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Abstract: Phytoplankton blooming can compromise the quality of the water and its safety due to the
negative effects of the toxins that some species produce. Therefore, the continuous monitoring of
water sources is typically required. This task is commonly and routinely performed by specialists
manually, which represents a major limitation in the quality and quantity of these studies. We present
an accurate methodology to automate this task using multi-specimen images of phytoplankton which
are acquired by regular microscopes. The presented fully automatic pipeline is capable of detecting
and segmenting individual specimens using classic computer vision algorithms. Furthermore, the
method can fuse sparse specimens and colonies when needed. Moreover, the system can differentiate
genuine phytoplankton from other similar non-phytoplanktonic objects like zooplankton and detritus.
These genuine phytoplankton specimens can also be classified in a target set of species, with special
focus on the toxin-producing ones. The experiments demonstrate satisfactory and accurate results in
each one of the different steps that compose this pipeline. Thus, this fully automatic system can aid
the specialists in the routine analysis of water sources.

Keywords: microscope images; phytoplankton detection; colony merging; gabor filters; deep features;
bag of visual words

1. Introduction

Phytoplankton has retained scientific attention over the years for various reasons.
It is the basis of the food chain in all aquatic environments, producing oxygen through
photosynthesis and being able to fix carbon. Furthermore, several species produce tox-
ins which can contaminate drinking water sources [1]. Thus, continuous monitoring of
phytoplankton populations is not only a purely scientific activity, it is also a matter of
public health. The monitoring of water sources is done manually by experts, therefore,
automating part of the process is highly desirable. In this work, we present an accurate
method that uses a systematic microscopic imaging approach which can liberate experts
from operating the microscope [2]. The presented system can segment, identify and classify
phytoplankton species, with special focus on the toxin-producing ones [3].

2. Materials and Methods

The presented method is divided into several steps. Firstly, the foreground-background
stage uses an adaptive Gaussian threshold [4] over each of the input image channels to
binarize the image. The results are merged with an OR operator to preserve the highest
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amount of information. Next, to detect every specimen, we employ Suzuki and Abe’s
Algorithm [5]. In this step, we discard any detection smaller than 5 µm2, since, due to
their size, they can not be phytoplankton. Moreover, incomplete specimens cut by the
image borders are discarded. Following this step, we present an algorithm to fuse sparse
specimens and colonies, which do not have evident visual links among their parts. We
employ a Delaunay Triangulation [6] linking neighbouring detections. We prune the graph
according to a colour similarity metric, keeping only the similar neighbours. Finally, the
neighbouring detections are fused if they are still connected after the pruning step. The
output of these first steps are a set of bounding boxes enclosing each specimen.

Once the specimens are segmented we must classify them. Firstly, a step to separate
genuine phytoplankton from non-phytoplanktonic elements is devised. This is due to the
tuning towards recall of the previous steps, as they capture most of the phytoplankton but
they also mistakenly let through some similar specimens. Therefore, the first classification
step separates phytoplankton from other similar objects like zooplankton, mineral particles
or organic detritus. After this, another classification is needed, separating the genuine
phytoplankton specimens into a set of relevant species. In this case the focus is set on two
toxin-producing ones Woronichinia naegeliana and Anabaena spiroides and a harmless but
complex one, Dinobryon sociale. Lastly, this classification will also have an "Others" tag
which includes all the other phytoplankton species.

For these classification steps we test several features. To capture texture information
we use Gabor Filter banks with a Bag of Visual Words (BoVW). Furthermore, colour
information is also gathered using a BoVW, capturing the information of each of the RGB
channels. Finally, we also use Deep Features, extracted from a ResNet50 [7] pretrained
using ImageNet [8]. The different features are tested, masked and unmasked. This means
that, either the features are obtained from the whole bounding box or just from the area of
the specimen, using the segmentation mask. These features are used in combination with
Random Forest (RF) and Support Vector Machines (SVM) as classifiers.

All the experiments were carried out in the same microscopic image dataset. Contrary
to the state of the art, this dataset was captured using fixed focal points and magnification.
This greatly complicates the automated task but frees the specialists from operating the
microscope, as any technician can follow the systematic approach. The first steps, the
segmentation of specimens, are trained on a random subset of 50 images. The rest of the
images are the test set to evaluate the algorithms. The classification steps employ an 80-20%
split on a 10-fold crossvalidation with grid search to determine the best parameters for the
features and classifiers.

The ground truth of the dataset are bounding boxes containing the phytoplankton
specimens, with an associated label identifying the species as marked by an expert.

3. Results and Conclusions

For the specimen detection and merging steps, we obtain a False Negative Rate (FNR)
of 0.4%. We count as positives the cases where bounding boxes enclose at least 50% of the
specimens’ area. Overall this step is satisfactory, missing very few specimens.

In terms of phytoplankton identification, separating it from other spurious elements,
we evaluate it using precision at high levels of recall, like 90% or 95%. In particular, the best
result at 90% of recall is a 84.07%, obtained using an SVM that only uses unmasked Deep
Features, as adding any other feature reported no benefit. In terms of precision at 95% of
recall, the best result is RF with the combination of all unmasked features. Overall, masking
the features showed no improvement in this step, on the contrary. Despite the complexities
due to the heterogeneity of the classes, the first classification step shows accurate results.

Regarding the species classification, the best performance is obtained with masked
features and mixing Deep Features with colour features. In this case, RF performs better
than SVM, obtaining a top result of 87.50% global classification accuracy and a 87.99% of
F1-Score. In terms of particular results for each species, W. naegeliana obtains an accuracy
of 94.53%, A. spiroides 97.66%, D. sociale 94.53% and the others class results in a 88.28% of
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accuracy. This step demonstrates a satisfactory performance despite the complexities of
classifying among species has, like morphological similarities among different species.

Image examples of the results of the classification steps can be seen in Figure 1, which
also represent the bounding boxes that the system detects.

Overall, the performance in each of the different steps has been satisfactory, despite
the particular complexities that each one of them shows, like similarities among different
phytoplankton species or the variations among a single species. Therefore, we can say that
the methodology presented in this work can be of notable help to the trained taxonomists
that usually carry out potability analysis in water sources.

Figure 1. Examples of phytoplankton detection (left) and species classification (right). In the left
image, true positives are represented in green and true negatives in blue. In the right image W.
naegeliana in red, A. spiroides in magenta and D. sociale in green.
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