of invariance34,37,38. 

Our results demonstrate that certain important behavioral invariances do not need to be 

explicitly represented in the brain: the TIED is a purely computational property based 

on a threshold-crossing mechanism, and no static decoder of the sensory neurons or of 

the DV in our model shows the same qualitative properties as the behavior. 

 

WL and RT 

This fact also has implications concerning the feasibility of explanations of WL based 

on SDT. Most previous explanations of WL can, either explicitly or implicitly (many 

explanations of WL preceded in time the development of SDT), be cast within SDT, in 

the sense that they do not view the decision of when to stop sampling the stimulus as 

critical for the explanation of WL. Our results present serious challenges to any type of 

explanation of this sort. Since the sampling duration in SDT is an external parameter 

outside the decision process, these models can simply provide no explanation for any 

RT phenomenology (Fig. 2). The breakdown of WL for short fixed-duration stimuli but 

not RT choices (Fig. 3) also seems fundamentally at odds with any SDT-type 

explanation. In general, the lack of dynamics in SDT implies that the invariances of the 

behavior need to be explicitly encoded in the form of the DV in models within this 

framework. 

 

In contrast to SDT, Sequential Sampling Theory (SST) explicitly addresses the problem 

of when to stop sampling the evidence in a categorical choice12. Link4 was the first to 

emphasize a connection between SST and WL, highlighting the importance of Poisson 
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variability. More recently, some studies9,10 have addressed the relevance of RT as a key 

diagnostic for understanding the effect of absolute intensity in sensory discrimination. 

Simen and colleagues10 realized that Link’s model predicts that WL should be 

associated with scale invariance of the RTD, thus highlighting the connection with 

temporal production39,40. Empirical evidence was presented that, although quite 

variable, was generally supportive of the qualitative claims. Simen and colleagues did 

not attempt a quantitative match between their model and data. Our work extends the 

contributions of Link4 and Simen et al.10 in important ways. First, we provided 

necessary conditions for the TIED to hold, clarifying the space of models it is 

compatible with. Second, the precision of our main experimental finding (Fig. 2; 

Supplementary Figs. 3–5) allowed us to demonstrate the quantitative sufficiency of the 

identified mechanism to provide an almost complete description of the behavior 

(Fig. 4). Less precise experiments would have required extra assumptions beyond the 

TIED to accurately fit the data. Third, we validated the counterintuitive breakdown of 

WL for short fixed-duration sounds (Fig. 3). Finally, the strict constraints imposed by 

the TIED together with our behavioral manipulations (Fig. 5) allowed us to delineate 

the mechanism that sets the WF in our task. 

 

We found that a key computation in sensory discrimination is a ‘perfect’ (that is, 

without time decay) accumulation of evidence, consistent with work from Brody and 

colleagues27 in which a task was explicitly designed to probe the temporal accumulation 

of discrete sensory pulses. They have recently addressed the relevance of absolute 

stimulus intensity for discrimination, demonstrating that accuracy degrades with the 

total number of pulses being discriminated when the difference between left and right is 

fixed, consistent with WL41. Although these results could be explained with a SDT 

model that required using multiplicative-noise statistics, which is consistent with long 

temporal correlations in the evidence, our results and those of Simen10,40 show that the 

resulting scale invariance of the behavior can be obtained with temporally uncorrelated 

evidence samples as long as bounded accumulation is used to trigger choices. At 

present, a quantitative comparison between our results and those of Brody and 

colleagues is difficult given significant differences between the two tasks, especially at 

the level of the behavioral report (choice at different fixed durations versus choice and 
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RT) and at the level of the target for inference (‘latent’ ILD versus explicit difference in 

the number of pulses). 

 

Several studies have suggested that leaky evidence accumulation23 provides a better 

account of the data in some sensory discrimination tasks. Although the TIED is 

incompatible with leaky accumulation (Supplementary Note), our results do not 

necessarily conflict with these studies, as leaky accumulation, unlike WL, tends to work 

best in situations in which the evidence is non-stationary23,42. 

 

Scale-invariant distributions and power-law transformations 

Scale invariance of response distributions is a robust feature of temporal production 

tasks39. The accumulation of neural activity with Poisson-like statistics up to a single 

bound has also been shown to generate scale-invariant distributions in this context10,40, 

although the nature of the accumulated signal in temporal production, in contrast to 

sensory discrimination, is not yet completely clear. Scale invariance of RTDs with 

respect to changes in difficulty (as opposed to absolute intensity) has also been 

previously considered43. However, unlike the case of absolute intensity, this rescaling is 

only approximate (Supplementary Figs. 3 and 11). 

 

Scale invariance as captured by the TIED requires a power-law transformation between 

stimulus intensity and sensory firing rates (Supplementary Note). Power-law transfer 

functions have often been reported in many sensory receptors44,45 and are believed to be 

important for compressing the large dynamic range of sensory signals. Power-laws also 

have a privileged role in psychophysics thanks to Stevens5,46, who proposed that the 

subjective magnitude of a stimulus has a power-law relationship with physical stimulus 

intensity. It is intriguing that our results suggest that physical sensory intensity is also 

encoded as a power-law. Studies of WL, starting with Fechner, have also sometimes 

invoked a logarithmic transfer function3,47. In our setting, such a model predicts that 

there should be no changes in RT as a function of ABL, and is thus not compatible with 

our findings. Logarithmic transformations play no particular role in our results 

(Supplementary Fig. 6). 
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Specificity of results to ILD discrimination 

We believe that the accuracy with which the experiments specified the mechanism 

driving the behavior depends on the ethological significance of the task. In ILD 

discrimination with respect to the midline, we are recruiting a circuit designed by 

evolution for the purpose of comparing stimulus intensity, rather than trying to create or 

co-opt a general purpose comparison mechanism with no particular significance for the 

rat. Furthermore, the relative weight of the left and right sensory channels, which 

specifies the decision variable, is hardwired16, which probably underlies the lack of an 

effect in our manipulations of stimulus difficulty (Fig. 5e,f), as the rat brain has an 

accurate representation of the auditory midline independently of our task. In contrast, 

arbitrary boundaries (such as a particular odor mixture48) need to be learned by trial and 

error through reinforcement20, which introduces an additional source of uncertainty 

(‘decision rule’ uncertainty) in discrimination. We hypothesize that the lack of decision-

rule uncertainty, together with the similarity between the task contingency and a 

hardwired behavior (orient toward the source of a sound) and the lack of rules enforcing 

response timing, all contribute importantly to the ability of the rats to generalize 

(Fig. 5a) and to display negligible lapse rates (Fig. 5b,f) or sequential dependencies in 

performance (Fig. 5c; Supplementary Fig. 10). The addition of decision-rule uncertainty 

for a given amount of sensory uncertainty (for example, ILD discriminations with 

respect to a non-zero boundary) is expected to also directly impair discrimination 

accuracy, as has been previously observed49. 

 

The limits of discrimination accuracy 

Understanding the mechanisms limiting the accuracy of sensory discriminations using 

psychophysics has been a difficult task due to the diversity of potentially contributing 

factors2,4,50. Our results (Figs. 2, 4 and 5) suggest that discrimination accuracy in our 

task is effectively limited by the value of the evidence bound. This finding has a number 

of salient implications. First, since the bound is not adaptive in the face of 

manipulations, it cannot be optimal in the context of imposed task contingencies 

(although its value may still be adaptive in the face of longer-lasting developmental or 

evolutionary constraints). Second, the control that motivation exerts over the value of 

the bound appears to have some fundamental limits, and is thus not universal, as 
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generally assumed in SST. Finally, nothing in our experiments provides insight into 

what is special about the particular value of the decision bound that we found. How the 

particular value of the bound is set and under which conditions motivation loses control 

over its value remain open questions to be elucidated in future work. 

Methods 

Experimental animals 

All procedures were reviewed and approved by the animal welfare committee of the 

Champalimaud Centre for the Unknown and approved by the Portuguese Direcção 

Geral de Veterinária (reference no. 0421/000/000/2019). Experiments were performed 

on 11 adult female Long–Evans hooded rats. Animals were 12–13 weeks old and 

weighed between 250 and 300 g at the beginning of the experiments. They were kept 

above 85% of the initial weight throughout. All animals were naive to any behavioral 

tests. Rats had free access to food, but water was restricted to the behavioral sessions, 

which were conducted during five consecutive days per week. Animals had access to 

water during the sixth day and were deprived of water for 24 h before each round of five 

sessions. No statistical methods were used to predetermine the number of animals or the 

number of trials per animal, but our sample sizes were similar to those reported in 

previous publications48. We used a ‘within subject’ design in which the animals were 

tested in all experimental conditions, so there was no need to apply blinding or 

randomization. All results in the main text came from the same batch of rats (Batch A; 

see Supplementary Table 2) except for the data presented in Figs. 3 and 5b,f, which 

came from a second batch of animals (Batch B). The five rats in Batch A were tested in 

the RT sound lateralization task. Four of them performed blocks that included only the 

hardest conditions, and three of them performed blocks with uneven reward and blocks 

with pure tones. The six rats in Batch B were tested in the bidirectional motivation 

manipulations and in the frozen-noise manipulations. Four of them were tested in the 

capped sound duration sessions. 
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Auditory stimuli 

A percept of lateralization was created by presenting cosine-ramped (10 ms) broadband 

(5–20 kHz) noise bursts with different intensities to each ear (ILD). The noise was 

independently generated for each ear and for each presentation (except for the results 

shown in Fig. 5b) using a Tucker-Davies Technologies RP2 module at a sample rate of 

50 kHz. Headphones were calibrated weekly, using a Brüel & Kjaer Free-field one-

quarter-inch microphone placed in front of the speaker, 5-mm apart. 

 

Behavioral apparatus and headphone design 

Rats were trained and tested on the sound lateralization task (Fig. 1a,b) using a standard 

Coulbourn Instruments modular box (30 × 25 × 30 cm) with three ports (8-cm apart). All 

components of the behavioral setup were connected to a RP2 module and accessed by a 

computer running Matlab 2012b (https://www.mathworks.com) using TDevAcc 

controls. The behavioral setup was placed inside a soundproof box that was illuminated 

by infrared lights and equipped with an infrared camera to observe the animals during 

the sessions. 

 

Both the base to be implanted in the skull and the structure of the headphones were 

designed using Sketchup (https://www.sketchup.com) and 3D-printed in VisiJet(R) 

EX200 Plastic. The speakers (Knowles, no. 2403 260 00029) were aligned with the ears 

and placed 5 mm from the entrance of the ear canal. Once adjusted, all pieces were 

glued together and remained fixed throughout the experiment (Supplementary Fig. 1a). 

The headphones were attached to the base at the beginning of each behavioral session 

and detached before taking the animal back to the holding cage. 

 

Behavioral tasks 

Sound lateralization task: temporal and outcome contingencies 

Rats started a trial by poking in the central port within a 6 s time window (start trial 

waiting time) triggered by the end of the inter-trial interval (3 s), which was signaled by 

a light in the box turning off. After a short, variable fixation time (FT, 300–350 ms) the 

sound was played binaurally, through the headphones, until the rat left the central port 

or until the maximum presentation time (6 s) was reached. Rats had to communicate, 
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within a 2 s time window (response waiting time), whether the sound was louder at the 

left or right ear by poking with the snout in either the left or right ports, respectively. 

Correct choices were rewarded with a drop of water (28 μl) and incorrect responses 

were penalized with a 10-s timeout, during which the rat was not able to start a new 

trial. Trials in which the rat failed to start a new trial within the start trial waiting time, 

broke fixation during the FT or failed to poke in either lateral port within the response 

waiting time were considered aborts. Aborts were repeated after a 1-s time penalty. 

 

Each session was divided into blocks of 80 trials. Within each block, the ABL was kept 

constant, while the ILD changed pseudo-randomly from trial to trial. Typically, sessions 

lasted for 2 h and rats performed between 800 and 1,200 trials. 

 

Sound lateralization task: training 

Animals were initially trained in a simplified version of the task, in which fully 

lateralized sounds (50 dB SPL broadband noise) were presented from either of the arena 

speakers. Rats quickly understand the basic contingency of the task, within a few 

hundred trials. The sound was played until the animal entered one of the lateral ports, 

and errors were repeated immediately. Short fixation times and long waiting times were 

used to increase the chances of the rat to complete the trial while exploring the box. 

Every time the rat completed a trial, the fixation time was increased by 1 ms and, once 

the rat completed three consecutive blocks (120 trials per block) with less than 30% 

abort rate, waiting times were set to their final durations and ILDs were introduced. 

Initially, the ABL was set to 50 dB and the ILD step was set to 4 dB; depending on the 

performance of the animals, the step was decreased gradually until the final 1.5 dB. 

Once performance with ABL of 50 dB and ILD step of 1.5 dB was stable, the magnetic 

base for the headphones was implanted and the animals were allowed to recover for at 

least 1 week, during which they had free access to food and water. 

  



Block types used for the different tasks 

To test various hypotheses about the nature of the behavior, we modified the above-

described basic task in several ways. Rats from Batch A were tested in the following 

five types of blocks: A1 ‘standard’ blocks, in which four ILDs (of each sign) linearly 

spaced from 1.5 to 6 dB steps were presented. All data in the main text except for those 

presented in Figs. 3 and 5a,b,d,f came from A1 blocks. A2 ‘hard’ blocks, in which only 

the four ILDs closer to the midline (±1.5 and ±3 dB) were presented (Fig. 5e,f). We did 

not only present the hardest condition because when we attempted this, the rats ‘gave 

up’ and became biased. A3 ‘uneven reward’, in which we increased (decreased) the 

amount of water delivered after correct discriminations for the two hardest (easiest) ILD 

conditions by 20% (Fig. 5d). A4 ‘log noise’, in which five ILDs (of each sign), 

logarithmically spaced between 1 and 8 dB, were used (Fig. 5a). A5 ‘log pure tones’, 

identical to the previous block, but using 10 kHz tones instead of broadband noise 

(Fig. 5a). In all types of blocks, except for A5, three ABLs (20, 40 and 60 dB SPL) were 

used. For A5, only ABL = 60 dB SPL was used. Rats from Batch B were tested in the 

following five types of blocks with ABL = 50 dB SPL: B1 ‘standard’, in which four 

ILDs (of each sign) logarithmically spaced between 1 and 8 dB were used (Fig. 5b,f). 

B2 ‘hard’, in which only the two most difficult conditions (1 and 2 dB) were used 

(Fig. 5e). B3 ‘frozen noise coherent’, in which the exact broadband sound (out of four 

different examples) was presented in the two headphones appropriately scaled to 

produce a given ILD (ILDs were the same as in the standard blocks). B4 ‘frozen noise 

non-coherent’, in which a different one of the four examples was played in each 

headphone (same ILDs). Blocks B3 and B4 where used in Fig. 5b. B5 ‘easy sessions’, 

in which only ILDs = ±4.5, 6, 9 and 15 dB were used (Fig. 5f). After these 

manipulations, four remaining rats from this batch were initially trained in a variant of 

the standard RT task with a different set of conditions (ILD = 0, 0.5, 1.25, 2.25, 4 and 

8 dB and ABL = 10, 25, 40, 55 and 70 dB SPL) designed to sample the effect of 

difficulty and intensity more densely and without blocks. After a few sessions, we 

decided to perform the capped sound duration experiment and we then switched 

conditions to ILD = 1, 2, 4 and 8 dB (of each sign) and ABL = 20 and 40 dB SPL. The 

range of SDmax tested was 50, 75, 100, 150 and 250 ms. These sessions are used in the 

results presented in Fig. 3.  
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Task variants: discrimination of the ILD of pure tones 

Three of the rats were tested with the A4 and A5 blocks mixed pseudo-randomly. 

 

Task variants: manipulations of motivation 

For rats in Batch A, A2 blocks were randomly included among standard blocks within a 

set of sessions in such a way that every time hard conditions were tested, at least three 

consecutive blocks (one for each ABL) were used. Results from this manipulation are 

shown in Fig. 5e. These same rats also performed a series of sessions in which all 

blocks were the A3 type (Fig. 5d). Longer-lasting and bidirectional manipulations of 

motivation were tested with rats of Batch B. These rats were tested in a series of 

sessions in which an initial standard block was followed by the B2 blocks until the end 

of the session (Fig. 5f). 

 

Task variants: external versus internal noise 

We selected four broadband noise samples and either used the same or different samples 

at the two ears. Rats of Batch B were tested in a series of sessions with the B3 and B4 

blocks alternating pseudo-randomly within the same session (Fig. 5b). Note that even 

with frozen-noise stimuli, waveforms at the two ears will not be perfectly coherent 

because the headphones are not inserted in the ear canal. 

 

Task variants: maximum sound duration 

As shown in Fig. 3, the task was still in RT configuration but, for a given SDmax, the 

sound was stopped at that SDmax if the rat had not left the central port at that time. For 

choices with RT < SDmax, the sound offset was triggered by the central port exit. Rats 

performed the task in mini blocks of 16 trials. Each mini block contained two 

permutations of all the ILDs at fixed ABL and SDmax values, and ABL and SDmax values 

were chosen randomly from their possible values for each mini block. 
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ILD discrimination task for human subjects 

All procedures were reviewed and approved by the Ethics Commission for human 

studies of the Champalimaud Centre for the Unknown. Human volunteers performed an 

ILD discrimination task at two different ABLs. The experiment took place in a small, 

closed room. A computer running Matlab controlled the stimulus delivery through 

custom-written software using Psychtoolbox-3 (http://www.psychtoolbox.org). The 

auditory stimuli were delivered through a pair of over-the-ear headphones (Sennheiser 

HD 300 PRO) that were regularly calibrated. Subjects interacted with the behavioral 

software using a bimanual gamepad (Logitech Gamepad F310). 

 

Sounds were cosine ramped (10 ms) wideband noise bursts (1–15 KHz) independently 

generated for each ear. We used ILDs of 0.3, 0.6, 1.2 and 2.4 dB, and ABLs of 40 and 

60 dB SPLs. As in the rat experiment, ILDs varied pseudo-randomly across trials and 

ABLs varied in blocks (duration of 120 trials). Subjects performed 240 auditory trials 

per session, which correspond to two blocks of different ABLs. 

 

Each trial began when the subject pressed both shoulder buttons (or bumpers) on the 

gamepad to indicate readiness. The stimulus was presented after a variable fixation 

period (of duration equal to the sum of 700 ms and an exponentially distributed (mean 

300 ms) duration truncated at 1.5 s) and played for as long as the subjects kept the 

shoulder buttons pressed. Responses were signaled by releasing the button on the side 

on which the sound was louder. Trials with RTs shorter than 100 ms or longer than 3 s 

were discarded. Subjects received feedback after each trial. After a correct response, the 

subsequent trial was ready after a short inter-trial interval of 0.5 s; incorrect responses 

were followed by a short, 3.5-s timeout. Subjects received feedback about their mean 

accuracy over the session with a numerical display that was present on a corner of the 

screen. 

  

http://www.psychtoolbox.org/


After a few initial training sessions, subjects maintained above 80% accuracy on most 

sessions, and only these sessions after performance and RTs were stable were used for 

the analysis. Subjects completed an average of nine sessions in steady-state conditions. 

Payment for the sessions was not linked to performance, and all participants were 

compensated with 2.5 euros per session. 

 

We collected data from 13 healthy subjects with normal hearing, 5 of them female, aged 

between 20 and 40 years. Four of the subjects were excluded based on the following 

criteria. Two subjects were strongly biased (one of them more than three across-subject 

standard deviations away from the across-subject mean in criterion, the other more than 

three across-subject standard deviations away from the across-subject mean in the 

relative difference in average RT between left and right choices). Two other subjects 

clearly violated WL (relative difference in discriminability Δd′/Mean(d′) larger than 

0.25). 

 

Olfactory discrimination task 

Details of this behavioral task have been previously published20. We analyzed their data 

for the conditions at the two highest concentrations (10−2 and 10−1 (v/v)) for which WL 

held. We did not perform any subsequent data selection or pre-processing beyond what 

was described in that study20. 

 

Statistics 

To determine the minimum RT to be analyzed, we used a two-sample Kolmogorov–

Smirnoff test. For assessing the ABL dependence of ILD discrimination accuracy, we 

used Fisher’s exact test, two-tailed, Bonferroni-corrected. Two-way ANOVA tests 

(3 × 4) were used to describe the effects of ABL and ILD on RTs. Group-level 

comparisons were made using two-way RM-ANOVA tests. For the limited sound 

duration experiments, we used two-way RM-ANOVA tests (2 × 6) to describe the 

effects of ABL and SDmax. We also used a two-tailed t-test, Bonferroni-corrected, to 

asses the significance of the difference in performance across the two ABLs for each 

SDmax. To evaluate the accuracy of the scale invariance of the RTDs as a function of 

ABL and ILD, we used two-tailed Fisher’s exact test. We tested normality and 
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homoscedasticity for the ANOVA tests shown in Fig. 3 (Lilliefors test for 

normality, P = 0.1, n = 4; Levene’s test for homoscedasticity, P = 0.56, n = 4). We did 

not test normality for the RT ANOVA tests (Fig. 2) because we have an actual accurate 

generative model of RT. Specific details on each testing procedure are given in the 

corresponding part of the data analysis section below. 

 

Data analysis 

Isolating stimulus-dependent RTs 

To exclude those trials in which behavior was not driven by the stimulus, we looked for 

the minimum RT for which there was evidence of condition dependence. To this end, 

we used two-sample Kolmogorov–Smirnoff tests to compare the distribution of RTs 

corresponding to the two conditions with the shortest (ILD = 6 dB, ABL = 60 dB SPL) 

and the longest (ILD = 1.5 dB, ABL = 20 dB SPL) mean RT. Starting at 50 ms, we 

systematically included longer and longer RTs. As evident in Supplementary Fig. 2a,b, 

if the maximum RT is sufficiently short, the two distributions are not significantly 

different but for RTs > RTmin = 90 ms, they become different. For all analyses, we 

excluded trials with RT < RTmin. In addition, since the shape of the RT distributions is 

very well behaved and understood in our study, we also excluded trials that had 

exceedingly large RTs, which presumably reflect disengagement. For all analyses 

except model fitting, we chose a conservative value of RTmax = 1,000 ms (the fraction of 

trials with RT > 1,000 ms was always very small: 0.39 ± 0.39%, mean ± s.d., across 

rats). For model fitting, trials with RTs above the 97% percentile in the RT distribution 

of each rat were excluded. Empirical estimates of the RT distribution (Figs. 2 and 4; 

Supplementary Fig. 7) were made using kernel density estimation51 as implemented 

with a custom Matlab code. 

 

Accuracy 

Accuracy was assessed using the SDT statistics for sensitivity (d′) and criterion 

(c)7 within each 80 trial block. Level dependence was tested by comparing d’ and c as a 

function of ABL (three comparisons: 20 versus 40 dB; 20 versus 60 dB; and 40 versus 

60 dB) using Fisher’s exact test with Bonferroni correction. Because easy blocks barely 

contain any errors, for comparisons between easy and standard blocks (Fig. 5f), the 
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statistic was percent correct instead of d′, and significance was evaluated again using 

Fisher’s exact test. 

 

As shown in Fig. 3, we fit a two-parameter logistic function (slope and asymptote; for 

fixed-duration sounds, the rats sometimes displayed non-negligible lapse rates) of the 

across-rat mean percent correct as a function of difficulty. We used two-way ANOVA 

to quantify the contribution of sound duration and ABL to accuracy in these 

experiments, using d′ as the statistic. Since the RT sessions with multiple ABLs in this 

batch used different values of ILD compared to the sessions with capped sound duration 

(see above), we fit a four-parameter logistic function (two asymptotes, slope and bias) 

to the behavior of each rat on the RT sessions. We then estimated by interpolation the 

performance of each rat at the same values of ILD used in the SDmax sessions and 

created datasets with the same number of trials as the actual RT sessions, but with ratios 

of correct and incorrect trials consistent with the interpolated performances. These new 

datasets were then used for calculating the d′ values of the RT sessions. Comparisons 

were made using two-way RM-ANOVA. 

 

Accuracy of temporal rescaling 

We assessed how accurately the RTDs for different experimental conditions resembled 

a uniform scaling of time (Fig. 2d,e; Supplementary Fig. 3) using the fact that when two 

distributions are related by a uniform scaling, their quantiles are proportional 

(Supplementary Fig. 3). For fixed ILD (ABL), we regressed the percentiles of each 

condition on those of the fastest, that is, 60 dB SPL (6 dB). Since the RTDs are 

significantly right-skewed, higher percentiles have more uncertainty. Thus, we used 

weighted least-squares to perform the linear fit. To compute the uncertainty in the 

percentiles, we generated 1,000 bootstrap re-samples from the RTD of each rat for each 

condition. For each re-sample, we computed the percentiles and averaged them across 

rats, obtaining a sampling distribution of 1,000 percentiles. These distributions are very 

well approximated by Gaussians. To avoid the complication of having uncertainty in 

both the dependent and independent variables, we followed the following heuristic 

approach: we assumed that the independent variable (percentiles of the fastest 

condition) had no uncertainty, and assigned an uncertainty 𝜎𝐷
eff = √𝜎𝐼

2 + 𝜎𝐷
2 to the 
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dependent variable, where 𝜎𝐼,𝐷
2  represents the variances of the sampling distribution of 

the percentiles of the independent and dependent variables, respectively. We then 

applied the standard weighted least-squares algorithm to find the value of the slope and 

its associated R2, which we report in Fig. 2e, inset, Supplementary Fig. 3. The shaded 

areas in Supplementary Fig. 3a,b correspond to 3𝜎𝐷
eff. 

 

History effects 

We used logistic regression52 to investigate the effect of trial history on the performance 

of the rats in single trials from the standard A1 blocks. We used the model to predict the 

performance of completed trials within the valid range of RTs. We used 12 predictors 

from the current trial, which corresponded to the four conditions of difficulty (absolute 

value of ILD) at each ABL (each coded as a [−1, 0, 1] identifier, with 0 representing 

that a different ILD–ABL pair was presented in that particular trial and ±1 representing 

a positive (negative) value of ILD). The following four aspects of trial history were 

evaluated: history of the stimulus lateralization (the sign of ILD regardless of ABL), the 

history of response side, and two response–outcome predictors (history of response side 

after correct choices, and after errors). For a given trial i, the stimulus history predictor 

for trial i − j was coded as a [−1, 1] indicator, where 1 (−1) indicates that the stimulus at 

trial i − j had positive (negative) ILD (by convention, we predict the choose-right 

probability ‘R’, that is, the probability of making a response to the side that is correct 

when ILD is positive). The response history predictor was coded as a [1, 0, −1] 

indicator, where 1 (−1) indicates that the rat made a response to R (L) in 

trial i − j regardless of the stimulus and 0 means the rat made an abort. The response 

after correct (incorrect) choices predictor was identical to the response predictor, except 

that the indicator was set to zero when the trial was either an abort or an incorrect 

(correct) trial. 

 

For each of these four aspects, we fit a kernel that extended 15 trials into the past, which 

was convolved with the corresponding predictor. We represented all history kernels as 

linear combinations of five unit-norm decaying exponentials with time constants of [0.5, 

1, 2, 4, 8] trials (Supplementary Fig. 10g, inset). In practice, we used an orthonormal 

basis in the space spanned by these five exponentials. Thus, all in all, our model fits 32 
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coefficients plus the bias: 12 from predictors associated to the current trial and 5 

coefficients for each of the 4 history kernels. All coefficients and kernels for all animals 

are shown in Supplementary Fig. 10. 

 

Model fits were performed using the Matlab version of the free software package 

glmnet53 (https://web.stanford.edu/~hastie/glmnet_matlab/). Regularization was 

implemented using the elastic net method with parameter α = 0.5. All predictors were 

subject to regularization. All fits used cross-validation as implemented by the function 

cvglmnet and we used the lamda_min option to select the hyper-parameter that 

minimizes prediction error. In addition, for assessing the predictive power of the fits, we 

manually implemented nested cross-validation with five outer folds. Briefly, model 

coefficients and hyper-parameters were sequentially fit using four-fifths of the data and 

prediction was evaluated on the remaining one-fifth until all the data had been used both 

for fitting and prediction. Predictive quality was assessed using the receiver operating 

characteristic area under the curve (AUC; Fig. 5c, inset). 

 

To estimate the relative predictive power of different types of predictors, we used the 

relative variance of the linear component of the model for a particular set of predictors. 

After linear combination or convolution for both current-trial coefficients and the four 

different history kernels (best fits), we obtained five time series across trials. For 

obtaining a final predictive probability, these would be added. Instead, we computed the 

variance across trials associated with each of the five time series and report its value 

relative to the summed variance across the five. The fraction of variance for each of the 

five type of predictors for each rat are shown in Fig. 5c and Supplementary Fig. 10. 

 

We used n = 2,000 bootstrap re-samples to estimate uncertainty (95% CI, shown as error 

bars in Fig. 5c and Supplementary Fig. 10) on the model parameters54. 

 

To assess whether trial history made a significant contribution to the predictive power 

of the model, we compared the AUC of the actual data to that of shuffled surrogate 

datasets (Fig. 5c, inset). In each shuffled surrogate dataset, history predictors were 

randomly permuted across the whole set of trials, with the constraint that the four 
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history predictors associated with a particular trial were in the same position of the 

permuted sequence for the surrogate dataset. For each surrogate, we estimated the 

uncertainty in the coefficients again using bootstrapping. Trial history was deemed to 

make a significant contribution if there was no overlap between the 95% CI of the real 

data and the shuffled surrogates. 

 

Model fitting 

Our model is specified by the following four parameters: θe, λ, T0 (the inverse of the 

effective gain of the pressure-to-rate transformation Nr0) and tNDT (no parameters 

describing lapses or biases are necessary to model the data). 

 

Constrained model fitting approach 

To test the whether the speed–accuracy trade-off as a function of ILD and whether the 

dependency of RTs on ABL, which are structural features of the model, were also 

present in the data, we used an unorthodox ‘constrained’ model fitting approach. Here, 

we first used choice data to fit the single parameter Γ (equation (2)) from the logistic 

function as follows: 

 

Choose − rightprobability ≡ 𝑝+ =
1

1 + exp(−2ΓILD)
 

 

Next, we fit the RTDs. We only fit the RTDs of correct trials. Although we also 

attempted to fit incorrect trials, the RTDs for incorrect trials, especially for low ABLs, 

were severely distorted due to the anticipation by the rats of the sound onset discussed 

in the main text and in Supplementary Fig. 2. We could not find a principled way of 

finding and excluding anticipatory error RTs that would lead to well behaved RTDs for 

errors. In the constrained fitting approach, we considered Γ was fixed (to its estimated 

value from fits to accuracy) for fits of the RTDs (implying that all dependence of the RT 

distributions on ILD was not available for the model fitting process to modify). To 

further test the ABL-to-RT relationship predicted by the model, we excluded data from 

the ABL = 40 dB SPL condition for these fits. RTDs were fit using the χ2 method 
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because of its robustness and efficiency55. In this method, one uses the χ2 statistic for a 

dataset composed of measurements of Np proportions. We used ten proportions (split by 

the 0.1, 0.2 and 0.9 quantiles of the RT distribution) per condition (although in 

Fig. 4c and Supplementary Fig. 7b1–5, we only show the 0.1, 0.3 and 0.9 quantiles to 

avoid visual clutter), and considered eight conditions (the four difficulties for ABL = 20 

and 60 dB SPLs). Thus, in the constrained approach, we adjust the value of three free 

parameters (λ, T0 and tNDT) to fit the results for Np = 80 proportions/data points. As 

discussed above, only RTs > RTmin and RTs < RTmax were considered. The cost function 

for the fit was as follows: 

 

𝜒2 =∑

𝑁𝑝

1

⁡
(𝑂 − 𝐸)2

𝐸
 

 

where O is the observed proportions and E represents the expected proportions given 

the model. To estimate E, we used the two series approximations of the RTD of a drift-

diffusion process ρDT(t) for short and long decision-times56,57, truncated both series at 

five terms, and selected between the two according to a threshold in dimensionless time 

of 0.25, which guarantees a smooth overlap and ensures that the relative error of the 

approximation is always below 10−3 for all decision times. The distributions were fit in 

dimensionless time. For a given non-decision time tNDT and measured RT, the 

dimensionless decision-time is τDT = (RT − tNDT)/tθ, where tθ is defined in equation (3). 

The χ2 cost function was minimized numerically in Matlab with the function 

fminsearch, which uses an implementation of the Nelder–Mead simplex algorithm58. 

The initial conditions for each parameter were randomly selected within a reasonable 

interval each time the function was executed, always converging to the same global 

minimum. Since our empirical RTDs are only defined between RTmin and RTmax (see 

above), for each putative value of the model parameters, the model RTD was compared 

with empirical RTD only within this range to derive the corresponding value of the cost. 

The purpose of this procedure is to avoid selecting parameter values that attempt to 

accommodate the discontinuities in the empirical RTDs resulting from the truncation 

process by changing the shape of non-truncated model distributions. 
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RTD fits were performed for both individual rats and pooled data across rats. When 

fitting pooled data, we first calculated the quantiles of the RTDs for each rat separately, 

then we averaged them (weighted by the relative number of trials performed by each 

rat), and then we fit the model to the average quantiles. 

 

Unconstrained model fitting approach 

We also fit the data in a standard unconstrained fashion. In this approach, we also used 

the χ2 method, but to simultaneously fit accuracy and RT, we scaled the RTDs so that 

the area under each distribution would be equal to the probability of the corresponding 

choice given the model. Accordingly, for each condition, we used 11 proportions, ten 

for the RTs of correct trials, and a single one for the incorrect trials (in this way, 

incorrect trials are only used for the estimation of accuracy, see above). Thus, in this 

approach, we adjust the value of all four free parameters to fit the results for Np = 132 

proportions (11 per condition for 12 conditions). All other aspects of the χ2 fit were the 

same as for the constrained approach. 

 

To obtain error bars for our estimates and an estimate of the joint distribution of the 

parameters from the fit (Fig. 4c; Supplementary Figs. 7–9; Supplementary Table 3), we 

used bootstrapping52, performing subsequent fits for Nr = 1,000 re-samples (with 

replacement) from our dataset. 

 

Maximum likelihood fits 

To ensure that our results were robust against the model fitting method, both 

constrained and unconstrained approaches were used using the quantile maximum 

likelihood method59. This method maximizes the likelihood of the data under the model, 

but also grouping RTs into quantiles to minimize problems due to outliers. The results 

of the fits using this method (reported in Supplementary Table 3) are effectively 

identical to those obtained using the χ2 method. 
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Multiplicative noise of baseline firing rates 

We also fitted the data with an extended model that considers multiplicative variability 

of the baseline firing rate of each channel of sensory neurons (Supplementary Note). 

The effect of the additional parameter σr was implemented in our custom Matlab fitting 

algorithm through numerical integration with the function integral2. We used the 

unconstrained χ2 method and proceeded as otherwise described above. Parameter 

uncertainties were again estimated using bootstrapping (700 re-samples). 

Data availability 

All data are available from the authors upon reasonable request. 

Code availability 

The custom Matlab scripts used to analyze the data are available upon reasonable 

request. 
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Fig. 1: Task structure and stimulus set 

 

 

 

 

a, Schematic depiction of the different task events. Rats were rewarded with water for making the correct 

choice (blue) and were punished with a time delay for making an error (red). b, Timeline of the relevant 

task events. FT, fixation time; MT, movement time. c, Stimulus set. The ABL (ILD) of a particular 

stimulus is given by the average (difference, by convention right minus left) of the intensity of the sound 

in dB SPL (sound level (SL)) across both speakers. Constant ILD (ABL) implies constant intensity ratios 

(intensity products). P0 = 20 μPa is the reference pressure of the dB SPL scale. Purple, green and orange 

circles indicate ABLs of 20, 40 and 60 dB SPL, respectively. 

  



Fig. 2: Time–intensity equivalence in sensory discrimination 

 

 

 

 

a, Choose-right probabilities as a function of ILD for each ABL separately (mean ± s.d. across rats, n = 5 

rats). b, Sensitivity (d′) and criterion (c) for each animal (black filled circles represent the mean; error 

bars are ±1 s.d. across rats). c, RT (mean ± s.e.m. across rats) as a function of difficulty for each ABL 

separately. d, RTDs for the three ABLs are shown separately for each difficulty, and combined across 

difficulties (far right). For all RTDs, the broken line indicates the time at which RTs become condition 

dependent (scale bar in all plots, 90 ms; see Methods and Supplementary Fig. 2). Each RTD contains all 

data for that condition from all rats. e, For each difficulty, we uniformly rescaled the time to maximize the 

overlap of each RTD with that for ABL = 60 dB SPL (Methods and Supplementary Fig. 3). The inset 

shows the fraction of variance (R2) that the RTD at ABL = 60 dB explains about the rescaled RTDs at 20 

and 40 dB SPLs (Methods and Supplementary Fig. 3). 
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Fig. 3: Breakdown of WL for controlled short sound durations 

 

 

 

 

a, Schematic illustration of the TIED. Sample paths of the DV for two stimuli with a high (green) and low 

(purple) ABL but the same ILD are shown. Horizontal lines are the decision bounds. Open circles mark 

the RT for correct trials, while filled circles mark incorrect trials. The RTDs for the two stimuli are 

plotted on the top. Because the green stimulus is stronger, the green sample paths rise faster, but if the 

four conditions we identify are met, the proportion of trials hitting either bound is ABL-independent 

(inset) and the two RTDs are related to each other by a rigid stretching of time. b, Schematic illustration 

of prediction. For times that are short compared with the typical RTs (rectangle outlined with a broken 

line in a), the likelihood of hitting either bound is still low and one can focus on the dynamics of the DV 

ignoring the bound. Left: sample paths and distribution of the DV at the putative offset SDmax of the same 

two sounds in a. Lower left: temporal evolution of the signal-to-noise ratio (SNR) of the DV for the two 

stimuli up to that time. Right: the TIED implies that the distribution of the DV for the green (loud) 

stimulus at SDmax should be identical to the distribution of the DV for the purple (quiet) stimulus at a later 

time SD′maxSDmax′. Lower right: since the SNR of the subthreshold DV always increases with time 

under evidence accumulation, performance for the weaker (purple) stimulus at SDmax is expected to be 

worse. c, Percent correct as a function of difficulty (mean ± s.d. across rats, n = 4 rats) for ABL = 20 and 

40 dB SPLs. d, Same as for c, but for the RT sessions. 

  



Fig. 4: Modeling the effect of difficulty and overall intensity in sensory discrimination 

 

 

 

 

a, Model structure and parameters. Each stimulus is encoded through a compressive power-law non-

linearity of gain r0 and exponent λ by a population of N neurons (a sensory channel) firing with Poisson 

statistics. The sensory evidence is the difference between the activity of each channel. The DV integrates 

the evidence until a constant bound at ±θ is hit (decision time). RTs are the sum of the decision time and a 

stimulus-independent non-decision time tNDT. The four model parameters are shown in red. b, Choose-

right probabilities (circles, mean ± s.d. across rats, n = 5 rats) and fit to these data from the single-

parameter model in equation (2) (line). c, Circles show the 0.1, 0.3, 0.5, 0.7 and 0.9 quantiles 

(mean ± s.e.m. across rats) of the measured RTDs. Black lines are the results from the model. For all 

panels, the curvature and relative position of the model quantiles (black lines) are a prediction derived 

from the fit to accuracy. For the left and right panels, a single vertical offset (tNDT) and a rigid vertical 

https://www.nature.com/articles/s41593-019-0439-7#Equ2


stretching of the quantiles (tθ(ABL)) are chosen to match the data. The middle panel is a full prediction. 

See Supplementary Fig. 7 for similar fits for each individual rat. 
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Fig. 5: Behavioral manipulations 

 

 

 

 

a, Choose-right probability (mean ± s.d. across rats, n = 3 rats) for broadband noise and 10 kHz pure tones 

of ABL = 60 dB SPL. b, Same for the standard non-frozen condition and for frozen noise either coherent 

or incoherent across ears (mean ± s.d. across rats, n = 6; Methods). c, History effects using logistic 

regression. The fraction of variance of the linear part of the model explained by the stimulus (ILD), 

stimulus history (StimH), response history (RespH), correct trials (CorrH) and response after errors 

(ErroH) (Methods and Supplementary Fig. 10). Each circle represents a single rat (n = 5 rats). The arrow 

for CorrH is rat 1. The inset shows the prediction accuracy (using nested cross-validation; Methods) of 

the logistic regression for the actual data and for surrogate data for which the history information was 

shuffled. For this panel and its inset, error bars are bootstrap 95% CI (2,000 re-samples) and the asterisk 

indicates that the actual and surrogate CIs do not overlap. d, Choose-right probabilities (mean ± s.d. 

across rats, n = 4 rats) for standard blocks and for uneven reward (RW) blocks, in which rewards for 

correct choices in the two hardest (easiest) conditions are 20% larger (smaller). e, Same (n = 3 rats) for 

hard versus control blocks. f, Same for more extreme, bidirectional and longer-lasting manipulations of 

motivation (n = 5 rats; see Methods for details on all task manipulations; Supplementary Table 2) The 

inset shows the reward rate (RR) in each condition of motivation relative to the reward rate in the hard 

condition (RRHard). 
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Integrated supplementary information 

Supplementary Figure 1 Headphones and acoustic shadow of the head. 

 

 

 

 

(a) Headphones used for stimulus delivery, and base (bottom). The base is chronically implanted to the 

skull of the animals and contains a strong miniature magnet which both holds the speakers in place during 

task performance and also allows easy attachment/detachment. The actual positioning of the speakers was 

adjusted under anesthesia to match the position of the pinnae for each rat individually relative to the base. 

The red material in the picture is a moldable glue (Sugru) used for strengthening the headphone 

structure. (b) Measurements of the acoustic shadow generated by the head. Broadband noise stimuli were 

played at 65, 70 and 75 dB SPL and sound level was measured placing the microphone by the ear canal of 

the ‘far’ ear. (c) The head plus near field positioning of the speakers causes an attenuation of 22 dB. (d) 

Because the head attenuation is not infinite, the sound at each ear contains a contribution from the 

intensity of both speakers. Thus, the intended (using the sound intensity only from the near speaker) and 

actual experienced intensity at each ear are not identical. We calculated the difference between the actual 

and experienced intensity assuming additivity of the squared pressure RMS from each speaker, and we 

used this to compute the difference between actual and intended ILD and ABL, which are shown in panel 

(d) as a function of intended ILD. Since these differences are always less than 0.1 dB (which is less than 

an order of magnitude smaller than the just noticeable difference (JND) for ILD of our animals) we have, 

for simplicity, ignored the difference between actual and intended levels throughout this study. 
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Supplementary Figure 2 Short RTs and processing delays. 

 

 

 

 

(a) Each plot shows the cumulative distribution of RTs for a given difficulty (absolute value of ILD) for 

the three ABLs (RTs merged across rats). The shape of the distribution for the shorter RTs is the same 

across all conditions. This is presumably due to the fact that sound onset after central-port entry was to 

some extent predictable (fixation period was drawn from a uniform distribution between 300 and 350 ms) 

and to the fact that we did not impose a minimum RT. These short, condition-independent RTs are thus 

the result of anticipation. (b) To detect the earliest time where RTs become condition-dependent, we run a 

two tailed Kolmogorov-Smirnoff test comparing the RTs for the fastest and slowest conditions (|ILD| = 6 

dB and ABL = 60 dB SPL versus (|ILD| = 1.5 dB and ABL = 20 dB SPL) as a function of the maximum 

RT included in the comparison. This panel shows the p-value of the test. We defined RTmin as the value at 

which this comparison becomes significant (90 ms, p<0.05). This value is shown as a dashed vertical line 

in (a) and (c). Since we are interested in the stimulus-dependence of RTs, we excluded from all analyses 

RTs smaller than RTmin. (c) Same as (a) but comparing the cumulative RTDs across ILDs for each ABL 

separately. As expected, the distributions start to diverge later for fainter sounds. However, it is obvious 

that this unspecific intensity-dependent delay cannot account for the changes in the RTD as a function of 

ABL shown in (a). None of our results changes qualitatively if we define a separate RTmin for each ABL. 
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Supplementary Figure 3 Empirical assessment of RT scale invariance. 

 

 

 

 

When two distributions in time are related to each other through a rigid stretching of the time axis, their 

percentiles are proportional. To see this, assume that distribution ρ’(t) is obtained from ρ(t) by stretching 

of the time axis by a factor α, so that ρ(t) = α ρ’ (αt). It follows that. 

∫
𝜏

0
⁡ 𝑑𝑡𝜌(𝑡) = 𝛼 ∫

𝜏

0
⁡ 𝑑𝑡𝜌′(𝛼𝑡) = ∫

𝛼𝜏

0
⁡ 𝑑𝑡′𝜌′(𝑡′) for all τ⊡ If the value of the previous integrals is 

Q/100, then τ is the Qth percentile PCρ(Q) of ρ(t) and ατ is the Qth percentile PCρ’(Q) of ρ'(t), i.e., their 

percentiles are proportional. This fact allows us to use the slope of a linear fit of the percentiles of the two 

distributions to identify the (putative) temporal rescaling factor α corresponding to a given change in 

ABL, and the R2 of the fit to quantify its precision. (a) Each plot shows, for each difficulty, PCABL(Q)-

PC60dB(Q) as a function of PC60 dB(Q), where PCABL(Q) is the 100Qth percentile of the RT distribution for 

the corresponding ABL of that difficulty. Each RTD contains all data for that condition from all rats (n = 

5 rats). Although, for each pair of RTDs, the linear fit was made directly between their percentiles, we 

plot in the figure the difference between the two percentiles against one of them, because it graphically 

displays the linear relationship more clearly. Only RTs > RTmin are considered in this analysis. Dashed 

line is the outcome of the linear fit. Shaded regions represent three standard deviations of the sampling 

distribution of the percentiles (see Methods). Note that higher percentiles have more error. Because of 

this, we used weighted least squares to do the linear fit. (b) Since difficulty has been suggested to also 

lead to an approximate rescaling of the RTD (Wagenmakers, E. and Brown, S., Psychological Rev., 

114(3):830, 2007; Ratcliff, R. and McKoon, G., Neural Computation, 20(4):873-922, 2008; Srivastava, 

V., et al., Journal of Mathematical Psychology, 75:96-109, 2016), we performed the same analysis as in 

(a) (n = 5 rats) for pairs of distributions corresponding to different difficulties (for each ABL 

separately). (c) R2 of the weighted least squares fit vs slope of the fit for the effect of changes on ABL 

https://www.nature.com/articles/s41593-019-0439-7/figures/8
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(gray) or ILD (black) on the RTDs from (a) and (b). Lines show linear fits. The accuracy of the scale 

invariance of the RTDs induced by changes in ABL is independent of the magnitude of the slope (slope 

of the linear fit not significantly different from zero; p = 0.6, Permutation test) and thus of the difference 

between the two RTDs being compared. In contrast, for changes in difficulty, the difference in shape (not 

just scale) of the RTDs becomes larger the larger the ILD-induced change in RT, as evident by 

statistically significant negative slope of a linear fit of R2 versus slope (p = 0.003, Permutation test), 

showing that R2s in this case are only large because the speed accuracy trade-off in the task is weak. 

These results are in agreement with the claims made in the main text, whereby ABL-induced scale 

invariance is exact, whereas difficulty-induced scale invariance is approximate and degrades with the 

difference in difficulty between the two RTDs. For a thorough treatment of the nature and form of the 

changes in the RTD induced by difficulty, see Section 4 of the Supplementary Note. 
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Supplementary Figure 4 The TIED holds in human ILD discrimination. 

 

 

 

 

Same format as Fig. 2 of the main text. (a) Psychometric functions (n = 9 human subjects; circles, across-

subject mean; lines, across-subjects standard deviation). (b) Discriminability index (left) and criterion 

(right) for each subject. (c) Chronometric functions ((n = 9; circles, across-subject mean; lines, across-

subjects SEM). (d) RTDs for each ILD and for all ILDs combined. (e) Same but with green RTD rescaled 

(as explained in Methods, Supplementary Fig. 3) to maximize overlap with the orange 

RTD. (inset) Fraction of variance of the RTD at one ABL explained by the RTD at the other ABL 

(see Methods). In all panels, green (orange) corresponds to ABL = 40 (60) dB SPL. See Methods for 

details of the behavioral task. 

  

https://www.nature.com/articles/s41593-019-0439-7/figures/9
https://www.nature.com/articles/s41593-019-0439-7#Fig2
https://www.nature.com/articles/s41593-019-0439-7#Sec13
https://www.nature.com/articles/s41593-019-0439-7#Fig8
https://www.nature.com/articles/s41593-019-0439-7#Sec13
https://www.nature.com/articles/s41593-019-0439-7#Sec13


Supplementary Figure 5 The TIED holds in rat olfactory mixture discrimination. 

 

 

 

 

Same format as Fig. 2 of the main text. (a) Psychometric functions (n = 4 rats; circles, across-subject 

mean; lines, across-subjects standard deviation). (b) Discriminability index (left) and criterion (right) for 

each subject. (c) Chronometric functions (n = 4 rats; circles, across-subject mean; lines, across-subjects 

SEM). (d) RTDs for each mixture contrast and for all of them combined. (e) Same but with green RTD 

rescaled (as explained in Methods, Supplementary Fig. 3) to maximize overlap with the orange 

RTD. (inset) Fraction of variance of the RTD at one mixture contrast explained by the RTD at the other 

mixture contrast (see Methods). In all panels, green (orange) corresponds to an odor concentration of 10-

2 (10-1) (v/v). See (Mendonça, A., et al., bioRxiv, page 501858, 2019) for details of the behavioral task. 
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Supplementary Figure 6 Relationship to the standard drift-diffusion model (DDM) and relevance of the 

log-ratio. 

 

 

 

 

(a) In the standard use of the DDM, only the drift coefficient μ is stimulus-dependent and the variance 

σ2 of the evidence is constant (Ratcliff, R. and Rouder, J., Psychological Science, 9(5):347-356, 1998; 

Palmer, J., et al., Journal of vision, 5(5):1-1, 2005). In contrast, if the activity of the sensory neurons is 

Poisson, both the mean and the variance of the evidence will in general be stimulus-dependent. In the 

figure, two discrimination problems (filled circles) are shown in stimulus space (s1, s2). We consider the 

type of stimulus dependence which holds in our experiments, 𝜇 ∝ 𝑠1
𝜆 − 𝑠2

𝜆 and 𝜎2 = 𝑠1
𝜆 + 𝑠2

𝜆. The 

difference between any two problems can be decomposed into a difference in the difficulty of the 

problem (gray curved lines) while keeping the variance of the evidence constant, and a difference in the 

effective time units of the problem (straight dark-gray lines) while keeping the intensity-ratio constant. 

Moving along these straight lines corresponds to a uniform stretching of the RTD; neither choice-

accuracy nor the shape of the RTD (only its scale) change along this line. Moving along the equi-variance 

lines we change the ratio of the stimulus intensities, and thus both choice accuracy and the shape of the 

RTD vary. Thus, when we speak of keeping the ‘overall intensity' of the stimuli constant in the main text, 

we are formally referring to stimulus manipulations which keep the variance of the evidence 

constant. (b) In general, keeping the variance of the evidence constant while the stimuli change requires a 

good understanding of how the evidence relates to the stimulus. In our simple model, it requires knowing 

the value of λ. However, close to psychophysical threshold, keeping the variance constant is easier, since 

the constant σ2 line becomes perpendicular to the identity line s1=s2. Thus, any changes which keep 

constant any symmetric function of the stimulus are expected to also keep the variance approximately 

constant. This panel shows a zoomed version of the dashed square region in (a), representing 

discrimination problems close to psychophysical threshold (i.e., s1 ~ s2). Gray line is as in (a), and blue 

line is the line representing constant ABL which we use in our experiments. Keeping s1 + s2 constant 

would be a worse approximation, but which would nevertheless be appropriate if s1 and s2 are sufficiently 

similar. (c) Here we considered whether there is anything special about the logarithmic transform. In a 

signal detection theory model with additive noise and a logarithmic encoding of the stimulus intensity 

(Fechner's model (Fechner, G., Breitkopf and Harterl, 1860)), the d’ of a discrimination is proportional to 
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the log of the ratio of the stimulus intensities. We also obtain that the choice log-odd ratio (LOR) close to 

psychophysical threshold is proportional to ILD (Eq.44), i.e., the log of the ratio of the RMS pressure 

level of the two stimuli (Fig. 1c). However, we have not explicitly invoked a logarithmic transformation. 

Logarithms only appear in our description because sound level is typically measured in dB. In deriving 

Eq. 44, which is valid near threshold, we took the exact expression for the choice-LOR (Eq. 38) and 

developed it to first order in ILD. However, one can also develop this expression to first order in the small 

quantity 1−s1/s2. The figures shows the choice log-odds ratio (LOR) as one varies one stimulus (s1) while 

moving along the gray (gray line) and blue (blue and red) lines in (b). Gray is the exact LOR. Blue is the 

linear approximation in log s1/s2, equivalent to Eq. 44. Red is a linear approximation in (s2−s1)/s2. These 

two approximations are similarly accurate, at least for the range of difficulties that we have used. Thus, 

although the the mathematical description of our model is compact when measuring sound intensity in 

dB, there is nothing unique about the logarithmic transformation. For all panels in this figure, we 

used λ=0.1. 
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Supplementary Figure 7 Model fits for individual rats. 
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(a1-5) Psychometric functions. Dots are choose-right probabilities separately for each ABL (same color 

code as Fig. 4 main text). A single psychometric function has been fit to pooled data across ABLs (mean 

± SD for each individual rat). (b1-5) The five quantiles for the RTDs for the three ABLs and their model 

fit. Error bars are 95% CIs across bootstrap resamples (Nr = 1000). (c1-5) RTDs for each rat and their 

corresponding model fit across all twelve conditions. Shaded regions represent 95% CIs across bootstrap 

resamples (Nr = 1000). Results are more noisy than for the pooled data but the model can still fit the 

behavior of each single rat accurately. 
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Supplementary Figure 8 Constrained versus Unconstrained model comparison. 

 

 

 

 

(a) Constrained fitting approach. In the main text (Fig. 4) we used a ‘constrained’ model fitting approach. 

For this approach, we first fit Γ~λθe from the psychometric function of the rats. Then, assuming that Γ is 

now fixed, we fit the remaining three parameters λ, T0, tNDT using only the two extreme values of ABL = 

20 and 60 dB SPL (see Methods). The figure shows the results of this fit, which is the same data shown in 

Fig. 4b, c (n = 5 rats). Left: Choose-right probabilities (circles, mean ± across rats, n = 5; black line, 
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model fit). Right: circles show the 0.1, 0.3, 0.5, 0.7 and 0.9 quantiles (mean ± SEM across rats, n = 5, 

black line, model fit). The variance in the shape of the observed RTDs explained by the constrained 

model is 97.7 ± 2.3% (see Methods, main text). (b) Unconstrained fitting approach. Alternatively, one can 

fit all four parameters simultaneously from all the data (RT and accuracy from all conditions, 

see Methods). The figure shows the results of this fitting approach in the same format as in (a). The 

variance in the shape of the observed RTDs explained by the unconstrained model is 98.4 ± 1.4% (c) Log 

parameter estimates (and JND) for the constrained (black circles) and unconstrained (white circles) 

models for the pooled data and for individual rats (n = 5 rats, error bar represents 95% bootstrap CI). The 

model fits and estimated parameter values using both model fitting approaches are almost identical. The 

fact that an unconstrained fit produces the same result as the constrained fit means that both the coupling 

between speed and accuracy as a function of ILD, as well as the effect of ABL on RTs, have the same 

nature in the model and in the data. Supplementary Table 3 also shows the values of the estimated 

parameters for both model fitting approaches using the Quantile Maximum Likelihood method 

(Heathcote, A. and Brown, S., Psychonomic Bulletin and Review, 11(3):577-578, 2004) (Methods), which 

are effectively identical to those obtained using the χ2 Methods. 
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Supplementary Figure 9 Uncertainty in parameter estimation. 

 

 

 

 

(a) We obtained an estimate of the joint probability distribution of the parameters from (unconstrained) 

model fits of bootstrap re-samples of our dataset. Gray: Log-parameters from 200 re-samples. Black: 

mean ± standard deviation across 1000 re-samples (n = 5 rats). Red dot is the fit to the actual data. There 

are strong correlations between λ, θe and T0. The negative correlation between λ and θe is easy to explain, 

since accuracy only constrains their product. The figure shows that this product (or, equivalently Γ, which 

sets the rat's JND) is very well specified by the data. (b) To gain an understanding of the relationship 

between T0 and λ we explored how they jointly determine the dependency of RT on ABL. Recall that we 

have assumed that RT=tNDT+τDTtθ and that this temporal rescaling relationship describes our data very 

accurately (Fig. 4). In order to obtain a model-independent estimate of tθ, we used a procedure analogous 

to the one in Supplementary Fig. 3, and inferred this estimate t^θt^θ, linearly regressing the quantiles of 

the actual RT distributions for each value of ABL on those for the ABL-independent distribution 

of τDT specified by the dimensionless DDM in Eq. 41. We performed a single fit for all difficulties with a 

given ABL. Thus, we have 𝑡
^

𝜃(𝐴𝐵𝐿) = (𝜒2𝑇0Γ
2/2𝜆2)10−𝜆𝐴𝐵𝐿/20 which we view as a non-linear equation 

with ABL as the independent variable for which we have three data points per rat. Since Γ is very well 

specified by the data, we assume it is constant and equal to its best-fit value and consider T0 and λ as the 

parameters of interest. We used non-linear least squares to study how well λ and T0 are specified by this 

last equation. The fits were actually performed on log-parameters to avoid ambiguities due to units of 

measurement. The figure shows the empirical time-scale factor t^θ(ABL)t^θ(ABL) for each of the three 

ABL conditions and the model fits. Each color except black is for an individual rat. (c) Estimates of 

log T0 versus log λ from the non-linear least square fit. Colored points are estimates from bootstrap re-

samples. For each color, black full circle is the mean across 1000 re-samples. Black lines represent the 

directions of the eigenvectors of the Fisher Information Matrix (FIM) evaluated at the best fit, with 

lengths proportional to the covariance of the parameters (they are not orthogonal because the x- and y-

axis are stretched). Inset. The two eigenvalues of the FIM for each rat. The eigenvalues span several 

orders of magnitude, a signature of that the there is a ‘sloppy’ direction in parameter space in the model 
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(the one along which log λ and log T0 are positively correlated) (Transtrum, M., et al., Physical Review E, 

83(3):036701, 2011; Machta, B., et al., Science, 342(6158):604-607, 2013). Inspecting the functional 

form of 𝑡
^

𝜃(𝐴𝐵𝐿) , we see that its curvature with respect to ABL is determined by λ, and that λ 

and T0 jointly determine the overall range of⁡𝑡
^

𝜃(𝐴𝐵𝐿) . Sloppiness arises because similar curves can be 

produced by small correlated changes in curvature and range. Although curvature and range also appear 

correlated across rats, we believe that more rats and more values of ABL are needed to establish that this 

correlation is indeed a robust feature of the data. Despite sloppiness, the model is still quite sensitive to 

the values of  𝑡
^

𝜃(𝐴𝐵𝐿). For instance, it is straightforward to check that the following equality should 

hold⁡𝑡
^

𝜃(𝐴𝐵𝐿 = 40)/𝑡
^

𝜃(𝐴𝐵𝐿 = 60) = 𝑡
^

𝜃(𝐴𝐵𝐿 = 20)/𝑡
^

𝜃(𝐴𝐵𝐿 = 40). Artificial values 

of 𝑡
^

𝜃(𝐴𝐵𝐿) perfectly within the range of what we observed, but which strongly violate this equality 

(black circles in panel b), give poor model fits (panel b, inset). 

  



Supplementary Figure 10 Trial history effects. 

 

 

 

 

In order to reveal the extent to which variables different from the sensory stimulus in the current trial had 

control over the rat's responses (Busse, L., et al., Journal of Neuroscience, 31(31):11351-11361, 2011; 

Fründ, I., et al., Journal of vision, 14(7):9-9, 2014), we quantified the predictive power of the history of 

stimuli, responses, responses after correct outcomes and responses after errors on choices in the current 

trial using logistic regression (n = 5 rats, see Methods). (a, b) Same data as in Fig. 5c. (a) Fraction of 

variance of the linear component of the logistic regression model captured by the stimulus and the four 

types of history effects we considered. Each dot is a single rat. Inset. Zoom in on the fraction of variance 

associated to the history effect predictors. (b) Area under the curve (AUC) for each rat for the actual data 

and for surrogate datasets where history predictors have been shuffled (see Methods). (c) Current trial 

stimulus predictor coefficients separately for each ILD and ABL. Coefficients are mostly ABL-

independent and grow linearly with ILD. The linear increase with ILD is a signature of discriminations at 

psychophysical threshold (see Section 3.3 of the Supplementary Note). (d–g) Kernels for each of the four 

types of history predictors. Notice the difference in the scale of the y-axis between this panel and panel 

(c). Dots connected by lines indicate the kernel for each single rat. The larger positive-then-negative 

kernel in (f) (thick-line) corresponds to Rat 1, which shows a small but significant effect of history (point 

with relative variance > 5% in panel a, inset). This rat had a mild win-stay strategy due to a tendency to 

leave the back of her body aligned with the rewarded lateral port for the subsequent trial. Inset in (g) 

shows the basis of decaying exponentials used to express all kernels. Across the figure, error bars are 

bootstrap 95% CI (2000 re-samples, see Methods). These results suggest that stimulus-independent 
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strategies have only marginal control over the responses of the rats in the task, and that their choices on a 

trial-by-trial basis reflect almost exclusively their perception of the ILD of the sounds in the current trial.  



Supplementary Figure 11 RT scale invariance with respect to changes in strength of evidence. 

 

 

 

 

The text and mathematical details associated to this figure are in section 4 of the Supplementary 

Information. (a) Four representative RTDs from the drift-diffusion model. Inset. Accuracy as a function 

of strength of evidence. (b) Same distributions but in rescaled time. The time axis for the three slowest 

distributions was changed so as to maximize the overlap (minimize the Kolmogorov Smirnoff (KS) 

distance) with the fastest one. (c) KS distance as a function of the accuracy associated to any pair of RT 

distributions. (d) Same after temporal rescaling. (e) Exponential and refractory components of the RTDs 

shown in (a), with the same color code (see section 4 of the Supplementary Note). The refractory term 
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(gray) is the same for all of them as it does not depend on the strength of evidence. The color lines 

show K(μ, σ2)E(t) (see Eq. 53, 54), so that the product of the two lines is the actual RTD. (f) Properties of 

the exponential decay term E(t) as a function of accuracy. First two lines are the mean decision-time and 

the time constant of the exponential decay term τExp. Third line is the strength of evidence. Fourth line is 

the ratio νDrift/νDiffusion (see Eq. 50) Only for accuracies very close to unity does the strength of evidence 

come to dominate the shape of E(t) and thus of the RTD. The different quantities in this plot are all 

dimensionless and have comparable values; thus we've used a single y axis whose label should be inferred 

from the legend. For all plots in this figure we've assumed without loss of generality that σ2=1. 

 

 

 


