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Resumen

Se investigan el modelado y la identificación
de procesos de fermentación Acetona-Butanol-
Etanol (ABE). El enfoque tradicional intenta
ajustar los parametros del modelo mediante una
optimización para que las simulacines coincidan
con los datos experimentales. Estas optimiza-
ciones a menudo tardan mucho y no siempre
consiguen un buen ajuste por la necesidad de
imponer una estructura de modelo fijo y por
la no-convexidad de la función de coste resul-
tante. Se presenta un enfoque que divide el prob-
lema en unos sub-problemas que se pueden re-
solver de forma más efectiva y que elige el mod-
elo del crecimiento de celulas libremente usando
ALAMO (Automatic Learning of Algebraic MOd-
els). Finalmente, se implementa el algoritmo y re-
aliza una identificación con datos reales y se com-
prueban los resultados mediante una validación.

The modeling and parameter identification of
an Acetone-Butanol-Ethanol (ABE) fermentation
process is investigated. The traditional approach
tries to adjust the model parameters by means of
an optimization such that the simulations fit the
experimental data. These optimizations often take
a lot of time and do not achieve good fits due to the
necessity of imposing a fixed model structure and
due to the non-convexity of the resulting cost func-
tion. A different approach, which divides the big
problem into smaller and more efficiently solvable
subproblems, is presented. Its advantage is that
it determines a model of the cellular growth term
on the go using ALAMO (Automatic Learning of
Algebraic MOdels) and thus offers more degrees
of freedom. Lastly, the algorithm is implemented,
tested and validated with real data.

Palabras clave: ABE Fermentation, Model-
ing, Parameter Identification, Cellular Growth,
Tikhonov Regularization, ALAMO

1. Introduction

Recently, the investigation of the Acetone-
Butanol-Ethanol (ABE) fermentation process has

experienced a rise in popularity due to its possi-
bilities in the production of bio-butanol which is
being used in a lot of products such as bio fuels [9].

Until now a large variety of models of this process
has been proposed (e.g. [8], [6], [10], [3]). Even
though they all share a certain structure, none of
these has been agreed on by the scientific commu-
nity as the de facto standard model which hints
at the difficulties that the modeling of biochemi-
cal processes brings along. Experiments can often
lead to results that contradict existing models, es-
pecially concerning the cell growth.

However, other approaches that try to omit these
problems exist and have successfully been used.
E.g. Bastin et al. propose an alternative adap-
tive identification technique in [2] which is able to
tackle this problem better.

In this paper a new approach will be presented. It
allows to quickly determine a mathematical model
which will match the data obtained in experiments
as well as an easy model building in a divide and
conquer approach by dividing the whole identifi-
cation process into small and efficiently solvable
subproblems. The model for the cellular growth
term will be determined on the go.

The results will most likely not be applicable to
the general modeling case just like most models of
this process. Instead they should rather be used
to work within a specific experimental setup to de-
termine a model that describes it reasonably well.

2. Modeling

The ABE fermentation process which is being
modeled is a batch process, i.e. it is carried out
in a closed fermentor without any input or out-
put flow. Only the temperature and the pH are
controlled to maintain a certain value. However,
other forms such as the continuous fermentation
are possible.

Initially, the substrate, in this case glucose, is
given into the reactor along with the so-called in-
oculum, the microbiological starting culture, in
this case Clostridium acetobutylicum. After a
short lag phase in which the bacteria adjust them-
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selves to the new environment, the acid produc-
tion phase or acidogenesis starts in which mainly
acetate, butyrate and lactate are produced. This
phase is typically indicated by a rapid growth of
cells until the pH has dropped from about 7 to 4.5.
In a second step, the solventogenesis, the cell num-
ber stalls or even decreases and the production of
the solvents starts [9]. The temperature is usually
maintained constant at its optimum which lies be-
tween 30 and 40◦C throughout the whole process.
For further insight into the biochemistry of ABE
fermentation refer to [1].

The important features to be modeled have been
identified as the cell growth and death dynamics
as well as substrate utilization for the acid and
solvent production and cell maintenance and inhi-
bition mechanisms due to an excess of both sub-
strate and solvents in the broth.

A macroscopic model will be employed trying to
capture the quantitative dynamics of the process
with the purpose of determining later on the best
operating conditions. However, it is possible to
use microscopic models based on metabolic path-
ways as proposed in [10]. For an extensive review
of models refer to [9].

The nomenclature of the concentrations (in g/L) is
given by X: Biomass (C. acetobutylicum), S: Sub-
strate (Glucose), Pa: Solvent (Acetone), Pb: Sol-
vent (Butanol) and Pe: Solvent (Ethanol).

One possible model that captures the features ex-
plained above and should therefore be able to re-
produce the general trajectories of experimental
data is the following

Ẋ = µX − λX (1)

Ṡ = −YXSµX −mXX (2)

Ṗa = YXPa
µX (3)

Ṗb = YXPb
µX (4)

Ṗe = YXPe
µX. (5)

Thus it employs a growth
term µ = µ(X,S, Pa, Pb, Pe), death and main-
tenance coefficients λ and mX as well as the
rates YXS , YXPa

, YXPb
and YXPe

indicating how
substrate is converted into cells and product is
generated from that.

Without a doubt, the choice of the cellular growth
term µ is the most important and at the same
time difficult part of the modeling process. Several
models exist in literature and each has its justifica-
tion. Some possible choices are shown in Table 1.
Whereas all these models contain substrate inhi-
bition only the models by Hinshelwood and Yang
also contains product inhibition which has been
shown to play an important role [3]. The model

Table 1: Different models for cellular growth,
taken from [8], [7], [13] and [12]. In the model by
Yang, Paa denotes acetate, Pba denotes butyrate
and Pl denotes lactate.

Model µ

Monod µ̄ S
S+K

Teissier µ̄(1− exp(− S
K ))

Haldane µ̄ S
K1S2+S+K

Hinshelwood µ̄ S
S+K

∏
i∈{a,b,e,aa,ba}(1−KpPi)

Yang µ̄ S
S+K (1− ( Paa

Cmaa
)maa −

( Pba

Cmba
)mba − ( Pb

Cmb
)mb −

m1( Paa

Cmaa
)maa( Cb

Cmb
)mb −

m2( Pba

Cmba
)mba( Pb

Cmba
)mb −

m3( 5.6−pH
1.6 ))

by Yang et al. furthermore considers the pH to in-
clude the high sensibility of the cells to the acidity
of the broth.

Note, that the original model by Monod is by far
the most popular choice due to its simplicity and
the fact that it often suffices to model the general
behavior of cell growth according to the Michaelis-
Menten kinetics. The other models are often ex-
tensions of the one by Monod.

3. Identification approaches

For identification and validation purposes two
data sets were provided. The corresponding ex-
periments were carried out in a batch fermentor
with Glucose as the substrate and the bacteria
C. acetobutylicum as biomass. Unfortunately, no
information about the temperature or pH during
the experiments were provided making it impossi-
ble to include these variables in the models.

3.1. Traditional approach

The traditional approach to the parameter identi-
fication of such processes considers a given model,
for instance model (1)–(5) with states x, parame-
ters p and outputs y

ẋ = f(p,x),

y = g(x)
(6)

and a set of experimental output data (tk, ỹk)
for k = 0 . . . Nk to which the outputs of the model
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are supposed to be fitted by finding optimal values
for p.

Due to the choice of this macroscopic model
all the states are outputs g(x) = x. Further-
more, because they are concentrations, it would
make little sense permitting them to be negative,
thus x(t) ≥ 0, and their initial values are taken
from the experimental data y(t0) = ỹ0. The pa-
rameters were also chosen in advance such that
their sign would be positive, thus p ≥ 0. Of
course, it is possible to add additional restrictions,
e.g. limits on the parameters or states. A weight-
ing matrix W can for instance be used for nor-
malization purposes. The optimization problem
is then written as

min.
x

J(p) =

Nk∑
k=1

‖W (ỹk − x(tk))‖22

s. t.
d

dt
x(t) = f(p,x(t)),

x(t0) = ỹ0,

x(t) ≥ 0,

p ≥ 0.

(7)

To be able to solve this problem only the structure
of µ remains to be chosen. The model by Hinshel-
wood including an inhibitory effect by butanol

µ(X,S, Pa, Pb, Pe) = µ̄
S

S +Kµ
(1−KPb

Pb) (8)

is a reasonable choice.

Resolving this optimization problem theoretically
allows us to find the parameters that best fit the
experimental data. However, these problems are
far from convex and it is often hard to find good
initial values or even know the range they should
be in. Therefore, global optimization methods
have to be considered. Unfortunately, those take
a lot of time due to the fact that in each step of
the dynamic optimization a simulation has to be
executed.

The fit which this technique provides using the
genetic algorithm from MATLAB is shown in Fig-
ure 1. The cell dynamics are approximated rea-
sonably well and although the substrate utiliza-
tion yields some error this could be considered an
adequate fit.

Unfortunately, the validation results shown in Fig-
ure 2 comparing other experimental data with dif-
ferent initial values to their simulation using the
same parameters demonstrate how difficult it is to
find universal models and parameters that apply
in the general case as they do not fit at all.

The underlying problem with this technique is
that a model for the cellular growth has to be cho-

Figure 1: The resulting fit of the global parameter
optimization for model (1)–(5).

Figure 2: The validation of the global optimiza-
tion for model (1)–(5).

sen in advance which may not apply in this special
case. However, because all the models provided
in Table 1 are heuristic, they cannot generally be
considered applicable and have to be chosen care-
fully.

3.2. Proposed approach

In this section a divide and conquer technique for
the model identification will be presented. Instead
of trying to tackle the entire problem (7) at once,
smaller subproblems will be solved successively. It
allows for arriving at a broader range of models as
it is not necessary to impose any specific model
of the cell growth and the resulting optimization
problems are mostly convex thus greatly reducing
the computational cost.

Step I Consider Equation (1) for the biomass X.
It can be summarized as

Ẋ(t) = gX(t)X(t), X(0) = X0 (9)
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with an arbitrary time dependent gain gX(t) and
the solution

X(t) = exp

(∫ t

0

gX(τ)dτ

)
X0. (10)

From the experimental data one would like to ex-
tract this gain. Suppose gX is discretized into
an equally distributed piece wise continuous func-
tion γX = (γXk )Nk

k=1 with nodes (tk)Nk

k=1. One then
gets the approximate piecewise continuous solu-
tion of X(t) given by

Xk = X(tk) = exp(γXk ∆t)X(tk−1)

= X0

k∏
j=1

exp(γXj ∆t).
(11)

Applying a logarithm yields

logX(tk) = γXk ∆t+ logX(tk−1)

= log(X0) + ∆t

k∑
j=1

γXj
(12)

which is linear in the coefficients γXk . Thus, it is
possible to formulate the quadratic optimization
problem

Nk∑
k=1

∥∥Xexp
k −Xk(γX)

∥∥2

2
→ min. (13)

which is equivalent to

Nk∑
k=1

|| logXexp
k − logXexp

0 −∆t
k∑
j=1

γXj ||22 → min.

(14)

where Xexp
k are the experimental data at time tk.

Note, that the time discretization has to be chosen
such that this is possible. In order to express this
in matrix vector form define the data vector

yexp := (logXexp
k − logXexp

0 )Nk

k=1 (15)

and the integration matrix

M := ∆t



1 0 0 0 . . . 0
1 1 0 0 . . . 0
1 1 1 0 . . . 0
...

. . .
. . .

. . .
. . .

...
1 . . . 1 1 1 0
1 . . . 1 1 1 1


. (16)

If the experimental data at time tk are not avail-
able just leave out the kth row in M and yexp.
Now, write (14) as

||yexp −MγX ||22 → min. (17)

One would expect that this minimization problem
could be solved by means of the standard regres-
sion technique solving the normal equation result-
ing in

γX = (M∗M)−1M∗yexp. (18)

However, in most cases this problem is under-
determined and (M∗M) is not regular if Nk is
greater than the number of samples. In order
to remedy this one can make additional demands
on γX .

The traditional approach of the Tikhonov or L2

regularization [11] would be to additionally mini-
mize the L2 norm of the solution vector

||yexp −MγX ||22 + α||γX ||22 → min. (19)

with a regularization parameter α. The solution
to the normal equation then takes the form

γX = (M∗M + α1)−1M∗yexp. (20)

With this modification the problem can be solved.
Some exemplary results are shown in Figure 3.

Upon taking a closer look it becomes evident that
this regularization is ill-suited because either the
resulting gain takes a form that is not typical as it
exhibits discontinuities and plateaus (compare e.g.
to the gains presented in [12]) or it provides poor
consistency with the real experiment depending
on α.

Demanding a certain continuity in the gain has
proven to be more effective. This can be achieved
by minimizing

||yexp −MγX ||22 + β||DγX ||22 (21)

where the matrix D is given by

D :=
1

∆t


−1 1 0 0 . . . 0
0 −1 1 0 . . . 0
...

. . .
. . .

. . .
. . .

...
0 . . . 0 −1 1 0
0 . . . 0 0 −1 1

 (22)

and is an approximation of the first derivative.
The corresponding solution is given by

γX = (M∗M + βD∗D)−1M∗yexp. (23)

Figure 4 exhibits that this regularization is more
suitable to solve the problem as it produces
smoother gains while maintaining a better consis-
tency with the experimental data. A combination
is also possible and can be used to combine the de-
sired effects. Other minimizations with respect to
other norms such as ‖·‖1, ‖·‖2 and ‖·‖∞ can suc-
cessfully be applied, too, without losing the convex
properties of the problem. This can achieve sev-
eral objectives. For instance, a minimization with
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Figure 3: Solution to (19); top: The gains result-
ing from different regularization parameters (light
gray α = 1, dark gray α = 10, black α = 100);
bottom: The corresponding simulations using the
gains from the top in comparison with the experi-
mental data (x). It is evident that with α one can
control if one would like the data to fit the sim-
ulation (low values) or would like a more regular
gain (high values).

respect to the ∞ norm will minimize the peaks of
the solution vector γX .

From this point on, in the exemplary calculations
the regularization parameters α = 1 and β = 1000
will be used. These values are not necessarily as
small or as big as they seem because no further
scaling has been performed.

This way one can successfully obtain γX and also
a time evolution of Xsim(t) from the simulations –
seen in Figures 3 and 4 – which will be used in the
next step to extract the cellular growth µ and the
other model parameters.

Step II Again, considering model (1)–(5) one
finds that if the time evolution of the cell growth
term µ(X(t), S(t), Pa(t), Pb(t), Pe(t)) = µ(t) was
known beforehand, it would immediately follow

Figure 4: Solution to (21); top: The gains result-
ing from different regularization parameters (light
gray β = 100, dark gray β = 1000, black β =
10000); bottom: The corresponding simulations
using the gains from the top in comparison with
the experimental data (x). It is evident that
with β one can control if one would like the data
to fit the simulation (low values) or would like a
smoother gain (high values).

from (2) that

S(t) = S0 − YXS
∫ t

τ=0

µ(τ)X(τ)dτ+

−mX

∫ t

τ=0

X(τ)dτ.

(24)

Discretizing again yields

S(tk) = S0 − YXS∆t
k∑
j=1

[µjX(tj)]+

−mX∆t
k∑
j=1

X(tj).

(25)

If (25) is divided by YXS and written in matrix
vector form defining µ ∈ RNk and

Sexp := (Sexp
k − S0)k, (26)

Xsim := (Xsim
k )Nk

k=1 (27)

one gets

1

YXS
Sexp +Qµ+

mX

YXS
MXsim = 0. (28)
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The convolution matrix Q is defined by (32) in
Equation set 1. Again, if Sexp

k is not available,
leave out the k-th row of Q and Sexp.

Similarly, for the products Pi (i ∈ [a, b, e]) one ar-
rives at

1

YXPi

Pi −Qµ = 0 i ∈ [a, b, e]. (29)

Additionally, it can be supposed that the biomass
gain is a composition of cellular growth and
death γX(t) = µ(t)− λ, written in vector notation

γX − µ+ λ1 = 0. (30)

Equations (28), (29) and (30) are altogether linear
in

µ, λ, 1
YXS

, mX

YXS
, 1

YXPa
, 1

YXPb
and 1

YXPe

and can be written as the minimization problem

∥∥∥Σ(b̃− Ṽ z)
∥∥∥2

2
=

∥∥∥∥∥∥ b︸︷︷︸
:=Σb̃

− V︸︷︷︸
:=ΣṼ

z

∥∥∥∥∥∥
2

2

→ min. (31)

with the vectors b̃ and z and the matrix Ṽ defined
by (33), (34) and (35) in Equation set 1 and some
scaling matrix Σ. Since the growth term and the
parameters have a physical meaning, it is postu-
lated that these parameters are to be greater than
zero

z ≥ 0. (36)

The minimization is then rewritten as the
quadratic cost function

J(z) = ‖b− V z‖22
= (b− V z)T (b− V z)

= zTV TV z− 2bTV z + bTb

(37)

which is supposed be minimized under the restric-
tion (36).

The resulting problem can be solved by quadratic
programming. From the solution vector z it is
possible to determine µ = (zk)Nk

k=1, λ = zNk+1
,

YXS = 1
zNk+2

, mX =
zNk+3

zNk+2
, YXPa

= 1
zNk+4

,

YXPb
= 1

zNk+5
and YXPe

= 1
zNk+6

.

In the exemplary calculations the parameters were
determined to be

λ = 0.008, YXPa = 2.625,
mX = 0.106, YXPb

= 6.869,
YXS = 19.224 and YXPe

= 0.458.

The vector µ with offset −λ can be seen in Fig-
ure 5.

Until now all the parameters have successfully
been identified by means of a linear regression or

Figure 5: Top left: The gain γX(t) (dashed) with
its approximation µ(t)−λ (continuous). The part
where the approximation is a straight line as op-
posed to the curve of the real gain stems from
the restriction (36).; other: Simulation results us-
ing the gain approximation in comparison with
the experimental data (x). A nice side effect of
this technique is that it also provides a filter for
the experimental data which can contain a lot of
noise. Additionally, restriction (36) ensures that
the product only increases and the substrate only
decreases.

quadratic programming. Note also, that with all
the information available it is already possible to
simulate the whole system and obtain time series
data of X,S, Pa, Pb and Pe according to (1)–(5).
These time series can be seen in Figure 5 and will
be used below.

Step III The remaining step is to find a mean-
ingful expression for µ similar to those from Ta-
ble 1. Of course, this could also be accomplished
by means of a linear regression in order to find
the coefficients for a set of given basis functions.
However, in order to do so, ALAMO (Automatic
Learning of Algebraic MOdels) has proven to be
a stronger tool.

ALAMO is an easy to use software that allows
to generate algebraic surrogate models of black-
box systems [4]. For a set of given in- and output
data u and y it can find a relationship y = f(u).
For this purpose, it provides some standard ba-
sis functions, such as monomials, logarithms and
exponentials. Nevertheless, in this context its
strengths lie in the possibility of including user-
defined basis functions. While a linear regression
would assign coefficients to all these basis func-
tions, thus including all of them, ALAMO only
picks a few and focuses on simplicity. A detailed
explanation of ALAMO can be found in [4] and [5].

As no further dependency on X is assumed, the
cellular growth µ is suspected to only depend
on S, Pa, Pb and Pe. These will be the input data
and µ the output data. However, it suffices to let it
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Q := ∆t


X0 0 0 . . . 0
X0 X1 0 . . . 0
...

. . .
. . .

. . .
...

X0 . . . XNk−2 XNk−1 0
X0 . . . XNk−2 XNk−1 XNk

 , (32)

b̃ :=
(
γX 0 0 0 0

)T
, (33)

z :=
(
µ λ 1

YXS

mX

YXS

1
YXPa

1
YXPb

1
YXPe

)T
(34)

Ṽ :=


1 −1 0 0 0 0 0
Q 0 Sexp MXsim 0 0 0
−Q 0 0 0 Pa

exp 0 0
−Q 0 0 0 0 Pb

exp 0
−Q 0 0 0 0 0 Pe

exp

 (35)

Equation set 1: Definitions of vectors b̃ and z matrices Q and Ṽ from Section 3.2.

depend only on S and one product, e.g. Pb. Since
the product gains only differ by their coefficient it
is easily deduced that e.g.

Pb(t) =

∫ t

τ=0

Ṗb(τ)︸ ︷︷ ︸
=

YXPb
YXPa

Ṗa(τ)

dτ + Pb(0)︸ ︷︷ ︸
=0

=
YXPb

YXPa

∫ t

τ=0

Ṗa(τ)dτ︸ ︷︷ ︸
Pa(t)

=
YXPb

YXPa

Pa(t)

(38)

and therefore obvious that their ratios are con-
stant and that the inclusion of all three products
in the input data does not provide any more in-
formation.

Furthermore some Monod-type basis functions of
the form

f(Y ) =
S

1 + Y/Ky

Y ∈ [S, Pb]

are provided along with the standard basis func-
tions ALAMO already brings along.

Note, that the results obtained can vary strongly
depending on experiment, regularization parame-
ters and basis functions. A thorough validation
of the results obtained is therefore highly recom-
mended.

In this example, ALAMO arrives at

µ =3.7
S

300 + S
− 0.46 · 103SPb+

− 0.95 · 10−02 S

1 + Pb/14.041904
.

(39)

Thus, the whole model and its parameters can suc-
cessfully be identified. The resulting fit is shown
in Figure 6.

Figure 6: Identification results using the ALAMO
model; top left: The cellular growth µ(t) (dashed)
with its approximation by ALAMO (continuous);
other: Simulation in comparison with the experi-
mental data (x).

Step IV In a last step the model is again used
to predict other experimental data as in the sec-
tion above. The validation results can be seen in
Figure 7. It becomes evident that the accuracy of
the simulation is highly dependent on the exact-
ness of the µ model, since the small error in the
approximation of the actual gain γX by ALAMO
still leads to some error.

If you compare Figure 1 to Figure 6 and Figure 2
to Figure 7, though, the advantages of this method
become very clear as both the identification and
the validation of the proposed approach yield a
much better, although not perfect, fit.

4. Conclusions

In this paper an identification approach specifi-
cally tailored to the modeling and identification of
an ABE fermentation process has been presented.

284

Actas de las XXXVII Jornadas de Automática 20162016



Figure 7: Validation results using the ALAMO
model; top left: The gain γX(t) (dashed) with
its approximation by the ALAMO model µ(t) −
λ (continuous); other: simulation in comparison
with the experimental data (x).

Its strengths compared to the traditional approach
are that fewer assumptions about the model have
to be made leaving additional degrees of freedom
and that the resulting optimization problems are
more easily solvable. It has been tested and val-
idated using experimental data. In comparison
to the traditional approach the resulting fit was
clearly better and the computational cost was sig-
nificantly lower. In the exemplary calculations it
took less than a minute compared to an hour for
the global optimization. Further advantages in-
clude that neither starting values nor ranges of the
parameters have to be considered and the cellular
growth term does not need to be modeled.

This technique can certainly be generalized to be
applicable to a broader range of models which will
likely be presented in a subsequent paper. Espe-
cially the identification of models where experi-
mental time series can not be provided for every
state would be an interesting subject to investi-
gate.
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