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Abstract 

The calculation of templates associated with plant 
uncertainty is one of the first steps in some control 
robust methodologies. This paper presents a 
comparative study of three classic algorithms 
proposed in the late 1980s and early 1990s for 
calculating plant templates. The results of this study 
can help the designer to choose the right template 
computation algorithm depending on the kind of 
plant. 

Keywords: robust control, control education, 
frequency responses, QFT, templates, uncertain 
linear systems. 

1 INTRODUCTION 

A template (i) (or value sets) is the representation 
in the Nichols diagram (or in the Nyquist diagram) of 
plant uncertainty at a given frequency i. Templates 
are used in different robust control techniques, like 
Quantitative Feedback Theory (QFT) created by I.M. 
Horowitz [5]. 

In QFT methodology [6]-[9], the templates 
calculation is one of the first steps. The template 
boundary points are the most important, because they 
are the only ones used to calculate the bounds 
associated with the design specifications. In the loop-
shaping stage, with these bounds it is possible to 
know where the open-loop transfer function must be 
placed in the Nichols chart in order to fulfil the 
specifications. It is very important to obtain a good 
approximation of the templates in order to only add 
the necessary amount of conservatism in the 
controller designed. 

Conceptually, the simplest procedure for calculating 
templates is the grid method. This is a brute-force 
method, which consists of selecting values inside 
each parameter uncertainty range, and evaluating the 
plant for these values at the desired frequency. While 
the procedure is simple, it has several disadvantages 
[1]. 

For around thirty years, the grid method was the only 
technique available for calculating templates. In the 
late 1980s and early 1990s, several algorithms were 
developed to obtain plant templates with special 
parametric dependencies, such as interval plants, and 
plants with affine parametric uncertainty. These 
kinds of plants frequently appear in control problems. 
In our opinion, the three most useful algorithms are: 
the algorithm proposed by Bailey & Hui [1], the 
algorithm proposed by Fu [4], and the method 
proposed by Barlett et al. [2]. This last method can 
easily be formulated as an algorithm. In this paper we 
refer to it as the “Kharitonov segment algorithm”. 

This paper presents the results of a comparative study 
between the Bailey & Hui algorithm (BHA), the Fu 
algorithm (FUA) and the Kharitonov segment 
algorithm (KSA). It has focused on useful features 
from a designer’s point of view, such as the 
conservatism of the template boundary calculated, 
the algorithm yield, and the template calculation 
time. The results of this study can help the designer 
to choose the right template computation algorithm 
depending on the kind of plant. 

The paper is organized as follows. Section 2 
describes the problem statement. Section 3 briefly 
describes the main features of the algorithms 
considered in the comparative study. Section 4 and 
Section 5 describe the comparative study and the 
results obtained, respectively. Finally, Section 6 
gives some concluding remarks. 
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2 PROBLEM STATEMENT 

Let the uncertain parameters vector v be considered: 

 Lvvvv ,...,, 21  (1)

where elements vj form part of the hyper-rectangle V: 

 LjvvvvV jjjj ,...,1   (2)

Let the family or set P1={P1} of transfer functions be: 
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where the coefficients bk(v) and ak(v) are linear 
combinations of the uncertain parameters, i.e.,  
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where kj and kj j=0,...,L are real constants. 
Therefore, P1 is the family or set of transfer functions 
with affine parametric uncertainty. 

A subset of P1 is the family of transfer functions 
P2={P2}, whose numerator uncertain parameters are 
independent of the denominator uncertain 
parameters: 
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The elements of the uncertain parameters vectors q 
and r form part of the hyper-rectangles Q and R, 
respectively, which are defined thus: 

 njjjj LjqqqqQ ,...,1    (7) 

 djjjj LjrrrrR ,...,1   (8) 

Therefore, v can be defined as 

 
dn LL rrqqv ,...,,,..., 11 (9) 

with 

dn LLL  (10)

Likewise, the coefficients bk(q) and ak(r) must have a 
similar structure to (4) and (5). 

Another subset of P1 is the family of transfer 
functions P3={P3}:  
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where the numerator and denominator coefficients,   
bk[bk

-,bk
+] and bk[ak

-,ak
+], respectively, can be 

either one element of vV or a constant value.  

The intersection of the set P2 and P3 gives the family 
of transfer functions P4={P4}:  
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where a numerator coefficient bk can be either one 
element of qQ or a constant value. Analogously, a 
numerator coefficient ak can be either one element of 
rR or a constant value. The family of plants P3 and 
P4 are commonly named “Interval plants” in the 
literature. 

The existence of uncertainty in the transfer function 
at a certain frequency i caused its representation in 
the Nichols chart (or in the complex plane) to be a 
region and not just a point. This region is commonly 
named template (or value sets) (i), 

 VvvjP i  );() i(    (13) 

Given a transfer function belonging to P1, P2, P3, or 
P4, and a fixed frequency i, the problem consists of 
determining the (i) boundary. 

3 ALGORITHMS CONSIDERED 

3.1 BAILEY & HUI ALGORITHM 

The algorithm proposed by Bailey & Hui in 1989 [1] 
is based in geometric considerations. It can directly 
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obtain the template boundary for a transfer function 
P(s;v) in the form (4). The number of template 
boundary points Nc obtained with this algorithm can 
be determined using the expression 

bc NN ·2 (14) 

where Nb is an algorithm parameter associated with 
the number of upper (or lower) template boundary 
points. 

3.2 FU ALGORITHM 

The algorithm proposed by Fu in 1990 [4] is also 
based in geometric considerations. It works with the 
transfer function P(s;v) in the form (3) with an 
uncertain parameter vector vV of dimension L. It 
considers that (i) consists of 2L-1·L arcs or line 
segment, and calculates Nf points for each one of 
these arcs. Therefore, the total number of points 
calculated is 

LNN L
ft ·2· 1   (15) 

Once the Nt points of (i) are obtained, the Nc 
points belonging to the boundary must be selected. 
This task can be done either manually or using some 
algorithm to recognise the template boundary. 

3.3 KHARITONOV SEGMENT ALGORTHM 

Barlett et al. in 1993 [2] proposed a method to 
calculate the templates of a transfer function P(s;v) in 
the form (11). This method can be easily formulated 
as an algorithm. The algorithm considers that (i) 
consists of 32 arcs that are the Kharitonov segments 
derived from the transfer function. This is why we 
named this algorithm “Kharitonov segment 
algorithm”. Moreover, it calculates Nk points for each 
one of these arcs. Therefore, the total number of 
points calculated is 

kt NN ·32 (16) 

Once the Nt points of (i) are obtained, it is 
necessary to use an additional algorithm to recognise 
the Nc points belonging to the boundary.  

4 DESCRIPTION OF THE 
COMPARATIVE STUDY 

In order to speed up and systematise the comparative 
study of the BHA, FUA and KSA, a matricial 
description of the transfer function coefficients was 
done. For the family of transfer functions P1, the 

numerator coefficients (4) can equivalently be 
expressed in the following form: 

0·)( nvBvb  (17) 
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Analogously the denominator coefficients (5) can be 
expressed as 

0·)( dvAva   (19) 
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kj and kj are real constants. 

For the family of transfer functions P2, the matrixes B 
and A have the following form: 
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For the family of transfer functions P3, the matrixes 
A, d0, B and n0 have the same structure as for P1. But 
the coefficients kj (or kj) can only have the values 0 
or 1. Besides, in a row k of B (or A) there can only be 
one coefficient maximum kj (or kj) different to 0. In 
this case, the coefficient k0 (or k0) of n0 (or d0) is 
equal to 0. Likewise, if all the coefficients kj (or kj) 
belonging to a row k of the matrix B (or A) are equal 
to 0, then the coefficient k0 (or k0) of n0 (or d0) can 
be a real number. 

Finally, for the family of transfer functions P4, the 
matrixes A, d0, B and n0 also have the same structure 
as for P1. Moreover, the coefficients kj (or kj) of B 
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(or A) and k0 (or k0) of n0 (or d0) fulfil the same 
rules as the family P3.  

In order to do a comparative study of the BHA, FUA 
and KSA, it is necessary to choose a working set of 
transfer functions, because the number of transfer 
functions belonging to one particular family is 
infinite. Our comparative study focused on the set of 
transfer functions belonging to the families P1, P2, P3, 
and P4, with the following structure: 

01
2
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3

01
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2)(
asasasa

bsbsb
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  (23) 

The maximum number of uncertain parameters 
considered is L=6, the maximum number of uncertain 
parameters in the numerator and denominator are, 
Ln=3 and Ld=3, respectively.  

Twenty-five transfer functions with the indicated 
properties were generated by means of a random 
generation of v, B, n0, A and d0. Likewise, some 
transfer functions with higher n, m and L were 
considered in order to give more validity to our 
study. Only transfer functions that did not contain 
zeroes or poles on the j-axis for all vV were 
considered so that the three algorithms could 
simultaneously be used. It is important to bear in 
mind that BHA, FUA and KSA can only be used if 
a(ji; v)  0, for any combination of the uncertain 
parameter values. The plant template (i) is not 
bounded if a(ji; v) = 0. Besides, if the hyper-
rectangle formed from q or r contains the origin of 
the complex plane, then the BHA cannot be used. 
This study was done with the assistance of Matlab 
and specific software called Template Interactive 
Generator (TIG) [3]. TIG is a free software tool with 
which it is possible to calculate the boundaries of 
templates associated to interval plant, or plants with 
affine parametric uncertainty. The main advantages 
of TIG are its ease of use and interactive nature. 

Once a transfer function was generated in Matlab, it 
was loaded in TIG where the boundary of a template 
at a given frequency (for example (1.5)) was 
calculated using BHA, FUA and KSA.  

The comparison of BHA, FUA and KSA was done 
using the following magnitudes: number of template 
points Nt, number of points belonging to the template 
boundary Nc, algorithm yield R (in percentage) 
defined as 

100·
t

c

N

N
R     (24) 

Furthermore, in the comparative study the following 
times were considered: time Tt for calculating the 
template and time Tc for calculating the template 
boundary using the -algorithm [8]. This is the 
algorithm implemented in TIG to recognize the 
points that form part of the boundary.  

Three considerations must be made with respect to 
these times. First, in TIG the template computation 
algorithms must be manually tuned in order to obtain 
the right template boundary, i.e., users must choose 
the right value of the algorithm configuration 
parameter. Therefore, the values times Tt and Tc are 
only measured when each algorithm is already tuned. 
Second, TIG was run in a PC with a CPU of 2.8 
GHz, a RAM of 512 Mb, and the Windows XP 
operating system. Third, the time Tc is exclusively 
associated with the -algorithm not with the FUA or 
KSA. However, it is interesting to know it in order to 
gain an idea about the time cost associated with the 
fact that the FUA and KSA do not directly give the 
template boundary. 

5 RESULTS OBTAINED 

5.1 FAMILY OF TRANSFER FUNCTIONS P1 

One of the transfer functions P1 P1, with the 
structure (23), considered in the study was 
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 (26) 

      7.2 7.0, 6.6 3.1, 9.1 3.7,- 321  vvv   (27) 

Table 1 shows the magnitudes measured in the 
boundary calculation of (1.5) associated with P1 
using the BHA, FUA and KSA. Likewise, Figure 1 
shows the (1.5) calculated with each algorithm, and 
a comparison of the template boundaries. 

The comparative study for the family P1 of transfer 
functions indicates that the FUA is the only 
algorithm that is able to obtain the exact template 
boundary. Likewise, BHA generates a conservative 
template boundary. This conservatism increases 
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when the number of common uncertain parameters in 
numerator and denominator increases. On the other 
hand, the KSA generates an erroneous template 
boundary. 

Table 1: Magnitudes measured in the boundary 
calculation of (1.5) associated with P1 

Algorithm Nt Nc R(%) Tt (s) Tc (s) 
BHA 
FUA 
KSA 
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Figure 1: (1.5) associated to P1P1 calculated by 
BHA, FUA and KSA, and boundary comparison 

5.2 FAMILY OF TRANSFER FUNCTIONS P2 

One of the transfer functions P2 P2, with the 
structure (23), considered in the study was 
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Table 2 shows the magnitudes measured in the 
boundary calculation of (1.5) associated with P2 
using the BHA, FUA and KSA. Likewise, Figure 2 
shows the (1.5) calculated with each algorithm, and 
a comparison of the template boundaries. 

The comparative study for the family P2 of transfer 
functions indicates that the BHA and FUA can be 
used to obtain the exact template boundary. 
However, it is better to use the BHA because it has a 
yield of 100 %, i.e., all the templates points 
calculated by the BHA belong to the template 
boundary. The FUA has a low yield. The 
computation time Tt for both the BHA and FUA is 
very similar. On the other hand, the KSA generates 
an erroneous template boundary. 

Table 2: Magnitudes measured in the boundary 
calculation of (1.5) associated with P2 

Algorithm Nt Nc R(%) Tt (s) Tc (s) 
BHA 
FUA 
KSA 
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Figure 2: (1.5) associated to P2P2 calculated by 
BHA, FUA and KSA, and boundary comparison 

5.3 FAMILY OF TRANSFER FUNCTIONS P3 

One of the transfer functions P3 P3, with the 
structure (23), considered in the study was 
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      2.2- 5.9,- 9.8 0.1, 8.1 5.6, 321  vvv  (33) 

Table 3 shows the magnitudes measured in the 
boundary calculation of (1.5) associated with P3 
using the BHA, FUA and KSA. Likewise, Figure 3 
shows the (1.5) calculated with each algorithm, and 
a comparison of the template boundaries.  

The comparative study for the family P3 of transfer 
functions indicates that the FUA is the only 
algorithm that is able to obtain the exact template 
boundary. Likewise, the BHA and KSA generate the 
same conservative template boundary. This 
conservatism increases when the number of common 
uncertain parameters in numerator and denominator 
increase. The computation time Tt of the BHA is 
greater than the Tt of the KSA. However, in general, 
the BHA is preferable to the KSA because it has a 
yield of 100 %. 

Table 3: Magnitudes measured in the boundary 
calculation of (1.5) associated with P3 

Algorithm Nt Nc R(%) Tt (s) Tc (s) 
BHA 
FUA 
KSA 
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Figure 3: (1.5) associated to P3P3 calculated by 
BHA, FUA and KSA, and boundary comparison 

5.4 FAMILY OF TRANSFER FUNCTIONS P4 

One of the transfer functions P4 P4, with the 
structure (23), considered in the study was 
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 Tvvvvvvv 654321  (36) 

     
     3.8,-0.1- 0.1- 6.1,-,6.1 3.1

 0.3 0.3,- 0.4 0.9,- 4.5- 6.8,-

654

321




vvv

vvv  (37) 

Table 4 shows the magnitudes measured in the 
boundary calculation of (1.5) associated with P4 
using the BHA, FUA and KSA. Likewise, Figure 4 
shows the (1.5) calculated with each algorithm, and 
a comparison of the template boundaries. 

Table 4: Magnitudes measured in the boundary 
calculation of (1.5) associated with P4 

Algorithm Nt Nc R(%) Tt (s) Tc (s) 
BHA 
FUA 
KSA 
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29 

100 
5.6 
18.1 

0.141 
0.140 
9.9·10-3 

0 
3.1·10-2 
7.8·10-3 

−180 −160 −140 −120 −100 −80
−15

−10

−5

0

5

M
ag

ni
tu

de
 (

dB
)

BHA

−180 −160 −140 −120 −100 −80
−15

−10

−5

0

5

M
ag

ni
tu

de
 (

dB
)

FUA

−180 −160 −140 −120 −100 −80
−15

−10

−5

0

5

Phase (º)

M
ag

ni
tu

de
 (

dB
)

KSA

−180 −160 −140 −120 −100 −80
−15

−10

−5

0

5

Phase (º)

M
ag

ni
tu

de
 (

dB
)

Template Boundaries

Figure 4: (1.5) associated to P4P4 calculated by 
BHA, FUA and KSA, and boundary comparison 

The comparative study for the family P4 of transfer 
functions indicates that the three algorithms can be 
used to obtain the exact template boundary. 
However, it is better to use the BHA because it has a 
yield of 100 %, and its computation time Tt is very 
similar to the other two algorithms. 
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On the other hand, the KSA has a higher yield than 
the FUA. The KSA also needs a lower number of 
points Nt than the FUA to define the template 
boundary. 

Moreover, the Bailey & Hui algorithm is the only 
one that directly generates the template boundaries. 
With the other two algorithms an additional 
algorithm is required to find the template boundaries. 

6 CONCLUSIONS 

According to the results obtained in the comparative 
study described in the previous section, it is possible 
to build Table 5. It shows the features of the template 
boundary that each algorithm is able to generate 
depending on the family of transfer functions 
considered. 

Table 5: Features of the template boundary 
generated for each algorithm depending on the family 
of transfer functions 

Family BHA FUA* KSA* 
P1  
P2  
P3  
P4 

Conservative 
Exact 
Conservative 
Exact 

Exact 
Exact 
Exact 
Exact 

Erroneous 
Erroneous 
Conservative 
Exact 

aAn additional algorithm is required to recognise the points 
belonging to the template boundary.

This table can help the designer to choose the 
adequate template computation algorithm depending 
on the kind of plant. Thus if the transfer function 
belongs to P1 or P3, then the FUA must be used. If the 
transfer function belongs to P2 or P4, then the BHA 
must be used. Finally, if the BHA cannot be used 
because the transfer function has zeroes or poles on 
the j-axis for any vV, and if the transfer function 
belongs to P2, then the FUA must be used. Likewise, 
if the transfer function belongs to P4, then the KSA 
must be used. 
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