
Facultade de Informática

TRABALLO FIN DE GRAO
GRAO EN ENXEÑARÍA INFORMÁTICA

MENCIÓN EN SISTEMAS DE INFORMACIÓN

FUGATRA
The missing note, from concert to misstep

Estudante: Hilda Romero Velo
Dirección: Óscar Fresnedo Arias

José Pablo González Coma

A Coruña, xuño de 2021.

To Music, I will never leave you behind.

Acknowledgements

First, I would like to thank my family. Thanks to my parents for always supporting me and
dedicating themselves to me. Their guidance and encouragement has been vital for me to
grow in all aspects of my life.

I would also like to make a special mention to my piano teacher Nacho, who has been
passing on his knowledge and passion for music to me since I was 7 years old, without which
it would have been impossible to undertake this work.

Finally, I would also like to thank my TFG directors for supporting my idea and giving me
the opportunity to carry it out.

Abstract

The project aims to create a web application to help pianists identify the mistakes they make
during the performance of a piece of music. It is targeted at the initial phase of study, when
it is crucial to correct errors in order to avoid acquiring them, as they are more difficult to fix
afterwards. Users can create their own account, upload their own sheet music and connect
their keyboard to the computer so that the application can support them during the learning
process.

Resumo

O proxecto pretende crear unha aplicación web para axudar aos pianistas a identificar
os erros que cometen durante a execución dunha peza musical. Está dirixido á fase inicial
do estudo, cando é crucial corrixir os erros para evitar adquirilos, xa que despois son máis
difíciles de rectificar. O usuario poderá crear a súa propia conta, subir as súas partituras y
conectar o seu teclado ao ordenador para que a aplicación o apoie durante a aprendizaxe.

Keywords:

• Fugatra

• Fugateca

• Piano

• Music

• Learn

• Note

• Error

• Mistake

• Missing

• Web application

• MIDI

Palabras chave:

• Fugatra

• Fugateca

• Piano

• Música

• Aprender

• Nota

• Erro

• Fallo

• Perdida

• Aplicación web

• MIDI

Contents

1 Introduction 1
1.1 Origin . 2
1.2 Purpose and Objectives . 3

1.2.1 Particular Objectives . 3
1.3 Similar Existing Solutions . 3
1.4 The Fugatra Brand . 5
1.5 Motivation For The Report Structure . 6

2 Methodology and Planning 7
2.1 Methodology . 7
2.2 Planning . 8

2.2.1 Resources . 8
2.2.2 Project Planning . 9
2.2.3 Cost Estimate . 16
2.2.4 Project Monitoring . 17

3 Analysis 19
3.1 Functional Requirements . 19
3.2 Non-Functional Requirements . 24
3.3 Use Cases . 25

4 Design 27
4.1 Architecture . 27
4.2 Data Modelling . 28

4.2.1 Entity Relationship Modelling . 29
4.2.2 ODL Schema . 31

i

Contents

5 Technological Fundaments 33
5.1 Structure . 33
5.2 Backend . 34

5.2.1 Java . 34
5.2.2 DBMS . 36

5.3 Frontend . 36
5.3.1 Vue . 37
5.3.2 MIDI . 38
5.3.3 OSMD and VexFlow . 38

5.4 Working Tools . 39
5.4.1 Project Development Tools . 39
5.4.2 Extra Tools . 39

6 Theoretical Fundaments 41
6.1 Musical Concepts . 41

6.1.1 Rhythm . 41
6.1.2 Notes . 43
6.1.3 Piano Score Structure . 46

6.2 MusicXML Notation . 47

7 The Application 51
7.1 Web Application . 51
7.2 Core: Detect Errors . 60

7.2.1 Frontend: From user to backend . 60
7.2.2 Backend: Reception and preparation 62
7.2.3 The connection between MIDI and MusicXML 62
7.2.4 Backend: The correction . 67
7.2.5 Frontend: Back to the user . 72

8 Performed Testing 75
8.1 User Acceptance Testing . 75

9 Conclusions 77

A Prototypes 81

List of Acronyms 85

Glossary 87

ii

CONTENTS

Bibliography 89

iii

Contents

iv

List of Figures

1.1 Fugatra logo . 5

2.1 Non-Working Days . 13
2.2 Main Phases Gantt Diagram . 14
2.3 Analysis and Design Gantt Diagram . 14
2.4 Authentication Gantt Diagram . 14
2.5 Fugateca Gantt Diagram . 15
2.6 Fugáfono Gantt Diagram . 15
2.7 Testing Gantt Diagram . 15

3.1 Use Case Diagram . 26

4.1 Architecture Diagram . 28
4.2 Entity Relationship Diagram . 30

6.1 Figures Tree . 42
6.2 Rhythm Concepts . 43
6.3 Circle of Fifths . 46
6.4 Measure of a Piano Score. 47
6.5 MusicXML <note> tag. 49

7.1 Sign Up Screen . 52
7.2 User Profile Screen Edit Mode . 53
7.3 Fugateca Screen - Scores . 55
7.4 Fugateca Screen - Folders . 57
7.5 Fugáfono Screen . 58
7.6 Original Version of the Measure . 70
7.7 User Version of the Measure . 70
7.8 First Loop Version of the Measure . 71

v

List of Figures

7.9 Second Loop Version of the Measure . 72
7.10 Third Loop Version of the Measure . 72

A.1 Sign Up screen . 81
A.2 Sign In screen . 81
A.3 Fugalogo screen . 82
A.4 Fugateca screen . 82
A.5 Upload score screen . 83
A.6 Fugáfono screen . 83

vi

List of Tables

2.1 Product Backlog . 10
2.2 Human Resources Salary . 16
2.3 Total Estimated Working Hours by Profile . 16
2.4 Estimated Costs . 17
2.5 Forecast vs. Follow-up . 17

3.1 Functional Requirements . 19

4.1 ODL Schema . 31

vii

List of Tables

viii

Chapter 1

Introduction

Music, it is becoming more and more easily accessible. There are countless applications
that allow us to listen to it. There are also applications that have facilitated the com-

position of new pieces of music. Producing new music has never been so accessible. What
about learning to play it? There are certainly more and more opportunities to do so, and an
increasing number of people understand its benefits.

Learning to play a musical instrument does not only provide musical knowledge. For
instance, playing the piano leads to better coordination and independence. With any instru-
ment one learns to listen and to play in group. Concentration and controlling nervousness
are also necessary when playing a piece of music.

However, it is hard to learn to play an instrument. A fundamental part and common to all
of them is technique, but then each instrument has its own particularities. There are musical
instruments for which getting the tuning right is a constant concern. This is not a problem
for piano, but which are the difficulties of learning to play it?

The piano is a polyphonic instrument, which means that many notes can be played at the
same time. Hence, the player will have to read several notes together in the score. In addition,
the notes played in the right hand are usually read in a different clef from those played in the
left hand. What does this mean? Let’s make an analogy.

Imagine that what the pianist reads for the right hand is a Spanish text and what he reads
for the left hand is an English text. Both texts deal with the same subject but with particular
characteristics. The pianist must understand everything, the basis and the individual features.
The students will read these texts as many times as they practice. What happens if they have
misunderstood some of the particularities of one of the texts, skipped some of them or con-

1

1.1. Origin

fused English with Spanish? Most likely they will not realise the mistake they are making
and once learned it will be much more difficult to fix.

In short, and returning to music, the difficulty for the pianist is in finding the misplayed
notes as he/she is reading many notes at the same time and sonorously the error may not be
obvious to him/her.

What if there was an app that could help pianists detect the mistakes they make? That is
what this project seeks to develop. In the next two sections, the origin of this idea is clarified
and its objectives are explored in more detail.

1.1 Origin

The motivation arises from the difficulty that pianists sometimes have in identifying the mis-
takes they make, either because they are minimal and go unnoticed or because they have
already been acquired from committing them repeatedly so often. The aim is to make it eas-
ier for the user to follow his or her progress. In addition, this improves the motivation of
the student, as finding and correcting the most subtle technical errors is, usually, the most
arid part of the study of a piece of music. The possibility of visualising his/her mistakes with
regard to what is to be expected from the musical sheet provides an unprecedented learning
control. Therefore, a more accurate execution gives him/her more confidence to continue
working on the composition.

Nowadays, there is a strong move towards online classes. One of the biggest challenges
of this migration lies in the difficulty for the teacher to reach the student because, in order
to identify the student’s problems, he/she needs a direct feedback from them, observation is
no longer enough. In arts education, however, this gap between teacher and pupil increases
dramatically. In fact, for the study of a musical instrument, this link is essential because the
teacher must detect the student’s mistakes immediately so that he/she can learn correctly.

As will be seen in section 1.3, there are no applications on the market that focus on this
gap. The development of this project could lead to establishing the online connection between
the learner and the teacher because, the applicationwill detect themistakes the learnermakes,
the teacher could see them and understand where the difficulties are for the student. Depend-
ing on the teacher’s evaluation of the mistakes, he/she can identify whether the student needs
an explanation of a theoretical musical concept or needs some extra study on technique, for
example. Therefore, another potential use is for educational purposes in music schools by

2

CHAPTER 1. INTRODUCTION

facilitating online classes.

1.2 Purpose and Objectives

The aim is to develop a web application with which users will be able to create their own
account and upload their scores. Then, after having connected a keyboard to the computer,
they can record their performance at the tempo of their choice. Once they have finished, they
will be shown the mistakes they have made. These mistakes are then recorded in a history
that is available for the user to follow his/her evolution.

The first steps of the study of a music score are critical. Thus, one of the objectives of the
application is to help at this tricky moment prior to consolidating passages that may contain
errors. Therefore, just the rhythm and the pitch of the notes will be checked. However, the
use of pedal, interpretation, dynamics, technique or repetitions will not be reviewed.

The decision of creating a web application to offer these functionalities is targeted at re-
lieving the user of the computational burden and minimising the use of his/her computer’s
resources. Moreover, with this solution, the customer can access the application from any
device. Accordingly, the goal is also to maximise availability and usability, that is, make it
easier for the user to access the application by avoiding any type of complex configuration.

It is important to highlight that, no matter how much assistance the application can pro-
vide to the student, it is not a substitute for the teacher. The software is intended to be com-
plementary and supportive. The work done by the teacher is not replaceable. There are many
concepts and subjects that only a person, not a machine, can convey, such as technique, in-
terpretation, or advice, among others.

1.2.1 Particular Objectives

In light of the purpose of the application, the objectives could be summarised as follows:

• User management so that each user has individualised access to its content.

• The clients will have their own library of scores, so they must be able to manage it.

• Recording of user performance, error detection and error display.

• Design of a simple and functional interface, allowing users to focus on their work and
avoiding, as far as possible, technical complications.

1.3 Similar Existing Solutions

In the following, I will present some existing applications that can be similar to the program
developed in this project. All of them aim to teach or help to learn to play the piano but each

3

1.3. Similar Existing Solutions

one offers certain functionalities.

• Moon Piano [1]
It offers both a desktop application and an online service. It allows you to upload your
own scores (with a limit of 10 scores if working on the web). Displays the score and
plays the sound for the user to rehearse but does not show the mistakes the performer
has made, it only shows some statistics at the end.

• Pianu [2]
Web application that offers a collection of sheetmusic but does not allow users to upload
their own. During the rehearsal it shows the score and indicates the keys to be played.
Like Moon Piano, it does not represent errors in the score and only offers some final
statistics.

• Playground Sessions [3]
One of the most complete web applications. Although it does not allow users to upload
their own scores, it has a large library. It displays the score and represent the mistakes
made by the performer. Green marks represent the correctly played notes whereas red
marks are used when the original note is wrongly executed. It also draws the incorrect
note played by the user. However, even though it provides some statistics, it does not
keep a history of user errors. The concept of the application is a video game in which
you advance in levels and unlock extra content as you learn.

• Flowkey [4]
The strength of this web application lies in all the configuration options that it offers
(speed adjustment, selection of passages, repetition of fragments…). It shows the score
and a video of its execution. It allows the player to advance through the score as he/she
hits the right notes. It does not allow users to upload their own scores.

• Skoove [5]
Web application that displays the score and points out mistakes to the user. It offers a
playback of the sound of the score for learning by listening. Although this may seem
enough at first, in order to learn music, not only from a pianistic point of view, it is
essential to associate sounds with their graphic representation. Also, it does not allow
users to upload their own sheet music.

There are many similar applications on the market that offer the same functionalities as the
above mentioned [6]. In this list I have highlighted the most complete and the most famous
ones [7].

4

CHAPTER 1. INTRODUCTION

As it has been checked, none of the applications seen above offers what this project offers.
This project allows the users to have their own library of scores, so it is up to them to choose
what they want to study. Moreover, the student will not be distracted during the execution of
the piece because errors will be displayed upon completion. Another important detail is that
the mistakes will be shown written in a score. This helps to relate the musical representation
of the error to the sound. Finally, the learners will be able to review their progress thanks to
the application’s error history.

To sum up, the application of this project aims to serve as a tool for the user, making it
easier for them to focus on what is important to them, to detect the mistakes they make and
to study with confidence.

1.4 The Fugatra Brand

This section is intended to present the key to the project by explaining its name, slogan, logo
and associated terminology.

• Name
The name of the application is Fugatra. It arises from the union of Fuga, which means
escape in Spanish, and the Greek suffix -atra, which means “the one who takes care”.
Therefore, its literal meaning is “the one who takes care of the escape”. In context, it
refers to the application taking care of the “lost notes”.

• Slogan
“The missing note, from concert to misstep”. It refers to the “lost notes”, those that are
not well played and therefore do not exist, they are missing. The last part, “from concert
to misstep”, means that the program gets the errors from the concert given by the user.

• Logo
The figure 1.1 shows the logo of the application. The letters “UT” refer to the old name
for the note C (Do) [8] and it represents the “missing note”. The symbol surrounding
the letters is actually a bass clef, but it also resembles a question mark. Combined, it
comes to represent the idea of: “Where is the missing note?”.

Figure 1.1: Fugatra logo

5

1.5. Motivation For The Report Structure

• Terminology

– Fugalogo: The Greek suffix “-logo” means “specialist” or “knower”, so Fugalogo
is the “leak specialist” or “the one who knows about leaks”. It is used to refer to
the user who uses the application. In the end, he/she is the one who “commits the
leaks” and with the application he “knows” about them.

– Fugateca: The Greek suffix “-teca” means “place where something is kept” or also
“collection”. Fugateca is the place where the user stores his scores.

– Fugáfono: The Greek suffix “-fono” means “sound”. Fugáfono is the place where
the user “produces sound” and where those “sound leaks” are detected. This
means, the place where the user studies, where he/she plays the score and where
the errors, the “leaks’, are communicated to him/her.

1.5 Motivation For The Report Structure

The flow of this memory is based on the experience lived by the student who writes it in the
development of the project.

In the introduction, the identified problem has been presented, the idea for the solution
has been introduced and an investigation of similar existing systems has been made.

After having the reason, the idea and the certainty that what is going to be developed is
novel, the first thing the student does is to wonder: How to approach the project? (methodol-
ogy), What are the steps to follow? (planning), Is it feasible? (risk analysis). This is explained
in the Methodology and Planning chapter (2).

The next stage is clearly defining the project and getting a more concrete visualisation of
what it is going to be. This is covered in theAnalysis chapter (3) with requirements, prototypes
and the use case diagram.

Once the scope of the project is known and defined, the structure of the program (De-
sign chapter, Architecture section 4.1) and the required data (Design chapter, Data Modelling
section 4.2) need to be determined.

Knowing all of the above, and having a clear idea of what is to be developed, the tech-
nologies to be used are chosen. For example, if the risk analysis determines that a desktop
application should be developed, the technologies to be used are not the same as those needed
to develop a web application.

Finally, before explaining how the application has been developed, the chapter of Theo-
retical Fundaments (6) provides the theoretical knowledge necessary to understand it.

Therefore, the structure of the report reflects the student’s experience and aims to be as
clear as possible to facilitate the reader’s comprehension.

6

Chapter 2

Methodology and Planning

In order to develop a project, it is essential to conduct a proper planning of it. In this chapter,
the methodology selected to develop this project, its planning and its cost estimation will

be discussed in depth.

2.1 Methodology

An iterative and incremental methodology has been chosen. This allows the product life
cycle to be divided into temporary blocks in order to satisfactorily complete each phase of the
project, taking the customer’s requirements as a reference for the limitation of these blocks.
At the end of each phase, before proceeding to the next one, the necessary tests are carried
out to check that what has been implemented works according to the requirements.

In an incremental development, with each phase one more piece of the system is obtained.
More specifically, it aims to gradually add functionality for the user, which are known as
user stories. Therefore, this allows the project requirements to be not fully defined at the
beginning.

Under iterative development, in each cycle (iteration) the product is reviewed and im-
proved. This does not involve adding functionality to the product as with incremental devel-
opment, but it does include review and improvement.

Therefore, an iterative and incremental development is one in which, with each delivery,
it adds completely new features (incremental) but each increment also includes improvements
on features that already existed (iterative). This simplifies the error detection and their early
resolution.

Hence, with this methodology, the project can be simplified by applying the principle of
“divide and conquer”. This approach facilitates planning and estimation by breaking down
development into a larger amount of smaller tasks so that they are easier to manage.

Furthermore, this methodology adapts well to the project to be developed because its

7

2.2. Planning

requirements are not robust and can fluctuate during development as the client considers its
evolution. Moreover, as it is not a completely defined project, it is easier tomakemodifications
or fix errors, and the nature of this methodology allows them to be detected and consequently
solved as soon as possible.

2.2 Planning

In this section, the available resources to undertake the project are presented, a planning is
made considering them and a cost estimate is provided. All tools and technologies chosen
during these sections will be explained in chapter 5.

2.2.1 Resources

A resource is any element that is necessary to complete a task or, in this case, a project.
Knowing and planning resource management is essential to complete a project as effectively
and efficiently as possible.

Human Resources

For human resourcesmanagement, it is essential to recognise the strengths of each teammem-
ber in order to be able to correctly assign roles within the project. Although in this project
there are very few human resources available, the profiles that would need to be covered and
how they would be distributed will be simulated.

• Project Manager
This is the person in charge of establishing the guidelines for a project and oversee-
ing that its progress is in accordance with the plan. Experience is a key factor in this
position. For this project, the two degree thesis directors will assume this role.

• Analyst
It is responsible for studying the system to be built. He/she performs a research of
the client’s needs and translates them into requirements that describe the software to
be developed. The most important document which he/she has to produce is the Soft-
ware Requirements Specification (SRS). For this project, the student will be in charge
of interpreting this role.

• Designer
This is the one who designs the system to be developed according to the requirements
gathered by the analyst. The student will undertake this role.

8

CHAPTER 2. METHODOLOGY AND PLANNING

• Developer
The person who implements the system according to the designs generated by the de-
signer. He/she must also be responsible for performing the relevant unit tests that
guarantee the correct development of the project. This role will be performed by the
student.

• Tester
It is responsible for conducting the remaining tests to ensure that the project success-
fully satisfies the requirements. In this project, user acceptance testing will be under-
taken to obtain the feedback of a real user. The user in charge will be the student’s
piano teacher.

Material Resources

• Software Resources: As detailed in chapter 5 of this report.

• Hardware Resources:

– Personal Laptop:
Model: MSI GF63 Thin 10SCXR-042XES
CPU: Intel(R) Core(TM) i7-10750H
Hard disk: 1 TB NVMe PCIe Gen3x4 SSD
RAM: 16GB DDR4
OS: Microsoft Windows 10 Pro
Graphic card: Nvidia GeForce GTX 1650 MAX Q

– Keyboard with MIDI support: CASIO PRIVIA PX-560 DIGITAL PIANO

– USB Type A to Type B cable: Used to connect the keyboard to the computer to
capture the MIDI signal.

– Samsung Galaxy S7 Edge Mobile

– Samsung Galaxy S20 Mobile

– Sony Xperia Z1 Tablet

2.2.2 Project Planning

1. Study of initial product requirements

Although this project did not follow the Scrum methodology, one of its techniques
was borrowed by taking advantage of the fact that both, this methodology and the iter-
ative and incremental methodology, follow the Agile Manifesto [9]. This is the Product

9

2.2. Planning

Backlog, a list of all the initial requirements of the product to be developed.
In order to plan the project, different user storieswill be distinguished and specified

in the simplified Product Backlog shown in table 2.1. The reading of a user story is: “As
«role», I want «functionality» to get «outcome»”. In our case we have one actor, the
user, in a single role, as administrator of his/her own account. Therefore, the Product
Backlog only specifies the functionality and the result that the user expects to obtain as
the administrator of his/her account. In addition, a column is added with an estimate
in hours of the cost that each feature may require to be developed.

Table 2.1: Product Backlog

Nº Functionality Outcome Estimate (H)

1 Create an account Account 27
2 Log in Obtain authorisation to access

their data
16

3 Edit account information Updated account information 8
4 Log out Authorisation to access their

data revoked
4

5 Recover password New password has been up-
dated

24

6 Upload score Saved score 20
7 Edit score information Updated score information 8
8 Delete score Score and related information

have been deleted
8

9 View list of scores sorted by ti-
tle, composer, genre or most re-
cently uploaded

Scores displayed ordered by ti-
tle, composer, genre or most re-
cently uploaded

20

10 Create folder Folder created 10
11 Delete folder Folder and related information

have been deleted
4

12 Edit folder information Updated folder information 6
13 Add score to folder Score has been added to the

folder
14

14 Delete score from folder Score has been deleted from the
folder

8

15 View score Score is displayed 14

10

CHAPTER 2. METHODOLOGY AND PLANNING

16 Zoom control in score visualisa-
tion

Score is expanded or reduced 2

17 Turn on metronome Metronome started playing 3
18 Turn off metronome Metronome stopped playing 3
19 Choose number of input bars Number of input bars has been

set
3

20 Modify metronome tempo New metronome tempo is set 3

21
Record score performance:
Backend

Committed errors are detected 50

Record score performance:
Frontend

Committed errors are visualised 30

22 Browse error history Error history is displayed 20
23 View errors from an old execu-

tion
Old execution errors are dis-
played

16

2. Feasibility and risk analysis
Before planning a project, it is very important to conduct a feasibility study. A project’s
feasibility is its ability to be completed successfully by delivering the expected results.
Different perspectives such as technical, economic or legal must be analysed. For this
project, it will only be studied from a technical point of view, because, for example,
there is no budget limit, although a cost estimate will be provided in step 2.2.3.

• Project scope: It has been delimited by the Product Backlog list shown in table
2.1.

• Requirements definition: Specified in chapter 3.

• Determination of the approach: The adopted approach will be to rely on a devel-
opment in iterations to ensure progressive delivery of functionalities to the user,
with continuous improvement according to the feedback collected. Hence, the
chosen methodology was the iterative and incremental one (section 2.1).

• Situation analysis: Existing technologies in the domain have already been pre-
sented in 1.3 and it has been determined that the product to be developed is new
to the market. A detailed explanation of the challenges faced, the solutions taken
and the risks involved together with a management of them is provided in a spe-
cial section below..

11

2.2. Planning

Detailed Situation Analysis

When the idea of undertaking this project arose, after having defined the scope for
it, the critical points that it could have were studied. Three of the most noteworthy
technical risks will be presented below.

• Collect the user’s MIDI input
One of the most important points because it could determine the type of applica-
tion to be developed. If there was no way to gather theMIDI signal from the user’s
keyboard in a web application, a desktop application would have had to be devel-
oped. After some research and tests implementing an HTML and a JavaScript file
to collect the MIDI input from the keyboard and print the emitted data, the Web
MIDI API was chosen as a solution to this challenge.

• Obtain score information
In order to be able to compare the user’s playing with the original score, it is nec-
essary to be able to obtain the information that is in the sheet music. The research
focused on whether there were any standards for representing music. Although
there are several notations, such as abc notation [10], the most widespread and
complete format is MusicXML [11]. In fact, MusicXML has been developed by
MakeMusic [12], the world leader in music technology. Among its products we
find Finale [13], the world’s best-selling music notation software that allows the
music community to create, edit, print and publish sheet music.

• Display the score to the user
Another key factor was to be able to provide the user with both the original score
and the score with themistakes he or she hadmade. One of the safe options was to
use the LilyPond software [14] to obtain an image in SVG or PNG format or a PDF
file and then display it to the user. However, after an exhaustive search, OSMD
[15], the missing link between MusicXML and VexFlow, was found. VexFlow [16]
is an open source online music notation rendering API that is written entirely
in JavaScript and runs directly in the browser (it supports HTML5 Canvas and
SVG). Thanks to OSMD [15] it was possible to work completely with the scores in
MusicXML format and then render them easily for the user.

After the analysis, it is determined that all the necessary elements are provided to un-
dertake the development and that the required workload is adequate for a final degree
project.

12

CHAPTER 2. METHODOLOGY AND PLANNING

3. Project phases planning
The project has been planned in three main phases, each with a package of associated
functionalities that have a strong common link:

I Authentication:
Account management functionalities (creation, log-in, profile modification and
log-out).

II Fugateca:
Score library management functionalities (uploading of scores, edition of score
information, creation and deletion of folders, association of scores to a folder, etc.).

III Fugáfono:
Study-related functionalities (view score, configure metronome, record perfor-
mance, display errors, browse error history…).

Additionally, twomore phases are distinguished, an initial phase where the project
is defined and the necessary preliminary studies are undertaken, and a final phase for
user testing. No distinction will be made between backend and frontend development
in planning. Besides, at the end of each iteration, a review meeting with the project
managers is scheduled to evaluate the overall progress of the system.

For project planning, the holidays in figure 2.1 have been taken into account and
the month of January has been disabled because the developer was not available. Also,
4 hours of labour time have been established due to the student’s situation.

Figure 2.1: Non-Working Days

13

2.2. Planning

• Gantt Diagram
TheGantt diagrams in the following figures show the initial planning of the project.
It should be noted that, as there was only one developer, the planning of activities
was sequential, although many could have been performed in parallel.

Figure 2.2: Main Phases Gantt Diagram

Figure 2.3: Analysis and Design Gantt Diagram

Figure 2.4: Authentication Gantt Diagram

14

CHAPTER 2. METHODOLOGY AND PLANNING

Figure 2.5: Fugateca Gantt Diagram

m
m

Figure 2.6: Fugáfono Gantt Diagram

m
m
m

Figure 2.7: Testing Gantt Diagram

15

2.2. Planning

2.2.3 Cost Estimate

The project cost estimate will be made according to the resources involved:

• Human Resources
For human resources costing, the salaries of reference [17] as summarised in table 2.2
are taken as a baseline. The tester profile will not be taken into account for the estimates
as his/her conducted activity is a minor user acceptance test.

Table 2.2: Human Resources Salary

Profile Hourly Salary Annual Salary

Project Manager 20.50€ 40,000€
Analyst 14.30€ 28,000€
Designer 12.80€ 25,000€
Developer 9.70€ 19,000€

Taking into account the planning of the project and assuming that the project managers
participate in activities 1.4, 2.6, 3.10 and 4.7; the analyst participates in activities 1.1, 1.4
and 5.1; the designer participates in activities 1.2, 1.3 and 1.4; and the programmer
participates in all activities in phases 2, 3 and 4, the total estimated working hours
according to the profile is as specified in the table 2.3.

Table 2.3: Total Estimated Working Hours by Profile

Profile Working Hours

Project Manager 7h
Analyst 11h
Designer 33h
Developer 347h

Considering that there are two project managers and that the tasks they perform are
not effort-driven, the total estimated cost for human resources is 4,232.60€.

• Software Resources:
None of the required software resources represent an additional cost for the project.
Total cost of software resources: 0€.

• Hardware Resources
Both the cable and the keyboard are personal and no additional cost will be charged for

16

CHAPTER 2. METHODOLOGY AND PLANNING

them since their use in the project is minimal compared to their normal wear and tear.
On the other hand, the personal computer depreciation will be imputed. Assuming
the original cost of the computer is 1,200€ and considering a useful lifetime of 4 years,
the value of the computer consumed in 1 year is 300€. If the duration of the project is
approximately 5 months, the imputable depreciation of the computer is over 125€.

A final summary of the estimated costs for the project is shown in table 2.4.

Table 2.4: Estimated Costs

Resource Cost

Human 4,232.60€
Software 0€
Hardware 125€

Total 4,357.60€

2.2.4 Project Monitoring

The evolution of the project has followed the planning with minor deviations in the duration
of some activities, which have balanced each other out. The only significant deviation was
that of activity 4.4 “Record Score Performance Functionality” which, due to its great com-
plexity, delayed the project by 4 days. However, the date initially set for undertaking the user
acceptance test could be maintained. Table 2.5 details the forecast and the final result for the
project parameters.

Table 2.5: Forecast vs. Follow-up

Forecast Follow-up

Start Date 11 Nov 2020 11 Nov 2020
End date 10 May 2020 14 May 2020
Duration 158 days 162 days
Work 405 hours 421 hours
Cost 4,357.60€ 4,512.80€

17

2.2. Planning

18

Chapter 3

Analysis

This chapter explains both the functional and non-functional requirements of the applica-
tion. In order to help obtain them, prototypes of the screens that could be shown to the

user have been developed, and they are attached in Appendix A. Finally, the use cases that
shape and define the project are presented.

3.1 Functional Requirements

A functional requirement is a description of the service to be provided by the software. In
table 3.1 the requirements identified for the application are specified according to their input,
the behaviour of the system, the expected output and the corresponding user story from those
specified in the Product Backlog 2.1.

• Functional Requirements

Table 3.1: Functional Requirements

User Story Input System Behaviour Output

Create an
account (1)

The user’s name,
surname, email
address and pass-
word.

Performs the relevant
checks (correct data,
email is not already
registered…) and, if
everything is correct, it
registers the user in the
database. Otherwise, an
appropriate error will be
issued.

If everything is cor-
rect, the information
is registered and
therefore there is an
account created. Oth-
erwise, the output will
be the corresponding
error.

19

3.1. Functional Requirements

Log in (2) The user’s email
address and pass-
word

If the email is registered
and the password is cor-
rect, the user is autho-
rised. Otherwise, an ap-
propriate error will be is-
sued.

If everything is cor-
rect, authorisation
to access data is ob-
tained. Otherwise,
the output will be the
corresponding error.

Edit account
information
(3)

Authorisation and
new user informa-
tion (name and/or
surname).

Perform relevant checks
and, if everything is
correct, update the
user’s information in the
database. Otherwise, an
appropriate error will be
issued.

If everything is cor-
rect, new user infor-
mation has been regis-
tered. Otherwise, the
output will be the cor-
responding error.

Log out (4) Authorisation Perform relevant checks
and, if everything is cor-
rect, revoke authorisa-
tion. Otherwise, an ap-
propriate error will be is-
sued.

If everything is cor-
rect, authorisation has
been revoked. Other-
wise, the output will
be the corresponding
error.

Recover
password (5)

The user’s email
address

If the email is registered,
send an email to the user
to update his/her pass-
word and, when this hap-
pens, if everything is cor-
rect, the new password is
updated. Otherwise, an
appropriate error will be
issued.

If everything is cor-
rect, the new pass-
word has been up-
dated. Otherwise, the
output will be the cor-
responding error.

Upload
score (6)

Authorisation,
score title, com-
poser, genre,
tempo and file
in MusicXML
or compressed
MusicXML (mxl)
format.

Perform relevant checks
and, if everything is cor-
rect, it registers the score
in the database. Other-
wise, an appropriate er-
ror will be issued.

If everything is cor-
rect, the score has
been registered. Oth-
erwise, the output will
be the corresponding
error.

20

CHAPTER 3. ANALYSIS

Edit score
information
(7)

Authorisation,
score to be up-
dated and new
score information
(title, composer,
genre and/or
tempo).

Perform relevant checks
and, if everything is
correct, update the
score’s information in
the database. Otherwise,
an appropriate error will
be issued.

If everything is cor-
rect, new score infor-
mation has been up-
dated. Otherwise, the
output will be the cor-
responding error.

Delete score
(8)

Authorisation and
score to be deleted.

Perform relevant checks
and, if everything is
correct, delete score
(related files and infor-
mation). Otherwise, an
appropriate error will be
issued.

If everything is
correct, score infor-
mation and related
files have been
deleted. Otherwise,
the output will be the
corresponding error.

View sorted
list of scores
(9)

Authorisation and
sorting order.

Perform relevant checks
and, if everything is cor-
rect, gather user’s scores
sorted by title, composer,
genre or most recently
uploaded. Otherwise, an
appropriate error will be
issued.

If everything is cor-
rect, a list of scores
sorted by title, com-
poser, genre or most
recently uploaded is
obtained. Otherwise,
the output will be the
corresponding error.

Create
folder (10)

Authorisation and
folder name.

Perform relevant checks
and, if everything is cor-
rect, it creates the folder
in the database. Other-
wise, an appropriate er-
ror will be issued.

If everything is cor-
rect, the folder has
been registered. Oth-
erwise, the output will
be the corresponding
error.

Delete folder
(11)

Authorisation
and folder to be
deleted.

Perform relevant checks
and, if everything is cor-
rect, delete folder (but not
the related scores). Oth-
erwise, an appropriate er-
ror will be issued.

If everything is cor-
rect, the folder and its
links to scores have
been deleted. Other-
wise, the output will
be the corresponding
error.

21

3.1. Functional Requirements

Edit folder
information
(12)

Authorisation,
folder to be up-
dated and new
folder name.

Perform relevant checks
and, if everything is cor-
rect, update folder name.
Otherwise, an appropri-
ate error will be issued.

If everything is cor-
rect, folder name has
been updated. Other-
wise, the output will
be the corresponding
error.

Add score to
folder (13)

Authorisation,
score to be added
and the respective
folder.

Perform relevant checks
and, if everything is cor-
rect, attach score to the
folder. Otherwise, an ap-
propriate error will be is-
sued.

If everything is cor-
rect, score has been at-
tached to the folder.
Otherwise, the out-
put will be the corre-
sponding error.

Delete score
from folder
(14)

Authorisation,
score to be deleted
and the respective
folder.

Perform relevant checks
and, if everything is cor-
rect, detach score from
folder. Otherwise, an ap-
propriate error will be is-
sued.

If everything is cor-
rect, score has been
detached from folder.
Otherwise, the out-
put will be the corre-
sponding error.

View score
(15)

Authorisation
and score to be
displayed.

Perform relevant checks
and, if everything is cor-
rect, gather the score file
and the corresponding in-
formation to display it.
Otherwise, an appropri-
ate error will be issued.

If everything is cor-
rect, the score has
been displayed. Oth-
erwise, the output will
be the corresponding
error.

Zoom con-
trol (16)

New score size
smaller than the
current one.

Zoom in score visualisa-
tion if possible.

If it has been possible,
score visualisation has
been zoomed in.

Zoom con-
trol (16)

New score size big-
ger than the cur-
rent one.

Zoom out score visualisa-
tion if possible.

If it has been possible,
score visualisation has
been zoomed out.

Turn on
metronome
(17)

Tempo. Turn on metronome with
the respective tempo.

Metronome started
playing with the
specified tempo.

22

CHAPTER 3. ANALYSIS

Turn off
metronome
(18)

- Turn off metronome. Metronome stopped
playing.

Choose
number of
input bars
(19)

Number of input
bars.

If the new number is
greater than one, the
number of input bars is
updated.

If possible, number of
input bars has been set
to the new number.

Modify
metronome
tempo (20)

New tempo If the new tempo fits
within the range, the new
tempo is set.

If possible, new
metronome tempo has
been set.

Record score
performance
(21)

Authorisation,
user’s midi sig-
nal information
and score to be
compared to.

Perform relevant checks
and, if everything is cor-
rect, gather the score file,
compare user’s midi sig-
nal and original score in-
formation, save user’s er-
rors in a copy of the
original score and display
them to the user. Other-
wise, an appropriate er-
ror will be issued.

If everything is cor-
rect, the score of com-
mitted errors has been
displayed. Otherwise,
the output will be the
corresponding error.

Browse
error history
(22)

Authorisation and
score to search his-
tory for.

Perform relevant checks
and, if everything is cor-
rect, gather error history
information for that score
and display it to the user.
Otherwise, an appropri-
ate error will be issued.

If everything is cor-
rect, a history of
errors for the given
score has been dis-
played. Otherwise,
the output will be the
corresponding error.

View errors
from an old
execution
(23)

Authorisation and
a selection from
the error history
for a given score.

Perform relevant checks
and, if everything is cor-
rect, gather the corre-
sponding error score file
and the related informa-
tion to display it. Other-
wise, an appropriate er-
ror will be issued.

If everything is
correct, the error
score file and the
corresponding infor-
mation have been
displayed. Otherwise,
the output will be the
corresponding error.

23

3.2. Non-Functional Requirements

3.2 Non-Functional Requirements

Non-functional requirements represent general characteristics and constraints of the system
being developed. They are also known as quality attributes. For this project, the following
non-functional requirements will be pursued:

• Performance efficiency: The amount of used resources will be minimised. Above all,
the aim is to relieve the user of the burden on its resources, therefore, the most costly
tasks will be performed on the server side.

• Compatibility: Beyond having opted for a REST style architecture as will be described
in section 5.1, the aim is to provide maximum compatibility (e.g. different devices such
as mobiles or laptops with different screen sizes and resolutions, different browsers, …).

• Usability: An ever-present point in this project is the pursuit of user-friendliness. There-
fore, all the development will be focused on simplifying the tasks as much as possible
for the user so that the learning curve is fast. The interfaces will seek to be as intuitive
as possible and the user will have feedback from the application at all times, plus, errors
will be communicated appropriately. Another objective of the application is to be web
responsive so that the user can operate from any device.

• Security: Certainly, as it is a system that works with the user’s personal data, security is
an ever-present factor. Any interaction with user data will require prior authentication,
which will always be checked. In addition, data such as passwords will be encrypted
before being recorded in the database.

• Maintainability: The system shall be divided into modules in such a way that the impact
of changing a component is minimal. A simple example of this is the use of the DTO
pattern, as well as the use of interfaces, such as the one that defines the contract neces-
sary for the interaction with the file system. At the moment, the chosen filesystem for
storing the score files is local, however, it would be easy to switch to a cloud solution
if an implementation of this defined interface is developed.

24

CHAPTER 3. ANALYSIS

3.3 Use Cases

Figure 3.1 shows the coarse-grained use case diagram for this project. There will not be a
detailed description of each one, specifying preconditions, flow, post-conditions, etc. We will
simply clarify some general preconditions:

• With the exception of the “Log in”, “Create account” and “Recover password” use cases,
all of them have as precondition that the actor must be authenticated in the system, i.e.
he/she must have obtained the output of having executed the “Log in” use case.

• Likewise, to execute the use cases “Log in” and “Recover password”, it is necessary to
have obtained the output of having executed “Create account” use case.

• Additionally, it should be clarified that in order to execute the use case “Record score
performance” the user must have his/her keyboard connected.

In section 7.1, when the screens of the application are explained, the flow of the use cases will
also be clarified.

25

3.3. Use Cases

Figure 3.1: Use Case Diagram

26

Chapter 4

Design

This chapter explains the architecture and data model designed for the application.

4.1 Architecture

For the design of the architecture, the MVC (Model-View-Controller) pattern has been ap-
plied as it provides a standard web development framework for creating scalable and exten-
sible projects. Its goal is to separate the data and business logic of an application from its
representation and the module in charge of handling events and communications. In order to
achieve this aim, it divides an application into three main logical components:

• Model: It is the representation of the information with which the system works. It is
in charge of managing all the accesses to that information, also controlling the access
privileges described in the application specifications (business logic). It sends to the
“view” the piece of information that is requested at each moment. Requests for access
or manipulation of information reach the “model” through the “controller”.

• View: It presents the “model” (information and business logic) in a format suitable for
interaction (e.g. with a user interface), and therefore it requires from that “model” the
information to be represented as output.

• Controller: It responds to events and invokes requests to the “model” when a demand
is made on the information. It acts as an interface between the “model” and “view”
components to process all business logic and incoming requests, manipulate the data
using the “model” component and interact with the “view” to render the final result.

A basic diagram of what would be the architecture of the application of this project is shown
in figure 4.1. The “Backend” component stores the model and the controller while the “Web
Application” component would provide the view.

27

4.2. Data Modelling

In order to communicate between the backend and the frontend, a REST style architecture
has been chosen so that both parts can be independent from each other, thus clearly separating
responsibilities. The standard communication protocol used by keyboards isMIDI, so it will be
necessary to have a frontend handler that, with the help of theWebMIDI API, will manage the
messaging. Moreover, PostgreSQL is selected as the DataBase Management System (DBMS).
During the design it is also decided that five controllers will be needed at the backend to
maintain modularity, security and efficiency.

Figure 4.1: Architecture Diagram

4.2 Data Modelling

Before starting to explain the data modelling, it is convenient to clarify that among the re-
quirements of the application, some of them allow the user to work with folders. In order
to represent this situation in the database, it has been chosen to use the concept of “tags”, so
that a tag represents a folder and it can establish relationships with the scores, simulating the
action of “saving a score in a folder”. Besides, only one level of folders will be allowed, thus
discarding nested folders.

28

CHAPTER 4. DESIGN

4.2.1 Entity Relationship Modelling

Figure 4.2 provides an entity-relationship diagram to explain the data the application works
with.

First, four entities are established: “Fugalogo” will store all the information related to
the users’ accounts, “Score” will save the scores data, “Tag” will be the representation for
the folders and the “Recording History” will handle the users’ performances. The names
chosen for the attributes are self-explanatory, but several details should be clarified. The
“reset_token” and “expiration_reset_token” attributes in the “Fugalogo” entity are required for
password recovery. The “music_xml_path” of “Score” stores the location where the original
score file is kept. The ”music_xml_path” of “RecordingHistory” holds the path to the corrected
file of the user’s performance. Moreover, it is important to note that surrogate identifiers are
used to achieve a simpler and more efficient implementation. The only uniqueness constraint
defined is for the user’s email.

Afterwards, the required relationships between the entities are established so that reality
can be portrayed. A Fugalogo can have several scores, but a score can only belong to one
Fugalogo. A recording in the “Recording History” can only arise from one score, however, a
score can have several recordings. In addition, the Fugalogo can have several tags that only
belong to him/her. Furthermore, the same tag can be associated with several scores and a
single score can be attached to multiple tags.

Once the entities and relationships are established it is also desirable to specify how the
entity-relationship diagram would be designed if no surrogate identifiers had been estab-
lished. The primary key of the “Fugalogo” entity would be its email. The “Score” and “Tag”
entities would be weakly dependent on “Fugalogo”. “Score” would have a numeric discrimi-
nant and “Tag” could use the “name” attribute (as a discriminant) since duplicates are not al-
lowed within tags belonging to the same user. Finally, the “Recording History” entity would
be weakly dependent on “Score” and would also need a discriminant.

29

4.2. Data Modelling

Figure 4.2: Entity Relationship Diagram

30

CHAPTER 4. DESIGN

4.2.2 ODL Schema

It is decided that the language used for the backend development will be Java, an object-
oriented programming language. For this reason, table 4.1, with the definition of an ODL
(Object Definition Language) schema, is added. This table shows the established mapping
between the objects and the model defined for the database. Likewise, only the relationships
that were necessary from the object-oriented side have been added, which have been chosen
taking into account the navigation, the flow, of the program.

Table 4.1: ODL Schema

Entity Schema

Fugalogo class Fugalogo {
mnn attribute Long id;
mnn attribute String email;
mnn attribute String password;
mnn attribute String name;
mnn attribute String surname;
mnn attribute Timestamp registrationDate;
mnn attribute String resetToken;
mnn attribute Timestamp expirationResetToken;
}

Score class Score {
mnn attribute Long id;
mnn attribute String title;
mnn attribute String composer;
mnn attribute enum Genre {Blues, Classical, Country…} genre;
mnn attribute String tone;
mnn attribute String tempo;
mnn attribute String timeSignature;
mnn attribute String musicXmlPath;
mnn attribute Timestamp registrationDate;

mnn relationship Fugalogo ownerFugalogo;
mnn relationship set<Tag> tags
mnnmnnmnnmn inverse Tag::scores;
}

31

4.2. Data Modelling

Tag class Tag {
mnn attribute Long id;
mnn attribute String name;

mnn relationship Fugalogo ownerFugalogo;
mnn relationship set<Score> scores
mnnmnnmnnmn inverse Score::tags;
}

Recording History Recording History {
mnn attribute Long id;
mnn attribute String musicXmlPath;
mnn attribute Timestamp recordingTimestamp;

mnn relationship Score originalScore;
}

32

Chapter 5

Technological Fundaments

This chapter describes the different technologies chosen during the analysis and design
phases that have been used to develop the project.

5.1 Structure

Already in the previous chapter, the architecture diagram of the application was presented in
Figure 4.1. Since this chapter details the technologies used in each part of the architecture,
below are summarised the rationale for each section:

• Backend
It is the data access layer and the one that holds the business logic. It is responsible
for responding to requests made by the frontend, processing the received data and re-
turning appropriate responses. It is the only one that can access the stored data, for
instance, in a database, which provides persistence for the data.

• Frontend
This is the presentation layer. It matches with the web application in the diagram. It is
the part of the software that interacts with users. It is responsible for collecting input
data from the user and adjusting it to the specifications required by the backend so that
it can be processed. Finally, it returns the response received from the backend in a way
that is understandable to the user.

• REST
The connection between the frontend and the backend is a type of interface. REST
(Representational State Transfer) is a style of software architecture based on the HTTP
protocol that serves to establish such a relationship. The information is exchanged via
HTTP in one of the following formats: JSON (JavaScript Object Notation), HTML, XLT,
Python, PHP or plain text. Some of the principles it follows are:

33

5.2. Backend

– Statelessness: State is stored and maintained on the client and not on the server.
That is, requests must provide all the necessary information to be performed on a
server that does not maintain state, so it does not keep context between calls for
the same client.

– Uniform interface between elements: so that information is transferred in a stan-
dardised way. To this end: the requested resources must be identifiable and inde-
pendent of the representations sent to the client; the client must be able to manip-
ulate the resources through the representation it receives, as it contains sufficient
information to allow this; the self-describing messages sent to the client must con-
tain the necessary information to describe how it should process it; among others.

5.2 Backend

To develop the backend of this project, Java has been selected as the programming language
and PostgreSQL as the DataBase Management System.

5.2.1 Java

It is an object-oriented and class-based programming language. When Java is compiled, it
is not compiled into platform specific machine, rather into platform-independent byte code.
So, Java is cross-platform, capable of running on most operating systems and devices, with a
single code base [18]. This is achieved thanks to a virtual machine that exists on each system
that is capable of running Java and bridging the programming language and the device.

Furthermore, Java is an interpreted language whose byte code is translated on the fly to
native machine instructions and is not stored anywhere which makes the development pro-
cess more rapid and analytical. Moreover, Java attempts to eliminate error-prone situations
by placing the main emphasis on compile-time and run-time error checking. Apart from that,
with Java’s secure feature, it enables to develop virus-free and tamper-free systems. Authenti-
cation techniques are based on public-key encryption. In addition, with Java’s multithreaded
feature, it is possible to write programs that can perform many tasks simultaneously.

It is not only the above features that havemade it the programming language of choice for
backend development. The wide library of packages it offers and the programmer’s previous
experience with this language have been decisive for its selection.

• Spring
Spring is an open source application development framework and inversion control
container for the Java platform which helps to solve many technical related difficulties
[19]. A key element of Spring is application-level infrastructure support: Spring focuses

34

CHAPTER 5. TECHNOLOGICAL FUNDAMENTS

on the hidden, common andmore standard part of applications so that the developer can
focus on application-level business logic, without unnecessary ties to specific deploy-
ment environments. The modules of this framework used in this project are described
below:

– Spring Web: This module is responsible for integrating web applications with the
Spring framework. It uses servlet listeners and aweb-oriented application context.
It also provides a web-oriented integration feature and a multi-part file upload
functionality.

– Spring Security: Module to provide authentication, authorization, SSO and other
security features for web applications.

– Spring Data JPA: Spring Data JPA facilitates the implementation of JPA-based
repositories. Implementing a data access layer involves writing too much repet-
itive code to execute simple queries, as well as to perform paging and auditing.
Spring Data JPA aims to significantly improve the implementation of data access
layers by reducing the effort to the amount that is actually needed. The developer
writes the interfaces to their repository, including custom lookup methods, and
Spring will provide the implementation automatically.

• Hibernate
Hibernate is an Object-Relational Mapping (ORM) tool for the Java platform that fa-
cilitates the mapping of attributes between a traditional relational database and the
object model of an application, by means of declarative files (XML) or annotations in
the entity beans that allow these relationships to be established [20]. It streamlines the
relationship between the application and the SQL database, in a way that optimises the
workflow and avoids repetitive code.

It is worth noting that unlike Spring, Hibernate works largely as a bridge to con-
nect two different data models or to generate one from code, while Spring behaves
mostly as a large library full of tools for object-oriented programming.

• Maven
It is a software tool for managing and building Java projects. It uses a Project Object
Model (POM) to describe the software project to be built, its dependencies on other
modules and external components, and the order in which the elements are built. It
comes with predefined objectives to perform certain clearly defined tasks, such as code
compilation and packaging. [21]

Thus, Maven allows the developer to automate the handling of creating the original
folder format, performing the assortment and testing, and packaging and deploying the

35

5.3. Frontend

final output. It reduces the considerable number of steps in the basic process and makes
it a one-step process to make a build.

5.2.2 DBMS

A DataBase Management System (DBMS) is a set of non-visible programs that administer
and manage the information contained in a database [22]. DBMSs manage all access to the
database as their purpose is to serve as an interface between the database and the applications,
allowing information to be stored, data to be modified and knowledge assets to be accessed.

In turn, the DBMS can be understood as a collection of interrelated data, structured and
organised within the ecosystem formed by that set of programs that access them and facilitate
their management.

It should be noted that access to data is independent of the programs that manage them.
Therefore, some of its characteristics are: independence, minimum redundancy, consistency
of information (concurrency control), abstraction of information from its physical storage, as
well as secure access and the adoption of the necessary measures to guarantee data integrity.

• PostgreSQL
It is an open source object-oriented relational DataBase Management System [23]. It
contains several advanced data types and robust feature sets that increase the extensibil-
ity, reliability and data integrity of the software. An interesting feature of PostgreSQL
is the Multi-Version Concurrency Control (MVCC). It adds an image of the database
state to each transaction. This allows for eventually consistent transactions, offering
great performance advantages.

The main reason for its selection as a DBMS is the developer’s previous experience
working with it.

5.3 Frontend

For frontend development, in this case where a web application is being developed, it is nec-
essary to work with three technologies [24]:

• HTML: It refers to the markup language for the creation of web pages. It is a standard
that serves as a reference for software that connects to the development of web pages in
its different versions. It establishes a basic structure and code for defining the content
of a web page using tags. This language is highly adaptable, logically structured and
easy to interpret by both humans and machines.

36

CHAPTER 5. TECHNOLOGICAL FUNDAMENTS

• CSS: It is a graphic design language for defining and creating the presentation of a
structured document written in a markup language. It is widely used to establish the
visual layout of web documents and user interfaces written in HTML.

• JavaScript: It is an interpreted, object-oriented, prototype-based, imperative, weakly
typed, dynamic programming language. JavaScript (JS) is the only programming lan-
guage that works natively in browsers (without the need for compilation). It is therefore
used as a complement to HTML and CSS to create dynamic websites.

5.3.1 Vue

It is a progressive JavaScript framework for creating user interfaces that makes it easy to work
with HTML, CSS and JS [25]. It is modularised in different separate libraries that allow adding
functionality as needed. The most important libraries used in the project are described in the
following:

• Vue Router
It is the official Vue client-side routing library that provides the necessary tools to map
the components of an application to different browser URL paths. [26]

• Vuetify
It is a complete UI library whose goal is to provide developers with the tools they need
to build rich and engaging user experiences. Moreover, Vuetify takes a mobile first ap-
proach to design, that is, it focuses on the design formobile phones and then approaches
it to other devices. [27]

• Axios
It is a promise-based HTTP client for JavaScript that allows sending requests to REST
endpoints and performing CRUD operations in a very simple way. [28]

• Vuelidate
It offers a simple, lightweight model-based validation for Vue. Validation rules are
added to a validation object where a given component is defined. This enables easy
checking of form entries, for instance. [29]

• Vue-i18n
It is an internationalisation plugin. Thanks to it, the developed application in this
project is available in Spanish and in English. Besides, it will be very easy to trans-
late it into more languages due to the use of this complement. [30]

It is worth mentioning that Node.js is used as the JavaScript runtime environment and that
its package management system, NPM, is used to install all these libraries.

37

5.3. Frontend

5.3.2 MIDI

MIDI (Musical Instrument Digital Interface) [31] is a protocol that allows electronic musical
instruments, computers and other devices to communicate with each other. This protocol
includes an interface, a language in which MIDI data is transmitted and the connections nec-
essary to communicate between hardware elements.

It should be clarified that MIDI does not transmit audio signals but a set of instructions
containing the necessary data. These sets are called events. Some of the instructions that
these events store are: Key ON and OFF, when the key is pressed and when it is released;
pitch, which note is played; or the speed, velocity and force with which the key is pressed.

It is also important to clarify that, for this project, a USB Type A to Type B cable is
used to establish the MIDI connection between the keyboard and the computer. Nowadays,
most of the keyboards on the market allow this type of connection and it is the easiest one to
establish for the user. Therefore, this project report will not go into the details of a connection
established with a 5-pin DIN cable or the sequencers that would be necessary to use it.

• Web MIDI API
TheWebMIDIAPI [32] uses this protocol and allows to have aMIDI instrument enabled,
such as a keyboard, connect it to the computer and get the information sent from the
keyboard to the browser.

Therefore, this specification that defines an API supporting the MIDI protocol is
essential in the development of this project. It should be recalled that one of the key
points is to collect the MIDI information that the user transmits from the keyboard
through the browser in order to send it to the backend.

One of themain shortcomings of theWebMIDI API is cross-browser compatibility.
It is not supported in: Internet Explorer, Edge 12 to 18, Firefox, Chrome 4 to 42, Safari,
Opera 10 to 29, Safari on iOS, Opera Mini, Android Browser 2.1 to 4.4.4, Opera Mobile
12 and 12.1, Firefox for Android, QQ Browser and KaiOS Browser. However, according
to calculations provided by the website caniuse.com [33], it would be usable by 74.51%
of global users.

Given this weakness, solutions have been sought to provide compatibility with
more browsers. The most robust is the JZZ.js library, which “enables Web MIDI API in
Node.js and those browsers that don’t support it” [34]. It has not been used during the
implementation of the project but it will be registered as a future enhancement.

5.3.3 OSMD and VexFlow

As specified in the risk analysis (section 2.2), the selected format forworkingwith the scores is
MusicXML. The users will upload their score in this format, but they must be able to visualise

38

CHAPTER 5. TECHNOLOGICAL FUNDAMENTS

it as they would if they had the score printed (that is, they cannot be shown the XML code of
the score).

Luckily, there is an open source online music notation rendering API that is written
entirely in JavaScript and runs directly in the browser called VexFlow [16]. What VexFlow
does is, it takes all the information it needs to render a score in JavaScript and creates an
output in either HTML5 Canvas or SVG of what the score would look like to display it to the
user in the browser.

Now, the JavaScript representation of music that VexFlow understands is not what a
MusicXML file looks like. This is where Open Sheet Music Display (OSMD) [15] plays a key
role. They present themselves as “The first Open Source JavaScript engine for MusicXML
using VexFlow.” and that is because, what this library offers is the link between MusicXML
and VexFlow. Therefore, thanks to OSMD, the score in MusicXML format is converted to the
format that VexFlow needs to be able to represent the music sheet in the browser in a way
that users are able to understand.

5.4 Working Tools

The working tools used to develop the project will be described below.

5.4.1 Project Development Tools

• GitLab
It is the selected version control web service. It is based on the Git version control
software [35]. Although the project has been developed individually and therefore, it
has not been possible to exploit the collaborative potential offered by this tool, its use
was essential in order to develop a comfortable workflow andmaintain a project version
history.

• Visual Studio Code
It is the source code editor selected to develop the project. In addition to all the function-
alities that it offers, such as integration with the version control software Git, countless
help packages during programming, customisation of the theme or keyboard shortcuts,
etc., its lightness compared to all the power offered has been decisive in its choice.

5.4.2 Extra Tools

• Draw.io: It is a free diagram creation and editing tool with models for different types
of diagrams such as UML diagrams. It is available to work online, although it also has
a desktop version, and diagrams can be saved in Google Drive, OneDrive or locally. It

39

5.4. Working Tools

also allows diagrams to be exported in different formats such as PDF, PNG or JPG. This
will be the tool used for creating the necessary diagrams that are shown throughout the
report (for example, the architecture diagram from figure 4.1 or the Entity Relationship
diagram from figure 4.2).

• LaTeX: It is a text composition system, oriented to the creation of written documents
with a high typographic quality. LaTeX facilitates the creation of documents in a consis-
tent way by separating content from presentation. It is the tool used for the preparation
of this report.

40

Chapter 6

Theoretical Fundaments

This chapter aims at explaining the fundamental theoretical concepts that are required to
understand the development of the application.

6.1 Musical Concepts

Firstly, it is necessary to clarify some music theory notions in order to understand the chal-
lenges and solutions that arise in the application. As the focus will be on detecting rhythm and
pitch errors, the first two parts of this section will be devoted to defining some of the terms
needed to comprehend how corrections are made. Additionally, the last part will explain how
a piano score is organised to be able to understand how it is described by MusicXML.

6.1.1 Rhythm

A series of concepts related to rhythm are defined below. Each explained concept builds on
its predecessor to reach a satisfactory definition.

• Pulse
It is the basic unit used to measure time in a musical piece. This is the beat of the piece.
It is measured in the same way as the heartbeat: beats per minute (BPM). For example,
60 BPM means that there are 60 pulses per minute.

• Metronome
A device that emits a sound with each pulse. It signals the pulse to the player so that
he/she knows the speed to perform the music piece.

• Tempo
It is a quantitative or qualitative description for the speed of the pulse. It can be indi-
cated by a number or by Italian words that cover a range. For example, Andante ranges
from approximately 76 to 108 BPM, but there is no standard that sets the limits.

41

6.1. Musical Concepts

• Patterns
When making music, patterns are made with these pulses by accentuating the first of
every two, the first of every three or any other combination. Example: 1, 2 or 1, 2, 3.

• Measure
It is each block of a repeating pattern. This is the way of organising the music. Example:
[1, 2, 3][1, 2, 3].

• Time Signature
It describes the repeating pattern. It is composed of two numbers, the first one indicates
how many pulses there are in each measure and the second one shows how the pulse
is represented (which musical figure depicts it).
Figure 6.1 shows the mapping between the rhythmic figures and the number that rep-
resents them. Therefore, if the time signature is 3/4, it means that in each measure
there are 3 beats and that the quarter note is the figure that represents each pulse. So,
the quarter note will be the reference for the other figures. Following the 6.1 tree, if a
quarter note is worth one pulse (let the pulse last 2 seconds), an eighth note is worth
half a pulse (it would last 1 second).

Figure 6.1: Figures Tree

Notice that, for instance, a quarter note is made up of two eighth notes, that is, an eighth
note is half the duration of a quarter note.

• Tie
Ties join two notes of the same pitch (frequency) that are placed consecutively. Their
durations are added together so that the player finally plays only one sound with a

42

CHAPTER 6. THEORETICAL FUNDAMENTS

duration equal to the sum of the durations of the two tied notes. For instance, if a
quarter note lasts 2 seconds and there are two quarter notes tied together, the musician
will only play one note of duration 4 seconds.

Concepts review

Figure 6.2 shows the concepts described above represented in a score. Starting with the time
signature, it says that it is a 4/4, therefore, there will be 4 pulses in a measure and the rep-
resentation of the pulse will be a quarter note. Each measure is marked by vertical bars. In
the first measure the figures that appear are all whole note figures. Looking at the figure 6.1,
1 whole note is equivalent to 4 quarter notes, so there are four quarter notes in this measure
(as indicated by the time signature).

The tempo is 150 BPM, therefore, as the pulse is represented by a quarter note, this means
that 150 quarter notes enter in 1 minute. Thus, a quarter note lasts 60 ÷ 150 = 0.4 seconds.
Since one measure has 4 quarter notes, one measure lasts 0.4 ∗ 4 = 1.6 seconds.

Finally, all the arcs represent ties. Considering that what the tie does is to add up the
duration of the figures it joins, for the first three notes of the first five lines, the total duration
will be 1.6 + 1.6 = 3.2 seconds (two measures).

Figure 6.2: Rhythm Concepts

6.1.2 Notes

This section explains concepts related to notes. A note is a representation of the pitch and
relative duration of a sound. In this section the focus will be on pitch, which from a physical
point of view is known as frequency.

43

6.1. Musical Concepts

Scales

In occidental music, the 12-tone equal temperament is usually used [36]. What this tuning
system does is:

1. Takes a frequency (f0).

2. Doubles that frequency (f1 = 2 · f0).

3. Refers to the distance between f0 and f1 as octave.

4. Divides that interval into 12 equal parts called semitones.

Thus, the semitone is the distance between a note and its consecutive (or predecessor).

Hence, occidental music works with 12 notes. However, not all notes are usually used to
compose a song. Instead, it works with what is known as a scale, which is just a selection
of notes. This selection is not random as it is important to take into account the distance
between the notes you choose (how many semitones there are between one note and another
in the scale).

The most familiar and widely used scale is called the major scale. What are the distances
between notes in a major scale? In a major scale there are 7 notes and the distance between
one note and the next in semitones is: 2-2-1-2-2-2-1. Thus, starting from the note Do and
counting the distances in a major scale, the 7 well-known musical notes are obtained: Do, Re,
Mi, Fa, Sol, La, Si.

Which are the other 5 missing notes? They have no proper name to identify them. They
need surnames in order to be identified. The surnames can be: #, indicating that 1 semitone
is to be added; or b, indicating that 1 semitone is to be subtracted.

Where are these 5 notes? Knowing the names of the selected notes and that they form a
major scale, the distances can be checked to find out:

Do - 2 - Re - 2 - Mi - 1 - Fa - 2 - Sol - 2 - La - 2 - Si - 1 - Do.
Therefore, where there is a distance of 2 semitones, a note with a surname is missing.

Now, these missing notes can be named in two ways: with the preceding note and a # or with
the following note and a b. Therefore, the whole list of the 12 notes would be:

Do, Do#/Reb, Re, Re#/Mib, Mi, Fa, Fa#/Solb, Sol, Sol#/Lab, La, La#/Sib, Si.
These 12 notes are like an infinite string because they are always repeated in the same

order. When they start repeating, the frequency between the first 12 notes and the next 12
notes is twice the frequency of the corresponding one for the former repetition. This is called
an octave. A piano has 7 full octaves and a few more notes. In fact, the major scale can be
formed from any note. All it takes is to choose a starting note, count the appropriate distances

44

CHAPTER 6. THEORETICAL FUNDAMENTS

and obtain the 7 notes that compose it. To label this scale, it is only necessary to take the name
of the starting note and make it clear that it is major. For example:

- Do major: Do, Re, Mi, Fa, Sol, La, Si.
- Re major: Re, Mi, Fa#, Sol, La, Si, Do#.
Another essential scale in occidental music is the minor scale. The distance between their

notes are: 2-1-2-2-1-2-2. They can also be built from any starting note and the naming is the
same as for major scales but with the word minor. For example:

- La minor: La, Si, Do, Re, Mi, Fa, Sol.
- Re minor: Re, Mi, Fa, Sol, La, Sib, Do.
An important detail shown in the examples is that the Do major scale and the La minor

scale have the same notes although in a different order. What happens is that each major
scale has a relative minor with which it shares the same notes but in a different order. To find
the relative minor of a major scale, it is enough to take the note from which it starts and then
subtract 3 semitones from it. For example: Do major, if 3 semitones are subtracted from the
note Do, the note La is obtained, therefore, the relative minor is La minor.

Tonalities

Every piece of tonal music rotates around a main musical scale (or more if it modulates).
Depending on the name of the principal scale, it is said that a composition is in that key.
Thus, a composition where the used notes move around the scale of Do major, is said to be in
Do major (referring to its tonality).

However, if the notes for a major scale and its relative minor are the same, how does one
distinguish whether the key of the piece is Do major and not La minor? It all depends on
the use given to the notes, because within each key they have a different hierarchy. So it
depends on how the composer has worked with the notes. Getting to know this requires a
much deeper analysis that is beyond the scope of this work .

Why is it important to know the tonality? Because it indicates how many accidentals
(surnames) will be in the piece (# or b). This allows the performer to anticipate to some extent
what he or she will find in the score.

Circle of Fifths

Starting from the note Do, counting 7 ascending semitones, the note Sol is obtained (this
distance is called a perfect fifth). Counting another 7 semitones, the note Re is reached, and
so on, until the note Do is achieved again. In this way, the 12 musical notes can be arranged in
such a manner that they are all within 7 semitones of each other. This ordering of the musical
notes is called the circle of fifths.

45

6.1. Musical Concepts

The circle of fifths is a very powerful tool in music. It is a kind of map that helps to
understand music in a simpler way. A representation of this circle is shown in figure 6.3
below.

Figure 6.3: Circle of Fifths

Knowing that the tonality of Do major has the Do major scale as its axis, and that this
scale is made up of the notes Do-Re-Mi-Fa-Sol-La-Si, it can be deduced that the tonality of Do
major has no accidentals (# or b). Thus, the notes to be played in the song will probably not
have surnames.

In the circle of fifths, starting from Do, which, as explained in the previous paragraph, has
no accidentals: if moving clockwise, for each new note a sharp (#) is added (e.g. Sol major
has one # and Re major has two); if moving counterclockwise a flat (b) is added (e.g. Fa major
has one b and Sib major has two).

To sum up, by being aware of the tonality of the score, the musician can already intuit
what he/she is going to encounter in it.

6.1.3 Piano Score Structure

All the above concepts are used to describe a musical composition. The figures representing
the duration (figure 6.1), when placed on the staff (five parallel lines) also indicate the pitch
according to their position. Therefore, the figures (duration) on a staff (pitch) become notes
(duration + pitch).

On the other hand, if the notes are drawn one on top of the other, vertically, it means
that they are played at the same time (it is a chord). If they are shown next to each other, it

46

CHAPTER 6. THEORETICAL FUNDAMENTS

indicates that they are played on different pulses.
However, the piano is played with two hands. To indicate what is played with one or the

other hand, two staves are used. The top one is for the right hand and the bottom one for the
left hand. Even if the hands are separated, the notes that fall on the same vertical are played
at the same time.

As explained in section 6.1.1, music is organised in measures. Graphically, these are rep-
resented by a vertical line through the staves which is called a bar. Figure 6.4 attempts to
clarify all these concepts.

Figure 6.4: Measure of a Piano Score.

6.2 MusicXML Notation

This notation is the XML standard for representing music. It has a compressed format using
a zip-based XML format with the extension .mxl [37]. During this section it is explained in a
question and answer format how MusicXML depicts the score information.

1. How does MusicXML represent the duration of notes?

What MusicXML does is to establish a reference system at the beginning of each
song for itself, which can only be translated into seconds thanks to the time signature
and tempo. With the tag <divisions> it indicates the value of a quarter note in the Mu-
sicXML file (for instance, <divisions>24</divisions> says that a quarter note lasts 24).
Then, it indicates the duration of each note according to this reference with the <du-

ration> tag (for example, an eighth note would have <duration>12<duration> because,
as can be seen in figure 6.1, an eighth note lasts half the length of a quarter note). The
<divisions> index may change throughout the piece, such that all notes after the shift
will measure their duration by this reference.

47

6.2. MusicXML Notation

Example
Given a time signature of 4/4 and a tempo of 150BPM, it is known that a quarter note
lasts 60 ÷ 150 = 0.4 seconds. The MusicXML indicates that <divisions>24</divisions>
and there is a note with <duration>12</duration>. How long does the note last in sec-
onds?

Since <divisions> is the representation of a quarter note and a quarter note lasts 0.4
seconds, 24 in MusicXML is 0.4 seconds. So, 12 in MusicXML will be 12∗0.4÷24 = 0.2

seconds. Therefore the duration of the note is 0.2 seconds.

However, the <duration> tag is not enough to represent the note. MusicXML sets
the <type> tag (with values like: whole, half, quarter, eighth…) to indicate the necessary
figure. The reason for this is that a rhythmic figure can have a dot attached to the side
which adds half its duration to the actual duration. Therefore, if the quarter note is
worth 24, a quarter note with a dot will have a duration of 24 + 12 = 36.

m

2. How does MusicXML organise the piano score?

In the previous section it was explained that the music in a piano score was or-
ganised in blocks, with the notes for the right hand on one staff and for the left hand
on another. However, in a MusicXML file not all notes can be written at the same time,
the representation of notes is sequential.

What MusicXML does to put each note in its place is to set an imaginary cursor at
the beginning of the score. It then starts typing the right hand notes (which it marks as
<staff>1</staff> to denote that they belong to the first staf) in the order in which they
appear. At the end of the bar, it places a <backup> label with a number indicating the
duration that the cursor must move back to the beginning of the measure and starts
reading the left hand (notes that it marks as <staff>2</staff> to denote that they belong
to the second staf). When all the notes of the left hand have been written sequentially,
it proceeds to describe the next measure in the same way as this one. All these notes,
both right hand and left hand, belong to the same measure, and therefore MusicXML
groups them together in the <measure> tag.

It is worth noting that, for chords (several notes in the same pulse), MusicXML
prevents the cursor from moving by placing the </chord> tag on the notes involved
(not on the first note of the chord it describes, but on the notes that follow it).

48

CHAPTER 6. THEORETICAL FUNDAMENTS

3. How does MusicXML represent the pitch of notes?

Inside the <note> tag there is also the <pitch> tag that defines the note with three
subtags:

• <step>: Indicates the name of the note (not the surname) but with the American
notation system. Its values can be A, B, C, D, E, F, G for La, Si, Do, Re Mi, Fa, Sol,
respectively.

• <alter>: Indicates the surname of the note. If it is # (adds a semitone), it is indicated
by a +1. If it is b (subtracts a semitone), it is indicated by a -1. If no surname is
required, it can be 0 or the label can be omitted.

• <octave>: In the previous section, it was explained that the 12 notes were repeated
in the same order only with the frequency doubled, that each of these 12-note
blocks was called an octave and that a piano had 7 octaves. To find out to which
frequency range a note belongs, the acoustic index is used [38]. It numbers the
octaves in order from the lowest to the highest. MusicXML uses this system,
specifically, the scientific acoustic index [39].

Let us take an example. The frequency 440 Hz is an La4 in the physicists’ system
and MusicXML represents it as:

<step>A</step>

<octave>4</octave>

<alter> being 0, it would normally not appear.
Figure 6.5 shows a fragment of a MusicXML file containing some of the described

tags.

Figure 6.5: MusicXML <note> tag.

49

6.2. MusicXML Notation

4. How does MusicXML represent silences?

The rests indicate when not to play. They have no pitch but they do have duration.
Instead of the <pitch> tag used for notes, silences use the <rest/> tag. Of course, all tags
concerning duration (<duration>) and representation (<type>, <staff>…) are also used
for rests because they have duration and must be represented on one staff or the other.

5. Other notations

• <key>: This label appears at the beginning of the file to indicate the tonality. It
has one or two tags inside:

– <fifths>: A value of 0 indicates that there are no accidentals. If it is greater
than 0, it indicates that the tone has sharps (#) and how many sharps it has.
If it is less than 0, it indicates that the tone has flats (b) and how many flats it
has.

– <mode>: It is optional. It specifies whether the tonality is major or minor.

• <time>: Label to indicate the time signature. Inside it has two tags:

– <beats>: It indicates the number of beats per measure.
– <beat-type>: It specifies the figure that represents the pulse.

• <tie>: Used to represent ties. If its type attribute is “start” it means that the tie
starts on that note. The next note will have the same tag with type=“stop”, which
indicates the end of the tie. The pitch of both notes must be the same.

50

Chapter 7

The Application

DuRing this chapter a journey through the screens will take place in the order of action
followed by the user. On each screen, the different events that may occur will be ex-

plained in depth to understand how they unfold. In section 7.1, an explanation of the whole
application is given, and in section 7.2 a deeper look at the heart of the application, error
detection, is provided.

7.1 Web Application

The explanation is arranged in four main blocks grouping sets of related screens. The first
group deals with authentication and everything related to the user account itself. The second
group discusses the score library and the scores per se. The third group covers the “study
area” and the last group addresses the error history review.

1. Authentication and user account

• Sign Up
The first thing the user must do when accessing the application for the first time
is to create an account. To do this, they will access the “Sign Up” screen. There,
users must fill in a form containing the following fields: name, surname, email,
password and password confirmation (see figure 7.1). Once the user completes the
action, the frontend of the application performs the basic checks that the data en-
tered are valid (for example, that the password and password confirmationmatch).
If they are not valid, it alerts the user and if they are valid, it proceeds to send a
POST with a JSON of the data to the /api/account/users endpoint in the backend.

51

7.1. Web Application

Figure 7.1: Sign Up Screen

Once the request arrives at the backend, if the JSON is well formed (otherwise
an “invalid argument” exception is thrown) the user service is called. The user ser-
vice checks with the user’s repository that there is not already an account created
for that user (that the same email is not registered). If there is already a user with
that email, it throws a “user already exists” exception, otherwise it creates a new
User entity object that persists in the database through the repository.

In response, the frontend may receive an exception, in which case the user is
alerted, or a confirmation that the account has been successfully created, in that
case the user is notified and redirected to the “Sign In” screen.

• Sign In
To access their account, users must fill in a form with their email address and
password and click on the “Login” button. The frontend will check that the form is
correctly completed (for example, that the email structure is appropriate) and will
proceed to send a POST with the data in JSON format to the /api/account/session
endpoint of the backend.

Once the backend receives the request, after verifying that the user exists and
that the password is correct, it generates an authentication token that the frontend
will be informed of in the response it receives together with the data it needs from
the user (id, name, registration date…).

If the frontend receives the response with the authentication token, it pro-
ceeds to redirect the user to its Fugateca, otherwise it alerts the user of the error.

• Sign Out
Once the user has logged in, he/she can always log out by clicking on the “Sign

52

CHAPTER 7. THE APPLICATION

Out” button, which will discard the authentication token and release all resources
that may have been used during the session.

• User Profile
When the user accesses his/her profile in the application, the frontend makes a
GET request to the backend endpoint /api/account/users/{id}, substituting the {id}
with the user’s real id number and also sending the authentication token.

The backend, if the authentication token is valid, asks the service to return
the user data. The service calls the repository with the user id to retrieve the user
information. If a user with such an id does not exist it returns a “user not found”
exception. If the user of the requested data is not the same as the user corre-
sponding to the authentication token, it returns a “unauthorised user” exception.
If everything is correct, it returns the user data.

The frontend, on receiving the response with the user’s data, shows the user
his/her name, surname, e-mail address and registration date.

The application also allows the user to edit their name and surname. Figure
7.2 shows the “User Profile” screen in edit mode.

Figure 7.2: User Profile Screen Edit Mode

If the user updates their data, the frontend sends a PUT to the backend end-
point /api/account/users/{id}with the user id, the authentication token and the new
data.

The backend checks the authentication and calls the service to update the
data making it persistent thanks to the repository. As before, “user note found”
or “unauthorised user” exceptions can occur.

53

7.1. Web Application

The frontend receives the new data, updates the view and notifies the user of
the success of his/her action, or, if it receives an exception, alerts the user of the
error.

• Reset Password
Returning to the “Sign In” screen, it may be the case that the user does not re-
member his/her password. To solve this, the frontend offers a “Forgot password?”
button. When clicking on it, the user will be asked to enter his/her e-mail address.
Afterwards, the frontend makes a request to the backend endpoint /api/account/-
forgot with the user’s email and the URL to which the user should be redirected
to reset the password.

The backend calls the service, which checks with the repository that the
user’s email is registered. It then generates a token to reset the password, which
expires in 30minutes, and stores the token and the expiry timestamp in the database.
Afterwards, it creates a message with the reset URL indicated by the frontend and
the generated reset token added as a parameter to this URL to send it to the user’s
email address. If the email has been sent correctly, the frontend notifies the user
of the successful delivery. If an exception occurs, it alerts the user of the error.

Ideally, the user should check their email address and, having received the
password reset email, follow the link in the URL which will take them to a screen
where they will be asked to fill in a form with the new password and confirmation
of it. Once the user clicks the “Reset” button, the frontend will take the reset
token from the URL and send it together with the new password to the backend
/api/account/reset endpoint. The backend will call the service that checks if the
token exists and has not expired. If so, it sets the new password and persists it
encrypted in the database while discarding the reset token. If everything was
successful, the frontend notifies the user of the update and redirects the user to
the “Sign In” screen, otherwise, it alerts the user of the occurred error.

This same dynamic in which the frontend collects all the necessary information to make
a request to a backend endpoint and where the backend responds to it by making all
the necessary checks before carrying out an action is maintained during any exchange
between frontend and backend performed in the application. Therefore, from this point
on in the report, only the actions that the user can perform in the application will be
specified and only some sections that may be of interest will be detailed.

2. Fugateca
In the Fugateca there are two sub-screens between which the user can toggle through
a switch, a paginated one with the scores and one paged with folders.

54

CHAPTER 7. THE APPLICATION

Scores

This screen shows the scores that the user has in his/her library (see figure 7.3) . The
user can choose to display the scores sorted by name, by composer, by genre or by most
recent upload date. Pagination has been implemented such that the frontend tells the
backend what page number it wants and how many scores are at each of the pages.
Each time the user loads a new page or changes the sorting, the frontend must request
the music scores from the backend.

Figure 7.3: Fugateca Screen - Scores

With each score the user can perform several actions. One of them is to delete it.
When the user presses the button to do so, the frontend launches a dialogwarning of the
action and asking for confirmation. When the backend receives this request, beyond
all the verifications it performs, it also takes into account that all the error history
associated with the score must be deleted as this is the way the database is designed.

Another action that the user can perform on a score is to associate it to a folder. The
following section will explain how the folder system is configured. It is only necessary
to clarify that from this screen the user can link a score to one or more folders, but not
unlink it (although the user is shown in which folders it is already registered).

In addition, for each score the user can view its information (title, composer, genre,
tempo, time signature, tonality and upload date). From this same information display
panel, the user can only edit the title, composer, genre and tempo of the score since
tonality and time signature are inherent to the score itself.

Finally, also from a score you can access the Fugáfono of that score, that is, the

55

7.1. Web Application

study area of the score.

■ Score uploading
Within the scores screen is the action to upload a new score. When clicked, a
form is displayed where the user must specify the title and composer of the piece,
choose the genre it belongs to (or select the “unknown” option from the drop-
down menu), set the tempo and upload the score file in MusicXML format (.mu-
sicxml) or in its compressed format (.mxl). When the “Save” button is clicked, the
frontend sends all the necessary information to the backend. Beyond the usual
or expected verifications that it performs, three details concerning the tempo, the
time signature and the tonality of the score are worth to be examined in more
detail.

Regarding tempo, in the chapter on “Theoretical Fundaments” (Chapter 6), it
was explained that it could be represented by a number or by a Italianword. There-
fore, pretending to establish the tempo by analyzing the MusicXML file provided
by the user is risky. Moreover, it seems important that the student, perhaps also
on the recommendation of his/her teacher, can select the tempo he/she expects to
reach while playing the piece. Furthermore, the concept of tempo is something
that a student is quickly familiar with when first introduced to the music world.
Therefore, it was decided that it would be the user who would indicate the tempo
for the score in the form.

Now, as mentioned before, among the information shown to the user about
a score are the time signature and the tonality. Where do they come from?

As stated in section 6.2 of the previous chapter, MusicXML sets the <time>

tag from which the number of beats per measure (<beats>) and the type of figure
representing the pulse (<beat-type>) are obtained. Therefore, the backend parses
the file provided by the user to obtain this information and store it as the time
signature.

However, MusicXML does not offer the tonality of the composition directly.
What MusicXML provides is, as previously explained in section 6.2, the number
of accidentals and their type (<fifths>) and, optionally the mode (<mode>).

What the backend does to obtain the tonality from the information provided
by the file is to check the circle of fifths. First, it determines whether it is an
unaltered/sharp (#) tone (the number given by <fifths> will be greater than or
equal to 0) or a flat (b) tone (the number given by <fifths> will be less than 0).
By doing so, the backend knows whether it should traverse the circle of fifths
clockwise or counterclockwise. It is important to remember that, in the circle of

56

CHAPTER 7. THE APPLICATION

fifths, by knowing the number of accidentals, the tonality can be known. Finally,
if the <mode> tag exists, the backend sets the tonality in major mode or minor
mode according to its value. If this tag does not exist, the application stores both
possible tonalities to show them to the user, who can then determine which is the
real one.

Folders

When the switch is activated, the folders screen appears and all the folders created by
the user are listed in alphabetical order (see figure 7.4). This screen also has pagination,
which works exactly the same as with the scores.

Figure 7.4: Fugateca Screen - Folders

It is important to highlight that only one level of folders can be created, that is,
nested folders are not allowed. The purpose of the folders is to give the user the oppor-
tunity to organise the scores in such a way that it is easy and quick to access them. So,
this view is not intended to create a representation of a complete file system.

Having clarified the above, one of the actions to perform in this screen is to create
a new folder. For this, the user must enter the namewith which he/she wants to register
it (that must be unique among the folders belonging to him/her). The backend works
with the folders using the concept of labels, seeking always the maximum efficiency.
So, when a user “saves” a score in a folder, what the backend does is to associate a tag
to it.

57

7.1. Web Application

For each folder it is possible to modify its name, to delete it and to access its con-
tents. When it is removed, the scores it contains will not be erased (and this is stated
to the user), they will simply cease to be associated with that folder. When accessing
its contents, the linked scores can be viewed as they would be displayed in the scores
screen with all related actions available (including the ability to select the sorting crite-
ria). The only exceptions are the action of uploading a new score, which is not available
here, and the action of saving the score in another folder, which has been replaced by
unlinking the score from the folder itself.

3. Fugáfono
The Fugáfono can only be accessed from a score, because it is the study area dedicated
to that score. In fact, when the frontend creates the Fugáfono view, if it cannot get
the MusicXML file that it needs to display the music sheet, it notifies the user of the
error and redirects him/her to the Fugateca. So, when accessing the Fugáfono, the first
thing the frontend does is to ask the backend for the MusicXML file corresponding to
the score the user wants to practice. Then, thanks to the OSMD library explained in
section 5.3, it renders the score so that the user can see it as the conventional score
he/she knows.

Figure 7.5: Fugáfono Screen

Beyond this, a top bar offers several actions that the user can perform on this
screen. One of them is to zoom in and out the score. When the user performs this
option, the frontend re-renders the score at the new size. One of the other buttons
allows triggering a dialogue in which the user can set the metronome before starting
to record his/her performance. The initial tempo established for the metronome is the
one saved when the score was uploaded, however, it can be modified here. The user
can also listen to the metronome to make sure that the tempo is correctly adjusted.

58

CHAPTER 7. THE APPLICATION

Moreover, they can choose whether they want the metronome to be active during the
whole recording or only during the input bars. Another choice is how many input bars
are preferred.

To simulate the beats of a metronome, a very short audio file with a click track
recorded is played every set time. In order to know how often the audio has to be
played in milliseconds, taking into account that the tempo is set in BPM, it is calculated
as

t =
60 ∗ 1000
beats_min , (7.1)

where the variable beats_min is the tempo in BPM.The parameter t hence indicates the
duration of a pulse.

The number of input bars indicates howmanymeasures of the runningmetronome
the student wants to hear before starting to record the rehearsal. They are important
both for the student to feel the tempo at which the piece should be played, and for
the program to calculate from where it should start correcting (because, for example, it
may happen that the piece starts with a silence, and it must be checked that it is played
correctly).

Another important action is to attach the keyboard to the computer. To establish a
proper connection after plugging the keyboard into the computer, the user must press
a button on this screen. Afterwards, the frontend, thanks to the Web MIDI API (section
5.3), will link to the device. If more than one MIDI device is connected or if no device is
found, the user is alerted. If the connection was successful, he/she is also notified. As a
bonus, if the keyboard gets disconnected at any time after the link has been established,
the frontend detects this and alerts the user. Also, if he/she was shooting at that mo-
ment, the recording is stopped. Indeed, the main action that can be performed on this
screen is to record a performance of the song in order to obtain the committedmistakes.
This is the core of the project and will be explained in depth in the next section (7.2).

Finally, from this view it is also possible to access the score’s error history screen.

4. Error history
The error history of a score can only be accessed from the score’s Fugáfono. On this
screen, a list of all the user’s recordings is displayed, sorted and identified by timestamp,
from the most recent to the oldest. Again, this list is paginated in the same way as the
score and folder lists are.

One of the options offered in this window is to filter the list by a range of dates,
making it easier for the user to search for a specific recording. The filtering is done
in the backend in a request against the database because performing it in the frontend

59

7.2. Core: Detect Errors

could be very computationally demanding given the amount of recordings there may
be of a score.

Afterwards, when accessing an item in the list, a window with the original score
and the corrected record of that performance is displayed (the frontend requests both
files from the backend). For this purpose, the OSMD library is used again. The zoom in
and zoom out functionalities are also available, and affect both displays when activated
(the original score and the recording).

Finally, it should be noted that DTOs have been used throughout the development of
the application, and that exceptions have been created and managed by a common handler,
among other useful best practices that seek maximum security and efficiency for the applica-
tion. Moreover, throughout the application the user is given the opportunity to change the
language. At the moment, only English and Spanish are available, but it would be easy to
add more languages since the translation is centralised and, by adjusting a few parameters
and providing the JSON file with the relation between the phrases in English and in the new
language, would be enough.

7.2 Core: Detect Errors

This section describes the core functionality and the main purpose of the application, the
detection and correction of errors. It is accessible from the Fugáfono screen and only involves
a call from the frontend to the backend.

The explanation is divided into five parts. The first part narrates the flow from the collec-
tion of the user’s MIDI in the frontend to the sending of the data to the backend. The second
part discusses the reception of the information in the backend and the arrangements needed
before starting the actual correction. The third one explains how MIDI and MusicXML are
linked in order to be able to compare the user input and the original score. The fourth one
talks about the actual correction. The last one comments on how the results are displayed to
the user.

7.2.1 Frontend: From user to backend

The following explains how the frontend collects the MIDI input from the user and how it is
transmitted to the backend in the order in which the events occur.

1. The input bars. When recording starts.
As soon as the user presses the record button, the first thing the frontend does is calcu-
late how many metronome beats to give before starting to record what the student is

60

CHAPTER 7. THE APPLICATION

playing. Besides, this way it also indicates the tempo and gives the entry to the student
so that he/she can start playing correctly.

To calculate how many beats it should give, it takes the number of input bars
indicated in the metronome settings and the time signature of the score. It is important
to remember that the first number of the time signature specifies howmany beats there
are in a measure. Therefore, all it takes to find the total number of beats before starting
to record is to multiply the number of input bars by the number of beats per measure.

Once this is computed, the frontend plays the metronome that calculated number
of times and starts recording the user’s MIDI input. Previously the user must have
connected his/her keyboard and established the connection as explained in the previous
section, otherwise an error will be displayed because there is no keyboard to take the
information from. It should also be noted that, if the metronome configuration has been
specified to keep it active during the whole song, the metronome does not stop after
the input bars have been given.

The timestamp at which the recording starts, after the input bars, is recorded in a
variable to be sent later to the backend.

2. Data capture.
From the MIDI events that arrive at the frontend, the Key ON and OFF instructions are
captured, that is, when a key is pressed and released. The type of event, whether it
is ON or OFF, the frequency of the note and the timestamp of the event are stored as
objects with attributes containing that information in an array according to the order
in which they occur.

However, MIDI does not provide exactly the frequency of the note but some num-
bers that represent them. Let n be the number that MIDI gives to a note, thanks to the
use of an appropriate formula [40], specifically 2

n−69
12 ∗ 440, the frontend transforms

these MIDI numbers into frequencies to store the pitch of the notes in this way.

3. Delivery to the backend.
To send the recording information to the backend, the frontend makes a POST to the
endpoint /api/recordings/{id}, where the {id} is replaced by the id of the score being re-
hearsed. In this message, the body carries the following information: the timestamp of
the start of the recording, the array with the user’s MIDI information as mentioned in
point 2, and the tempo in BPM that the metronome was set to when it was recorded.

61

7.2. Core: Detect Errors

7.2.2 Backend: Reception and preparation

The backend controller receives the request from the frontend and calls the corresponding
service. Let us assume that after performing all the necessary checks (that the score exists,
that the user owns the score…), no exception is raised. Afterwards, the first thing the service
does is to make a copy of the original score file, which will be used to store the corrections.
After that, it saves the information about the recording in the database (when it was made,
which is the original score, the path to the file containing the correction, …).

The last part of the preparation stage seeks to get rid of the key “on” and key “of” labels in
the items of the received array with the user MIDI data by unifying the pressing and releasing
of a key into one object that stores the pitch, the note start timestamp and the note end
timestamp. This will reduce the array of data about what the user played by a half because,
for each note there would no longer require two objects.

In order to achieve this, it is important to realise that the same note cannot be played
again on a piano if it has not been previously released. Based on this, a loop is implemented
on the array of objects with the type of action (“on” or “of”), the frequency of the note and
the timestamp at which the event occurs to create a new array with simplified information. In
it, if the note is of type “on”, it is recorded in the new array with its frequency, the timestamp
of the event as the start timestamp of the note and with the end timestamp of the note set to
null. If the note is of type “of” it means that previously there was an “on” event, therefore, it
searches in the new array which note with the same frequency has the note end timestamp
to null, because that means that this was its release event and the end timestamp must be
recorded. If for some reason a key was pressed before recording started, the backend will
receive an “of” event without a corresponding “on” event. In this case, a note is registered
with the frequency and end timestamp of the “of” event, and the timestamp of the start of
recording as start timestamp.

Finally, a basic calculation is also required. It is necessary to find out the duration of a
measure in milliseconds. For this, the frontend sends as information the tempo in bpm. First,
the backend determines how long a pulse lasts in milliseconds according to equation 7.1 by
using the tempo information that sets the value of the variable beats_min. Then, having the
time signature, its first number is used to know howmany pulses fit into ameasure. Therefore,
by multiplying the duration in milliseconds of a pulse by the number of pulses in a measure,
the duration in milliseconds of the measure is obtained.

7.2.3 The connection between MIDI and MusicXML

Taking into account that the score file is inMusicXML and that what is obtained from the user,
after processing it, is an array of notes with the frequency, start timestamp and end timestamp

62

CHAPTER 7. THE APPLICATION

of each one, it is necessary to establish a relationship between both representations in order
to be able to compare them.

For this purpose, five functions and a common auxiliary one for some of them are imple-
mented. They will be the cornerstone for correction because they will be the bridge among
the representations to enable comparison.

There are two elements to be compared for a note, its duration and its pitch. Let us see
how each is represented in the two formats:

• Duration

– User data: The note’s start timestamp and end timestamp are given. The difference
between them gives the duration of the note in milliseconds.

– MusicXML: From the <divisions> tag the value for a quarter note is known. With
this reference, the <duration> tag sets the duration of the notes.

Let us refer to the duration in the user format as time and the duration in theMusicXML
format as duration. This gives rise to two functions, one for going from time to duration
(fromTimeToDuration) and one for going from duration to time (fromDurationToTime).
Both rely on the auxiliary function calculateQuarterTime, which calculates the duration
inmilliseconds of a quarter note (this will allow to calculate the duration inmilliseconds
of the other figures). Moreover, let division be the value given by the <divisions> tag.

• Pitch

– User data: The frequency of the note in hertz is given.

– MusicXML: From the <step>, <alter> and <octave> tags, the note name, the note’s
surname if it has one, and the octave are obtained.

Let us refer to the user representation with the variable hz and theMusicXML represen-
tation as pitch. This gives rise to two functions, one to go from pitch to hz (fromPitch-

ToHz) and one to go from hz to pitch (fromHzToPitch).

The other unmentioned function returns the type of the note given its duration in order to
correctly complete the <type> tag in MusicXML, but it will not be explained. The other four
functions and the auxiliary function are described in detail below.

1. calculateQuarterTime
In order to calculate the time of a quarter note, it is necessary to calculate how many
quarter notes fit into a measure. To do this, it is necessary to work with the time sig-
nature. First of all by finding the ratio between the rhythmic figure that represents the
pulse in the measure and a quarter note. That is, divide the second number of the time

63

7.2. Core: Detect Errors

signature (the rhythmic figure) by 4 (which is the representation of a quarter note, see
section 6.1).

Then, it is enough to divide the first number of the time signature (the number of
pulses in the measure) by this proportion. This gives the number of quarter notes per
measure, and it is only necessary to divide the duration of a measure in milliseconds
calculated in the preparation phase by this number to obtain the time of a quarter note.

Example:
Let us calculate the time of a quarter note (let it be quarterTime) knowing that the time
signature is 6/8 and that the length of the measure in milliseconds is 3,000.

proportionToQuarter = 8÷ 4 = 2

quartersPerMeasure = 6÷ 2 = 3

quarterTime = 3, 000÷ 3 = 1, 000

Solution: quarterTime = 1,000 ms.

2. fromTimeToDuration
The first thing this method does is to call the auxiliary function to obtain the time of a
quarter note. Then, to calculate the duration for a given time (let it be noteTime), what
it does is to multiply it by division and divide it by the time of a quarter note (let it be
quarterTime), so that the calculation looks like this

noteDuration =
noteTime ∗ division

quarterTime
. (7.2)

Note that the quotient between noteTime and quarterTime defines the relationship be-
tween the duration of the current note and the quarte note.

This result is rounded to units because the <duration> tag in MusicXML works with
integers and the time a student holds the note can fluctuate while still being correct.
Therefore, without rounding, the playing accuracy would be too strict.

Example:
Let us calculate the duration of 500 milliseconds (let it be noteTime), knowing that the
time signature is 6/8, that the length of the measure in milliseconds is 3,000 and that
division is 24.

By calling the function calculateQuarterTime, we obtain that quarterTime = 1, 000 ms.
noteDuration = noteTime ∗ division÷ quarterTime = 500 ∗ 24÷ 1, 000 = 12.

Solution: noteDuration = 12, which defines the duration of the considered note in
the MusicXML language.

64

CHAPTER 7. THE APPLICATION

3. fromDurationToTime
Similarly, the first thing this method does is to call the auxiliary function to obtain the
time of a quarter note. Then, to calculate the time for a note with a given duration (let it
be noteDuration), what it does is to multiply it by the time of a quarter note and divide
it by division, so that the calculation looks like

noteTime =
noteDuration ∗ quarterTime

division
. (7.3)

Note that the quotient between quarterTime and division sets the time correspondence
in milliseconds for one unit of duration in MusicXML.

Example:
Let us calculate the time of a note with duration 48, knowing that the time signature is
6/8, that the length of the measure in milliseconds is 3,000 and that division is 24.

By calling the function calculateQuarterTime, we obtain that quarterTime = 1, 000 ms.
noteTime = noteDuration ∗ quarterTime÷ division = 48 ∗ 1, 000÷ 24 = 2, 000.

Solution: noteTime = 2, 000 ms.

4. fromPitchToHz
To convert the MusicXML pitch into the corresponding frequency, what this function
does is to store the relation between the name of the notes in American notation (“A”,
“B”, “C”…) and their corresponding key number in octave 4 on the keyboard. This way,
when getting the <step> from MusicXML, it looks for the number equivalent to that
note name (let it be stepNumber). Then, if there is a value for <alter> (“+1” or “-1”) it
takes it and adds it to the previous number. It then applies the <octave> value (let it be
noteOctave), such that stepNumber = stepNumber+12∗ (noteOctave−4). Finally, once
the real keyboard key number of the note is determined, by applying the convertion
function 2

stepNumber−49
12 ∗ 440, the frequency for the note is obtained [41].

Example:
Let’s calculate the frequency (let it be hz) of a note with step A, octave 3 (let it be noteOc-
tave) and no alter. Knowing that the corresponding registered keyboard key number
for name A is 49 (let it be initialStepNumber), we have:

stepNumber = initialStepNumber+ 12 ∗ (noteOctave− 4) = 49 + 12 ∗ (3− 4) = 37.

hz = 2
stepNumber−49

12 ∗ 440 = 2
37−49

12 ∗ 440 = 220.

Solution: The frequency of this note is hz = 220 Hz.

65

7.2. Core: Detect Errors

5. fromHzToPitch
This function needs to know the value of the <fifths> tag (let it be scoreFifths) used
in the previous section to determine the tonality of the piece. If the value of this tag
was greater than 0 it indicated that the tonality had sharps (#), if it was less than zero
it meant that the tonality had flats (b), and if it was 0 it showed that there were no
accidentals. Like the previous function, it also needs to store the mapping between the
keyboard key number and the note name for octave 4.

Let hz be the frequency to transform, by applying the inverse of the conversion
formula, i.e., 12∗log2(hz

440)+49, the corresponding keyboard key number is determined
(let it be stepNumber).

To convert this number into the three parameters needed by MusicXML, the pro-
cedure is as follows: calculate the octave, determine the <alter> and find out the <step>.

To determine the octave (let it be noteOctave), it is assumed that it is in octave 4 and
it is checked whether the stepNumber falls within the limits of the known keyboard key
numbers in the equivalences. If the number is larger, it adds one octave to noteOctave

and subtracts 12 from the stepNumber until it fits within the limits. If the number is
smaller, it subtracts one octave from noteOctave and adds 12 to the stepNumber until it
fits within the limits. At the end of this process, the value for the <octave> tag and the
stepNumber within the known values are obtained.

Afterwards, the function tries to find a number that matches the stepNumber in the
equivalence of the keyboard key number to the note name. If it finds it, it records the
name in <step> and discards the <alter>. If it finds no equivalent, it verifies in scoreFifths

if it is a tonality of sharps (#), in which case it sets <alter> to “+1” and subtracts one from
the stepNumber to now find the corresponding note name in the equivalence mapping,
and record it in <step>. Otherwise, it is a tonality of flats (b), it records <alter> as “-1”
and adds one to the stepNumber to then find the equivalence of the name, and store it
in <step>. Such calculations are due to the fact that the same frequency can be named
differently (according to the note’s surname) and it is the tonality that elucidates this.

Example:
Let us calculate the <step> (noteStep), <alter> (noteAlter) and <octave> (noteOctave) val-
ues for frequency 880 Hz (let it be f). Knowing that the corresponding registered key-
board key number for name A is 49 and assuming an initial noteOctave = 4, we have:
stepNumber = 12 ∗ log2(

f
440) + 4 = 12 ∗ log2(880440) + 4 = 61.

The value 61 exceeds 51 which is the highest number known in the equivalences, there-
fore:

66

CHAPTER 7. THE APPLICATION

noteOctave = noteOctave+ 1 = 4 + 1 = 5

stepNumber = stepNumber− 12 = 61− 12 = 49

The value for the stepNumber is in the equivalences so the noteAlter is discarded and
the noteStep can be determined.

Solution: <step> value is “A” and <octave> is 5. The tag <alter> would be 0 but usually
this tag would be skipped in this case.

7.2.4 Backend: The correction

Theultimate goal is to get a representation of what the user has played with the errors marked
in red. Therefore, each note and silence in the MusicXML file must be checked and, if the user
has executed them wrongly, their representation must be replaced by the representation of
what the user has played in red.

The user’s interpretation is stored in an array that had been built in the reception and
preparation phase prior to the correction step. During the explanation this array will be
referred to as fixedMidiArray. Once one of the notes played by the user is represented (either
because it was not necessary to correct it or because it replaced another note/silence and was
marked in red) it is removed from the array. Therefore, at the end of the process, the array
will be empty.

Since the score in a MusicXML file is organised by measures, the correction will also be
done by measures. Throughout the whole process, the copy of the original file to store the
committed errors is used.

The score file is parsed and the first thing that is done is to collect all the <measure>

nodes, obtaining a list of measures. Then, an imaginary cursor that will go through this list
is initialised at the start timestamp of the recording.

For each measure, its elements are traversed four times because different types of errors
will be corrected each round. In order to refer to these four laps around the measure items,
let us use the terms first, second, third and fourth loop. What is to be done in each of them is
specified below.

The pitch checks will be performed with the frequency because the same frequency can
give rise to different representations in MusicXML depending on certain parameters and
therefore verifying with the frequency is more reliable. However, the duration check is per-
formed in MusicXML notation (<duration>), since in this case the inaccuracy is in the time
the student holds the note, which can slightly fluctuate and still be correct.

Throughout the loops, the functions mentioned in the previous section will be used count-
less times, so they will only be quoted at the beginning to show the tendency.

67

7.2. Core: Detect Errors

1. First loop
This loop detects the notes that are well played and removes them from the fixedMidiAr-

ray. Moreover, the notes that are not played correctly are marked in blue. The blue
colour indicates that the note is wrong but has not yet been replaced by the user’s rep-
resentation. Besides, it represents those wrong notes that match in pitch but fail in
duration by marking them in red and then removes them from the fixedMidiArray.

How does it do this?

Thanks to the cursor, the function knows between which timestamps it must search for
the notes played by the user in the fixedMidiArray that match the note to be evaluated in
MusicXML. For each element (note or silence) of MusicXML, the corresponding cursor
is stored as an attribute to facilitate this search process within the fixedMidiArray in
the other loops.

On the other hand, not allMusicXML elements are notes, theremay also be silences
or <backup> tags that indicate the beginning of the description of the notes on the
left hand (so the cursor must go back to the beginning of the measure). The function
behaves differently depending on the type of MusicXML element encountered:

• For a silence, the cursor is simplymoved by the time inmilliseconds corresponding
to the duration of the silence (using the fromDurationToTime function).

• If it is a note, it searches in the fixedMidiArray if there are notes of the same pitch
that fit somehow between the cursor time and the cursor + time of the original
duration of the note. The functions fromDurationToTime, fromTimeToDuration and
fromPitchToHz are used here.

– If there is no note played that meets the requirements, the note is marked in
blue because it means that it is wrong, as there is no well-played note that
fits, and that this loop will not represent the user error since it only corrects
errors where the pitch is the same (and the search in the array has not found
any).

– If one matching element is found, the duration is checked to ensure that it
equals the duration of the original note. If it does not, the original note dura-
tion is replaced by the user’s duration. Also, adjustments are made to make
the representation as standard as possible (e.g. it may be necessary to add
silences). Naturally, this is a representation of a user error and, as such, is
marked in red.

68

CHAPTER 7. THE APPLICATION

– If there are several matching notes played, it is already known to be wrong
because several notes take the place of one. All these notes played by the user
are represented as required (it may be necessary to add silences) and in red
colour.

• Within each measure there will be a <backup> label indicating the beginning of
the notes in the left hand. Then, the function places the cursor at the beginning
of the measure (thanks to the basic function fromDurationToTime, which allows
the duration of the measure to be subtracted from the cursor), because the notes
in the left hand have been played at the same time as the notes in the right hand.

Naturally, there aremany other factors to take into account when correcting as, for
example, the case of ties or the case of chords (for which the cursor must be adjusted).

2. Second loop
For the second loop it is no longer necessary to maintain a cursor because this data has
been recorded in all the necessary elements in the first loop.

In this case, notes with the same duration but different pitches are corrected. It will
only be necessary to check those notes in blue because they are the ones marked by the
first loop as erroneous but not yet representing the user error. So, from fixedMidiArray

the selected notes are those that fit in duration with the MusicXML note and that fit in
time within the stored cursor (from the first loop) and that cursor + time of the original
duration of the note.

If there are selected notes, the one closest in pitch to the original note is chosen for
substitution. There is only one exception, when checking the right hand, if the pitch of
the note is too low (beyond a fixed threshold), it is not replaced because that note may
be substituting a similar case in the left hand that will be evaluated later because of the
MusicXML layout.

If the note has not been modified in pitch, it is replaced by a silence of equivalent
duration. This means that the user has not played that note, he/she has missed it, he/she
has been silent during that moment. In both cases, modified or replaced by silence, the
color attribute is set to red.

3. Third loop
All the above verifications have discarded different types of errors, so that it is now
possible to check the silences. Previously it would have been impossible to check them
because it may be the case that in the right hand there is a silence and in the left hand
there is not. Therefore, as the MusicXML file is designed to go through staff one first,
if there is a note played by the user that fits the silence time, it could be due to the left

69

7.2. Core: Detect Errors

hand and be correct, with the silence in the right hand also being correct. With the two
loops above, only this kind of error can now occur.

In this loop, for each silence it is checked if there is any played note that fits in
time. If so, the silence is replaced by the representation of the note(s). Similar to what
happened in the second loop, it may be the case that there is a silence in both hands,
and, as the right hand has to be checked first, perhaps the played note substitutes a
silence that will come later in the second staff. Thus, again, a threshold is set so that, if
the note is lower, it does not replace the silence and awaits for the left hand correction.

4. Fourth loop
For both the second and third loops, by letting the note elapse in the right hand veri-
fication to determine whether it fits better in the left hand, if the latter is not the case,
there are notes played by the user that have not yet been represented. Those are the
target of this loop.

Unlike the previous ones, this loop looks for the best fit for the remaining notes
in fixedMidiArray. For each note in this array, it searches in the score for the time in
which the note matches thanks to the cursor attribute set in the first loop, then it is
represented (perhaps replacing a silence, or as a chord).

Example

The following is an example of how the loops would correct a user performance. Figure 7.6
shows the original measure as it is stored in the uploaded score file. Each measure element
to be referred to during the text is marked as “O” (original) + the number of appearance in
the MusicXML file. Meanwhile, figure 7.7 illustrates the final correction, and thus what the
user has played. Here the elements of the measure are named with the letter “U” to identify
that they are the user’s version. For each loop, it is explained how it operates for each “P”
(position) and then a picture of the representation after finishing the iteration is shown.

Figure 7.6: Original Version of the Measure Figure 7.7: User Version of the Measure

70

CHAPTER 7. THE APPLICATION

1. First loop

• P1: The loop searches in the fixedMidiArray for a note of the same pitch as O1
and finds U1, but it is of shorter duration than the original. So, it represents the
incorrect duration with the corresponding figure and completes it with a silence.

• P2: The first loop does not check silences, so it is skipped.

• P3: When searching in the fixedMidiArray, it does not find a note of the same pitch,
so it marks it in blue (it knows it is wrong but does not know how to correct it).

• P4 & P6 & P7: It is the same as for P3.

• P5: When searching the array, it finds U5 which has the same pitch and duration
as O5, so it is correct and does not have to be modified.

• P8: When searching the array, it finds U8 which has the same pitch and duration
as O8, so it is correct and does not have to be modified.

Figure 7.8: First Loop Version of the Measure

2. Second loop: This loop only checks the notes that the first loop marks in blue.

• P3: The loop searches for a note of the same duration (same figure) but different
pitch that can replace O3. It finds U7 but U7 is lower than the set threshold so it
may be replacing another note played by the left hand that is to be evaluated later
(O7). Therefore, it discards U7 and replaces O3 with a silence.

• P4: The same happens as in P3, it finds U4, but it is lower than the threshold, so it
is replaced by a silence.

• P6: In this case, the loop finds U6 which fits within the limits. O6 is replaced by
U6.

• P7: In P3, U7 was skipped because it was lower than the threshold and it could be
replacing a note in the left hand. Now, the loop finds U7 to replace O7.

71

7.2. Core: Detect Errors

Figure 7.9: Second Loop Version of the Measure

3. Third loop: This loop only checks silences.

• P2: The loop searches for a note in the array that fits the time of O2 and finds U2.
U2 then replaces O2.

• P3: When searching for a note that fits, none is found because U7 (the only one
that would fit in time) has already been placed in the previous loop. Therefore, it
keeps the silence.

• P4: When searching the array, it finds U4, however this note is lower than the
threshold so it is skipped because it may be replacing a silence in the left hand
(case P8 was a silence).

Figure 7.10: Third Loop Version of the Measure

4. Fourth loop

This loop takes the remaining notes of the fixedMidiArray (which have not yet been
placed) and finds their place in the measure. It takes U4, which had not been placed in
either the second or third loop because it did not fit within the threshold. Now, this loop
replaces O4 by U4, thus obtaining the final representation of the user’s interpretation
shown in figure 7.7.

7.2.5 Frontend: Back to the user

Once the file is corrected, it is sent as a response to the frontend, which renders it next to the
original score representation. In this way, the student visualises both the original score and

72

CHAPTER 7. THE APPLICATION

the corrected score with the committed errors in red at the same time. If he/she wants to start
a new recording, the display of the file with the corrections is discarded and only the original
score is shown again so that he/she can focus on it.

73

7.2. Core: Detect Errors

74

Chapter 8

Performed Testing

Beyond the unit tests carried out and the rigorous evaluations to check the correct op-
eration of the system for both frontend and backend, individually and jointly, a user

acceptance test has been conducted, which will be highlighted below.
Nevertheless, it is worth noting firstly that, although the computational load is apparently

very high, the correction results are obtained quickly, each loop is lighter than the previous
one and the intention is to optimise the process. Obviously, the longer the score, the longer
it takes to correct it. If it is a two-sheet score, for example, the correction time is around
one second. However, even if the correction time is longer, within reasonable limits, the user
should understand it, because the perceived feeling of the correction time is conditioned by
the time taken to play the score (the longer it takes to play the score, the longer the correction
will take).

8.1 User Acceptance Testing

The aim of this test was to check that the interface is intuitive for a first-time user. It was
intended to verify that the functionalities are easy to find and to exploit. Furthermore, it was
essential to get the opinion of a real user, to know what improvements they need and to find
out what features they are missing.

The user selected to take the test was the piano teacher of the student writing the report.
During the test, at no time did the student intervene, who, as a mere spectator, witnessed the
user’s progress.

The “Sign Up”, ”Sign In” and password recovery screens have been extremely natural and
familiar to the user. The Fugateca screen has been a novelty and, although the functionalities
were anticipated, the user has gone through a strong process of discovering them. In this
screen, the student has made the decision to add a tooltip to some of the buttons, which,
although easily interpretable, can take advantage of it. The functionality of being able to group

75

8.1. User Acceptance Testing

scores into folders has been very appreciated by the user, who sees it as a great organisational
advantage.

More specifically, the ability to classify scores into genres or the fact that the application
displays information about the tonality of a score have surprised the user. He has even high-
lighted how useful it is for new pianists to know the tonality of the piece, because they are
also reminded of the importance of this concept.

On the Fugáfono screen, thanks to the button that must be pressed to establish the con-
nection with the keyboard, the user has understood that this is what he should do. The
metronome setting is something he has discovered because of his curiosity to be able to change
the speed at which he plays the piece. Once inside the configuration dialogue, all the concepts
were clear and quickly understood.

The process of recording the performance of a score and observing the errors has caught
the user’s attention, at times surprised at the accuracy of the corrections. However, it is true
that he has shown his desire for the program to take into account certain details such as
repetitions in a score, although they were not within the scope of this work.

Finally, he also wanted to test the functioning of the website on tablet and mobile. He
was pleased with the rendering for these devices and highlighted the usefulness and easiness
that this implies, for example, for uploading a score that is already stored on these devices.
Another special mention he made is the convenience of taking into account the rendering for
tablet, which is usually forced to deal with the format for mobile or the format for computer.

From the observation, the student has been able to detect the difficulties that the user may
have. Subsequently, as a developer, the appropriate improvements have been made in order
to solve them.

76

Chapter 9

Conclusions

Upon completion of the work, a fully functional application that can be useful for users
has been obtained. The project offers the essential functionalities to be able to operate

comfortably and meets the objectives that had been set. The core of the application, error
detection, is at a level of correctness that meets the expectations.

Direct improvements to the current application would be to add the functionality for the
user to change their password from their profile (currently they can only change it with the
password recovery feature) and to add a search filter for scores and folders. They are not
technically complex and could enhance the user experience.

Throughout the project, concepts learnt during the entire degree have been applied, both
from a computer science point of view and from a mathematical perspective. In fact, one of
the lessons that, in the student’s opinion, is particularly relevant is to remember that com-
puter engineering is in continuous movement, in continuous development and, therefore, it
is necessary to hold on to the basics in order to be able to move forward. Following this idea,
it is known that the same concept has multiple representations, all of which are correct, and
that it is possible to move from one to another because the nature remains the same. With
this in mind, before trying to join MIDI and MusicXML, it was known that it was possible.

Moreover, the philosophy and way of thinking that is acquired during the studies allows
problems of different scales to be handled, delimiting and sectioning them, with clear proce-
dures. It was the first time that the student had dealt with a project of this size, and all the
phases involved in its execution were covered. This has helped to connect all the areas seen
during the career, which now find their reason within a general vision of the picture.

During the degree, students learn to work with various standards and technologies that
make it possible to have the necessary tools to face this work. For example, the analysis
diagrams, design diagrams, programming languages and some of the frameworks used to
develop this project had been presented during the Information Systems specialisation in
several subjects. Knowing how to collect the necessary data, process it, work with it, design

77

the appropriate database and implement it is also thanks to the knowledge acquired in the
specialisation.

Beyond the previous knowledge that the student had to undertake the project, during its
development new topics have been learnt. For example, the developer has worked with new
libraries and technologies like OSMD, Web MIDI API or MIDI. But, especially, the student
has learned about the MusicXML standard, and has understood all the potential it can have,
opening up an interesting line of research for the future.

Afterwards, the ideas for the evolution of the project are presented, distinguishing three
tracks: one for improvement, one to add new functionalities, and the last one that seeks to
explore other areas with new objectives that could make the project grow.

• Improvements
These are improvements from a musical point of view. It has already been mentioned
that in the user acceptance test, the user showed interest in repetitions being taken
into account in the correction, so it would be interesting to add them. Also, thanks to
another of the parameters offered by MIDI, it would be possible to check the accents
(which notes the student presses harder) because they can sometimes be the origin of
errors in the duration of notes.

In order to broaden the musical range, some styles of modern music use a type
of interpretation of the figuration that varies the duration of the represented notes.
This is the so-called swung rhythm [42], and it would be interesting for the program to
consider it in the corrections.

Finally, it would be useful to give the student the opportunity to study a specific
passage, that is, to be able to select the measures he/she wants to study and have the
application correct only those measures, avoiding the user having to play the whole
piece.

Apart from the above, from a technical point of view, another improvement ob-
jective is to increase the application’s compatibility with more browsers as mentioned
in section 5.3 (thanks to the JZZ.js library).

• New features
Among the ideas for extending the functionalities of the application are to offer the
users to listen to the original score and their version of it. Statistics could also be pro-
vided to the students regarding the mistakes they make overall (for instance, if there
are more rhythm errors than pitch errors).

Another feature that users would certainly appreciate is the ability to upload sheet
music in PDF format. This would require the use of an optical recognition software for

78

CHAPTER 9. CONCLUSIONS

music that allows the PDF to be converted into MusicXML notation. It would therefore
be necessary to conduct a market analysis in this area in order to verify its existence.
If such software does not exist or if it is not reliable, it would be interesting to initiate
a project to develop it, because it could be a key element in the relationship between
music and computing.

• Growth
With a view to the growth of this project, it has been kept in mind from the outset
that, after this preliminary phase, in which the foundations were established, the most
promising objective is to be able to predict where the user is going to fail. To achieve
so, it would be necessary to use artificial intelligence in such a way that it simulates
the student’s learning. Thus, if, for example, a new rhythmic sequence that the student
does not yet know appears, it would be a candidate for error. Indeed, with sufficient
data, it might be possible to calculate how long it will take a student to learn a given
score.

Finally, another attractive feature that the application could evolve towards is the
creation of a “stage mode” section. This would display the score to the user and detect
what he/she is playing in order to be able to turn the music sheet at the right moment.
This would allow the users to use their device to read the score in a very comfortable
way that would allow them to fully focus on the instrument and the music itself.

79

80

Appendix A

Prototypes

The Justinmind [43] tool was used to develop the prototypes that helped to define the re-
quirements. Images of the prototype for the different views in the application are attached
below.

Figure A.1: Sign Up screen Figure A.2: Sign In screen

81

Figure A.3: Fugalogo screen

Figure A.4: Fugateca screen

82

APPENDIX A. PROTOTYPES

Figure A.5: Upload score screen

Figure A.6: Fugáfono screen

83

84

List of Acronyms

API Application Programming Interfaces. 28, 38, 39, 59, 78, 85

BPM beats per minute. 41, 43, 48, 59, 61

CRUD Create, Read, Update and Delete. 37

CSS Cascading Style Sheets. 37

DBMS DataBase Management System. 28, 34, 36

DDR4 Double Data Rate type four. 9

DTO Data Transfer Object. 24, 60

H Hours. 10

HTML HyperText Markup Language. 12, 33, 36, 37, 39

HTTP Hypertext Transfer Protocol. 33, 37

Hz Hertz. 49

JPA Java Persistence API. 35

JPG Joint Photographic Group. 40

JS JavaScript. 37, 39

JSON JavaScript Object Notation. 33, 51, 52, 60

MIDI Musical Instrument Digital Interface. 1, 9, 12, 28, 38, 59–62, 77, 78

MVC Model-View-Controller. 27

85

List of Acronyms

MVCC Multi-Version Concurrency Control. 36

NPM Node Package Manager. 37

Nº Number. 10

ODL Object Definition Language. vii, 31

ORM Object-Relational Mapping. 35

OSMD Open Sheet Music Display. 12, 39, 58, 60, 78

PDF Portable Document Format. 12, 40, 78, 79

PNG Portable Network Graphics. 12, 40

POM Project Object Model. 35

REST Representational State Transfer. 28, 33, 37

SRS Software Requirements Specification. 8

SSD Solid State Drive. 9

SSO Single Sign-On. 35

SVG Scalable Vector Graphics. 12, 39

UI User Interface. 37

UML Unified Modeling Language. 39

URL Uniform Resource Locator. 37, 54

XML Extensible Markup Language. 35, 39, 47

86

Glossary

Canvas HTML element incorporated in HTML5 that allows the generation of graphics dy-
namically by means of scripting. 39

DIN cable It is a type of connector, originally standardised by the“Deutsches Institut für
Normung” (DIN), which is the “German Institute for Standardisation”. 38

Fugalogo Application user. vi, 6, 29, 82

Fugateca User’s score library. v, vi, 6, 13, 15, 52, 54, 58, 75, 82

Fugáfono Section of the application where the user studies (plays the piece of music and
errors are displayed). v, vi, 6, 13, 15, 55, 58–60, 76, 83

Input bars Blocks of rhythm prior to the start of a performance that indicate the tempo and
entrance to the musician. 11, 23

Metronome Device that produces an audible click at a regular interval that can be set by the
user. 11, 13, 22, 23

mxl Compressed MusicXML format. 20

Promise An object used for asynchronous computations that represents a value that may be
available now, in the future, or never. 37

Tempo Speed at which a musical piece should be performed. 3, 11, 20–23, 87

87

Glossary

88

Bibliography

[1] MoonPiano, “Moon piano information web.” [Online]. Available: https://moonpiano.
praisethemoon.org/home

[2] Pianu, “Pianu web page.” [Online]. Available: https://pianu.com/

[3] P. Sessions, “Playground sessions web page.” [Online]. Available: https://www.
playgroundsessions.com/

[4] Flowkey, “Flowkey web page.” [Online]. Available: https://www.flowkey.com/es?utm_
campaign=aff_futureplc&utm_source=website&utm_medium=general

[5] Skoove, “Skoove web page.” [Online]. Available: https://www.skoove.com/es

[6] B. Williams, “Best apps for learning piano.” [Online]. Available: https://rolandcorp.com.
au/blog/best-apps-for-learning-piano

[7] D. C. MusicRadar, “Best online piano lessons 2021: recommended piano lesson apps,
software and websites.” [Online]. Available: https://www.musicradar.com/news/
the-best-online-piano-lessons

[8] I. Wikimedia, “Do (nota).” [Online]. Available: https://es.wikipedia.org/wiki/Do_(nota)

[9] K. Beck, M. Beedle, A. van Bennekum, A. Cockburn, M. F. Ward Cunningham,
J. Grenning, J. Highsmith, A. Hunt, R. Jeffries, J. Kern, B. Marick, R. C. Martin,
S. Mellor, K. Schwaber, J. Sutherland, and D. Thomas, “Principles behind the agile
manifesto.” [Online]. Available: https://agilemanifesto.org/principles.html

[10] C. Walshaw, “Abc notation.” [Online]. Available: https://abcnotation.com/

[11] I. MakeMusic, “Musicxml.” [Online]. Available: https://www.musicxml.com/

[12] ——, “Makemusic.” [Online]. Available: https://www.makemusic.com/

[13] ——, “Finale.” [Online]. Available: https://www.finalemusic.com/

89

https://moonpiano.praisethemoon.org/home
https://moonpiano.praisethemoon.org/home
https://pianu.com/
https://www.playgroundsessions.com/
https://www.playgroundsessions.com/
https://www.flowkey.com/es?utm_campaign=aff_futureplc&utm_source=website&utm_medium=general
https://www.flowkey.com/es?utm_campaign=aff_futureplc&utm_source=website&utm_medium=general
https://www.skoove.com/es
https://rolandcorp.com.au/blog/best-apps-for-learning-piano
https://rolandcorp.com.au/blog/best-apps-for-learning-piano
https://www.musicradar.com/news/the-best-online-piano-lessons
https://www.musicradar.com/news/the-best-online-piano-lessons
https://es.wikipedia.org/wiki/Do_(nota)
https://agilemanifesto.org/principles.html
https://abcnotation.com/
https://www.musicxml.com/
https://www.makemusic.com/
https://www.finalemusic.com/

Bibliography

[14] LilyPond, “Lilypond.” [Online]. Available: https://lilypond.org/index.html

[15] PhonicScore, “Open sheet music display.” [Online]. Available: https:
//opensheetmusicdisplay.org/

[16] M. M. Cheppudira, “Vexflow.” [Online]. Available: https://www.vexflow.com/

[17] Indeed, “Average salaries spain.” [Online]. Available: https://es.indeed.com/career/
salaries

[18] Varun, “What are the major features of java programming?” [Online]. Available: https:
//www.tutorialspoint.com/What-are-the-major-features-of-Java-programming

[19] Guru99, “Spring tutorial: What is spring framework.” [Online]. Available: https:
//www.guru99.com/spring-tutorial.html

[20] E. Geek, “¿qué es java hibernate? ¿por qué usarlo?” [Online]. Available:
https://ifgeekthen.everis.com/es/que-es-java-hibernate-por-que-usarlo

[21] J. Garzas, “Simple y rápido. entiende qué es maven en menos de 10 min.” [Online].
Available: https://www.javiergarzas.com/2014/06/maven-en-10-min.html

[22] I. Wikimedia, “Database management system.” [Online]. Available: https://en.wikipedia.
org/wiki/Database#Database_management_system

[23] ——, “Postgresql.” [Online]. Available: https://en.wikipedia.org/wiki/PostgreSQL

[24] J. van Niekerk, “How do html, css and javascript work to-
gether?” [Online]. Available: https://www.itonlinelearning.com/blog/
how-do-html-css-and-javascript-work-together/

[25] I. Wikimedia, “Vue.js.” [Online]. Available: https://en.wikipedia.org/wiki/Vue.js

[26] E. S. M. Morote, “Vue router.” [Online]. Available: https://router.vuejs.org/

[27] Vuetify, “Vuetify - material design framework.” [Online]. Available: https://vuetifyjs.
com/en/

[28] Axios, “Axios.” [Online]. Available: https://github.com/axios/axios

[29] D. Hristov, “Simple vue.js form validation with vuelidate.” [Online]. Available:
https://vuejsdevelopers.com/2018/08/27/vue-js-form-handling-vuelidate/

[30] Kazupon, “Vue i18n.” [Online]. Available: https://kazupon.github.io/vue-i18n/

90

https://lilypond.org/index.html
https://opensheetmusicdisplay.org/
https://opensheetmusicdisplay.org/
https://www.vexflow.com/
https://es.indeed.com/career/salaries
https://es.indeed.com/career/salaries
https://www.tutorialspoint.com/What-are-the-major-features-of-Java-programming
https://www.tutorialspoint.com/What-are-the-major-features-of-Java-programming
https://www.guru99.com/spring-tutorial.html
https://www.guru99.com/spring-tutorial.html
https://ifgeekthen.everis.com/es/que-es-java-hibernate-por-que-usarlo
https://www.javiergarzas.com/2014/06/maven-en-10-min.html
https://en.wikipedia.org/wiki/Database#Database_management_system
https://en.wikipedia.org/wiki/Database#Database_management_system
https://en.wikipedia.org/wiki/PostgreSQL
https://www.itonlinelearning.com/blog/how-do-html-css-and-javascript-work-together/
https://www.itonlinelearning.com/blog/how-do-html-css-and-javascript-work-together/
https://en.wikipedia.org/wiki/Vue.js
https://router.vuejs.org/
https://vuetifyjs.com/en/
https://vuetifyjs.com/en/
https://github.com/axios/axios
https://vuejsdevelopers.com/2018/08/27/vue-js-form-handling-vuelidate/
https://kazupon.github.io/vue-i18n/

BIBLIOGRAPHY

[31] M. Association, “Midi - musical instrument digital interface.” [Online]. Available:
https://www.midi.org/

[32] W3C, “Web midi api.” [Online]. Available: https://www.w3.org/TR/webmidi/

[33] C. I. use, “Web midi api compatibility.” [Online]. Available: https://caniuse.com/midi

[34] Jazz-soft, “Jzz: Midi library for node.js and web-browsers.” [Online]. Available:
https://www.npmjs.com/package/jzz

[35] I. Wikimedia, “Gitlab.” [Online]. Available: https://es.wikipedia.org/wiki/GitLab

[36] ——, “Equal temperament.” [Online]. Available: https://en.wikipedia.org/wiki/Equal_
temperament

[37] W3C, “Compressed .mxl files.” [Online]. Available: https://www.w3.org/2021/06/
musicxml40/tutorial/compressed-mxl-files/

[38] I. Wikimedia, “Índice acústico.” [Online]. Available: https://es.wikipedia.org/wiki/%C3%
8Dndice_ac%C3%BAstico

[39] ——, “Índice acústico científico.” [Online]. Available: https://es.wikipedia.org/wiki/
%C3%8Dndice_ac%C3%BAstico_cient%C3%ADfico

[40] J. Wolfe, “Note names, midi numbers and frequencies.” [Online]. Available: https:
//newt.phys.unsw.edu.au/jw/notes.html

[41] I. Wikimedia, “Piano key frequencies.” [Online]. Available: https://en.wikipedia.org/
wiki/Piano_key_frequencies

[42] ——, “Swing (jazz performance style).” [Online]. Available: https://en.wikipedia.org/
wiki/Swing_(jazz_performance_style)

[43] I. MakeMusic, “Justinmind.” [Online]. Available: https://www.justinmind.com/

91

https://www.midi.org/
https://www.w3.org/TR/webmidi/
https://caniuse.com/midi
https://www.npmjs.com/package/jzz
https://es.wikipedia.org/wiki/GitLab
https://en.wikipedia.org/wiki/Equal_temperament
https://en.wikipedia.org/wiki/Equal_temperament
https://www.w3.org/2021/06/musicxml40/tutorial/compressed-mxl-files/
https://www.w3.org/2021/06/musicxml40/tutorial/compressed-mxl-files/
https://es.wikipedia.org/wiki/%C3%8Dndice_ac%C3%BAstico
https://es.wikipedia.org/wiki/%C3%8Dndice_ac%C3%BAstico
https://es.wikipedia.org/wiki/%C3%8Dndice_ac%C3%BAstico_cient%C3%ADfico
https://es.wikipedia.org/wiki/%C3%8Dndice_ac%C3%BAstico_cient%C3%ADfico
https://newt.phys.unsw.edu.au/jw/notes.html
https://newt.phys.unsw.edu.au/jw/notes.html
https://en.wikipedia.org/wiki/Piano_key_frequencies
https://en.wikipedia.org/wiki/Piano_key_frequencies
https://en.wikipedia.org/wiki/Swing_(jazz_performance_style)
https://en.wikipedia.org/wiki/Swing_(jazz_performance_style)
https://www.justinmind.com/

Bibliography

92

	Introduction
	Origin
	Purpose and Objectives
	Particular Objectives

	Similar Existing Solutions
	The Fugatra Brand
	Motivation For The Report Structure

	Methodology and Planning
	Methodology
	Planning
	Resources
	Project Planning
	Cost Estimate
	Project Monitoring

	Analysis
	Functional Requirements
	Non-Functional Requirements
	Use Cases

	Design
	Architecture
	Data Modelling
	Entity Relationship Modelling
	ODL Schema

	Technological Fundaments
	Structure
	Backend
	Java
	DBMS

	Frontend
	Vue
	MIDI
	OSMD and VexFlow

	Working Tools
	Project Development Tools
	Extra Tools

	Theoretical Fundaments
	Musical Concepts
	Rhythm
	Notes
	Piano Score Structure

	MusicXML Notation

	The Application
	Web Application
	Core: Detect Errors
	Frontend: From user to backend
	Backend: Reception and preparation
	The connection between MIDI and MusicXML
	Backend: The correction
	Frontend: Back to the user

	Performed Testing
	User Acceptance Testing

	Conclusions
	Prototypes
	List of Acronyms
	Glossary
	Bibliography

