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vision techniques do not apply specific structured 
source of energy to build images avoiding 
interferences with the environment. This paper is 
concerned with passive methods. Most works have 
addressed the topic of 3D determination with passive 
methods; they are grouped under the generic 
expression of shape from X, where X can be [2]: a) 
stereopsis [3]; b) motion, where the object is moving 
and the camera is static [4], [5] or the camera moving 
into the 3D space [6] c) shading [7], [8], [9] d) 
texture based on repetition of objects or patterns in 
the scene [10], [11]  e) focus/defocus: based on a 
well-focused object which is mapped exactly on the 
image plane [12], [13], [14]  f) depth estimation with 
a single camera, [15] apply supervised learning; [16] 
determines relationships between distances of objects 
in the scene and their corresponding pixels in the 
image. 
a) Stereopsis: based on two cameras separated a
base-line, a 3D point in the scene is mapped into 
different row (r) and column (c) pixel coordinates on 
each image. A matching procedure is applied to 
identify the corresponding point in both images. 
Once the correspondence is established, the 3D pose 
is obtained by triangulation. Matching is a critical 
issue in stereovision, which becomes ineffective 
when large homogeneous areas appear in the scene. 
This is the case in the proposed application where the 
water surface displays high texture homogeneity. 
Depth estimation is commonly performed by 
stereopsis based techniques [3]. In recent years 
several modifications of the classical methods have 
been developed and applied in metrology to 
determine features of the objects in images, e.g. 
height, volume or distance. In [17] et al., is proposed 
a robust method to measure object height based on 
two cameras, it computes the height using different 
planes of the image and geometric transformations. 
On the other hand, there are algorithms that only 
obtain relative depths and disparity maps without 
object localization in the scene [18], [19], [20]. Other 
implementations combine algorithms in order to 
reduce the computational time required to obtain 
depth maps [21], [22]. Most of such approaches 
perform depth and object features estimation under 
acceptable computation conditions. Nevertheless, 
they still need intrinsic and extrinsic parameters for 
both cameras, they don’t provide numeric values of 
the distance between cameras and objects and only 
have been tested in indoor environments with 
controlled illumination images. 
b) Motion: moving objects produce changes in
subsequent images displaying areas which change 
with respect the background. These methods compute 
relative motion between camera and 3D scene with 
small changes. These changes are detected by 
differential analysis in both spatial and temporal 
dimensions (optical flow). 3D reconstruction 
becomes a complex task because the differentiation 

requires small movements with few and short 
features in objects [23]. In our scenario, boats 
movements are not necessarily small. One way to 
acquire the 3D data is to determine the direction of 
translation through approximate motion parallax. 
Depths can be obtained by least-squares estimations 
from the optical flow [24]. Because of the above 
mentioned continuous displacements, recovery of 
motions and 3D structure is highly affected by this 
effect, becoming ineffective in our outdoor 
environments for boats location. 
c) Shading: applies patterns of lights and the
corresponding shades to infer the shape. It is required 
the previous knowledge of angles of incidence of the 
light and also a surface shape estimation. Shading 
analysis fails when changes in the reflectance occur; 
this is quite common in outdoor environments. 
Objects on the water surface, at certain distances, do 
not display sufficient shades for 3D recovering and 
do not either show known surface shapes. Moreover, 
only relative depths are obtained without relation to 
the world reference system. 
d) Texture: methods based on texture analysis exploit
the existence of regular repetitions of an element or 
pattern, called surface texel, in the surface of the 
structures in the image. Thus, based on the distortion 
of these texels, once they are mapped over the image, 
the 3D structure can be inferred by analyzing the 
slant of such texels when they are mutually compared 
or by analyzing the distortion of patterns due to 
perspective projection, e.g.: circumferences are 
mapped as ellipses. This last assumption requires that 
texture features are constant within regions of 
uniform texture. In our water scenario, repetitions of 
objects or constant features do not appear and the 
water surface is large with only small boats present 
displaying several faces, thus texture based-
approaches become useless. Additionally, it is 
required knowledge of the camera’s intrinsic 
parameters.  
e) Focus/defocus: it is based on the assumption that
well-focused objects in the image are mapped on the 
image plane, thus if we know the focal length, a 
simple triangulation allows determining the 3D 
position. This approach requires adjusting the focal 
length to determine well focused areas, but in 
homogeneous surfaces this becomes impractical. 
Also this requires a motorized system for lens 
adjusting requiring special calibration to achieve 
sufficient accuracies for recovering the 3D structure 
[25]. Different techniques are available for 
computing measures of focusing, most of them based 
on edge sharpness. In our scenario the large water 
surfaces do not display edges and there are not parts 
to be checked for focusing. Moreover, boats objects, 
placed at relatively high distances, do not display 
edges which can be detected with the required 
precision for focusing purposes. 
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f) Depth estimation with a single camera: several
approaches under different point of view can be 
considered here. In [15] a supervised learning-based 
method is applied, where relationships are 
established between structures in the image and 
depths in the scene based on the availability of 
ground-truths. These relations are later applied for 
new incoming images from similar scenarios. In our 
scenario, water planar surface appears as a large 
structure at very different levels of depth, this makes 
unfeasible the application of this approach.  [26] and 
[27] consider vanishing points in the image and a 
reference plane in the scene to compute the 
projection matrix, from which object’s heights are 
derived. In the same way [28] proposed to measure 
distances based on a single camera with a specific 
orientation that is capable to estimate the distance 
between the object and the camera using specific 
calibration and trigonometric identities. These 
approaches are based on the previous knowledge of 
heights in real objects. In [29] depths are computed 
based on camera displacements, where a relation is 
established between camera displacement and the 
variation of pixels in the image for the object under 
consideration. In the above approaches objects 
remain still during depth computation and located to 
relatively small distances. This differs from our 
application where boats are moving and also are 
located at distances relatively high. [16] obtains 
samples of reference objects from different images. 
Positions of the reference objects are known in the 
3D scene and also pixel y-coordinate in the captured 
images. A n-degree polynomial is estimated, which 
describes the y-coordinate in the 3D scene, as a 
function of pixels where objects are located in the 
image.   

The aim of this study is to present a general method 
valid for positioning boats in water planar surfaces at 
relatively large distances (up to around 150 meters). 
From the point of view of texture image analysis, 
water surfaces display a high degree of homogeneity. 
Because of the nature of our problem and based on 
limitations of above strategies, we propose a method 
based on a single image which is independent of 
extrinsic and intrinsic camera parameters, so that 
calibration problems in this complex scenario can be 
avoided. Some of the strategies described above 
provide only relative depths of objects in the scene in 
relation to other objects, but not x-y 3D locations 
required for boat positioning. The closest approach to 
the one proposed in this paper is the method 
proposed on [16], but insufficient for positioning as it 
only provides the y-coordinate. We also estimate 
mathematical functions to establish relations between 
real coordinates and pixels of objects in the image. 
These functions, not polynomials, allow estimating, 
with sufficient accuracy for control purposes, both x 
and y coordinates involving pixel rows and columns 

of objects in the image. This passive method achieves 
equivalent positioning results to the ones provided by 
GPS active system, which is used for comparative 
purposes. 

A crucial issue required for object location relies on 
its identification in the image, out of the scope in this 
work. Important efforts on this regard have been 
carried out in similar environments, as the ones 
reported in [31] based on semantic image 
segmentation and applying high-level knowledge 
such as sky is above the water and other 
considerations.    

This paper is organized as follows: section 2 
describes the proposed method and details the 
procedure followed to derive relations between 
spatial coordinates and pixel rows and columns. 
Section 3 provides functions finally obtained and 
errors with respect differential GPS. Finally, section 
4 contains conclusions and future trends. 

2 METHODS DESCRIPTION 

We propose a method to estimate the real 3D x-y 
coordinates in a scene (z is constant in water surface) 
corresponding to a pixel in the image by knowing 
only the row and the column where the pixel is 
placed in the image. The coordinates are estimated 
with respect to a world reference system OXYZ, that 
in our case, we set on the camera with the origin O 
coincident with the center of the image plane, the Y 
axis coincident with the optical axis in the camera 
and perpendicular to the image plane, the Z axis is 
perpendicular to the ground and it is not needed for 
this method, Figure 2. We have tested this method in 
a reservoir with images of a boat acquired from a 
camera placed on the shore at a certain height from 
water surface. Initially, to obtain the parameters 
involved in the mathematical functions to be 
estimated, a manned boat was equipped with a 
differential GPS so that its real position (GPS 
coordinates) was known at every time. The images 
captured for this estimation where taken while the 
boat was moving on different positions inside the 
field of view of the camera and its GPS coordinates 
were logged.  
Since GPS coordinates are not the same as 
coordinates from our system of reference, we have to 
make a change of coordinates from GPS axes to ours, 
which is placed on the camera. From now on when 
we refer and show GPS coordinates we assume this 
change of coordinates done. 
The proposed approach consists of two stages: 
a) Estimation of two mathematical functions linking
pixels rows (r) and columns (c) in the image and real 
3D x-y coordinates in the scene. 
b) Once the above two functions are estimated its
positioning on every new image taken is provided by 
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the two estimated functions and the results are 
compared with the GPS coordinates also logged. 

Figure 2 (a) Camera placed on the shore of the 
reservoir; (b) An image of the 3D scene as it is seen 

by the camera. 

The following two requirements are needed to apply 
the proposed method: 
a) The camera must be fixed permanently, during
both stages. 
b) Objects must be placed on planar surfaces. In our
approach this does not represent any inconvenience 
since the objects are boats placed on the water which 
is always a planar surface. 
This method is also valid for positioning different 
objects in planar surfaces. Based on this fact, we 
exploit the following two properties derived from the 
perspective projection, which is the one provided by 
the optical system attached to the camera:  
a) The lowest the object is located in an image the
closer it is to the observer. In other words, there is a 
relation between the row of the image where the 
object is located and the distance to the observer. 
This relation is modeled as a mathematical function 
which links the row of the boat in the image with the 
real 3D y-coordinate. It is to be estimated as 
explained below. 

b) The closer an object is to the observer the wider it
seems in the image. That is, horizontal dimensions of 
an object in an image depend not only on the real 
dimensions of the object themselves but also on how 
far the object is to the observer, i.e. a big object 
which is far away from the observer may seem 
smaller in the image than a narrow object closer to 
the observer. This means that the real x-coordinate of 
an object depends on the column but also on the row 
where the object appears in the image. This second 
relation is the other mathematical function to be 
estimated, as explained below. 

Considering these two facts, all we have to do is to 
find these two mathematical relations between the 
position of an object in an image, identified by its 
row, r and column, c and its real position (x-y 
coordinates) in the scene. Figure 3a displays a boat 
on the image identified as the pixel placed in the row 
and column (r, c) in the image. Figure 3b identifies 
the real coordinates (x, y) in the scene.   
Since y-coordinate depends only on the row (r), but 
x-coordinate depends on the row r and also on the 
column c, we have to consider two cases separately 
to find these dependencies: one for the Y-axis and 
another for the X-axis 

Figure 3 (a): Image acquired by the camera with row, 
r and column, c; (b): real coordinates of the boat in 
the scene with its x-y coordinates with respect the 
origin O. 

Y coordinate, which represents distance to the X-axis, 
only depends on the row where the pixel is located, 
that is, the closer the object is to the observer the 
lower it appears in the image. From figure 4 we can 
see that for any two coordinates y1 and y2 with their 
respective rows in the image r1 and r2, if y1 < y2 then 
necessarily r1 < r2. Therefore y-coordinates depend 
only on the row where they are placed in the image. 
This relation can be established under the assumption 
that objects are placed on a planar surface on the 
scene. 

(b) 
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(a) 

Figure 4 (a): the lowest the object is placed in the 
image (blue boat, row r1) the closer it is to the 

observer (blue boat, row r1 (b)). 
 

Now the goal is to find the mathematical function 
that relates each coordinate y with the corresponding 
row r. With such a purpose, we take different images 
of the boat in different positions. These positions are 
chosen so that they cover the full surface to be 
analyzed, i.e. with distances from 0 to 150 m from 
the camera, 150 m is the maximum distance 
considered in our experiments imposed by the 
resolution of the camera and the height from the 
water at which it is placed. 
 
The real 3D position of the boat, y coordinate, is 
known thanks to the GPS onboard the boat and the 
row of the boat in the image is obtained directly from 
the images by locating a marker point in the lowest 
pixel of the image belonging to the boat. Twelve 
images where enough for estimating the 
mathematical functions. Table 1 displays for each 
image in column 1, positions of the boat at each 3D 
location, in columns 2 and 4, i.e. y and x coordinates 
respectively. Columns 3 and 5 displays the 
corresponding image coordinates in pixels. Colum 6 
displays what we call ratio (R) concept expressed in 
pixels/meter, which determines the absolute value of 
the ratio between each column (c) and its associated 
x-coordinate. 

 
Figure 5 Relation between y-coordinate, distance to 

the x-axis of the boat, and the row r, where it is 
located in the image. 

 
Table 1:  Twelve images of the boat in different 
positions, with the y and x coordinates obtained with 
the GPS, in meters, for each position and their 
corresponding rows (r) and columns (c) in pixels 
over the image. The ratio value R is also displayed. 
 

# 
Image  

y-
coordinate  

(m) 

row in 
the 

image r  
(pixels) 

x-
coordinate  

(m) 

column 
in the 

image c  
(pixels) 

ratio 
pixels 
per 

meter  
R=c/x 

(pixel/m) 
1 6,3 413 2,8 742 265,0 
2 8,2 825 10 1083 108,3 
3 12,3 1.116 -5 -308 61,6 
4 24,5 1.249 3,7 146 39,5 
5 39,3 1.365 -17,5 -562 32,1 
6 63,6 1.445 -9,1 -266 29,2 
7 78,3 1.484 39,1 1110 28,4 
8 81,8 1.496 49,8 1384 27,8 
9 94,5 1.513 47,7 1302 27,3 

10 108,0 1.538 -11 -296 26,9 
11 117,4 1.558 46,2 1224 26,5 
12 140,8 1.574 35,6 935 26,3 

 
Now, the goal is to find the mathematical function 
describing the relation between the y-coordinates and 
rows r, expressed as the following model, 

( )yy F r=  (1) 
X coordinate of an object, or equivalently distance to 
the Y-axis, as mentioned before, not only depends on 
the column where the object is located but also on the 
row. To understand this fact we take a look at figure 
6 that illustrates it. Indeed, in the horizontal axis (X-
axis) any given distance, for example 5 meters in row 
25 is covered with 673 pixels, however the same 
distance in a higher row (row 597) is covered with 84 
pixels. 
Therefore the 3D real x coordinate of the ship is a 
function of the column and the row where it appears 
mapped in the image, which can be expressed as 
follows, 

( , )xx F c r=  (2) 
Because of the double dependency of x from c and r, 
to find how objects width in the X-axis varies with 
the row of the object in the image we apply a 
normalisation by computing the ratio R, of pixels per 
meter in the X-axis. Thus, for every image we 
calculate the ratio as follows, 

x
cR =  

 
(3) 
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Figure 6 Horizontal distance depends on the column 
and also on the row of the image. 

Figure 7 displays the ratio R against the row r with 
data in columns 6 and 3 respectively in table 1. Now 
the goal is to find an analytical function that relates 
the ratio and the row as follows, 

)(rFR R=  (4) 

Figure 7 Relation between the ratio R (pixels/meter) 
and the row of the boat in the image, r. 

From equations (3) and (4) we can find the x 
coordinate of the boat expressed as a function of r 
and c as follows, 

( , )
( )x

R

c
x F c r

F r
= =

(5) 

Once functions Fy(r) and Fx(c,r) have been estimated, 
following the procedure described above, the first 
stage is finished. Now we can calculate the real x and 
y coordinates of any pixel in the image by only 
knowing the row, r and the column, c where it is 
located in the image. This is the second stage 
mentioned above. 

3 EXPERIMENTAL RESULTS 

For estimating the above two functions samples have 
been taken in Valmayor reservoir, located in Madrid 
(40º 33’ 00.77’’ N, 4º03’07.06’’O). The experiment 
was carried out in July 2015 with the following 
equipment used: 
a) Camera Canon EOS 400.
b) Differential GPS system, Hemisphere GPS A221,
A220. 

c) A 4 meters long rowing boat with a marker point
used to identify the boat in the images with a GPS 
system onboard. 
d) Two radio communicators to synchronize GPS
readings with the images taken. 

The experiment is summarized in the following steps: 
a) A camera is placed on the shore at a certain height
from the water surface. The higher it is placed, the 
more accurate on finding pixels values from the 
image we will be. This is because if we place it in a 
high position the water will cover more area in the 
image than placing it at the water surface level. In our 
case we placed it on a small hill close to the lake side. 
Knowing the numeric value of the height is not 
necessary for calculations. 
b) The boat is moving inside the field of view of the
camera. 
c) Different images are taken as the boat moves. For
every image acquired, the boat GPS coordinates are 
also stored. In our case, twelve images were taken 
and used as samples to fit the functions, table 1. 

Applying the method described in section 2 the 
following analytical functions, with different 
parameters, were tested for the fit using the 
procedure cftools [30]: Polynomial, Power, Fourier 
and Exponential. After different experiments, the 
best fitting was obtained with the exponential 
functions given in (6) and (7).   

0,000602 0,006936( ) 4, 6 0, 0023r r
yy F r e e= = + (6) 

0,0022 8 0,012( , )
650 3, 0 10x r r

c
x F c r

e e− −= =
+ ×

(7) 

Functions (6) and (7) were obtained with the 
following goodness of fit: 
SSE: 69.45 
R-square: 0.997 
Adjusted R-square: 
0.9959 
RMSE: 2.946 

SSE: 34.59 
R-square: 0.9993 
Adjusted R-square: 
0.9991 
 RMSE: 2.079 

After this estimation, we have tested our approach 
with several images captured from the same scene, 
which are different from the ones used for the fitting 
above. For testing purposes we compare y 
coordinates provided by the GPS and the same 
coordinates calculated with Fy(r). Table 2 displays 
the accuracy of our method in 10 images with the 
absolute and relative errors shown in Table 2. 

On the same way, Table 3 shows the values of the x 
coordinates provided by the GPS, the estimated 
coordinates using Fx(c,r) and the absolute and 
relative errors. 
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Table 2:  GPS (real) y-coordinates, our estimated y-
coordinates and their absolute and relative error. 

Object in 
the image 
number  

y-
coordinate 

given by the 
GPS  
(m) 

y-coordinate 
estimated 
with the 
method 

(m) 

Absolute 
error 

Relative 
error 
(%) 

13 6,08 6,16 0,08 1,32 
14 7,12 7,06 0,06 0,84 
15 7,58 7,44 0,14 1,85 
16 9,50 9,70 0,20 2,11 
17 17,41 17,83 0,42 2,41 
18 22,18 21,61 0,57 2,57 
19 67,13 69,48 2,35 3,50 
20 82,88 86,28 3,40 4,10 
21 105,16 100,01 5,15 4,90 
22 133,92 126,96 6,96 5,20 

Mean 1,93 2,88 

Table 3: GPS (real) x-coordinates, estimated x- 
coordinates and their absolute and relative error. 

Object in 
the image 
number 

x-coordinate 
given by the 

GPS  
(m) 

x-
coordinate 
estimated 
with the 
method 

(m) 

Absolute 
error 
(m) 

Relative 
error 
(%) 

13 -1,34 -1,32 0,01 1,1 
14 -1,69 -1,72 0,02 1,4 
15 -2,05 -2,09 0,04 1,9 
16 -1,55 -1,58 0,03 2,1 
17 0,52 0,51 0,01 2,4 
18 1,14 1,10 0,03 2,9 
19 12,22 12,55 0,33 2,7 
20 24,56 25,32 0,76 3,1 
21 33,75 32,64 1,11 3,3 
22 44,71 43,41 1,30 2,9 

Mean 0,37 2,38 

From table 2 and table 3 we can see how errors 
increase as y coordinate increase. This is because as 
we increase distance of the object in the image, ratio 
R decreases which means that we have less pixels 
resolution for the same distance, as explained in 
Figure 6. 

Error may be reduced by increasing the height of the 
camera and modifying the pitch angle so that our 
scenario covers as much area in the image as possible 
(Figure 8). This is because the more the rows of 
pixels the scenario covers in the image the more the 
number of rows to assign to any distance. 

Figure 8 is a computer simulation of a four by four 
meters grid. Camera has been placed at 4 meters 
away from the grid. Focal length is 10 mm and 
camera height and pitch angle on every image, from 
left to right, are: (a) 0,5 m 0 degrees and (b) 2 m 23 

degrees respectively. Notice that as height increases 
we have more pixels per row for the same distance. 

(a) (b) 
Figure 8 Different images of the same scenario taken 
from different heights and pitch angles of the camera. 

This method has also been tested with images of 
objects in long indoor corridors (40 meters long) and 
small rooms (3 meters long) with better results due to 
the accuracy in the measures of the samples that are 
needed to fit the analytical functions. 

4 CONCLUSIONS 

This paper has presented an alternative method not 
only for depth estimation but also for real x-y 
coordinates estimation for planar surfaces. It is 
achieved with a single camera whose intrinsic and 
extrinsic parameters are not needed. The only 
requirement is a previous data collection to find the 
analytical functions. Once functions are found the 
camera must be fixed.  A number of samples is 
needed to find the functions Fy(r) and Fx(c,r). The 
number of samples needed will depend on the 
accuracy of the measures, the resolution of the 
images and the field of view we want to cover. 
This method, based on a single camera, can be easily 
used in other applications for locating objects placed 
on planar surfaces i.e.: sea, flat and crop fields, 
indoor floors, planar roads, etc. 
Future works will be comparing these results with 
those obtained using its intrinsic and extrinsic 
parameters. 
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