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Abstract

A reduced complexity fuzzy model has been developed
to capture the nonlinear dynamics of a mechanical
system. The use of Functional Principal Analysis to
reduce the complexity of the model permitted the use
of a linear controller based on that model.
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Control, Complexity reduction.

1 Introduction

Model Predictive Control is considered a well estab-
lished technology in many fields, especially in in-
dustrial process applications. Its efficiency has been
proven over many years. In general, most applications
of predictive control are based on linear models, which
yield good results especially if they work around an
operating point [1]. However, there are many applica-
tions where the region of operation of the system re-
duce the prediction capabilities of linear models, lead-
ing to poor controller performance. In such cases, Non
Linear Model Predictive Control (NMPC) is a suitable
option.
Although the number of applications of NMPC is lim-
ited [2], its potential is enormous. The possibility of
dealing with nonlinear dynamics is the main advan-
tage over MPC. However, developing precise nonlin-
ear models from first principles may be a difficult task
in many complex processes. Another disadvantage
is that the optimiser solution in non-linear Predictive
Control is a non-convex problem and a large compu-
tational effort may be required to obtain the solution.
This is especially relevant when dealing with real time
tasks.
Therefore, industrial control platforms with low com-
putational power can not run nonlinear predictive con-
trol strategies.
The strategy proposed in [3–6] involves calculating as
many MPC linear controllersu j(k) as linear models
obtained in the neurofuzzy model, such that the con-
troller output at the instantk will be (3):

u(k) =
L

∑
j=1

wj(k)u j (k) (1)

whereL is the number of linear models andwj is de-
fined as

wj (k) =
µ̄ j(k)

∑N
j=1 µ̄ j(k)

, µ̄ j(k) =
n

∏
i=1

µi j (k) (2)

Whereµi j (k) is the degree of membership of the in-
put i for the rule j Due to the nonlinear nature of
the fuzzy system, there are different solutions given to
the FMPC optimisation problem. Branch and Bound
[7, 8] or Genetic algorithms [8, 9] are used by sev-
eral authors, others linearise the TS fuzzy model in the
operating point, solving a linear MPC problem [10–
12]. A simpler scheme is used, designing multi-model
in the TS fuzzy model [10, 12]. The ability to build
fuzzy logic applications for control problems has been
hindered by the well-known problem of combinato-
rial rules explosion, causing complexity in modeling.
The existence of redundant rules may also cause per-
formance degradation of the FIS [13]. In this work,
we will apply a simplification technique explained in
[14], based onFunctional Principal Component Anal-
ysis(FPCA) to reduce the number of consequents in a
fuzzy model in order to design a simpler MPC. This
paper is organised as follows. In section 2, a fuzzy
model for a nonlinear mechanical system is presented.
Functional Principal Component Analysis is described
in section 3, where the application to fuzzy systems,
using the mechanical system model is illustrated. In
section 4, a Model Predictive Controller is designed
based on the simplified fuzzy model and it is applied
in comparison with other controllers. Conclusions are
given in section 5.

2 Fuzzy model for nonlinear systems

A nonlinear system may be described by a Takagi-
sugeno [15] fuzzy model withj rules by the following
way:

Rule Rj :
IF x1 is Ax1 j , ..., andxn(k) is Axn j ,
THEN: y j = g0 j +g1 jx1+ ...+gn jxn

being xi ,y j for each rule, the inputs and outputs
of the system respectively, andAxi j is the fuzzy set
respective toxi(k) on the rule j, gi ∈ R, y j(k) is the
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output of the model respective to the operating region
associated to that rule. The structure of antecedents
describes fuzzy regions in the inputs space, and the
one of consequents presents non-fuzzy functions of
the model inputs.
The output of the model at the timek, can be described
by

y(k) =
L

∑
j=1

wj(k)y j (k) (3)

Wherewj(k) is defined in 2

As an illustrative example we will model the mechani-
cal system shown in figure 1. It could be a simple ma-
nipulator with only one joint. The system is moved by
an electrical motor which provides a torqueTu in order
to move a bar of lengthl an angleθ . If we consider all
the mass (m) concentrated at the end of the bar and the
friction coefficientB, the equation that describes the
system is:

mθ̈ l2+Bθ̇ +mgsinθ = Tu (4)

For simulation the parameters will be:g = 9.8m/s2,
l = 1m, B = 1Kgm2/s, m= 1Kg. As we can observe

q

Tu

m·g

l

B

Figure 1: Mechanical system

in (4), the system has a non-linearity due to sinθ . Lin-
earizing around an equilibrium point, we could model
the system as

θ̈ =−aθ̇ −bθ +Tu (5)

Wherea,b are parameters depending on the operat-
ing point (θ0). It is a second order linear system. In
order to build a Fuzzy system, we use four variables
in discrete mode, to get the dynamics of a 2nd order
system:Tu(k−2),Tu(k−1),θ (k−2),θ (k−1). Tak-
ing small steps to the input (torque), we can model
the response as second order system (5), different for
each operating point determined by the position of the
mechanism. Doing this in many areas in order to get
enough set of rules to increase the complexity of the
FIS, we have several linear systems. In this particular

example, nine rules were chosen:

θ1(k) =0.0037T(k−1)+0.0467T(k−2)

−0.9705θ (k−1)+1.9705θ(k−2)

θ2(k) =−0.0016T(k−1)+0.0525T(k−2)

−0.9704θ (k−1)+1.9645θ(k−2)

θ3(k) =−0.0001T(k−1)+0.0508T(k−2)

−0.9704θ (k−1)+1.9628θ(k−2)

θ4(k) =−0.0003T(k−1)+0.0511T(k−2)

−0.9704θ (k−1)+1.9621θ(k−2)

θ5(k) =−0.0003T(k−1)+0.0508T(k−2)

−0.9705θ (k−1)+1.9619θ(k−2)

θ6(k) =−0.0003T(k−1)+0.0510T(k−2)

−0.9704θ (k−1)+1.9621θ(k−2)

θ7(k) =−0.0002T(k−1)+0.0509T(k−2)

−0.9704θ (k−1)+1.9629θ(k−2)

θ8(k) =−0.0008T(k−1)+0.0515T(k−2)

−0.9704θ (k−1)+1.9650θ(k−2)

θ9(k) = 0.00065T(k−1)+0.0501T(k−2)

−0.9704θ (k−1)+1.9705θ(k−2)

whereθi(k) is the angle variation for the local model
i, andT(k− j) is the variation of the applied torque.

Providing data sets from simulations for training and
checking, the Fuzzy Inference System (FIS) obtained
is defined by the membership function depicted in fig-
ure 2, where the universe of discourse are, for the angle
−100o < θ < 100o and for the torque−10Nm< T <
10Nm
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Figure 2: Membership functions for the mechanical
system FIS

1251

Actas de las XXXVII Jornadas de Automática 20162016



establishing rules with variable angle as antecedent,
we can model the mechanical system with minimum
error, as is shown in fig 3, obtaining a RMSE of
±0.1064◦ over 3334 samples, when a white noise is
added to the torque action in simulation.

3 Fuzzy model consequents reduction
based on FPCA

There are well-know methods to reduce complexity
of fuzzy systems. Most of them are based on sys-
tematic and heuristic methods (e.g. [16, 17], others
with analytic approach, are practically unapplicable
when the number of inputs is large (eg. [16, 18].
Multivariate Statistics is used in control engineering
for many years [19]. Singular Value Decomposition
(SVD) techniques such as PCA has been used in
control engineering for sensor fault detection [20],
variable decoupling [21] and modelling [22, 23].
Dimensionality reduction [24] is the main feature that
takes advantage of these techniques.

3.1 Functional Principal Component Analysis

Let f1(x), f1(x), ..., fn(x) be functions in separable
Hilbert space endowed with inner product:

〈 fi | f j〉=

∫ X

0
fi(x) f j (x)dx, ∀ fi , j ∈ L2[0,X] (6)

If each functionfi(x) may be decomposed in:

fi(x) =
L

∑
l=1

cil θl (x) = ci
TΘ(x) (7)

The mean and covariance functions offi , will be:

f̄ (x) = E( f (x)) = c̄TΘ(x) (8)

Cov[ f (x), f (s)] = Θ(x)Tcov(C)Θ(s) (9)

WhereC = {cil , i = 1, ...,n, l = 1, ...,L}.

We define the covariance operator as:

C( f (x)) =
∫ X

0
Cov[ f (x), f (s)] f (s)ds, (10)

∀ f ∈ L2[0,X],∀x,s∈ [0,X]

Where the kernelCov[ f (x), f (s)] is the covariance
function.

The covariance operator is positive, selfadjoint and
compact [25], thus, using Mercer’s Theorem, we may
write:

Cov[ f (x), f (s)] =
∞

∑
i=1

λiξi(x)ξi(s), ∀x,s∈ [0,X]

(11)

whereλ1 > λ2 > ... > 0 is an enumeration of the eigen-
values ofC, and the corresponding orthonormal eigen-
functions areξ1,ξ2, .... Thus, they form a complete or-
thonormal set of solutions of the Fredholm equation:

∫ X

0
Cov[ f (x), f (s)]ξi(s)ds= λiξi(x) (12)

3.2 FPCA for Fuzzy Inference Systems

We can formulate the expression 3 as:

y(x) = g̃0(x)+ g̃1(x)x1+ ...+ g̃n(x)xn (13)

Where:

g̃i(x) =
N

∑
j=1

a j(x) ·g ji (14)

And the vector of functions̃g is:

g̃(x)=











g̃0(x)
g̃1(x)

...
g̃n(x)











=











g10 g20 . . . gN0

g11 g21 . . . gN1
...

g1n g2n . . . gNn











·











a0(x)
a1(x)

...
aN(x)











g̃(x) = G ·a(x) (15)

The mean and covariance functions ofg̃(x), are:

E[g̃(x)] = E[gT ] ·a(x) = ḡT ·a(x)

Cov[g̃(x), g̃(s)] = a(x)Tcov(G)a(s) (16)

We have to solve the equation (12), to obtain the FPCA
of these functions. We suppose that the eigenfunctions
are

ξ (x) = a(x)T ·b (17)

Thus, taking in account (16):
∫ X

0
Cov[g̃(x), g̃(s)] ·ξ (s)ds= (18)

∫ X

0
a(x)Tcov(G)a(s) ·a(s)T ·bds=

a(x)Tcov(G) ·W ·b

cov(G) ·W ·b = λ ·b (19)

Where:

W =

∫ X

0
a(s) ·a(s)Tds (20)

The functions ξ (x) are orthogonals, then
〈ξi(x),ξ j(x)〉 = bT

i · W · b j = 0. Matrix W is

symmetric by definition, thus, definingu = W
1
2 b,

W
1
2 ·cov(G) ·W

1
2 ·u = λ ·u (21)

We are left with solving a symmetric eigenvalue prob-
lem. Afterward, using a variability criteria, we can
choose a new subspace using a new base of eigenfunc-
tion whose eigenvalues have enough significance, for
instance

∑l
i=1 λi

∑n
i=1 λi

≥ v (22)
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Figure 3: Validation of the fuzzy model for the mechanical system

wherev ∈ [0,1] is the variability index (v = 1 corre-
sponding to the maximum variability obtained in the
new space, i.e. the new subspace has the same dimen-
sion of the original space).N is the dimension of the
original space andR is for the new reduced subspace.

3.3 Example: Mechanical system

Applying the previous reduction technique to the me-
chanical system modeled by 4, it is observed that the
first eigenvalue contents almost all the variability of
the system. Thus, the new simplified system will have
just one rule and its structure is given by:

g̃(x) =













0
0.0198
−0.3788
0.7669
−0.0034













·ξ (x) (23)

And

ξ (x) = a(x)T ·





























0.0425
0.0433
0.0433
0.0433
0.0433
0.0433
0.0434
0.0435
0.0444





























(24)

In the figure 4 we can distinguish differences between
the fuzzy and simplified fuzzy models. However, with
an RMSE of±2.1692◦ over 3334 samples, it is rea-
sonable to use the simplified model for control or sim-
ulation.

4 Application of FPCA to FMPC
without constraints

Following the same procedure presented in [3–6], for
each of the consequents of the fuzzy system used for
the model, a linear Generalised Predictive Controller
(GPC)[1] can be designed. The advantage of this tech-
niques is the simplistic natural way of translating the
GPC to linear spaces (consequent of each rule). In
this particular example, only 9 controllers must be de-
signed. However, the problem arises when the num-
ber of rules increases. The complexity reduction tech-
nique based on FPCA can overcome this problem in
an efficient manner. Expression (24) shows the prin-
cipal component containing the maximum variability
and (23), the combination of the new consequent and
the principal component. Based on the new conse-
quent, just one GPC design is required. A comparison
between three control strategies will be carry out over
the mechanical system. The first is a clasical PID, ad-
justed to work around an operation point, the second
is a linear GPC designed over the same point, based
on a linear model and the third is a Fuzzy GPC with
the reduction of complexity produced by FPCA in the
fuzzy model. Figure 5 shows a regular performance,
independent of the operating point is observed for the
FGPC. This scheme can be seen as a linear controller
uL(k) (consequent) modulated by a nonlinear factor
ψ(k)(antecedent).

u(k) = ψ(k)uL(k) (25)

The controlleruL(k) is designed using (13), and apply-
ing FPCA,

g̃(x) = G ·a(x) = H ·ξ (x) (26)
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Figure 4: Mechanical system: Comparison between original (real), Fuzzy model (FM) and simplified Fuzzy model
(SFM)

Where H is the new consequent andξ (x) the an-
tecedent. Knowing (17),

G ·a(x) = H ·a(x) ·bT

G ·a(x) ·bT = H ·a(x) ·bT ·bT

G = H ·bT

H =
G ·b
bTb

(27)

1
bTb

can be written as 1
bTb

= ε ·η , having:

g̃(x) = H ·ξ (x) = η ·G ·b · ε ·ξ (x) (28)

usingη ·G ·b as a linear model to design a GPC and
modulating the nonlinear termε · ξ (x), a stable solu-
tion can be found. Figure 5 shows the performance of
the controllers. One can see clearly how the Simpli-
fied Fuzzy MPC can perform better in different duty
points.

5 Conclusion

A MPC controller has been designed for the position
control of a mechanism. A fuzzy model has been de-
veloped in order to get the nonlinear dynamics of the
system. The model was validated, using a noisy torque
input for both, the physic equation and the FIS. A
Functional Principal Analysis has been applied to the
FIS, reducing its complexity just to one rule, designing
one MPC to control the nonlinear system. The perfor-
mance of this controller has been tested in simulation.
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