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Abstract: The number of applications using unmanned aerial vehicles (UAVs) is increasing. The use
of UAVs in swarms makes many operators see more advantages than the individual use of UAVs,
thus reducing operational time and costs. The main objective of this work is to design a system that,
using Reinforcement Learning (RL) and Artificial Neural Networks (ANNs) techniques, can obtain
a good path for each UAV in the swarm and distribute the flight environment in such a way that
the combination of the captured images is as simple as possible. To determine whether it is better
to use a global ANN or multiple local ANNs, experiments have been done over the same map and
with different numbers of UAVs at different altitudes. The results are measured based on the time
taken to find a solution. The results show that the system works with any number of UAVs if the
map is correctly partitioned. On the other hand, using local ANNs seems to be the option that can
find solutions faster, ensuring better trajectories than using a single global network. There is no need
to use additional map information other than the current state of the environment, like targets or
distance maps.

Keywords: UAV swarm; path planning; reinforcement learning; Q-learning; artificial neural net-
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1. Introduction

There are more and more applications for the collective use of Unmanned Aerial Vehi-
cles (UAVs), more known UAV swarms. In addition to the advantages of the individually
usage of these systems, the main motivation for swam usage is the reduction of flight time
and operating costs together with increased fault tolerance [1]. Advances in the creation
of algorithms [2] and telecommunications [3] allow us to have collective systems that are
practically autonomous in their entirety. Thus, it is not necessary to have an operator per
vehicle. Currently there are few systems that solve these path planning problems in the
literature oriented to agricultural and forestry use, especially dedicated to the optimization
of field survey tasks. This sector can be strongly benefited by the group use of aircraft.
Therefore, the main field of application of this project is field prospecting.

This objective of this paper is to develop a system for solving the Path Planning
problem with 2D grid-based maps adapted to UAVs’ sensors with different number of
UAVs using Q-Learning techniques.

2. Materials and Methods

This section describes the calculation used for the extraction of the flight maps and the
proposed method for the calculation of the flying paths, each described in its correspond-
ing subsection.
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2.1. Flight Maps

For the calculation of the flight maps, the cell size is calculated as the projection of the
capture area of the sensors on the terrain based on the image size, the flight height and the
lens angle of view. In order to better combine the captured data, the smallest area among
all UAVs is chosen to take advantage of the overlapping of those with larger capture areas.

No previous information is extracted from the calculated grid-map to direct the
calculation of the paths in order to avoid biases. However, by storing also information such
as the position of the drones and the cells already visited at each moment, it is possible to
provide a great amount of information in real time in order to improve the calculation of
the paths.

2.2. Proposed Model

The proposed model for the calculation of the paths is a variation of the Q-Learning
algorithm [4]. In this Reinforcement Learning algorithm (RL) [5] the calculation of the
q-values is predicted based on an Artificial Neural Network (ANN) [6] with two fully-
connected layers with sigmoid activations and the RMSprop optimizer.

To obtain better results in less time, a Hill-Climbing policy [7] is followed to update the
rewards received by the UAVs as they move. A training strategy using Memory Replay [8]
has also been followed.

Another inherent problem with the proposed models is their configuration with
respect to UAVs. There are two possibilities: first, to use a single global ANN for all
UAVs; and, second, to use an ANN for each UAV, or local ANN. The first proposal requires
less computational resources, but the path calculation for one UAV can be distorted with
erroneous information from the paths of the other UAVs. On the other hand, the second
approach requires more computational resources, but each ANN is specialized only for
each UAV.

3. Results

For the experiments, simulations were carried out in the terrain of the CITIC research
center. The metric of interest is the flight time taken to find a solution as it influences the
energy consumption of each UAV. Resuls are listed at Table 1.

Table 1. Table summarizing the best times for each experiment with different numbers of UAVs and
ANN configurations.

ANN Configuration

Number of UAVs Global ANN One ANN per UAV

1 UAV 00:02:19 00:02:19
2 UAVs 00:02:24 00:00:58
3 UAVs 00:01:25 00:01:39
4 UAVs 00:03:00 00:01:13
5 UAVs 00:03:32 00:01:47

4. Conclusions

The calculation of flight path calculation of UAV swarms is approachable by Q-
Learning with small full-connected ANNs. This makes the system faster and more efficient
than others found in the literature. Thus, facilitating its use by other users. Minimizing
the time taken to find each solution is a satisfactory metric that is rarely used by other
authors. However, it is one of the most realistic since it is not possible to predict the battery
consumption since it depends on other external factors such as the incident wind. One
ANN per UAV is usually the best option. As the number of UAVs increases the time taken
to find a solution does not grow much more, unlike a global ANN.
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Abbreviations
The following abbreviations are used in this manuscript:

UAV Unmanned Aerial Vehicle
RL Reinforcement Learning
ANN Artificial Neural Network
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