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A B S T R A C T

The detection of retinal microaneurysms is crucial for the early detection of important diseases such as
diabetic retinopathy. However, the detection of these lesions in retinography, the most widely available retinal
imaging modality, remains a very challenging task. This is mainly due to the tiny size and low contrast of
the microaneurysms in the images. Consequently, the automated detection of microaneurysms usually relies
on extensive ad-hoc processing. In this regard, although microaneurysms can be more easily detected using
fluorescein angiography, this alternative imaging modality is invasive and not adequate for regular preventive
screening.

In this work, we propose a novel deep learning methodology that takes advantage of unlabeled multimodal
image pairs for improving the detection of microaneurysms in retinography. In particular, we propose
a novel adversarial multimodal pre-training consisting in the prediction of fluorescein angiography from
retinography using generative adversarial networks. This pre-training allows learning about the retina and
the microaneurysms without any manually annotated data. Additionally, we also propose to approach the
microaneurysms detection as a heatmap regression, which allows an efficient detection and precise localization
of multiple microaneurysms. To validate and analyze the proposed methodology, we perform an exhaustive
experimentation on different public datasets. Additionally, we provide relevant comparisons against different
state-of-the-art approaches. The results show a satisfactory performance of the proposal, achieving an Average
Precision of 64.90%, 31.36%, and 33.55% in the E-Ophtha, ROC, and DDR public datasets. Overall, the
proposed approach outperforms existing deep learning alternatives while providing a more straightforward
detection method that can be effectively applied to raw unprocessed retinal images.
1. Introduction

The detection of microaneurysms (MAs) in eye fundus images is
an important and challenging step towards the early diagnosis and
prevention of important health conditions. In particular, MAs are small
vascular lesions consisting in the swelling of capillaries due to weak-
ened vascular walls [1]. Thus, retinal MAs can be associated with
ifferent ophthalmic and cardiovascular conditions [2]. For instance,
retinal MAs have been shown to be a risk factor for strokes [3].
Additionally, MAs are the first typical sign of diabetic retinopathy
(DR) [4], a retinal disease that represents the leading cause of blindness
among the middle-aged population in the world [5]. Therefore, it is
crucial to detect the disease at its earliest stages in order to prevent the
progression and potential vision loss. However, the tiny dimensions of
the MAs make their detection extremely challenging for both clinical
experts and automated procedures.

∗ Corresponding author at: Centro de Investigación CITIC, Universidade da Coruña, A Coruña, Spain.
E-mail address: a.suarezh@udc.es (Á.S. Hervella).

Regarding the analysis of the eye fundus, color retinography is
the most widely available retinal imaging technique. These color pho-
tographs of the eye can be obtained with affordable equipment and
minimal inconvenience for the patients [6,7]. Thus, they are the ideal
target imaging modality for screening programs and automated proce-
dures in any healthcare service [7]. In retinography, MAs are shown
as small blood-colored dots, typically placed near small vessels. The
detection of these reddish lesions is challenging not only due to their
small size but also due to the sub-optimal visual conditions. In this
sense, MAs may present low contrast with respect to the background
or may be affected by uneven illumination across the image. Moreover,
MAs can also be confused with other structures in the images [8], such
as microhemorrhages, pigmentation changes, or even dust particles in
the camera.
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Fig. 1. Color retinography and fluorescein angiography for the same eye. Some representative examples of MAs are marked with circles in the zoomed area. In the retinography,
different structures are depicted with the same reddish tone, whereas, in the angiography, the MAs are highlighted. In this sense, the angiography (b) can be used as a reference
to differentiate the true MAs in the retinography (a). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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In clinical practice, in order to overcome the limitations of color
retinographies for the detection of MAs, clinicians can opt for injecting
a blood contrast dye to the patients. This contrast dye, called fluores-
cein, produces the fluorescence of the blood and, therefore, can be
used to produce a retinal photograph where the vascular structures
and lesions are highlighted [9]. The resulting imaging modality, called
fluorescein angiography, allows to study in detail the retinal vascu-
lature and to easily visualize the existing MAs. Indeed, the contrast
dye specifically produces the fluorescence of MAs avoiding those other
structures of similar appearance in color retinography. This makes
fluorescein angiography the clinical gold standard for the detection and
study of MAs. However, due to the invasive nature of the procedure
and potential hazards of the contrast dye, the technique is excluded
from common screening programs and reserved for the study of high
evidence cases [10]. Fig. 1 depicts some representative examples of
As in both color retinography and fluorescein angiography.
Given the difficulties for detecting MAs in retinography, the devel-

pment of automated methods is key towards facilitating successful
creening programs of the population. Traditional approaches to auto-
ated MAs detection are characterized by the use of several ad-hoc
rocessing stages [11]. In these cases, it is typical to perform the
etection of numerous MAs candidates and then proceed to their classi-
ication based on a set of hand-engineered features. In contrast, recent
orks have adopted deep learning-based approaches where the engi-
eering of features is not required and, instead, the required features
re automatically learned from the data [12]. However, despite the
otential of Deep Neural Networks (DNNs) for learning from the raw
mages, deep learning-based MAs detection methods still typically re-
uire the use of ad-hoc pre-processing steps [12,13]. Moreover, it is also
ommon the necessity of several networks or aggregation mechanisms
n order to produce refined predictions [12,14]. Thus, the straightfor-
ard and efficient use of DNNs for the detection of MAs remains a
ignificant challenge.
The challenges for applying deep learning to MAs detection come

rom the very nature of the detection task and the necessity of suffi-
ient annotated data from the training of the networks. Regarding the
etection task, it is not always evident how it should be addressed
147
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sing a DNN. For instance, in the literature, there are examples of
ifferent approaches, such as bounding box predictions [15] or the use
f segmentation as a surrogate task for the detection [12,13]. The latter
eing at the cost of requiring significantly more expensive labels in the
orm of segmentation masks. In that sense, the annotation of MAs is
tedious and difficult task that must be performed by clinicians with
xpertise in the field. Even then, it is typical to see a high variability
mong the experts’ annotations [8], which shows the difficulty of
roducing a reproducible analysis. Furthermore, the annotations for a
etection task typically consist of a few pixel coordinates per image,
hich represent a scarce source of information for training DNNs.
In this work, we propose a novel methodology that aims at over-

oming the main challenges of applying deep learning to the detection
f MAs in retinography. In particular, we aim at providing a straight-
orward detection method able to process complete raw images in a
ingle step without the necessity of pre-processing or patch-processing
he data. For that purpose, we propose to formulate the detection of
As as a heatmap regression, where a DNN is trained to predict a
As heatmap (or likelihood map) from the input retinography. Then,
he pixel coordinates of the detected MAs are obtained with minimal
ost-processing, only requiring the extraction of the local maxima
i.e. the points of maximum likelihood) in the predicted heatmaps.
dditionally, to facilitate the training of this challenging task, we
ropose a novel adversarial multimodal pre-training that takes advan-
age of additional unlabeled multimodal images to learn about the
haracteristics of the MAs in a self-supervised fashion. Recently, a
elf-supervised multimodal pre-training consisting in the prediction of
ngiographies from retinographies has demonstrated to be useful for
he later analysis of the retinal anatomy in retinography [16]. Given
he condition of the angiography as the gold standard for the analysis
f MAs, this kind of multimodal pre-training should be especially
dvantageous for MAs detection. However, the existing methodology
roposed in [17,18] does not successfully learn to distinguish all the
mall structures in the retina. In fact, this multimodal reconstruction
ypically fails to recognize the MAs, which are ignored or treated as
mall microhemorrhages in the generated angiographies. In order to
mprove the recognition capacity of the multimodal reconstruction, we
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propose a novel methodology that is based on the use of an adversarial
framework. This novel methodology provides better recognition of the
MAs, facilitating their distinction among other similar structures. As a
consequence, the proposed adversarial multimodal pre-training allows
a successful detection of the MAs in the raw retinographies.

In summary, the methodology proposed in this work for the detec-
tion of MAs in retinography presents two important novelties. First,
to the best of our knowledge, this is the first work using unlabeled
multimodal images as well as generative adversarial networks (GANs)
for pre-training the detection of MAs. Second, in contrast to previous
works, the detection of MAs is approached as a heatmap regression
task using DNNs. In order to demonstrate the advantages of the pro-
posed methodology, we perform an exhaustive experimentation on
several public datasets including different scenarios. Additionally, the
experimentation includes relevant comparisons against state-of-the-art
methods for the detection of MAs and the pre-training of retinal image
analysis algorithms.

1.1. Related work

Several approaches have been proposed in the literature for the
automated detection of retinal MAs [11]. However, the earliest works
addressing this task were applied to angiography instead of retinogra-
phy [19]. Fluorescein angiography represents the gold standard for the
visualization of retinal MAs and, therefore, it was also considered as a
natural first step for the automated detection of MAs. These first works
applied to angiography followed a classical pipeline consisting of image
pre-processing, candidate extraction, and refinement [19,20]. Given the
similarities between retinography and angiography, the same pipeline
was later adapted for the detection of MAs in retinography [21]. In
this regard, the detection of MAs in retinography represents a more
challenging task due to the much lower contrast of the MAs in the
images. However, the shape characteristics of the MAs remain the same
in both imaging modalities.

Regarding the use of the classical pipeline in retinography, the
sub-optimal visual conditions of the MAs place great importance on
the pre-processing of the images. In this regard, a common approach
throughout the literature is to only consider the green channel of the
retinography [22–25], where the blood containing structures are more
contrasted [26]. Then, different normalization techniques are applied
to improve the contrast of the MAs [13,24,27,28], whereas the noise is
typically reduced by filtering the image [12,25,28]. With regard to the
candidate extraction step, a variety of techniques have been proposed.
For instance, Morlet wavelets [22], first-order Gaussian derivative fil-
ters [23], sliding band filters [25], or Multi-scale Gaussian Correlation
Coefficients [28,29] have been successfully applied in conjunction
with different thresholding techniques. However, in these cases, the
extraction of the final MAs candidates still requires further processing
to remove spurious detections, such as the extraction of the blood
vessels [28] or filtering the candidates by shape characteristics [23].
In contrast, Veiga et al. [27] directly extract the MAs candidates via
pixel-wise classification using a Support Vector Machine (SVM) with
Laws texture features. Given that all these techniques result in a high
number of false detections, a classification or refinement stage of the
MAs candidates is required. In this final step, the most successful
approaches are those based on machine learning techniques. In this
regard, the typical approach requires the extraction of handcrafted
features and the subsequent training of a classifier. Regarding the
feature extraction, shape and intensity features are the most commonly
used [24,25,27,28]. Although features based on texture [27] or local
convergence index filters [23] have also been successfully applied.
For the classification, different algorithms have been explored, such
as SVM [27] or RUSBoost [23–25], which is a sampling/boosting
algorithm for learning from unbalanced data. Additionally, the use of
sparse principal component analysis for improving the classification has
148

also been proposed [28]. In contrast to all these approaches, Javidi
et al. [22] avoid the extraction of handcrafted features by using Fisher
discrimination dictionary learning.

Recently, several deep learning-based methods have also been pro-
posed. Although the use of DNNs is still not as common as in the
segmentation of MAs [7,30]. In this regard, while the training and
inference procedures for the segmentation task are well defined, that
is not the case for the detection counterpart, which remains an es-
pecially challenging issue. Regarding the detection of MAs, despite
the ability of DNNs for learning complex patterns from the raw data,
the pre-processing of the input images is still present in some of the
most successful deep learning-based approaches [12,13]. Regarding the
methodological proposals for MAs detection, different alternatives have
been explored. For instance, the MAs detection has been successfully
approached as a patch-level classification task, for which convolutional
neural networks with fully connected layers are required [14]. In this
case, Savelli et al. [14] proposed an ensemble of networks that are ap-
plied on patches of different dimensions. In contrast, other works [12,
13] approached the MAs detection as a segmentation task, which is
performed with a fully convolutional network. However, in [12], the
images are also processed by patches, given that the final prediction for
each pixel is obtained by aggregating the response in all the possible
patches containing that pixel. Additionally, the use of patches during
training allows to balance the data distribution, correcting the reduced
number of MAs in the training set [12,14]. In this regard, another
possibility to address the unbalanced training data is to manipulate
the loss functions, using e.g. weighted cross-entropy or focal loss [13].
Finally, a third methodological alternative in the literature is to perform
a bounding box prediction task, which is a common approach for object
detection. In this case, Li et al. [15] explored the use of several state-
of-the-art deep learning methodologies for object detection. However,
these methodologies resulted in low performance for the detection of
MAs, which evidences the difficulty of the problem at hand.

In comparison to previous deep learning methodologies, we ap-
proach the MAs detection as a heatmap regression. This allows an
easy extraction of the precise MAs locations, which are represented
by the local maxima in the predicted heatmaps. In contrast, other
comparable approaches such as segmentation [12], despite requiring
more expensive labels for training, do not naturally provide the precise
location of the MAs. Additionally, the proposed methodology also
aims at producing a more straightforward and efficient use of DNNs
in comparison to other successful approaches in the literature. This
is possible due to the proposed adversarial multimodal pre-training,
which successfully leverages the domain-specific knowledge provided
by the unlabeled angiographies. In this regard, the proposed method-
ology adds complexity to the training phase, which is performed only
once, to facilitate the detection of MAs at inference time. As a result,
the proposed approach avoids both the use of pre-processing and the
necessity of patch-processing the images.

The rest of the manuscript is structured as follows. In Section 2,
the proposed methodology is described, including (Section 2.1) the
adversarial multimodal pre-training, (Section 2.2) the MAs detection
using the heatmap regression approach, and (Section 2.3) the network
architectures. Section 3 comprises the experiments, results, and their
corresponding discussion. First, this section describes (Section 3.1)
the datasets and (Section 3.2) the evaluation procedure. Then, sev-
eral analyses and comparisons are provided, including (Section 3.3) a
qualitative analysis and comparison of the pre-training, (Sections 3.4–
3.6) complete analyses and comparisons of the MAs detection, and
(Section 3.7) an evaluation of the proposed approach for the detection
of DR. Limitations and future works are discussed in Section 3.8.
Finally, conclusions are drawn in Section 4.

2. Methodology

The automated detection of MAs in retinography is approached

as a heatmap regression using DNNs. Following this approach, the
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Fig. 2. Methodology for the automated detection of MAs in retinography. (a) MAs detection via heatmap regression. (b) Training procedure for the MAs detection network. Firstly,
the network is pre-trained using the adversarial multimodal reconstruction. Then, the same network is fine-tuned for the prediction of the MAs heatmaps.
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specific coordinates of the detected MAs will be those corresponding
to the local maxima in the predicted heatmaps. In order to facilitate
the training of a DNN in this challenging task, the MAs detection
network is previously pre-trained in a self-supervised fashion using a
novel adversarial multimodal reconstruction approach. The objective of
this self-supervised pre-training is to provide the network with relevant
knowledge for the detection of MAs before using any annotated data.
For that purpose, fluorescein angiography, which is the clinical gold
standard for MAs analysis, is used as target image modality in the
adversarial multimodal reconstruction. A graphical summary of the
proposed methodology for the detection of MAs is depicted in Fig. 2.

.1. Adversarial multimodal reconstruction

The multimodal reconstruction of angiography from retinography
s trained using an adversarial framework consisting of two different
etworks: the generator 𝐺 that learns to predict the corresponding
ngiography from the input retinography and the discriminator 𝐷 that
earns to distinguish between predicted and real angiographies. The
raining is performed with a paired set of images, where for each
etinography there is also available an angiography of the same eye. In
rder to better take advantage of the paired data, the multimodal image
airs are registered, resulting in a pixel-wise correspondence between
he retinography and the angiography of the same eye. The registered
mage pairs allow the use of pixel-wise distance metrics between the
enerated and target angiographies, as well as the use of a discriminator
etwork that is pixel-wise conditioned with the corresponding input
etinography. The registration of the images is automatically performed
y applying the methodology proposed in [31].
In contrast with the approach proposed in [18], in this work we

ombine both reconstruction and adversarial loss functions for training
he generator network. The objective of adding an adversarial loss is
149

o provide additional complementary feedback to the generator. In
hat sense, while the reconstruction loss has demonstrated to provide
igh quality feedback for successfully reconstructing most of the retinal
tructures, the provided feedback is still solely based on low level char-
cteristics of the images. The addition of an adversarial loss function,
arameterized by a DNN, results in additional feedback that can be re-
ated to both high and low level characteristics of the images. Thus, this
ombined approach has the potential to improve the recognition of the
ifferent retinal structures, especially those that are more challenging
uch as the MAs. The combined loss function for training the generator
s defined as:

𝐺 = 𝑅𝑒𝑐
𝐺 + 𝜆𝐴𝑑𝑣

𝐺 (1)

here 𝑅𝑒𝑐
𝐺 denotes the reconstruction loss, 𝐴𝑑𝑣

𝐺 the adversarial loss,
nd 𝜆 is a hyperparameter that balances the contribution of the two
ifferent losses.
For the reconstruction loss, we use the negative Structural Similarity

SSIM) [32], which has been previously proposed for the multimodal
econstruction, demonstrating a superior performance in comparison to
ther common metrics [18]. In particular, SSIM combines into a single
etric the intensity, contrast, and structural similarities between two
mages. The SSIM value for a pair of pixels (𝑥, 𝑦) is obtained using a set
f local statistics as:

𝑆𝐼𝑀(𝑥, 𝑦) =
(2𝜇𝑥𝜇𝑦 + 𝐶1) + (2𝜎𝑥𝑦 + 𝐶2)

(𝜇2
𝑥 + 𝜇2

𝑦 + 𝐶1)(𝜎2𝑥 + 𝜎2𝑦 + 𝐶2)
(2)

here 𝜇𝑥 and 𝜇𝑦 are the local averages for 𝑥 and 𝑦, respectively, 𝜎𝑥
and 𝜎𝑦 are the local standard deviations for 𝑥 and 𝑦, respectively, and
𝜎𝑥𝑦 is the local covariance between 𝑥 and 𝑦. These local statistics are
computed for each pixel by weighting its neighborhood with a Gaussian
window of 𝜎 = 1.5 [32]. The constant values 𝐶1 and 𝐶2 are included
to avoid instability when the denominator terms are close to zero.

Following the definitions given by Wang et al. [32] and considering
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that the image values are bounded between 0 and 1, we use 𝐶1 = 0.0001
and 𝐶2 = 0.0009.

Then, for a certain input retinography 𝐫 and the corresponding tar-
get angiography 𝐚, the reconstruction loss for the generator is obtained
as:

𝑅𝑒𝑐
𝐺 = − 1

𝑁

𝑁
∑

𝑛
𝑆𝑆𝐼𝑀(𝐆(𝐫)𝑛, 𝐚𝑛) (3)

where 𝑁 denotes the number of pixels in the images.
For the adversarial loss, we use a least squares approach [33]

here the targets of the discriminator are 1 for real samples and 0
or generated samples. Thus, the target of the generator is to produce
value of 1 in the discriminator output. The adversarial loss for the
enerator is obtained as:

𝐴𝑑𝑣
𝐺 = 1

𝑀

𝑀
∑

𝑚
(𝐃(𝐆(𝐫), 𝐫)𝑚 − 1)2 (4)

where 𝑀 denotes the size of the discriminator output.
Simultaneously, the discriminator is trained on both the real an-

iographies and the fake angiographies that are estimated by the
enerator. Thus, the loss for the discriminator is obtained as:

𝐷 = 1
𝑀

𝑀
∑

𝑚

[

(𝐃(𝐆(𝐫), 𝐫)𝑚)2 + (𝐃(𝐚, 𝐫)𝑚 − 1)2
]

(5)

As defined in Eqs. (4) and (5), both the real/fake angiography and
he corresponding original retinography are inputs to the discriminator.
his conditioning of the discriminator on the input retinography is
ossible due to the use of paired data. The objective is to provide
dditional information for learning the differences between real and
stimated angiographies.
Finally, the generator training is performed by minimizing the

ombined generator loss, particularly solving:
∗ = argmin

𝐺
𝑅𝑒𝑐
𝐺 + 𝜆𝐴𝑑𝑣

𝐺 (6)

hereas, simultaneously, the discriminator training is performed by
inimizing the discriminator loss, solving:
∗ = argmin

𝐷
𝐷 (7)

The hyperparameter 𝜆 in Eqs. (1) and (6) is commonly used in the
iterature for balancing adversarial and non-adversarial losses, typically
educing the strong feedback that is provided by the adversarial com-
onent [34]. The value of this hyperparameter is selected empirically
ttending to the training stability and the desired effect in the generated
mages. In particular, in this work, we aim at improving the recognition
f challenging retinal structures such as the MAs. On the basis of
revious works [34], we considered the candidate values 1, 0.1, and
.01 in this order of preference. Finally, we empirically selected 𝜆 = 0.1,
hich provided stable training while producing the desired effect in the
enerated angiographies.
The optimization for both generator and discriminator is performed

sing the Adam algorithm [35]. The decay rates of Adam are set to
1 = 0.5 and 𝛽2 = 0.999, which are common values in the literature for
he training of generative adversarial networks [36]. The learning rate
s set to 𝛼 = 5𝑒−5, which is the largest value allowing a stable training.
he batch size is one image and the training is stopped when there are
igns of overfitting for both the reconstruction and the adversarial loss
f the generator. This is monitored over the learning curves using a 25%
f the available training data as validation images. The parameters of
he generator and the discriminator are initialized with a zero-centered
ormal distribution following the method proposed by He et al. [37].
To delay the onset of overfitting for both generator and discrimina-

or, data augmentation is applied to the retinography and angiography
mages. The data augmentation consists of both spatial and inten-
150

ity/color augmentations. In particular, as spatial augmentation, we use k
andom affine transformations that are commonly applied in biomed-
cal image analysis [38], including scaling, rotation, and shearing. To
eep the pixel-wise correspondence between retinography and angiog-
aphy, the same affine transformation is applied to both images within
ach multimodal pair. As color augmentation for the retinography,
e use random transformations of the different image channels in
SV color space, similar to those proposed in [18]. Similarly, we also
pply random transformations to the intensity value of the angiography
mages.

.2. Microaneurysms detection

The MAs detection using a DNN is approached as a heatmap re-
ression. In order to train the detection network in this regression task,
he ground truth annotations provided by the clinical experts are trans-
ormed into the target heatmaps. These heatmaps are able to represent
he location of multiple MAs and provide a certain heuristic to guide the
raining of the network. In particular, the exact location of the MAs will
orrespond to the maximum values in the heatmap and progressively
ecreasing values will be assigned to the surrounding pixels. This
istribution of the pixel values in the heatmaps automatically increases
he feedback that is provided to the network without unnecessarily
ncreasing the annotation effort. With regards to the generation of the
argets heatmaps, two steps are required. This procedure is depicted
n Fig. 3. First, the provided ground truth pixel coordinates are used
o generate a binary map where only the exact locations of the MAs
ave a non-zero value. Then, the target heatmaps are generated by
nvolving the binary maps with an isotropic kernel of convex and
onotonic decreasing kernel profile. In particular, within this family
f kernels, we use a Radial Hyperbolic Tangent (Radial Tanh) kernel.
his type of kernel, which is depicted in the diagram of Fig. 3, presents
very sharp profile that facilitates the precise localization of the local
axima in the heatmaps. In this regard, in comparison to a Gaussian
lternative, the Radial Tanh kernel has demonstrated to provide a more
table performance against changes in the kernel size [39]. This is an
mportant advantage that avoids the necessity of exhaustively searching
or the most adequate size. The Radial Tanh kernel is defined as:

(𝑥, 𝑦; 𝑘) = 1 + 𝑡𝑎𝑛ℎ

(

−
𝜋
√

𝑥2 + 𝑦2

𝑘

)

(8)

where (𝑥, 𝑦) are the pixel coordinates with respect to the kernel center
and 𝑘 is the saturation distance for the kernel. This saturation distance
is directly related to the kernel size and it allows to control the region
of influence for each MA in the heatmap. Then, the target heatmap is
obtained as:

𝐲ℎ𝑒𝑎𝑡 = 𝐊(𝑘) ∗ 𝐲𝑏𝑖𝑛 (9)

where ∗ denotes two-dimensional convolution and 𝐲𝑏𝑖𝑛 is the binary
map resulting from the direct mapping of the ground truth pixel
coordinates.

For training the network, the Mean Squared Error (MSE) between
the network output and the target heatmaps is used as loss function.
Thus, the training loss is defined as:

 = 1
𝑁

𝑁
∑

𝑛
(𝐅(𝐫)𝑛 − 𝐲ℎ𝑒𝑎𝑡𝑛 )2 (10)

here 𝐫 denotes the input retinography and 𝐅 the transformation given
y a DNN that generates the predicted heatmaps.
Finally, after the network training, the precise locations of the

etected MAs can be easily recovered from the predicted heatmaps by
xtracting the local maxima. For this purpose, we use a maximum filter
nd an intensity threshold, which allows the calibration of the method
o the desired operating point.
For the experiments in this work, the saturation distance of the

ernel 𝐊 is fixed to 𝑘 = 10. This value is established according to
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Fig. 3. Procedure for the automated generation of the target heatmaps from the ground truth pixel coordinates. The intermediate binary map is convolved with a Radial Hyperbolic
Tangent kernel.
c
I
d
f

the size of the retinal images and the experimental results reported
in [39]. During the training, the optimization is performed using the
dam algorithm [35] with decay rates of 𝛽1 = 0.9 and 𝛽2 = 0.999,
which were proposed by the authors in [35]. The batch size is one
image. The initial learning rate is set to 𝛼 = 1𝑒 − 4, being reduced
by a factor of 10 when the validation loss does not improve for 10
epochs. The training is early stopped after 20 epochs without any
improvement in the validation loss. These values were empirically
established according to the evolution of the learning curves. For this
purpose, 25% of the available training data is used as validation data.
To reduce the overfitting, we use data augmentation in the form of
random spatial and color augmentations. In particular, the spatial aug-
mentations are affine transformations and the color augmentations are
channel-wise transformations performed in HSV color space, similar to
those proposed in [18]. The network parameters are initialized with the
optimized values obtained from the previous adversarial multimodal
pre-training.

To avoid overfitting, we apply the same data augmentation that
was used in the adversarial multimodal reconstruction. In particular,
as spatial augmentation, we use random affine transformations that are
simultaneously applied to the input retinography and the ground truth
coordinates of the MAs. As color augmentation for the retinography,
we use random transformations of the different image channels in HSV
color space, similar to those proposed in [18].

2.3. Network architectures

Regarding the network architecture for MAs detection, it is impor-
tant to notice that the proposed approach does not depend on any
particular network design. Thus, in order to validate the proposal, we
use a standard U-Net architecture [40]. This commonly used network
design provides a well-known reference point in terms of performance,
especially in medical image analysis. In this regard, this same network
has been successfully applied in numerous medical domains [41],
also including the analysis of retinal images [16]. U-Net is a fully
convolutional DNN with a symmetric encoder–decoder structure. The
main characteristic of U-Net is the use of skip connections between
the intermediate layers of the encoder and the decoder. The structure
of the network and the details of the different layers can be seen in
the diagram of Fig. 4(a). The network presents several convolutional
blocks consisting of two consecutive convolutions with 3 × 3 kernels
and ReLU activation functions. In the encoder, there is a max pool
operation after each convolutional block to downsample the internal
feature maps whereas in the decoder there are transposed convolutions
before each block to upsample the feature maps. Following the original
U-Net design [40], the network performs four downsampling steps in
the encoder and four upsampling steps in the decoder. This number
of internal scales has been successfully tested with retinal images of
a similar resolution in previous works [16]. The last layer presents a
linear activation function, which is adequate for both the MAs heatmap
regression in the target task and the multimodal reconstruction in the
pre-training phase.

In order to apply the proposed pre-training to the MAs detection
network (or generator), an additional neural network to act as dis-
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criminator in the adversarial setting is required. In general terms,
this discriminator should be a fully convolutional DNN with an en-
coder structure, which allows the use of arbitrarily sized input images.
Thus, for convenience, we use a discriminator network with the same
structure that the encoder in the generator. The characteristics of the
different layers are adapted according to the architecture guidelines
proposed in [36] for the training of deep convolutional generative
adversarial networks. The structure of the network and the details of
the different layers can be seen in the diagram of Fig. 4(b). Specifically,
the ReLU activation functions were changed for Leaky ReLU activations
and the max pooling operations for strided convolutions. These modifi-
cations aim at improving the back-propagation of gradients during the
training [36]. An additional empirical adaption is a reduction by half of
the number of channels. This is motivated by an unstable training with
the original number of channels in the discriminator, which seemed to
be due to an excessive capacity of the network.

Due to the use of fully convolutional networks for both the generator
and discriminator, the proposed approach can be applied to images
of arbitrary size. Nevertheless, for the experiments in this work, the
images are resized so that all of them depict the retina at the same
scale. In particular, we use a standard retinal width of 720 pixels.

3. Experiments and results

3.1. Datasets

For the adversarial multimodal reconstruction, we use the public
multimodal dataset provided by Isfahan MISP [42]. This dataset is com-
posed of 59 image pairs consisting of retinography and angiography of
the same eye. Half of the image pairs correspond to patients diagnosed
with DR whereas the other half correspond to healthy individuals. The
size of the images is 720 × 576 pixels.

For the MAs detection, we use the public datasets of reference E-
Ophtha [43], ROC [8], and DDR [15]. The E-Ophtha dataset consists
of 381 images and the provided MAs annotations are in the form of
segmentation labels. In total, 148 images have at least one MA, whereas
the remaining 233 do not present any MA. The images present different
sizes, ranging from 1,440 × 960 to 2,544 × 1,696 pixels.

The ROC dataset includes 50 images and the provided annotations
onsist of the pixel coordinates and the estimated radius of the MAs.
n total, 37 images have at least one MA, whereas the remaining 13
o not present any MA. The images present different sizes, ranging
rom 768 × 576 to 1,389 × 1,383 pixels. Regarding this dataset, there
exist 50 additional test images for which no ground truth is available.
Although some works in the literature evaluated their methods on these
test images while the online evaluation was possible. Besides consisting
of different images, ROC test also uses completely different criteria for
the reference standard in the evaluation [8]. Thus, the experiments and
comparisons in this work are exclusively performed on the publicly
available ROC training set.

The DDR dataset consists of 757 images and the annotations are pro-
vided in two different forms, as segmentation labels and as bounding
boxes. The images correspond to different grades of the disease, ranging
from mild to proliferative DR. Additionally, the images present varying
sizes. The dataset is split by default into 50% training, 20% validation,

and 30% test subsets.
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Fig. 4. Diagrams of the neural networks. The numbers above the different blocks indicate the number of channels.
In order to have the eye fundus in all the images at the same scale,
the images are resized to match the scale of the multimodal Isfahan
MISP dataset, i.e. a retinal width of 720 pixels. The ground truth
annotations regarding the location and size of the MAs are rescaled
accordingly.

For evaluating the detection of DR, we use the public datasets
E-Ophtha [43] and Messidor [44]. In both cases, we follow the ap-
proaches that are common in the related literature [23,25]. For in-
stance, in the case of E-Ophtha, the images with at least one MA
are considered pathological whereas the images with no MAs are
considered healthy.

The Messidor dataset consists of 1200 retinal images categorized
into four different DR grades, one of them healthy (grade 0) and three
pathological (grades 1, 2, and 3). In this case, the evaluation of MAs
detection algorithms for the detection of DR is typically performed
using only grades 0 and 1, given that grades 2 and 3 contain additional
lesions besides the MAs [23,25]. However, in our experiments, we
consider both the ‘‘0 vs 1’’ and ‘‘0 vs Rest’’ (i.e. 0 vs 1,2,3) settings.
This allows to also study the robustness of the method, including more
complex scenarios.

3.2. Evaluation metrics

For the quantitative evaluation, we apply the same gold standard
that is defined in [8], which is a common reference in the field. In
particular, following this approach, the predicted MAs are matched
one-to-one with the ground truth MAs. This means that each ground
truth MA can only be detected by a single prediction and, simultane-
ously, each prediction can only detect a single ground truth MA. In
this line, a predicted MA is considered a True Positive (TP) if it is
located within a distance 𝑑 of a still undetected ground truth MA and
False Positive (FP) otherwise. In case of several ground truth MAs
ithin the corresponding range 𝑑, the closest one is considered as the
etected MA. Finally, the ground truth MAs that remain undetected
re considered False Negatives (FN). Then, TP, FP, and FN measures
re used to compute Precision and Recall (or Sensitivity), which are
efined as:

𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

(11)

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃 (12)
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𝑇𝑃 + 𝐹𝑁
In order to study the performance independently of the specific
operating point, the described metrics are computed for different de-
tection thresholds. The resulting sets of values are used to perform
Precision–Recall (PR) and Free-response Receiver Operating Character-
istic (FROC) analyses. The PR analysis is the most common approach to
evaluate detection algorithms in computer vision. Besides depicting the
PR curve, the performance is summarized into the Average Precision
(AP), which is computed as the area under the PR curve. In contrast,
the FROC analysis is only used for those unbalanced problems where
the negative class is much more numerous than the positive class.
This is the case of MAs detection and, therefore, FROC analysis is
broadly applied in the related literature. The FROC curves represent the
sensitivity for different levels of FPs per image (FPI). Additionally, the
performance is typically summarized into the Score, which is obtained
by averaging the sensitivities for certain representative FPI values.
Typically, in the MAs detection, the Score is computed for all or part
of the set of values 𝐹𝑃𝐼𝑆𝑐𝑜𝑟𝑒 = {0.125, 0.25, 0.5, 1, 2, 4, 8, 12, 16, 20}. We
will use all the values in 𝐹𝑃𝐼𝑆𝑐𝑜𝑟𝑒 unless stated otherwise.

Regarding the gold standard, the distance threshold 𝑑 that is used
to define the TPs depends on the size of the MAs. Particularly, the
ROC public dataset directly provides this value for each annotated MA.
However, that is not the case for the E-Ophtha and DDR public datasets.
In these cases, we define 𝑑 as the diameter of the circle that has the
same area as the specific MA. The aim of this approximation is to
facilitate the comparison with those works that use the overlapping
area, instead of the distance, as criteria for the TPs. This would be
the case of those works that, using segmentation or bounding box
prediction as a surrogate for the detection, do not explicitly provide
the pixel coordinates of the MAs. In these cases, the same rigorous gold
standard that we follow could not be applied.

The evaluation for the detection of DR is performed using Receiver
Operating Characteristic (ROC) analysis, which is commonly used for
binary classification problems. In particular, we assess the performance
by computing the Area Under the ROC curve (AUROC).

3.3. Multimodal reconstruction

The objective of the adversarial multimodal reconstruction (Ad-
vMR) proposed in this work is to improve the recognition ability of
the pre-trained networks. This will be evaluated by means of their

performance in the downstream target task, i.e., the MAs detection.
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However, we also provide a qualitative evaluation regarding the mul-
timodal reconstruction, which may facilitate the comprehension of the
results that were obtained for the target MAs detection.

Fig. 5 depicts representative examples of predicted angiographies
together with the original retinographies and angiographies. Addition-
ally, the comparison also includes the predicted angiographies ob-
tained with the methodology proposed in [18] (MR), which represents
the current state-of-the-art approach for self-supervised multimodal
pre-training in medical image analysis [16].

Regarding the predicted angiographies, both methodologies demon-
strate the ability to recognize most of the retinal structures and to
perform an adequate multimodal transformation. In particular, both
approaches show an excellent performance regarding the recognition
of the main anatomical structures of the retina, namely the fovea, optic
disc, and blood vessels. Additionally, bright lesions in the retinography,
which should not be visible in the angiography, are successfully re-
moved in the predicted angiographies using any of the two approaches.
However, important differences arise when the treatment given to the
red lesions in the retinography is analyzed. The two main types of red
lesions in the retinography are the MAs and the microhemorrhages.
Although these two types of lesions present a similar color and intensity
in the retinography, their appearance is completely different in the
angiography. In particular, in the angiography, the microhemorrhages
are depicted as dark lesions, keeping a low intensity value, whereas
the MAs are depicted as bright lesions, getting a high intensity value
like that of the blood vessels. The depicted examples show that the
approach proposed in this work, AdvMR, is able to distinguish these
two kinds of red lesions and to predict angiographies containing both
bright lesions, i.e. MAs, and dark lesions, i.e. microhemorrhages. In
contrast, the MR approach only generates dark lesions in the predicted
angiography, which means that the MAs are ignored or treated as
small microhemorrhages. Thus, AdvMR represents a significative im-
provement over the current state-of-the-art approach for self-supervised
multimodal pre-training, at least by means of the generated images.

Finally, regarding the appearance of the predicted angiographies,
although both approaches generate images that resemble real angiogra-
phies, the images generated using AdvMR present a more realistic
appearance. This is mainly due to two different factors. One is the
presence of MAs in the predicted angiographies, which is a distinctive
characteristic of the angiographies for those cases with DR. The other
factor is the background texture generated by the AdvMR approach,
which resembles better the retinal background in real angiographies.
This shows that the addition of an adversarial loss in the proposed
methodology contributes with both high and low level feedback during
the training.

3.4. Microaneurysm detection

To perform a comprehensive analysis of the approach that is pro-
posed in this work, we compare the performances of three different
methodologies: (1) the MAs heatmap regression using the adversarial
multimodal pre-training (AdvMR), which is the methodology proposed
in this work, (2) the MAs heatmap regression training from scratch
(FromScratch), and (3) the MAs heatmap regression using the multi-
modal pre-training that was proposed in [16] for other related tasks
in the same domain (MR). These three methodologies are exhaustively
evaluated using the E-Ophtha and ROC public datasets. In particular,
the E-Ophtha evaluation follows a 5 × 2 cross-validation approach
consisting of 10 experiments with 10 different training–test splits. In
the case of the ROC dataset, all the available data is used as test set.
However, the variability regarding the training data is still studied by
performing 10 evaluations with the 10 different detection networks
resulting from the E-Ophtha experiments.

In particular, the results of the quantitative evaluation are depicted
in Fig. 6. The depicted charts show the individual curves resulting
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from the different experiments that are performed. The curves are not
aggregated because, for some of the methods, the obtained results are
far from being normally distributed. Thus, the result of aggregating the
curves by computing their mean and standard deviation would not be
representative of the true underlying performance. Regarding the anal-
ysis of these charts, it is observed that the best performance is always
achieved by AdvMR. In contrast, the worst performance corresponds to
the networks that are trained from scratch. In particular, according to
the quantitative results, these networks completely fail in the detection
task. This shows how challenging is to successfully detect MAs using
a straightforward deep learning approach as the one intended in this
work. In this regard, the difficulties for learning to detect MAs are
mainly due to the tiny size and low contrast of these structures, as well
as the heavily unbalanced training data. Nevertheless, the difficulties
are overcome by applying the whole methodology consisting in the
heatmap regression together with the proposed adversarial multimodal
pre-training.

Regarding the comparison between AdvMR and MR approaches,
AdvMR not only results in higher values for the considered metrics
but it also offers a much lower variability in the performance. In
this regard, the MR pre-training demonstrates to be able to produce
a performance close to that of AdvMR in some experiments but, in
others, the performance is significantly reduced. In these cases, the
networks producing low performance are the same for both the E-
Ophtha and ROC datasets, which indicates that this effect is due to
the different training data among the 10 experiments. These results
show that some training samples provide better feedback than others
for learning the task and, therefore, the distribution of the training
samples is a relevant factor to consider when training the networks.
Nevertheless, the proposed approach, AdvMR, does not show to be
affected by this variability in the training data. This means that the
pre-trained network weights provided by AdvMR are able to overcome
a less optimal training data distribution.

Representative examples of predicted MAs heatmaps are depicted in
Fig. 7. It is observed that the MAs heatmaps predicted by AdvMR are
the ones that best fit the ground truth annotations. In this regard, as
previously stated, MR provides satisfactory results in some experiments
(see Fig. 7, 1st and 2nd examples), but in others the performance
deteriorates drastically (see Fig. 7, 3rd example). With regards to the
training from scratch, the networks generate a blank heatmap with
no MAs. It must be noticed that this wrong solution still significantly
minimizes the training loss given that most of the training data corre-
spond to non-MAs, i.e., blank regions. To ensure that this is the typical
outcome of the networks trained from scratch, we performed some
additional experiments with extended training times but the networks
still converged to the same blank solution.

Finally, it should be noticed that, according to the multimodal
reconstruction results (Section 3.3), the MR pre-trained networks do
not recognize the MAs. However, despite this fact, the MR pre-training
still significantly improves the training from scratch. This indicates that
general knowledge about the main structures of the retina, even if the
MAs are not included, is helpful for improving the detection of MAs.
In any case, as it was expected, the knowledge about MAs provided by
AdvMR facilitates even more the MAs detection task, outperforming the
results.

3.5. Effect of class balancing the loss function

The proposed methodology, consisting in the MAs heatmap re-
gression together with the adversarial multimodal pre-training, has
demonstrated to successfully address the MAs detection. However, the
provided experimentation has shown that the MAs heatmap regression
alone fails to solve the task and, therefore, the proposed AdvMR is
a key element towards achieving a straightforward and efficient de-
tection of MAs using deep learning. In the literature, however, there
are some previous works that obtain a satisfactory performance using

deep learning without this novel pre-training. A notable difference in
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Fig. 5. Representative examples of generated angiographies and comparison between the proposed adversarial multimodal reconstruction (AdvMR) and the multimodal reconstruction
previously proposed in [18] (MR). The 4th row depicts zoomed regions from the images in the 3rd row. The images correspond to patients diagnosed with DR.
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ome of these works is the use of segmentation labels, which provide
ore training feedback at the cost of increasing the annotation effort.
n our proposal, however, the training feedback is also increased by
sing the MAs heatmaps, which are much more efficient regarding the
equired annotations. Other differences that could explain the adequate
erformance of the previous approaches include the use of custom
etwork architectures and processing pipelines, pre-processing of the
nput images, or class-balancing the task during training. Given the
educed number of MAs in the images, we argue that balancing the
ask can be a key element towards facilitating the training and avoiding
he convergence to the blank solution. In this regard, we performed
dditional experiments to confirm the hypothesis.
In order to study the effect of class-balancing the detection task

uring the training, we opt for applying a balanced loss function. In
articular, a weight map is computed for each training image con-
aining MAs and it is used to weight the losses at the pixel level. For
his weight map, the MA class is defined as each MA location and its
eighborhood. The size of the neighborhood is given by the kernel size
hat was used to create the heatmaps, i.e., a circle with a radius of
0 pixels in this case. The objective of the weight map is to cancel
he effect of the unbalanced number of pixels between classes while
inimally affecting other factors in the experimentation. In particular,
he selected weighting scheme ensures that, if both classes present the
ame mean error, both classes will have the same importance in the
otal loss of the image and the importance of the individual image will
154

e

emain unchanged. For each image 𝐠 containing MAs, the weight map
𝐠 is defined as:

𝑔(𝑥, 𝑦) =

{

𝑃+𝑁
2𝑃 if 𝑔(𝑥, 𝑦) is MA

𝑃+𝑁
2𝑁 if 𝑔(𝑥, 𝑦) is non-MA

(13)

here 𝑃 denotes the number of pixels within the (Positive) MA class, 𝑁
the number of pixels within the (Negative) non-MA class, and (𝑥, 𝑦) are
the pixel coordinates. For those images without MAs, no weight map is
used.

We compare the performance of the same three methodologies that
were studied in Section 3.4 with the addition of the balanced loss
(BL). Moreover, for reference, the results corresponding to the original
methodology proposed in this work, AdvMR, are also included in the
comparison. The results of the quantitative evaluation are depicted in
Fig. 8. The experimental settings are the same that those in Section 3.4,
ncluding 10 experiments with the same training–test splits for E-
phtha. However, in this case, all the methodologies result in a reduced
ariability, which enables the use of average curves and their standard
eviation for the comparison.
Regarding the obtained results, it is observed that using the bal-

nced loss significantly reduces the differences among methodologies.
n this case, AdvMR(+BL) and MR(+BL) offer similar performance,
nd FromScratch(+BL) is much closer to them in the analysis. In
his regard, the improvement of the networks trained from scratch is
specially notorious, considering that they completely failed to perform
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Fig. 6. Quantitative evaluation of the MAs detection using the heatmap regression. Comparison of different alternatives: the proposed adversarial multimodal pre-training (AdvMR),
training from scratch (RandInit), and the multimodal pre-training previously proposed in [16] (MR).
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the task in the previous experiments without the balanced loss (see
Fig. 6). This demonstrates that the small number of MAs present in
the images is one of the main challenges when training DNNs for MAs
detection. However, in addition to this analysis, Fig. 8 also shows that
one of the methodologies using the balanced loss is able to equal
he performance of our original proposal, AdvMR. Thus, while class-
alancing the task facilitates the training for those approaches with
ub-optimal performance, it does not help when the base approach
lready produces a successful outcome. The reason for this could be
hat the class-balancing strategy provides a training feedback that is
ot as representative of the true target problem. To better understand
hese results, representative examples of predicted heatmaps are de-
icted in Fig. 9. These examples show that the networks trained with
he balanced loss tend to detect more MAs in the images, producing
ubstantially more incorrect detections. This visual analysis fits with the
esults depicted in Fig. 8, where for the same recall (or sensitivity) the
ddition of BL increases the false positives and reduces the precision. As
counterpart, the addition of BL allows to achieve higher recall values
n the curves, but these are obtained with a very low precision, which is
ot useful for practical MAs detection. That kind of performance could
155
e useful as a first detection step in a multi-stage pipeline. However,
his would unnecessarily complicate the MAs detection. Precisely in
his work, we aim at producing a more straightforward and efficient
lternative to MAs detection using DNNs.

.6. Comparison with the state-of-the-art

In this section, we provide a comparison of the proposed approach
gainst relevant works in the literature. In particular, our comparison
s mainly focused on recent works applying deep learning approaches
o MAs detection. Despite that, other relevant works applying classical
ethods are also included as a reference.
The comparison for the E-Ophtha, ROC, and DDR public datasets is

epicted in Table 1. To produce a fair comparison, we follow the same
alidation approaches as previous works using deep learning [12,14,
5] . Particularly, in the case of E-Ophtha and ROC, the results of our
pproach correspond to the average of the experiments performed in
ection 3.4. This means that, for E-Ophtha, we perform 5 repetitions of
-fold cross-validation, whereas, for ROC, we perform a cross-dataset
valuation using the networks previously trained on E-Ophtha. For
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Fig. 7. Representative examples of predicted MAs heatmaps using the heatmap regression. Comparison of different alternatives: the proposed adversarial multimodal pre-training
AdvMR), the multimodal pre-training previously proposed in [16] (MR), and training from scratch. The ground truth MAs are marked with circles. Additionally, each depicted
eatmap has been normalized independently to enhance the visualization.
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DR, we apply the default training–test split of the dataset. With
egards to the FROC analysis, previous works in the literature are
ypically evaluated on a smaller subset of FPI values, discarding the
ower or higher ends of the range that we use in our experiments. Thus,
or the purpose of this comparison, we compute two different Score
alues, S𝐿𝑂𝑊 for the range between 0.125 and 8 FPIs, and S𝐻𝐼𝐺𝐻 for
he range between 1 and 20 FPIs.
For the E-Ophtha dataset, it is observed that the proposed approach

ffers the best overall performance. Particularly, the method of Melo
t al. [25] produces the best results at the lowest FPIs, whereas the
ethod of Chudzik et al. [12] achieves slightly higher sensitivity
alues at mid-high FPIs. However, as previously stated, the herein
roposed approach produces the best overall results, with a competitive
erformance across all the range of FPI values. Additionally, it can
e observed that the performance of Melo et al. [25] is notoriously
educed when following a validation procedure similar to ours, with
ewer available training samples. This evidences how the performance
f different machine learning algorithms can be significantly affected
y the amount of training data available, even when they rely on
and-engineered features instead of end-to-end learning using DNNs.
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v

Precisely in this work, we propose an adversarial multimodal pre-
training that compensates for the lack of annotated training data. In
this scenario, our proposal successfully facilitates the training of DNNs
for the detection of MAs.

For the ROC dataset, as stated in Section 3.1, the provided com-
arison is performed on the public ROC training set. In spite of the
ross-dataset evaluation, the proposed approach offers a competitive
erformance against methods that are specifically tuned for the ROC
ataset. In this case, the best results at low and mid FPIs are achieved
y the method of Dashtbozorg et al. [23]. However, the proposed
pproach achieves the best results among the deep learning alternatives
ollowing a similar evaluation approach. In particular, our proposal
ignificantly outperforms the method of Chudzik et al. [12] across the
ull range of FPI values. Additionally, while previous deep learning-
ased approaches [12] needed to perform an ad-hoc fine-tuning on the
OC dataset, our approach achieves this good performance without any
pecific fine-tuning. This indicates a greater generalization ability of the
roposed methodology.
The DDR public dataset is a recently available dataset that is pro-
ided by Li et al. [15]. In their work, several state-of-the-art deep
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Fig. 8. Quantitative evaluation of the MAs detection using the heatmap regression and class-balancing the loss function. Comparison of different alternatives: the proposed
adversarial multimodal pre-training (AdvMR + BL), training from scratch (RandInit + BL), and the multimodal pre-training previously proposed in [16] (MR + BL). Additionally,
the adversarial multimodal pre-training without the balanced loss is also included (AdvMR) as a reference.
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learning approaches for object detection are tested. For the comparison,
we select their best results, which are obtained using Faster RCNN [45].
evertheless, it is observed that our approach clearly outperforms this
ethod. In fact, considering the PR analysis, Faster RCNN completely
ails in the detection task. In this sense, the outcome is similar to the
ne obtained in our experiments training the networks from scratch
see Fig. 6). This evidences the difficulty of the problem at hand,
iven that well-proven object detection algorithms cannot be directly
uccessfully applied to MAs detection.

.7. Diabetic retinopathy detection

In this section, we study the feasibility of using the MAs predictions
btained with the proposed approach for the detection of DR. In order
o obtain an estimate of the presence of DR in the eye fundus, we
ompute the maximum value in the predicted MAs heatmaps. This
alue can be seen as the likelihood of having at least one MA in the
nput image, which we use as a risk index for DR.
The evaluation for the detection of DR is performed on the E-Ophtha

nd Messidor datasets using networks that were previously trained
or MAs detection on the E-Ophtha dataset. Thus, the experiments on
essidor correspond to a cross-dataset scenario. In particular, we use
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a

he same MAs detection networks that were used for the experiments
n Sections 3.4 and 3.6 .

Table 2 depicts the results for DR detection, including a comparison
ith previous works on the detection of MAs that also provide this
ind of study. The results show that the proposed approach provides
satisfactory performance for the detection of DR, using the estimated
ikelihood for the presence of MAs as a risk index. In this regard, our
roposal outperforms previous alternatives on E-Ophtha and provides
imilar results to Dashtbozorg et al. [23] on Messidor, hence being
he best overall alternative. Additionally, the proposed approach also
roduces satisfactory results on Messidor when the complete dataset
s used (i.e. 0 vs Rest), which indicates that the method is robust
o the presence of other retinal lesions besides MAs. Regarding the
ifferences between datasets, the results show that the performance is
lways significantly better on E-Ophtha, which is the dataset used for
raining the networks. Thus, in part, the difference could be explained
y the cross-dataset setting that is used on Messidor. This outcome is
lso in line with the results obtained for MAs detection.
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Fig. 9. Representative examples of predicted MAs heatmaps using the heatmap regression and class-balancing the loss function. Comparison of different alternatives: the proposed
adversarial multimodal pre-training (AdvMR + BL), the multimodal pre-training previously proposed in [16] (MR + BL), and training from scratch (From scratch + BL). The ground
truth MAs are marked with circles. Additionally, each depicted heatmap has been normalized independently to enhance the visualization.
3.8. Limitations and future works

Finally, the comparisons presented in Sections 3.6 and 3.7 demon-
strate that the herein proposed methodology offers a satisfactory per-
formance in a variety of different scenarios. The proposed methodology
outperforms other deep learning-based methods. Additionally, it is also
competitive against the best performing classical approaches, which
rely on complex pipelines including specific image filtering techniques
for feature extraction. In contrast, our proposal is based on end-to-end
learning and it does not even require pre-processing or patch-processing
of the images.

However, besides the satisfactory performance in the different sce-
narios, our experiments and comparisons also show that there is high
inter-dataset variability in the detection of MAs. This seems to be
due to the different capture devices and procedures as well as the
different criteria of the experts when annotating the images [8]. The
heterogeneity of the data and its effects on the performance of the
algorithms is an important topic of study for future works. In this
regard, it would be worth exploring the use of graph neural net-
works [46] for modeling the complex relations among datasets. Also,
domain adaption techniques [47] could be explored for improving the
158
generalization among different data sources. Another future research
direction that we consider is the development of novel methods for
the diagnosis of DR [48]. In Section 3.7, we already demonstrate that
the proposed approach is useful for the detection of DR. However,
it is worth exploring different alternatives to take advantage of the
knowledge of these networks about the retina and the MAs. In this vein,
multi-task learning [49] could be a useful tool for providing a more
reliable and explainable diagnosis. Precisely, explainability in deep
learning is a research topic that has attracted a lot of recent interest.
In this regard, future works should also look for improving both the
explainability and the causability (i.e. the quality of the explanation in
terms of human understanding) of deep learning algorithms [50]. This
will facilitate the application of the algorithms in the medical field [51].

4. Conclusions

The automated detection of MAs in retinography is a very challeng-
ing task due to the tiny size and reduced contrast of these vascular
lesions. In this paper, we proposed a novel deep learning methodology
for the detection of MAs in retinography. In particular, our proposal
presents two main novelties. First, we approach the MAs detection
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Table 1
Comparison with the state-of-the-art on the E-Ophtha, ROC, and DDR public datasets. In the case of ROC, the comparison is performed on the public ROC training set. S𝐿𝑂𝑊 (%)
is computed for the FPI values between 0.125 and 8 whereas S𝐻𝐼𝐺𝐻 (%) is computed between 1 and 20 FPI. DL denotes Deep Learning.
Method Validationa DL Sensitivity at given FPI (%) S𝐿𝑂𝑊 (%) S𝐻𝐼𝐺𝐻 (%) AP(%)

0.125 0.25 0.5 1 2 4 8 12 16 20

E-Ophtha

Veiga et al. (2017) [27] – No 11.0 15.2 22.2 30.7 38.8 49.4 62.9 – – – 32.8 – –
Dashtbozorg et al. (2018) [23] 10-fold No 35.8 41.7 47.1 52.2 55.8 60.5 63.8 – – – 51.0 – –
Chudzik et al. (2018) [12] 2-fold Yes 18.5 31.3 46.5 60.4 71.6 80.1 84.9 – – – 56.2 – –
Du et al. (2020) [24] 10-fold No 22.7 30.9 40.7 48.8 62.2 73.9 82.0 – – – 51.6 – –
Melo et al. (2020) [25] 2-fold No 17.8 28.4 38.3 51.9 58.7 58.7 58.7 – – – 44.6 – –
Melo et al. (2020) [25] Leave-one-out No 43.4 43.4 43.4 54.0 57.2 61.8 63.9 – – – 52.4 – –
Andersen et al. (2020) [13] Fixed split Yes 24.32 34.90 45.84 55.56 66.23 74.58 79.95 – – – 54.48 – –
Savelli et al. (2020) [14] 2-fold Yes 18.15 26.02 36.08 47.34 59.25 70.16 78.92 – – – 47.99 – –
Proposed (AdvMR) (5×)2-fold Yes 29.97 40.09 50.18 61.28 71.16 78.12 82.67 84.45 85.18 85.69 59.07 78.36 64.90

ROC

Zhou et al. (2017) [28] 10 Monte-Carlo No – – – 13.5 15.5 23.2 28.8 32.5 37.0 42.0 – 27.5 –
Javidi et al. (2017) [22] Fixed split No – – – 12.98 14.70 20.89 28.70 31.90 35.34 38.33 – 26.12 –
Dashtbozorg et al. (2018) [23] 10-fold No 43.5 44.3 45.4 47.6 48.1 49.5 50.6 – – – 47.1 – –
Chudzik et al. (2018) [12] Cross-dataset Yes 2.8 4.0 6.3 9.0 10.8 12.8 13.9 15.6 16.3 17.7 8.5 13.7 –
Chudzik et al. (2018) [12] + Fine-tuning Yes 3.9 6.7 14.1 17.4 24.3 30.6 38.5 43.1 46.1 48.5 19.3 35.5 –
Du et al. (2020) [24] 10-fold No 15.5 16.6 19.7 26.0 33.1 43.6 50.4 – – – 29.3 – –
Melo et al. (2020) [25] 10-fold No 7.7 9.2 11.3 14.9 20.5 28.3 34.8 – – – 18.1 – –
Proposed (AdvMR) Cross-dataset Yes 5.85 9.00 15.66 22.61 31.54 41.58 49.27 52.47 53.80 54.54 25.07 43.69 31.36

DDR

Li et al. (2019) [15] Fixed split Yes – – – – – – – – – – – – 0.04
Proposed (AdvMR) Fixed split Yes 2.27 3.68 7.19 13.40 21.51 34.79 51.49 57.76 64.15 67.47 19.19 44.37 33.55

a ‘‘k-fold’’, ‘‘leave-one-out’’, and ‘‘k Monte-Carlo’’ indicate different cross-validation approaches. ‘‘Cross-dataset’’ indicates training on E-Ophtha and evaluation on ROC. ‘‘+ Fine-tuning’’
ndicates additional training on ROC.
,

able 2
esults for DR detection on the E-Ophtha and Messidor datasets.
Method E-Ophtha Messidor (0 vs 1) Messidor (0 vs Rest)

AUROC (%) AUROC (%) AUROC (%)

Melo et al. [25] 94.10 76.20 –
Dashtbozorg et al. [23] 95.78 78.50 –
Proposed (AdvMR) 97.46 ± 0.69 78.11 ± 0.97 86.05 ± 1.32

as a heatmap regression, which allows the simultaneous detection
of multiple MAs and facilitates the extraction of precise locations.
Second, we propose a novel adversarial multimodal reconstruction pre-
training for learning about the retina and the MAs in a self-supervised
fashion, i.e., from unlabeled data. The knowledge provided by this
multimodal pre-training facilitates the detection of the MAs from the
raw retinographies.

In order to analyze the proposed methodology, several experiments
were conducted on different public datasets of reference. The obtained
results show that our approach offers a satisfactory performance in
a variety of different scenarios, outperforming existing deep learning
alternatives. Additionally, given the heavily unbalanced scenario in
the MAs detection, we also studied the effect of class-balancing the
network training. In this regard, in comparison to existing alternatives,
the proposed methodology not only avoids the use of pre-processing
and the necessity of patch-processing the images but, also, it does not
require any ad-hoc manipulation of the training data to mitigate the
unbalance issue. In this sense, the proposed methodology is able to
both learn and detect the MAs from the raw data as it is. Finally,
our experiments also demonstrate that the proposed approach can be
successfully used for the detection of diabetic retinopathy.
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