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Abstract 

Objective 

Understanding sleeping behaviours could improve prevention and treatment of sleep problems and 

associated health conditions. This study aimed to evaluate a method to assess body posture and 

movement during sleep using trunk-worn accelerometers for 28 days. 

Approach 

Participants (50 adults with low back pain (66% female); aged 32(±9) years) wore two activPAL-micro 

sensors (thigh, trunk) during their normal daily life for 28 consecutive days. Parameters related to body 

posture (e.g., time spent lying supine or prone) and movement (e.g., number of turns) during sleep were 

calculated for each night. Average values for each parameter were identified for different periods, the 

Spearman-Brown Prophecy Formula was used to estimate the minimum number of nights required to 

obtain a reliable estimate of each parameter, and repeatability of measures between different weeks 

was calculated. 

Main Results 

Participants spent 8.1(±0.8) hours asleep and most time (44%) was spent in a supine posture. The 

minimum number of nights required for reliable estimates varied between sleep parameters, range 4-21 

nights. The most stable parameters (i.e., requiring less than seven nights) were “average activity”, “no. 

of turns”, “time spent prone”, and “posture changes in the first hour”. Some measures differed 

substantially between weeks. 

Significance 

Most sleep parameters related to body posture and movement require a week or more of monitoring to 

provide reliable estimates of behaviour over one month. Notably, one week may not reflect behaviour 

in another week, and the time varying nature of sleep needs to be considered. 
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Introduction 
 

Poor sleep quality has been associated with negative health outcomes such as obesity, pain, and 

stress (Grandner 2017). This relationship may be bidirectional as sleep problems are a common 

comorbidity with chronic health conditions, such as diabetes and depression (Appleton et al 2018). A 

better understanding of sleeping behaviours and how these are present in people with different 

conditions could help to improve the prevention and treatment of sleep problems and associated health 

conditions.  

Measures of human sleep quantity and quality have been studied extensively using a variety of 

methods. Self-report measures of sleep remain the most practical method to monitor sleep over long 

periods, but these depend on participant recall and adherence (Smith et al 2018). Comprehensive 

objective assessment of sleep typically involves polysomnography (PSG) to measure a range of 

physiological parameters in a sleep laboratory. Although accurate, PSG is expensive, impractical to use 

to evaluate sleep for more than a few nights, and the unusual sleeping environment and intrusive 

equipment questions the extrapolation of results to daily life. The cabling and devices used for 

measurement are also likely to restrict body posture and movement during sleep (Smith et al 2018).  

Assessment of posture and movement during sleep could provide information regarding sleep 

quality (Wrzus et al 2012) and has been applied by use of wrist-worn accelerometers. Although this 

method has reasonable validity and reliability for assessing sleep-wake patterns when compared to PSG 

in healthy populations with average or good sleep quality (Sadeh 2011, Conley et al 2019), these 

measures consistently overestimate sleep time and underestimate wake time compared to PSG, 

especially in people with chronic conditions (Conley et al 2019).    

An alternative to wrist-worn accelerometers is the use of accelerometers fixed to the thigh or 

trunk to measure body posture. Thigh-worn accelerometry is a widely accepted method to quantify 

physical behaviour (e.g., sitting/lying, standing, walking) (Edwardson et al 2017, Stevens et al 2020). 

Because thigh-worn sensors are horizontal in both sitting and lying, and thus cannot distinguish these 
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positions, Wrzus et al. (2012) used a combination of thigh- and trunk-worn accelerometers to measure 

body posture and postural changes during sleep and proposed this could provide additional insight into 

sleeping behaviour compared to a wrist-worn accelerometer. Sleeping postures (i.e., supine, side lying, 

prone) were identified from angular changes of body axes with 99.7% accuracy when compared to 

laboratory observation. Although promising, there are several limitations. First, measures were made 

for 24 hours, and it is unclear whether such data are representative of an individual’s sleeping behaviour 

over a longer period (e.g., 1 week; 1 month). Second, as currently available movement sensors have 

limited battery life, when recording over long periods, it would be preferable for participants to be able 

to replace sensors at home rather than have them applied by trained staff. However, inaccurate 

placement could cause problems with classification algorithms (Wrzus et al 2012) and correction for 

inaccurate placement of accelerometers would be required.    

This study is a secondary analysis of a larger study (Costa et al 2021a, 2021b) and aimed to 

evaluate a method to assess body posture and movement during sleep over longer periods in the real-

world. The study addressed five aims. First, we developed and evaluated a method to correct for 

potential errors that could be induced if participants inaccurately positioned the accelerometers. This 

correction was then used for the analyses in this study. The second aim was to characterise posture and 

movement during sleep over 28 days. The third was to investigate the minimum number of nights 

needed to provide a reliable estimate of an individual’s sleep behaviour over 28 days. Fourth, the 

measures made over different combinations of nights (number of nights and combinations of 

weekday/weekend-days) were compared against the average of the entire 28 nights. The fifth aim was 

to study the repeatability between measures made in the first and fourth week.   

 

Methods 

Ethical Statement 
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The Institutional Medical Research Ethics Committee of the University of Queensland, Brisbane, 

Australia, approved this study (Approval #: 2010000045). The study was conducted according to the 

principles of the Declaration of Helsinki and in conformity with local statutory requirements. All 

participants gave written informed consent to participate in the study. This research does not involve 

identifiable human participants. Data was anonymized prior to analysis and publication. This study is not 

based on a registered clinical trial.  

 

Participants 

This study involved data of the first 50 participants (33(66%) female; 17(34%) male; mean (SD) 

age of 32(9) years) from a larger ambulatory monitoring study of adults aged 18-50 years with low back 

pain (LBP), recruited from the general population (Costa et al 2021a, 2021b). Participants were included 

if they had a history of LBP of longer than three months and if they expected to continue to experience 

pain during the study. Participants were excluded if they had undergone spinal surgery, had another 

primary source of pain, were unable to undertake activities of daily living, or if they had any major 

medical condition.  

 

Activity monitoring 

Participants wore two activPAL3TM-micro sensors at all times during their normal daily life 

activities (for the larger study) and during sleep (for the current study) for 28 consecutive days. The 

activPAL is a small and lightweight (23.5 x 43 x 5 mm; 10 g) device that contains a tri-axial accelerometer 

to detect static and dynamic accelerations (Figure 1a). The sensors were initialized (activPAL™ software 

v7.2.32), waterproofed (using Tegaderm and a vacuum-seal packaging) and attached to participants by 

trained staff, in the first instance, using a hypoallergenic adhesive (Tegaderm, 3MTM or Fixomull, BNS 

medical). As participants would be required to remove and reattach sensors during the period of 

recording, they were trained in the procedure and provided with written instructions at this visit. One 

sensor was attached to the midline of the right thigh, midway between the hip and the knee (Figure 1b). 
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This is the standard wear location for the activPAL to measure activity (e.g., sitting, standing, walking) 

during the day (Edwardson et al 2017). To measure body posture and movement during sleep (Wrzus et 

al 2012), a second sensor was attached to the trunk, over the lower right rib cage (Bassett et al 2014). 

The trunk sensor was placed approximately in line with the thigh-sensor, so that the front of both 

sensors was facing the same direction when standing. With a fully charged battery, the sensor can 

record data for approximately ten consecutive days, and each participant used three pairs of sensors 

during the study. In addition, participants were asked to record their bed and wake up time every day 

using a smartphone application (RealLife Exp, LifeData, USA).  

 

Correction for errors in trunk sensor position  

A study was undertaken in a different set of participants to evaluate methods to identify and 

correct for errors in placement of the sensor on the trunk. Data were collected in four pain-free adults 

(2 male, 2 female) with mean (SD) age of 30 (3) years and BMI between 21 and 24. Participants wore 

one activity sensor on the thigh and four on the trunk to represent possible “incorrect” placements of 

the trunk sensor (Figure 1b). They were instructed to adopt a range of pre-determined lying positions 

(supine, prone, right, and left side), which were confirmed by direct observation. Participants spent 

three minutes in each of the four postures. For correction, the thigh sensor was used as a reference. The 

following steps were implemented. First, it was assumed that when the thigh is in a “supine posture” 

(knee pointing upwards) the trunk should also be in a supine posture. We identified periods with the 

thigh in this posture and the angle recorded by the trunk sensor was adjusted based on the rotation 

information of the thigh sensor. Estimates of body postures (supine, prone, left/right side) were 

calculated with the uncorrected and corrected estimations and compared to the observed body posture 

to evaluate the accuracy of the described procedure. Percentage of correctly identified postures was 

determined for each sensor location. 
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Data analysis 

 Data analysis required identification of the periods of sleep and then, within those periods, 

calculation of a range of postures and movement. For these two elements, algorithms and criteria were 

refined or developed as follows. 

Identification of estimated sleep time  

A multistep automated approach was used to identify sleep time. First, using activPAL 

proprietary software, events from each 24 hours of recording of the thigh sensor were exported, which 

indicate the start and end of each continuous period spent “sedentary (i.e., sitting/lying)”, “standing” 

and “walking”. Further data processing and analysis were performed using MATLAB software (MATLAB 

R2018b, The MathWorks, Inc., Natick, MA). For this analysis periods unlikely being part of waking hours 

were identified as in-bed or non-wear based on previously published algorithms (Winkler et al 2016, 

Berg et al 2016). In-bed periods were identified using a 2-step algorithm: In step 1, “long sedentary 

periods” (>5 hours) are identified and, in case none are found, the largest “short sedentary periods” (>2 

hours) was selected. Then, step 2 searches within the time window of 15 minutes before and after the 

in-bed period for independent events that are probably part of the same continuous in-bed period: in 

case it finds another in bed period, or long (>2 hours) uninterrupted stationary events, these are then 

combined with the in-bed period previously identified (Winkler et al 2016). Raw acceleration data was 

visually inspected to ensure the complete in-bed period was found. For example, if a participant had 

been up and active (e.g., walking) in the middle of the night for more than 15 minutes and went back to 

bed for several hours after that, the algorithm described above may not have identified both in-bed 

periods (before and after being up for >15 min). For this reason, the data were visually inspected and 

the start and/or end of the in-bed period was adjusted if necessary. The Supplementary Material (S1) 

shows a flowchart and example data of the detection of in-bed periods. Periods of non-wear were 

identified as continuous “very long events” (<12 hours), or events of 7+ hours duration starting in 

unlikely periods of the day: sedentary periods starting between 8AM and 6PM, or standing/walking 

events starting between midnight and 6AM (Berg et al 2016). Periods identified as in-bed that were 
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unexpected, e.g., when they occurred during the day, were verified against self-reported bed/wake 

times. All non-wear periods were checked against self-reported non-wear times, where possible (i.e., 

when the daily diary was completed).  

Third, as the in-bed periods likely also contained time in bed but not asleep (Winkler et al 2016), 

the time likely to be sleep was estimated using raw accelerometer data from the trunk sensors: raw tri-

axial acceleration signals from the trunk sensor were plotted over time, and the initial estimates (start 

and end-time) of in-bed periods obtained from the thigh sensor were indicated. These plots were 

visually inspected to identify moments of sleep onset and wake up based on the reasoning that, when 

the participant is sleeping, the trunk should be in horizontal position and trunk movement is negligible 

for extended periods. On this basis, sleep onset was estimated by visual inspection as the time when 

fluctuations in trunk acceleration stopped, which would indicate cessation of small movements that 

occur when awake and wake up time was identified using the converse criteria. 

 

Identification of body posture and sleep parameters 

Body postures were continually monitored using the angular orientation of the trunk-sensor 

during the identified sleep times and a series of parameters were defined according to the methods 

described by Wrzus et al. (Wrzus et al 2012) and some additional measures (Table 1). The activPAL 

sensor provides accelerations from three orthogonal axes which can be used to calculate angular 

position and motion (Lyden et al 2016), and thus, body postures and movements between postures. This 

involved several steps. The raw accelerations were calibrated to equivalent g-force values using 

specifications from the manufacturer (“Analog Devices: Product Overview ADXL345” 2021). These 

Cartesian coordinates were transformed to spherical coordinates, yielding an angle in the transverse 

plane (ZY for the activPAL, see Figure 1a) between ±180° (Figure 1c). When lying down, the angular 

orientation of the trunk sensor was used to estimate the body posture. Four body postures were 

identified using thresholds similar to those described by Wrzus et al. (2012), considering supine as the 
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angle of 0°, the criteria for the four postures were: lying supine (-45° to 45°); lying on the right side (45° 

to 135°); lying prone (-135° to +135°); and lying on the left side (-45° to -135°) (Figure 1c).  

 

 

Figure 1. (a) Axis system of the activPAL tri-axial accelerators; (b) placement of the activPAL thigh sensor and 

possible placements of the trunk sensor when attached by participants (the most medial/anterior placement is the 

preferred placement); (c) body postures while lying and classification thresholds for the activPAL sensor attached 

to the trunk.   

  

 To identify the body postures and movement behaviour for each sleep period, a sliding circular 

mean was calculated across a 5-second window. When the orientation differed more than 30° from the 

preceding window, it was considered as a “posture change” and a boundary was set. The time between 

boundaries consists of a single body posture and was defined as a segment of data. The posture during 

each segment was recorded as the mean angular orientation across that segment. The total duration of 

time in each posture during the episode of sleep was recorded (i.e., in case of multiple segments, the 

total duration was the sum of durations across all segments). We also recorded the total number of 

posture changes and the number of segments that had a duration of 15 minutes or longer (“long 

posture”). Similarly, we calculated the number of changes of 10°, which may be an indication of “tossing 

and turning” during restless sleep. As the identified body posture before a boundary was not always 

different from the body posture after a boundary (boundary was defined by change of 30° but may not 

cross a threshold for a different posture), we separately counted the boundaries that involved a change 
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in body posture as a “turn”. Furthermore, if the average gravitational force of the trunk-sensor across 

one segment in the longitudinal axis was <-0.66 g, the corresponding segment was considered a “rise” 

(i.e., stand up from lying down). Total number of rises was counted as well as the number of rises in the 

first hour. Total time upright was defined as the sum of the duration across all rise segments. Finally, 

average activity over the night was derived by taking the average change in the resultant acceleration 

vector of the trunk-sensor (Table 1) (Wrzus et al 2012). 

  

 Table 1. Description of posture and sleep parameters  

Parameter Description Unit 

Sleep time Time between start and end of sleep events Hours 

Time Upright Total time upright during the period defined as sleep Minutes 

Lying time Time defined as sleep minus time upright Hours 

Average activity Average change in resultant acceleration vector of trunk-sensor g (m/s2) 

Rises  Postures with trunk longitudinal gravitational force > -0.66 Count 

Rises first hour Rises in first hour Count 

No. Turns Number of changes in body postures Count 

Posture duration Average duration in a posture Minutes 

Long postures Postures maintained longer than 15 minutes Count 

Time “supine” Trunk angle: -45° to +45° Minutes 

Time “right side” Trunk angle: +45° to - 135° Minutes 

Time “prone” Trunk angle: -135° to +135° Minutes 

Time “left side” Trunk angle: -45° to -135° Minutes 

Posture changes >30° Number of posture changes of 30 degrees or more Count 

Posture changes >30° 

in first hour 
Number of posture changes of 30 degrees or more for first hour Count 

Posture changes >10° Number of posture changes of 10 degrees or more Count 

Posture changes >10° 

in first hour 
Number of posture changes of 10 degrees or more for first hour Count 

 

Statistical analysis 

For each participant, all sleep parameters were calculated for each night. Nights containing 

missing data were excluded from analysis. Nightly averages for each sleep parameter were calculated 

for different numbers of nights (1-7 nights), selected randomly from the first week of monitoring. The 

nightly average of each sleep parameter was also calculated for the entire 28 nights. This value was used 
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as the reference for comparison of the validity of the shorter periods of measurement. Finally, averages 

were also generated based on combinations including one or two weekend-days.  

Data were analysed in four ways: 

(i) General sleep description: Means and standard deviations were calculated for each 

sleep parameter for the total 28-day period and for week 1 and week 4.  

(ii) Number of nights needed to reliably estimate sleep parameters over a month: The 

Spearman-Brown Prophecy Formula was used to estimate the minimum number of 

nights required to obtain a reliable estimate of each sleep parameter. This formula is 

based on the intraclass correlation (ICC) and is as follows: N=[ICCd/(1-ICCd]*[(1-

ICCe)/ICCe], where N = the number of nights needed, ICCd = desired level of reliability 

(0.8), and ICCe = estimated level of reliability (McGraw and Wong 1996, Trost et al 

2005). The estimated level of reliability of the sleep parameters was examined by 

calculating single-measure (single-night) ICCs (consistency; two-way random model). 

The single-measure ICC is used when the actual (future) application will be based on a 

single measurement. Calculation of this ICC considers all available data (multiple 

measurements) (Koo and Li 2016). In this study, the reliability of sleep parameters for a 

single measurement (night) was then used in the Spearman-Brown Prophecy Formula to 

assess the minimum number of nights required to obtain a reliable estimate of each 

sleep parameter. To check the accuracy of the estimate, for each sleep parameter, we 

then used the number of nights (derived from the Prophecy Formula) to calculate the 

average-measures ICCs. The average-measure ICC is a type of ICC that provides the 

reliability for the mean of multiple measurements (nights, in this case) (Koo and Li 

2016).   

(iii) Comparison of different combinations of nights: The averages of the sleep parameters 

based on the different combinations of nights were compared with the reference 

(average of entire 28 nights) using correlation coefficients (Pearson if normally 
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distributed, otherwise Spearman) and Bland-Altman methods to assess mean biases and 

limits of agreement. 

(iv) Between week repeatability: To determine the repeatability of the sleep parameters 

between weeks of measurement, ICCs (two-way random model, average measures) 

between the nightly average of week 1 and week 4 were calculated. This was 

undertaken for both the nightly average based on one random night in each period and 

the nightly average based on seven nights of both periods.  

Results  

Evaluation of correction of trunk-sensor data 

Using the uncorrected signal, classification for the best placed sensor (most medial/anterior 

placement, see Figure 1b) was accurate for 98.1% of the measures. For the placement that was most 

lateral on the chest (i.e., rotated approximately 90° relative to the “correct” placement), the 

classification was accurate for 13.9% of the measures. After correcting the rotation angle, the 

classification was 100% accurate for the best placed sensor and 95.9% accurate for the least ideal 

placement.   

General sleep description 

Twenty-two participants (42%) provided valid (i.e., nights without any missing data) data for the 

full 28 nights and for the other 28 participants there were on average four nights of missing data (range 

1-14 nights) over the 28 days. Based on the activity sensors, participants slept for an average (SD) of 8.1 

(0.8) hours per night. Overall, 44% of the time lying down was spent in a supine position, 23% on the 

right side, 21% on the left side, and 9% in prone. For each of the 18 sleep parameters, the nightly 

average for the whole 28-day period and for data of weeks 1 and 4 are presented in Table 2.  
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Table 2. Nightly average of each sleep parameter (mean (SD)) for different recording periods 

  28-days  7 days (Week 1) 7 days (Week 4) 

    

Total valid nights (%) 92.4% 96.0% 89.7% 

No. of valid nights 25.9 (3.3) 6.7 (0.7) 6.3 (1.3) 

    

Sleep time (h) 8.1 (0.8) 8.2 (1.0) 8.1 (0.9) 

Time Upright (min) 6.4 (8.4) 6.0 (10.2) 5.4 (8.8) 

Lying time (h) 7.9 (1.0) 8.1 (1.0) 8.0 (1.0) 

Average activity (g) 1.1 (0.1) 1.1 (0.0) 1.1 (0.1) 

Rises 0.9 (0.7) 1.0 (1.0) 0.9 (0.8) 

Rises first hour 0.1 (0.2) 0.1 (0.2) 0.2 (0.3) 

No. Turns 17.0 (7.1) 17.2 (8.2) 17.2 (7.3) 

Posture duration (min) 22.2 (9.6) 22.9 (12.7) 22.9 (13.2) 

Long postures (>15 min) 9.7 (1.8) 10.0 (2.0) 9.8 (2.2) 

Time “supine” (min) 214.3 (69.8) 226.7 (74.5) 223.0 (79.9) 

Time “right side” (min) 113.7 (41.2) 115.9 (52.3) 105.5 (44.0) 

Time “prone” (min) 45.7 (42.2) 38.3 (37.6) 48.0 (49.8) 

Time “left side” (min) 102.8 (44.3) 107.0 (49.6) 104.3 (55.0) 

Still position latency (min) 1.1 (1.4) 1.0 (1.7) 1.0 (1.1) 

Posture changes >30°  28.5 (11.1) 28.6 (13.2) 29.3 (11.9) 

Posture changes >30° in first hour 3.9 (1.5) 4.0 (1.9) 4.2 (1.9) 

Posture changes >10° 51.2 (16.0) 52.3 (19.7) 51.9 (16.7) 

Posture changes >10° in first hour 6.0 (2.8) 6.4 (3.5) 6.2 (3.0) 

 

Number of nights needed to reliably estimate sleep parameters over a month 

The Spearman-Brown Prophecy Formula showed that the number of nights required to estimate 

the behaviour over 28 nights varied between sleep parameters, ranging from four to 21 nights (Table 3). 

Reliable estimates of six parameters (i.e., “average activity”, “no. turns”, “lying supine”, “lying prone”, 

and “posture changes >30° in first hour” and “posture changes >10° in the first hour”), could be 

generated from seven or fewer nights of data. Features that required the greatest number of nights 

(and lowest single-measure(night) ICCs) were the number of rises and time upright, sleep time and 

average duration of postures. This finding indicates these measures vary considerably from night to 

night. Generally confirming our analysis, when the average ICC measures are calculated using the 

derived minimum number of nights, values were approximately 0.80 for all parameters (Table 3). 
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Table 3. Number of required nights to generate a reliable estimate of each of the sleep 
parameters based on the Intraclass Correlation a (ICC; single measures).  

 

Intraclass Correlation 
No. of 
nightsa 

needed for 
ICCb≥0.8 

ICCb for no. of 
nightsc 
needed 

  
Single 

measure 
Average 
measure 

Sleep time (h) 0.19 0.87 18 0.82 

Time Upright (min) 0.17 0.85 20 0.82 

Lying time (h) 0.21 0.88 16 0.81 

Average activity (g) 0.49 0.96 5 0.87 

Rises 0.27 0.91 11 0.86 

Rises first hour 0.16 0.84 21 0.78 

No. Turns 0.51 0.97 4 0.86 

Posture duration (min) 0.18 0.86 19 0.88 

Long postures (>15 min) 0.26 0.91 12 0.84 

Time “supine” (min) 0.39 0.95 7 0.83 

Time “right side” (min) 0.22 0.89 15 0.85 

Time “prone” (min) 0.42 0.95 6 0.73 

Time “left side” (min) 0.30 0.92 10 0.79 

Posture changes >30° 0.25 0.90 13 0.74 

Posture changes >30° in first hour 0.44 0.96 6 0.93 

Posture changes >10° 0.27 0.91 11 0.77 

Posture changes >10° in first hour 0.39 0.95 7 0.91 
a The number of nights is calculated using the Spearman-Brown Prophecy Formula based on a reference 
ICC of 0.8. 
b Average-measures ICC  
c This refers to the no. of nights displayed in the 3rd column of this table. 
 

Comparison of different combinations of nights (28-night reference) 

For most parameters (13 out of 17) the correlations between measures calculated from 7-nights 

and 28-night reference was >0.80. A few parameters (“no. turns”; “lying supine”; “lying prone”; “posture 

changes >30° in first hour”) reached high correlations (>0.90) when comparing the 7-night estimate with 

the 28-night reference. Addition of any day above five for the estimates made little further 

improvement in correlations (ranging from -0.01 to +0.06) with the 28-night reference. Overall, 

including a weekend day in the estimates did not change correlation coefficients. Similar to the impact 

on ICCs, mean biases and limits of agreements (LoA) showed small improvements (smaller bias; 
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narrower LoA) when using an estimate based on five or more nights. Correlations, mean biases and 

limits of agreement for all different combinations are provided in the Supplementary Material (S2).  

 

Between week repeatability 

When comparing the nightly average based on one night in week 1 and one night in week 4, the 

ICC ranged from -0.45 to 0.73. ICC was negative for two parameters (“Sleep time” and “Lying time”), 

which means that variability within a night (between participants) exceeded the variability between 

nights. Negative ICC estimates indicate that the variability within groups exceeds the variability across 

groups and is interpreted as a low true intraclass correlation (Taylor 2009). The ICCs increased when 

averages were generated over the seven nights of both weeks and ranged from 0.51 to 0.90 (Figure 2). 

Five sleep parameters reached an ICC >0.80: “number of turns”, “time supine”, “time prone”, and 

movements (10 and 30°) in the first hour. It is important to note that low ICCs are more likely to 

represent differences in the individual’s behaviour between nights rather than error in the 

measurement.  

 

Figure 2. Repeatability of sleep parameters (nightly average based on 7 days) between week 1 and week 

4. The horizontal dotted line shows an ICC of 0.8, which generally indicates good/acceptable reliability.  
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Discussion 

This study evaluated a method to assess body posture and movement during sleep over multiple 

days or weeks in the real-world. This study confirms the feasibility of use of accelerometers to measure 

posture and movement during sleep for multiple days or weeks using a correction method to account 

for potential suboptimal placement of the accelerometers. Results showed that the minimum number of 

nights required for a reliable estimate (i.e., value that is representative of a measure made over 28 days) 

is different for each sleep parameter. Some parameters, including “average activity”, “no. turns”, “lying 

supine”, “lying prone”, and “posture changes first hour”, were relatively stable, and seven or fewer 

nights were sufficient to provide a reliable estimate. Other parameters were less stable, such as “Sleep 

time”, “time upright”, “Rises first hour”, “Posture duration”, and required more than 18 nights to 

provide a reliable estimate.  

 This is the first study to evaluate posture and movement of the whole-body during sleep using 

accelerometers for several weeks in free living contexts. Most of the parameters were calculated using 

methods based on those presented by Wrzus et al. (2012), for analysis of data over a single 24-hour 

period. Although other studies have used accelerometers to measure sleep position and body 

movements over multiple days (e.g. (Skarpsno et al 2017)), the focus has been on associations with 

demographics, lifestyle and insomnia symptoms. Wrist or ankle-worn accelerometers have also been 

used for multiple days or weeks in free-living contexts, but these sensors do not measure whole body 

movement or distinguish between different lying positions (Smith et al 2018, Zambotti et al 2019). 

Changes in body posture and movements during sleep could provide more insight into sleeping 

behaviour and sleep problems, with relevance for a range of conditions such as back pain.  

 Our results show that some sleep parameters are more robust than others across nights. 

Parameters related to movement (e.g., “average activity” and “turns”) and position (e.g., “lying supine” 

and “lying prone”) were most robust, but still required 4-7 days of monitoring to obtain a reliable 

estimate. Data from a study by Skarpsno et al. (2017) that was based on a working population in whom 

musculoskeletal pain was very common, reported little variation in sleep positions and body movement 
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across six testing nights. Although this suggests that data from additional nights was not necessary, that 

study only included a single 6-night period, and according to our data, this might may not be 

representative for monitoring during another. Parameters related to the duration of sleep were more 

variable between days. Similar to our results, but using wrist worn actigraphy-measurements, Aili et al. 

(2017) found that more than seven nights were needed for a reliable measure of total sleep time.  

The parameters “Sleep time”, “Time Upright”, and “Lying time” all required more than two 

weeks of monitoring to provide a reliable estimate. Although it is likely that this is explained by high 

variability of these parameters over time, the method used to calculate these parameters requires 

consideration. All parameters relate to sleep time and the method used to estimate sleep time in this 

study included manual selection of time-points based on visual inspection of the data. This may 

introduce some variation in data. The accuracy of this method requires evaluation, for example 

verification using other methods such as electroencephalography to identify sleep state (Fekedulegn et 

al 2020). Our method to estimate sleep onset and wake up, based on decreases and increases in trunk 

acceleration, respectively, could directly influence some parameters that are also based on trunk 

movement, such as “posture changes in the first hour”. Likewise, it is also important to note that such 

methods might lead to overestimation of total sleep time, as one may remain still for some time prior to 

falling asleep. 

Notably, the present data showed that one week of monitoring may not reflect behaviour over a 

subsequent week for most parameters, even when values are averaged over 7 days (12 out of 17 with 

ICC <0.8). This suggests that long periods (e.g., several weeks) may be required if a single representative 

estimate is preferred. Alternatively, this observation implies that when sleep parameters are to be 

contrasted with other measures (e.g., pain intensity) it is likely that analysis that takes into account the 

time-varying nature of sleep parameters and the contrasting measure need to be considered. The 

availability of wearable sensors, in combination with the presented method to correct for inaccurate 

placement of sensors, make ambulatory assessment over a long period possible. 
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 The sleep parameters used in this study were all derived from the trunk sensor, but the thigh 

sensor was used to correct for potential misplacement of trunk sensor. Wearing both sensors also 

enables differentiation between sitting and lying, which is especially useful for differentiating between 

these positions during the day (e.g. naps) (Smits et al 2018), and could be beneficial for monitoring 24-

hour behaviour. Additionally, the thigh sensor can be used to measure leg movements during sleep, 

which could be useful to detect specific sleep problems, such as periodic limb movement disorder 

(Smith et al 2018).  

 Some methodological issues require consideration. First, these data are based on participants 

with LBP, and it is plausible that movement and posture during sleep might differ between individuals 

with and without pain. Previous work suggests a reciprocal relationship between sleep disturbance and 

pain (Finan et al 2013). Second, some of the sleep parameters included in this study are not 

independent of each other, for example as time lying in a supine posture increases, time in another 

posture (prone, left or right side) will decrease. Thus, in addition to time spent in each position 

separately, these measures may need to be considered as a composite (Dumuid et al 2018). Despite 

these limitations, this study has potential clinical implications. For instance, the methods presented here 

could be used in both clinical and research contexts to provide further insights on how sleep position in 

real-world contexts (i.e., sleeping at home) relates to clinical conditions such as low back pain (which 

may be provoked by specific postures, and could explain pain the following day) or sleep apnoea 

symptoms (which are affected by body position) (Ravesloot et al 2021). Likewise, our methods could be 

used to further understand the relationship between frequent body posture change and sleep, with 

relevance for conditions such as parasomnia (Fleetham and Fleming 2014). Whether sensors should be 

worn for short or long periods will depend on the purpose of the investigation. If the study aims to 

evaluate short term effects of a specific posture, then recording over a few days should suffice. 

However, if the aim is to characterize sleeping posture of an individual, then longer duration recording is 

required to capture the variation over time. 
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Conclusions 

 This study shows that most sleep parameters related to whole body movement and posture 

require a week or more of monitoring to provide a reliable estimate of behaviour over one month. 

Importantly, the results also showed that one week of monitoring does not always reflect behaviour in 

subsequent weeks, which suggests that multiple weeks of monitoring may be required, and this time 

varying nature of sleep might need to be considered in studies. The method used to correct the data for 

potential suboptimal placement of trunk-worn accelerometers facilitates longer periods of monitoring 

with reapplication of the sensor by the participants. Further research is needed to verify the accuracy of 

estimates of sleep onset and wake up times from trunk acceleration data. 
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