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Asymptotic analysis

1. Introduction

The asymptotic analysis method is a mathematical tool that has been widely used to obtain and justify
reduced models, both in solid and fluid mechanics, when one or two of the dimensions of the domain in
which the model is formulated are much smaller than the others.

After the pioneering works of Friedrichs, Dressler and Goldenveizer (see [28] and [30]) the asymptotic
development technique has been used successfully to justify beam, plate and shell theories (see, for example,
[43], [16], [17], [15], [5], [54], and many others).

This same technique has also been used in fluid mechanics to justify various types of models, such as
lubrication models, shallow water models, tube flow models, etc. (see, for example, [25], [24], [18], [3], [37],
[55], [36], [31], [6], [2], [29], [26], [32], [33], [9], [23], [45-50], [21], [22], [34], [35], [40], [41], [42], [10], [11], and
many others).
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In this work, we are interested in justifying, again using the asymptotic development technique, a lubri-
cation model in a thin domain with curved mean surface. Following the steps of [3], but with a different
starting point, we devote sections 2 and 3 to this justification. During the above process we have observed
that, depending on the boundary conditions, other models can be obtained, which we show in section 4.
In this section we derive a shallow water model changing the boundary conditions that we had imposed in
section 3: instead of assuming that we know the velocities on the upper and lower boundaries of the domain,
we assume that we know the tractions on these upper and lower boundaries.

Thus, two new models are presented in sections 3 and 4 of this article. These models can not be found
in the literature, as far as we know. In addition, the method used to justify them allows us to answer the
question of when each of them is applicable. In section 5 we discuss the models yielded, as well as the
difference between one model and another depending on the boundary conditions, reaching the conclusion
that the magnitude of the pressure differences at the lateral boundary of the domain is key when deciding
which of the two models best describes the fluid behavior.

2. Derivation of the model
2.1. Original domain

Let us consider a three-dimensional thin domain, €2f, filled by a fluid, that varies with time ¢ € [0, 7],
given by

QF = {(2],25,25) € R® 1 2;(&1, &, t) < af < 2i(&1,&,t) + A5 (&1, &, t)Ni(61, &2, 1),
(i=1,2,3), (&,&) € D CR?} (1)

where Xt(£17£2) = X(fl,gg,t) = (21(&,&,t),22(&1,&2,1),23(&1,&2,t)) is the lower bound surface
parametrization, h®(&1,&2,t) is the gap between the two surfaces in motion, and N(§1,§2,t) is the unit

normal vector:

= 0 0
N(§17£27t) = é.i 53 (2)
ox 09X
08 0%
The lower bound surface is assumed to be regular,
X 9X .
— x—#0 V(&,&)eDCR? Ytelo,T], 3
96, 96, # (€1,82) [0,T] (3)

and the gap is assumed to be small with regard to the dimension of the bound surfaces. We take into account
that the fluid film between the surfaces is thin by introducing a small non-dimensional parameter ¢, and
setting that

h€(€17£27t) = €h(£1752,t) (4)

where

h(€1,€2,t) > ho >0, ¥ (&1,&) € DC R, Vi e[0,T]. (5)
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2.2. Construction of the reference domain
Let us consider
Q=D x[0,1] (6)
a domain independent of € and ¢, which is related to 2§ by the following change of variable:

=t (7)
.'L'f - xi(£17§27t) + Eg3h(€17£27t)Ni(§la£27t) (8>

where (£1,&2) € D and & € [0,1].
Let us define the basis {dy, @, ds}

OX (&1, 60,1)

al(fl?ﬁZa.o = a§1 (9>
. X (&1, 8,1
ol o, t) = X C2l) (10)
06
63(517£2at) :N(§17£27t) (11)
In Appendix A we obtain
0zt 8&32 ) .
¢ =1,2,3;5=1,2 12
ag] = Qji +€£3 aé.] a31 +€£3 85] (7/ ) 737.7 ) ) ( )
oxs
L =chas;, (1=1,2,3 13
oo~ ehaai, ) (13)
Oxf  Ow; oh 3a3z o
o - o +E€38ta31+€fg ot (1=1,2,3) (14)
ot ot Ot°
=2 % 0, (i=1,23 15
06 ~ 06 o " | ) )
ote
5 =L (16)
where a;; = @; - €, (i,j = 1,2,3), {€1, €, €3} is the canonical basis of R3, and
0¢ 0& O S - o
(8—51?’ 8—95013’ 8—:§§> = a1dy + frdz + nas (17)

0& 0& O . . .
(82’ (’):Z’ 852) = apdy + B2ds + Y203 (18)

0 0& 0§\ . .
(&vf’ B3’ 8$§> = azdy + B3dz + 7303 (19)
0 B o (oX d
8—2 = —(aqdy + frda) - ( ot +e&3h a3> (20)
) . . 0X b
8—2 = —(and; + B2dy) - ( o+ e&3h a3> (21)
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& . . 0X Odis 1. 0X &0h
aﬁ—*%“+&@'&%+%”§>‘5%7ﬁ‘za (22)
ot .

5 = 0 (i=1,2,3) (23)
ot

ote 1 2

where «;, B;, vi (i = 1,2,3) are given by (A.21)-(A.28) in Appendix A.
Given any function F°(z5, 5, 2§,t°) defined on ), we can define another function F'(¢)(&1,£&2,&3,t) on
Q using the change of variable

F(€)(€1,£2’§3,t) :Fe(xiwxgwx?%ts) (25)
and the relation between its partial derivatives is trivially:

OFc  OF(c) 0&  OF(c) 0¢&  OF(c) 0t

= 2
OF¢ _OF(e)  OF(e) 0& | OF(c) 0& | OF(e) 0&3
ot T ot 06 ot | 0& ot | o0& ot (27)
9&; 9% .
where s’ Bie are given by (17)-(22).

2.8. Navier-Stokes equations

Let us consider an incompressible Newtonian fluid, so we can assume that the fluid motion is governed
by Navier-Stokes equations (i = 1,2, 3):

N <8uf . 8ufu§> _ o +u< Pui | Pui P )+p0f§ 28)
ot " o5 0xs a(z5)2 " 9(z5)2 | 9(x5)2 i

0u _ (29)

ox<

J

where repeated indices indicate summation (j takes values from 1 to 3), po is the fluid density, assumed
to be constant, @* = (u§,u§, u§) is the fluid velocity, p° is the pressure, u is the dynamic viscosity and fs
denotes the external density of volume forces.

Let us write @ and f* in the new basis (9)-(11) (repeated indices i and k indicate summation from 1 to

3):
0 = uSE; = ug(e)iy (30)
£ = f7é = fu(e)ar (31)
so we have
u; = (uk(€)dr) - € = uk(e)ari (32)
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Taking into account (32)-(33), equations (28)-(29) yield (i = 1,2, 3):

N <8(uk(6)aki) . 3(uk(52aki) (. (E)akj)> _ onle)

ote ox ang
o (8 (gkgggski) L9 (gé;gki) L9 (g;(;;mﬂ) T pofe(e)an (34)
a(u%(;zakj) =0 (35)

Equations (34)-(35) can be written in the reference domain €2, using (26)-(27) and (17)-(22), as follows
(repeated indices indicate summation from 1 to 3; i = 1,2, 3):

Oug(e) A Oa;
ot Qi +uk(€) ot
oue) , oa\[ o (0% o
+ <ak1 9, + ur(e) o€, ) [ (aqdy + Bidz) (875 +e&sh ot >]
Oup(e) dak; 1., 80X &on
+<“’” 9Es T u(e) a§3>< h™ ot T h oot
8uk(e)

da "
u(€) - ) (aqar; + Pras; + vias;)

+ up(e)ag; (ak:i 7€,

o9&
1 0p(e)
po 0§

82(uk(a)aki)

i { [ 6%
W% (aqar; + Prag; + Vla3j):| (amarj + Bmasz; + Vma3j)}
+fi(€)ar: (36)

(akj 81{;2(16) +ug(e) 8ggj> (aqar; + Prag; +mas;) =0 (37)

(aqar; + Bragi + vias3;)

(aqar; + Pras; + yias;)

2.4. Asymptotic analysis

Let us assume that wu;(g), fi(e) (1 =1,2,3) and p(e) can be developed in powers of ¢, that is:

ui(e) =ud +eul +2ud 4+ (i=1,2,3) (38)
ple)=cp 2 e p 4" +ep' + %7+ - (39)

In making this choice, we follow [3], [1], and [20].
Before substituting «;, 8;,v; (1 = 1,2,3) in (36)-(37), we must develop (A.21)-(A.27) in powers of €. It is
easy to check that

; = o +e€zha; +e%E2h%a? + -, (i=1,2) (41)

ag = f(ag + e&shag + e265h%a3 + - -+ ), (42)
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Bi = B 4+ e&3hB} + 23R -, (i=1,2)
B3 = & (53 + e&shpBy + 25265 + ),
1
73257 Y1 =772 =0,
where
ol @
L 40 EG — F2
. Ods 041
e M grata
a1 = A0 T A0
N 2A2 +an lAl
al = AO ) n 2 2
0 _ 420 an C_I:1 _ F
Qg = 51 - AO - AO
_ Ods 041
o a2~a£1 asA _f—aOAl
a2 - Bl - AO - AO
n—2 42 n—1 41
af=pp= - ATN Ay
oh Oh 9 Oh Oh
—ay -y — — || —F - —
O A e A T
3 A0 A0
. Oh Ods Oh Ods 0l oh oh
| — — 2| — YA _ o OAl
1 205 08, g 98, 3 B 3£2f+8£19 @3
Q3 = A0 - A0
n—2 42 n—1 41
n_ oy TATHay A
oy = — 10 , n>2
o_ llal?* _ E
2= "0 =
g 288 _ g0y
p— _ e+ A
2= A0 - A0
n72A2 + anlAl
n __ 2 2
62 - = AO 9 n 2 2
O Dby Oh Oh
0o_ 96 e _ 06 3
fs = A0 - A0
oh (. Ods oh [ 0&'3) 0
il s A N e — oAl
06 (C“ 652> 96 (‘“ oe, ) ~ A aglf * agz b
Bl = = - &
L BTA Al
/63 = - AO ) n Z 2

(47)
(48)

(49)

(50)

(51)

(52)

(59)

(60)

The substitution of the developments (38)-(40) and (41)-(60) in (36)-(37), and the identification of the

terms multiplied by the same power of ¢, lead to a series of equations that will allow us to determine 4",

p~2, ete.

0
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In what follows, we will use the standard summation convention that repeated indices indicate summation
from 1 to 3, unless we indicate otherwise.

In this way, we first identify the terms multiplied by £~3:
1 Op~—2 1
po 08 h

azi =0 (i=1,2,3) (61)

so we have

Op~2
0&3

=0 (62)

As a second step, we identify the terms multiplied by e~2. Multiplying by @;, (i = 1,2,3), we obtain:

a 0%uf O*uy\  Op?

n? (E o a&% - s (©3)
PO 0 op? (64
353 553 08
1 w 0%ul

agg T2 8523 (65)

The terms multiplied by =1 in (37) are:

oul 1 oud 1
e = ~Z =0 66
06 M h ™ T gy h (66)
and using this equality in (65), we deduce:
op~!
=0 67
o6 (67)

From the terms multiplied by e~! in (36) we obtain:

oo ouf oul 0 - 0X
g2 | pdt2 il
7 ( 06 T ag )\ T

+&sh {65: (Ge— fF)+ 85; (fE—eF>}+a§;A°

=i (e ) -5 (G ) )
e (i) (-5-57)

+ &h [8552 (fG—gF)+ ag; (ngF)} 8552 A°

=i (G o)+ i (e o) )
op 82u3

06 o
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Finally, the term of order 0 in (37) is:

1ouy  AY o A3 A

hOEs T AV T a2 guts

oo e (o 0h 0 o) -
0§ 0&  h \0& 06 0&3 06
where
A oad; aa; aa; Jad;
A — iz (a - 2%~ -an (@ 2% 4 a, 2%\ Lyae (&, . 2%
=Nl (a5 ) (@) (a0 G +a- 5 )+l (- 5 )
2 2 0
_1GPE L0F 1,06 1a(EG-FY) 194 -
206 206 2 0§ 2 08 2 0¢;

3. A new generalized lubrication model

Reynolds wrote, in 1886, a seminal work on lubrication theory (see [44]), where he introduced heuristically
the Reynolds equation. This two-dimensional equation describing the stationary flow of a thin layer of fluid
is considered to be the key element for modeling lubrication phenomena. Since then, we can find numerous
works in which more general physical models have been considered.

Most models dedicated to the study of thin film flow, specially in lubrication, are derived from the Stokes
equation. These first works were focused on stationary models in which the gap and the boundary conditions
were fixed with respect to time (see [3], [18], [24]). These assumptions were considered no longer valid in
some devices, so variation with respect to time of the domain was introduced (see [4]). In the same way, in
some cases, the inertial effects can not be ignored (see [12]), so the studies using Navier-Stokes equation,
as ours, turned out to be relevant (see [1], for example). It was in 1959, in [25], when full Navier-Stokes
equations were used firstly. Various boundary conditions for the velocity of the surfaces (see [27]), and other
types of generalizations have also been studied (see [13], [14], [19] or [38]).

In this work, as we have stated in the previous section, we will use Navier-Stokes equations to derive a
new generalized lubrication model. We are considering a three-dimensional thin domain, that varies with
time, whose mean surface can be chosen without any restriction (in particular, neither the lower boundary
surface, nor the upper boundary surface, need to be flat). With respect to boundary conditions, we assume
that the fluid slips at the lower surface (5 = 0), and at the upper surface (5 = 1), but there is continuity
in the normal direction, so the tangential velocities at the lower and upper surfaces are known, and the
normal velocity of each of them must match the fluid velocity.

u§€x = ug(e)ay = Vi(e)a + Va(e)ds + (E . a3> dzoné3=0 (73)
(X + chds)

ug €y = uk(e)ax = Wi(e)dr + Wa(e)az + ( It

. 63) 6:3 on 63 =1 (74)

where Vid; + Vads is the tangential velocity at the lower surface and Wydy + Wads is the tangential velocity
at the upper surface. So we have,

up(e) =Vi(e) (k=1,2) oné& =0 (75)
uz(e) = C(;—)t( -dz oné& =0 (76)

ue(e) = Wi(e) (k=1,2) oné& =1 (77)
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8(X + Eh(jjg) -

us(e) = T -dz oné& =1 (78)
If we assume, in the same way as in (38)-(40), that
Vi) = VP + eV + V24 (i=1,2) (79)
Wie) = WP +eW} +E2W2 +--- (i=1,2) (80)
we yield from (73)-(74):
uh =V} (k=1,2, 1=0,1,2,...) oné& =0 (81)
ub =W, (k=1,2, 1=0,1,2,...) oné =1 (82)
oxX
u§:g~a3 oné; =0 (83)
uy =0 (1=1,2,...) on& =0 (84)
oxX
uy = 57 @ on &3 = (85)
o(hds) _  Oh
uj = 8t3 ds = on &3 = (86)
uy =0 (1=2,3,...) oné&=1 (87)
From (63)-(64) we can deduce:
2,0 2 -2 -2
6u22: hO (Eﬁp _Fap ) (88)
0(&3) pA 082 06
2,0 2 -2 -2
8u12: hO<G3p _Fap > (39)
9(&)* A 06 23

As p~2 does not depend on &3 (see (62)), we can integrate the previous equations in €3 and impose
(81)-(82)

h2(§2 _ 53) apr ap72
0 _ 3 _ 0 _ 1,0 0
uj = 2,0 (G 9, F 9, >+§3(W1 VI)+Vy (90)
h2 (&5 — &) (0p™> Op~?
0 _ 3 _ 0_ 1,0 0
=) (% ) ey - v+ v (o1)
From (66), (83) and (85) we know:
ox
Ug = E - as (92)

Now, we yield the following equation by substituting u? (i = 1,2, 3) into equation (71) by their expressions
(90)-(92), integrating over & from 0 to 1, and evaluating by using (84) and (86):

O [ op? @iﬂ iji(@i_ @*ﬂ
%jﬂ(g%l o6 )| T ae | \Fag g

oh hAl [0X
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3 40 -2 -2 3 40 -2 -2
_hAl(GGp _Fap )_hA2<E8p _Fap )

(A°)2 &1 &2 (AD)2 &2 &1
0 ) o )+ o 1+ V)
8 V) ol )+ o 1+ V) (93)
If we denote by
div(fu, f2) = G0t + G2 (09
VO (VO V), WO = (WP WE), (AL, A) = SV A° (96)
M= <_GF 7 ) (97)
and we take into account that
div(d) + ﬁVAO G = \/1A_Odiv( A03) (98)
we arrive at the equation:
\/%div (\;L;MV;DQ) = 12#6;h 12u 10 <aa)f 53>
—6uVh-(W° - V0 + %div(m(ﬁf‘) + V) (99)

that can be considered a generalization of Reynolds equation.

Remark 1. We claim that (99) is a new generalized Reynolds equation because, if we consider the classic
assumptions to derive Reynolds equations, we re-obtain the classic Reynolds equation from (99). For exam-
ple, in [18] (3], [20] and [1] the domain considered is independent of time, z3 = 0 in (1), the upper surface
is fixed (W = 0) and the lower surface is moving in the z;-direction with constant velocity (V = (s,0)).
Under these assumptions, we can choose a surface parametrization, X ,such that F = G =1 and F =0,
and then equation (99) writes as the classical Reynolds equation:

oh

div (h*Vp™?) = 6us-— (100)
96

L . . . Oh
In [4] time is taken into account, allowing h to depend on time, and then the term N appears:
oh oh
div (R*Vp~?) = 12 101
iv(h*Vp~?) = u8t+6usa£1 (101)

Remark 2. The matrix M and the coefficients A, Al that appear in (99), depend only on the geometry of

the surface parametrized by X.In fact, the matrix EM is the inverse of the matrix of the first fundamental

1

A
form of X, and the term 0= —2K,, (see (A.41)).
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2

Remark 3. Equation (99) must be completed with boundary conditions at D, usually the value of p~= at

oD.

2,e 2

Remark 4. Equation (99) can be re-scaled, and then p° is approximated by p~2¢ = ¢~2p~2, solution of

1 [(h)? o) ., OhF heAt (90X

- - 6uhs . - _
—6uVhE - (WO - VY + div(VAO (WO + VO 102
1% ( ) 30 ( ( ) (102)

Remark 5. We must point out that the expression

1
v A9

is exactly the covariant divergence of &, where w stands for the covariant derivative of w® with respect to

&p-

div(VA'S) = wh +w? (103)

4. A new thin fluid layer model

Thin fluid layer models are widely used for the analysis and numerical simulation of a large number
of geophysical phenomena, such as rivers or coastal flows and other hydraulic applications. Saint-Venant
firstly derived in his paper [51] a shallow water model, since then numerous authors have studied this type
of models (see, for example, [39], [53], [7-9], [26], [29], [33]), on many occasions using asymptotic analysis
techniques to justify them (see [2], [45-50]).

With this aim, in this section we will study what happens when, instead of considering that the tangential
and normal velocities are known on the upper and lower surfaces, as we have done in (73)-(74), we assume
that the normal component of the traction on {5 = 0 and on {5 = 1 are known pressures, and that the
tangential component of the traction on these surfaces are friction forces depending on the value of the
velocities on dD. Therefore, we assume that

T® - i = (0°75) - g = —7§ on & = 0, (104)
T° -7 = (o°7]) - 7] = —7w] on &3 =1, (105)
T¢ @ = (0°75) - di = —fao- @i on &3 =0, (i =1,2) (106)
T = (0%7) - 0 = —fr - Tf on &g =1, (i=1,2) (107)
where T* is the traction vector and o° is the stress tensor given by
ous  Ous .
Uz'Ej = _pgé’ij +p <8—IL‘§ + 8l‘f ) (Za.] = 172a3) (108)

vectors i, 11§ are, respectively, the outward unit normal vectors to the lower and the upper surfaces, that

1S

ﬁg = 50(_7:3 (109)
7€
s = —sOHU—3 (110)

g



12 J.M. Rodriguez, R. Taboada-Vdzquez / J. Math. Anal. Appl. 507 (2022) 125735

where
sop=—-lorsy=1
is fixed (7§ = ds or 7§ = —ds, depending on the orientation of the parametrization X ), and
Ui =dy+e€ (g—gdg+hg—§f)
Uy = dy + ¢ (g—gag+hg—(z)
¥ = 0 x 7

From the identities (112)-(114), we also have the equalities:

’L_)'EZC_L'leéﬁ*

[gg(alxag)qth( gz)qL@(agxaQ)th(%x&Q)}

061
9 oh dads oh Ods
e [(agl ha—&) (8—523”‘852)]

L A o [dds
1T = [|@1 x @ + eh {ag- <a1 x a%) 4 - (a—‘gj x aQH 1 O(2)

Typically, the friction force is of the form
Fao = poCllE ] on & = a, (a =0,1)
where C' is a small constant. Let us assume that it is of order ¢, that is,

Cs =¢eCh

Now, taking into account (108), (17)-(19), we have the following development in powers of :

Uz] § e p iJ

r=—2
8@]% 8& 8uk 8ak 651
+“2kl<% i) 5 *(%““*kai) ]

ou? as; Ou?
2, -2 -1 —15. . 3J k 3¢ "k
= —€ °p 57,] +e€ {p 51] + |: h 85 ap; + — h 863 kj:| }

out as; Out
— 05, 83 Tk s+ 2k
D 0i5 + {h D€ ks + ) 853(1]”

2
ou? Oay; ou?
+ <—f ; UO_’Z) (afarj + Blaz;) + g}f agk api(agaij + f3az;)

53 Buk

l) (Oé?au + ﬁloazi) + = I Ot

akj (agall + 53 an)]

(111)

(112)

(113)

(114)

(115)

(116)

(117)

(118)
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asj Ou? as; 8uk

+5{ p52]+/~t|:h 35 Ag; + — n 6§
2

out Oay;
+ Z <—fam‘ +up—= ) (alar; + Blaz;) + §_3_am<aga1j + Bas;)

=1 9¢ g & h 0&3
2
811/1 8a 6
+ 2 (8_5 aj + uy, 8?) (afay; + Blaz) + if(% aj(afar; + Bag;)

2
o 0 O ou?
+ &h) (3& ki + U, a; ) (agar; + B az;) +§§¥:am(a§au + B3as;)

2
ou? Oay,; ou?
+ §3hz (a—gakj +ul 85) (afay; + Blasi) + £§a—£akj(aéa1i + »33{@21‘)] }

T (119)

If we assume, now, that

e) = ie%g (120)

i
e) = izs%; (121)
fro(e ZsTfRo (122)
fri(e Ze’“fm (123)

condition (104) can be written (using (120), (119), (109)) as:

—2,— -1, - 2 dug 2 Ou?
(03j(e)as;)az; = —e~2p~% —e~'p! —p°+u5¥ +€( Pt ps agj) doe
and we can deduce:

P =00ng=0 (125)
_1:001153:0 (126)

2 3u

2 Bu
Py g, = Moo & =0 (128)

From (62) and (125) we obtain
-2

p =0 (129)

and, analogously, from (67) and (126), we have
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p =0 (130)

2

Substituting p~* into equations (63)-(64) we yield

0?ud 9%l
o~ og " (131)

Let us denote, as in section 3, by Vid; + Vads the tangential velocity to the lower surface, and by
Whay + Wads the tangential velocity to the upper surface. Thus we have again (73)-(78), but now V;(e),
oh
Va(e), Wi(e), Wa(e), — are unknown, they are not data as in section 3.

Let us assume the equalities (79)-(80) once more. Then we re-obtain (81)-(87). Now, from (131) and (66),
we deduce

uw) = (W2 -VO&+ VP (i=1,2) (132)
ox
ug = 5 (133)

Now, if we substitute u{ by their expressions (132)-(133) into (71), we integrate over &3 from 0 to 1 and
we evaluate using (84) and (86), we obtain

2%}; — (WO — V). VA + \/%div (\/E(VT/O + Vo)) + 22—?1 (‘9;; ~(z'3> =0 (134)
From (68)-(69), (129)-(130) and (132)-(133), we have
=t -v) -1 (135)
and integrating twice we yield
ui = —Z—ﬁ(W? —VONE — &)+ W = VDG + Vi (1=1,2) (136)

From (71), using (132), (133) and (98), we can derive an expression for u3:

=2 [(Wo 0y wh - \/%div (Vs - vo>)}

oo Al [0X
— hés [\/%div(mifo) + 0 <a—f : c?sﬂ (137)

and we can also yield the following expression for p® from (70), (137) and (127)

= B2 | v (VAT — 7)) (7 - 7)1

h VA0
2 Lo 2uAl [0X
—\/%div(\/AOVO)_ /;10 (Wﬁg)ﬂrg (138)

Boundary condition (105) can be written (using (110)) as follows:

(05;05;) - v5; = —7illT5]* on & =1 (139)
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We use expressions (119) and (121) to substitute o7; and 7{ into the above condition and we take into
account (115), (116), (129), (130), (132), (137) and (138) to simplify. Identifying the terms multiplied by &°
we obtain:

|a’1xa*2|{—%b%div(\/mwo—v(’))—(fvo Vo). Vh] —wo}

2 0 . od R
—&—TM [(WQO—VQO) <8§ (d1 x d3) - a2+h(a1>< 8—§j> a2>

oh das
0_ 1,0 s - vaz o
+(”1 Vl)(agl(%xaz) a1 +h<8§1 Xag) a1>:|
= _W?H(_il X 52” on 53 =1 (140)

Noticing that

Hal X Cl2||
@ >1<a2|| (q (@y - dy) — dal|d:|| ) 2 = ﬁ —|ld1 x da|| (141)
(5 ?)Zj> dy = (G2 x d1) - g—gj = —||l@s x d1l|ds - 2—2 =0 (142)
(ggf 62).51262.(62x61)g%zf.ﬁgxdlnago (143)
we finally derive
\/%div (m(WO - ‘70)) + %(VT/Q ~ V%) - Vh+ 7§ = (144)

Boundary conditions (106) on &3 = 0 can be written using (46), (49), (55), (52), (58), (119) and (122) in
this way:

=y ou ous Eoul  Foub 0ud
E F — =
€ ( 8£3+ 353)+ {h@gg h8§3+8§ + u1+fu2
Eou | Fou  Ouy 1 1 & 0ug Oh
en [h/a§3'+ R oG T og et T g o

oo
+fm§j<”3 WO @) (ol B+ G F)

:so(EfRo+€2fR0+~~)~d’10n§3:0 (145)
0 1
6—1M (Faul +Gau2) + {E% 4 g% 4 %

0 0
96 O g, oG | hog, T og MO

iy [F ou?  Goud  Ou}

Foui  Gouy 1_5_33_1%@
R oE T hog T og Tt

h 0&3 0&;

0 day
+§3hz< u3 gazk a3> (el F+ 5 G)

= S0 (6fR0 + EQfRO + o ') : &‘2 on 63 - 0 (146)
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1

We yield from the terms multiplied by e ! in the equations above and the equality (132) that

w =w2=v> (i=1,2) (147)

7

Identifying the terms multiplied by €° in (145)-(146), and taking into account (133), (136) and (147), we
have

2 —
9 [0X By, B
1 1_ 0 0
Wl_%—_hl;al%<at >+A0V1+AOV2 (148)
2 —
0 (0X B
1 0 22
v%vaﬂ;m%<maﬂ S+ Sy (149
where B;; (i,j = 1,2), are given by (B.1)-(B.4).
Equalities (147)-(149) allow us to simplify (134), (136)-(138) and (144):
Oh . oxX '\
5 rdw (\/ 7 ) = <E : a3> =0 (150)
B B X
up = —h A101 vy 2 = —o Ve + Z ( -a3> &+ V! (151)
B B .
= —h | S5V + ”%+Z@%< '%>&+W (152)
oxX
uy = —hés \/A_dlv(\/ 0y0) 4 < pr a;;)] (153)
oh
_ . 0h 154
&2 (154
2u . ~ 211 AL ox
0_ /10770 0
p’ = *mdlv( AOVY) — o\ + (155)
_ 2 oh 0
= 1
h ot (156)
70 — 70 (157)

Now, we identify the terms multiplied by ¢ in (145)-(146) and, considering (151)-(153), we obtain:

0
m ZZI + B Vy' +B12V2} = —50 {G(f}o.al) —F(f_}?o.dé)} on & = 0 (158)
AP 3 1 — 7l =

|: n 86 +B21V1 +B22‘/2:| = —SO[E(fRO . a2) — F(fRO . al)] on 53 =0 (159)

Going back to (139), the terms multiplied by ¢ yield

Pl 27/1% Oh 1 8h

1
o S vl v

oxX oh . oh
¥%< ”Q(% )

+ 2u
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oh B oh B Ooh B Oh B
0 11 21 0 12 22 _
+V <a§ AO +a—§2m>+V2 <8£1 A0 +6—£2F):| onés=1 (160)

and using (148)-(149), we can simplify (160), and write

1_ _Na_ _
p = + h O onéz =1 (161)

Taking into account (46), (49), (55), (112)-(116), (119), (123), (133), (141)-(143), (147), (148)-(149) and
(151)-(154), we can rewrite conditions (107), identify the terms of order zero,
Eoul  Fouy 0ul 0 0
-1, - 772 773 V- VY =0 =1 162
h8§3+h8§3+8§1+61+f2 on &3 (162)
E% Gouy  oul

2772 778 0 0 _ = 163
h8§3+h8§3+8§ + VP +9gVy =0o0né =1 (163)

and the first order terms (here, repeated index k indicates sum from 1 to 3),

A° 9} 8h h ) . 10h [ 0h oh
[ I 9g +G8t8§1 _Fatafz + BuVi + B2V, “h ot (8—52 _8_§1G)
2 2
vy A, o Oh oh
E [ B ()] (2 02)
2| Gg + 2 ek (g ™ )| g + Mo,
e (ahav2 8h8V1> o
2 \06 08 96 94
P da A
+ﬁ —hI (Bi1 VY + B12Vy) + A% Zal (—’“ i( )]
= So (G]E}{l . 61 - Ff_}%l . (_]:2) on 53 =1 (164)
A° 9u} h 0h 10h [ Oh oh
P B B ekl (aly A
[h s F8t0£1+E6t3£ +BaVi + BnVy — (agl 96 )
A od o Oh oh
—AO zv2 _k —
Z o6 2 P (5 )| (s + 5,
Z ( oh av2 oh a_vp) 5
9 0& 551 g )"
oda,
+ \/% —hI (Ba VY + BosVy)) + A%QZ@ <_k i )]
= Sp (—Ff_}ﬂ a1+ Ef_‘}ﬂ . 62) on Eg =1 (165)

where I and 7j(h) are given by (B.7) and (B.15).
From equalities (158)-(159) and (164)-(165) we have (again repeated index k indicates sum from 1 to 3):

u 9°h  _h 10k [Oh . Ok
gr _pLt (Y Y0
W ( s | ) T C e~ oo hoar <a§2 o6, G)

3u1

a =1 853
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v <8ak q) <06h 06‘h>
+ L B I (7 iy
7t 2 "o M g
oh OV 8h ovyP
A e ) 0
Z (852 & 5’51 &

0
+ 2 lh[ (BiiVy + B12Vy) + A% Za? ( U ﬁ(h))]

_AOZ

VA = '\
=50 {G (.f}lﬂ + f}zo) ~dy — F (f:lzl + J?Jl%o) '52} (166)
AO [ 9u3 04} 82h 2h  10h [ Oh on
o5 (G o OEl ) o e~ (06" 06"
vy & d oh oh
-y o+ 2 In (% 5“)]( % 5e)
=1
2. [ Oh AVY , Oh Vo
0 2 1 0
A (5626 * 56 36 )
2 _,
+ \//;TO —hI (Ba VY + BaoVy) + A% ;3 ( ))]
= S0 {_F (f}{l + JF}%O) iy + F (Jg}ﬂ + f_}%o) '52} (167)

Now, from the terms of order ¥ in the equation (36), and following the steps outlined in Appendix C,
we obtain the equations below,

Ve
W‘FZ( - ) 85 _1<R Z lle>

__1 ( 008 | Bga_”g)
Po 1 082
2 2 2 2
o*v0 oV
+ L Jp, + =2 (LR + ()
V{;; 96,06 ;; 5l( 2 + (h)ik)
: 0X
+ ZVkO(S?k +x()3) + /%(h)?} +FP(h) — Q% <W : 53) (i=1,2) (168)
k=1

where the different coefficients are defined in Appendix B.

Remark 6. Equations (168) and (150) allow us to determine h, V° and V3, once the initial and boundary
conditions have been set. These equations provide a shallow water model (see [39], [53], [9], [33], [45-50]).
Equation (150) represents the conservation of mass of the fluid. If & is known, then (150) means an additional

condition on the velocity Vo and, in that case, the pressure 7 must be an unknown in (168).

Remark 7. As in (102) (see Remark 4) equations (168) and (150) can be re-scaled, to work with h® instead
of h.
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5. Conclusions

In this paper, starting from the same initial problem, an incompressible viscous fluid moving between
two surfaces parametrized by X and X + h*N (see section 2), we obtain, using the asymptotic expansion
technique, two different models. The first one is yielded in section 3, assuming that the fluid velocity is
known on the surfaces X and X + h°N. The second one is derived in section 4, assuming that we know the
tractions applied on the surfaces X and X +h*N , rather than the fluid velocity, as in section 3. This simple
change gives rise to two different models: a lubrication model in section 3 and a shallow water model in
section 4. This fact exemplifies the importance of the boundary conditions in partial differential equations,
and it tells us which of the two models should be used when simulating flow of a thin fluid layer between two
surfaces: if the fluid pressure is dominant (that is, it is of order O(£72)), and the fluid velocity is known on
the upper and lower surfaces, we must use the lubrication model obtained in section 3; if the fluid pressure
is not dominant (that is, it is of order O(1)), and the tractions are known on the upper and lower surfaces,
we must use the shallow water model obtained in section 4. In the first case we will say that the fluid is
“driven by the pressure” and in the second that it is “driven by the velocity”.

In the lubrication model derived in section 3, the pressure is determined by the equation (99), and it
depends on the fluid velocity on the upper and lower surfaces of the domain, and on the speed at which these
surfaces move, as well as on the geometry of the surface X , and on the pressure at 9D (see Remark 3). The
fluid velocities inside the domain are subsequently obtained from the pressure using the equations (90)-(91).
In the shallow water model of section 4, the fluid velocities are calculated from equations (168) and (150),
and they are determined by the geometry of the surface X , as well as by the applied tractions (that is,

the pressures 7) = 77 and the friction forces), while the fluid pressure is obtained now from the expression

(156).

But, when do we know “a priori” if the fluid is “driven by the pressure” or “driven by the velocity”, that
is, if we should use the lubrication model or the shallow water model? If we look closely at sections 3 and 4,
we can say that the lubrication model describes the fluid behavior when the pressure differences at 0D are
large enough, forcing the fluid movement described in (90)-(91), and that the shallow water model describes
the fluid behavior when the pressure differences are small at 9D, so that the pressure is determined by the
pressure applied to the upper and lower surfaces of the domain and by its separation velocity (see (156)).

Finally, we would like to point out that, as future work, error estimates must be calculated in order
to fully justify the asymptotic decomposition and that we plan to perform numerical simulations of both
models with different boundary conditions.

Appendix A. Change of variable

Let us consider the change of variable (7)-(8) between the original domain (1) and the reference domain
(6)-
Its Jacobian matrix is
Oz 0Ozf Oz Oaf
061 0&  0& Ot
ox5 0x§5 025 05
06 06 &3 ot
Oxg Oz Ox§ 0§
06 0% 0& Ot
851 852 853 ot

J&‘
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and it is clear from (7)-(11) that

O0x; oh aajz . .

i i = 17 23 ) = 13 2
7€, = Qjj +5§3 9¢; as; +¢e&3h 853 (i 3;7 )
aﬂjf—aha' (i1=1,2,3)

663 31 y 4y

oxs 5‘z Oh )

8t 8 + 553 a3z + 553 t ) (Z - 17 27 3)

otr ot 6755 —0

08 0% 03 ’

ot

ot

We can compute
06 0& 04 04
Oz 0Ox§ Ox§ Ot°
06 06 0% 06
Oz 0Ox§5 Ox§ Ot°
(JE)—I —

08 0& 08 0&3
0z 0x§5 Oz§ Ot°

o o o o
0z 0Ox§ Oz Ot°

writing its components in the basis {@, da, ds}:

982

025’ dx5’ das
083 O3

9¢s
89&1 ors’ 81“3

57
axl 0x§’ 0

and using that

Taking into account that

<3€1 06 06 )
x5’ 0x§’ Ox5
08 0

) ol + Pada + 203

) aigdy + Psda + Y303

ot
= o1 + Bala + Yads

(JE)—IJ&‘ =7

di'd3:07 (22172)5
ld@s]| =1

. Odds
°T o

=0 (i=1,2)

(A.11)

(A.12)
(A.13)

(A.14)

and introducing the following notation for the coefficients of the first and second fundamental forms of the

surface parametrized by X (here ¢ acts only as a parameter):
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E=d &
F=3a i
G =3dy- s
e g 00 _ . Om
bog )
fo—g 00 _ 5 08 o 00 _ . 04
bog Pog T o o
__gz .94 _ . 0
77 0 T 0
we deduce from (A.11):
9
7,112 T 2
o ld2]|* + e&sh <a2 852) G ety
' Afe) Afe)
L . 0ds
; __Gl'a2+5f3h<a1'a—£2>  Focghy
' Afe) Ale)
-+ sgah (@2 52
— 1 —
g = e B
9
q 2 q [
5 ld@1]|* + e&sh <a1 8§1> B ctshe
‘T Afe) T A
%i=0 (i=1,2)
a8 (g, 00 Ok
P h o T TP og
53< oh ah>
= —— _+ -
B3 h 51851 625‘52
_1
V3= oh
) . . 0X o
af; = —(ond1 + prd2) - (E + 55%%)
) . . 0X oa
3% = —(Q2d1 + P2da) - (W +€§3h§>
& . . 0X Ods 1. 08X &0h
gre — (st Badz) - (E“’f‘”’hW) AL N T TS

ot
= =1,2
axf 07 (7/ b 73)
ot
- 1
ote

where

21

(A.15)
(A.16)
(A.17)

(A.18)
(A.19)

(A.20)

(A.21)

(A.22)

(A.23)

(A.24)
(A.25)

(A.26)
(A.27)
(A.28)

(A.29)

(A.30)

(A.31)

(A.32)

(A.33)

(A.34)
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A(e) = [|@]|)|@:? — (@ - @2)°
+ e&3h {||52|2 (al : g%‘) + ||@1 ]2 (52 : g—‘z) — (@) - @) (al . 2_2 + @y - %)]
et (a 52) (e 5g) - (2 5) (= 58]
= EG — F?> + c&3h (—Ge — Eg + 2fF) + £°&3h* (eg — [?) (A.35)
If we denote by

A% = @ |?l|a2)® - (@ - @2)* = EG — F? = ||a; x @ (A.36)

Ods oa
_ 2 (- Y43 2 vas
4= g ( . ) P (@ G )

( 6a3 T, g‘?) = —eG — gE +2fF (A.37)
1

S AT

QJ

then we obtain that
Ale) = A® 4 eg3h AL + £2¢2h% A2 (A.39)

We remark (see [52]) that AY, A! and A2 are related to the Gaussian curvature (Kg) of the surface
parametrized by X and its mean curvature (K,,), since

K¢ = ;]G;_f; = ﬁ—z (A.40)
_ 1
Furthermore, the principal curvatures of X are the solutions of the equation
A'KZ2 4+ A'K, +A?=0 (A.42)

Appendix B. Coefficients definition

In this appendix, we introduce some coefficients that depend only on the lower bound surface parametriza-
tion, X and other coefficients that depend both on the parametrization and on the gap h. We will use these
coefficients throughout this article.

In addition to the coefficients that will be defined below, others have been introduced in the body
of the paper and in Appendix A: the coefficients of the first and second fundamental forms of the surface
parametrized by X (denoted by E, F,G and e, f, g, respectively), defined in (A.15)-(A.17) and (A.18)-(A.20)
from the basis {d1,d2,ds} (see (9)-(11)), the coefficients «a;, B; and v; (i = 1,2,3) in (A.21)-(A.28), and
their development in powers of € in (41)-(60), A(e) and its development in powers of € in (A.36)-(A.39),
along with its relation with the Gaussian curvature and the mean curvature of the surface parametrized by
X in (A.40)-(A.41), and, finally, the definition of A9 (i = 1,2) in (72).
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The following coefficients depend only on the parametrization X:

By =Ge—Ff (B.1)
By =Gf—Fyg (B.2)
By = Ef — Fe (B.3)
By, = Eg— Ff (B.4)

0X 0X
CP = qf <&’1 . —) + 0 (ag —> (1=1,2) (B.5)
ot t
ody, oay, .
HY =a? — VU dy  —= =1,2 =1,2 B.6
ik 7 (al 3&) +ﬁz <CL2 afl) (Zal ) 4y k ) 73) ( )
L 0ds\ oads -
= — — B
I <a1 X 8fg> as + (651 X CLQ) as ( 7)
Tim = aan, B+ (Blag, + o B) F + B8, G
=0 5MI + ﬁl m2 (la m = ]-7 2) (B8)
Oa op?
Lgli = le:l |:<a£7—f1 5m1 + ﬁ m2 + Qg Hgmml + 6[0 mm2) 61@1
+ 2H) o Ji] (i,1=1,2; k=1,2,3) (B.9)
0 —a? (@ - 2% 4 0 (a ZH o
ik 1" 75 2" 1“1
(i=1,2k=1,2,3) (B.10)
0X
7,k — sz + ’Lk‘3 (E . Eig) (l - 1,2, k - 1,2) (B].l)
I\/ AO — A1 8% _, 0 6ak a
Szk - 10 &% : ﬂ - as
A 8§ 6‘52
2 2
o)+ (o ot ))
+ Ol +8) a2 I
mgl ; Ka (‘“ oe0e, ) T\ ™ agoe, )
da? oY
+ <8§_1i15m1 + 6§7ln 57712 + al mml + BZOHSIm2> H?lk:|
1 L Ods ods 0 0dk 00y,
VAD K * o ) i (a& )} ( “og g
(i,k=1,2) (B.12)

Remark 8. Coefficients BY and HJ); are related in the following way:

B
Hzl3 A0

(i,1 =1,2) (B.13)
The following coefficients depend on the parametrization X and on function h:

FO(h) =12+ Z—Z(f%l + ) - (0% + %) (i =1,2) (B.14)
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o Oh oh oh
vt = g |(of g ﬂ?a—&> S+ o oo + /3?521«)} (i.3.1=1.2 (B.16)
J

f
1 2 1 00y, o0
X(h>?k‘ﬁ{afl lz; o = T X ) ( o6 638&)]

oS 00d oa
[ZH““@ - gt (ot + ﬂfag:)”

(i=1,2,k=123)

(B.17)
a8 () 2 (2]
aEa (%—f -ag) (28~ G5e0) + o (%—f . @) G
() e S [(o () < (5 s ))
+ (g?? St + 22 O Sma + oV HO, |+ B0 mm) H23}
é@[cﬁxg§>+<g§xda}~( g@ @?2)} (i=1,2) (B.18)
s =~ (- (25) + o0 (35)) =12 (B.19)

where d;; is the Kronecker Delta.

Appendix C. Derivation of equations to calculate Vo

Let us identify the terms of order £° in the equation (36). We simplify that equation, taking into account
(20)-(22), (133), (147) and (151)-(156). Then we multiply the equation obtained by a1; and we yield:

where we have denoted by Vi = u (to achieve a more compact expression), and coefficients CP, (I = 1,2),
are given by (B.5).
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Analogously, if we multiply the same equation by a9; and asz;, we obtain, respectively:

(Gt vt (o G)

k=1
2 3 aVkO 0 ad’k 0 0
*EE(%WWV'« (4 5a:)) 0 -
1 ap° S a [o(Viay) , o 0 = (o0 0
— _%a_& v {mz:l ; l; ag—m 8& (O(l a1j + ﬁl a2j):| . CLZ(OéTnalj + 67na/2j)
1AY S oul 1 & 0% 2o L
+Eﬁza—€§(a2 Q) + 75 D 5er (@2 ak>}+2f£<a2 ) (C.2)
k=1 k=1 3 k=1
8V30 2 of = ac—ik
B (w5
k=1
2 8V30 2 0 aak 0 0
+; a—&Jr;Vk (as % (V' -a)

1 ap! - 9 [oPa B}
:__lJF”{ZZZ [Lﬁ’v)(a?alﬁrﬂl@%) - @3(apar; + B az))

1AYOh 1 023 0
ﬁﬁ&*ﬁa?g}*f (©-3)

Next we multiply equation (C.1) by a? and we add equation (C.2) multiplied by o3 to get:
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We yield the following equations by integrating (C.4)-(C.5) over &5 from 0 to 1, and using expressions
(151)-(152), (148)-(149) and (166)-(167):

oV, av >
1+Z 351"'2( 1 +ZH1HCV1>V1€O
=1 Lok=1 =1
1< 2. 9210 2 avo
—%; {2285 96, T + z_:llz; (LR + ¢ (h)3)
2
+ ) V(ST + x (W) + F«'(h)?} + F(h) (C.6)
k=1

o) aV > 2
8—152 "‘Z(Vlo 65 +Z <Q2k+ZH2lkV Vi
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=1 1 =1
1 op° 22V 2 &NV
:_%Z/Bzoag {Z;ag : Jlm ;;6— Lz + 9(h)9)
2
+ka0(58k+x( + F3(h) (C.7)
k=1

where HY,, JP . L9, Q%, S%, F2(h), ¥(h)%,, x(h)% and x(h)? are given by (B.6), (B.8)-(B.10),
(B.12)-(B.14) and (B.16)-(B.18).

Finally, from last equations, taking into account that Vi = w3, (133), (156) and rearranging terms, we
obtain

vy o oy OV < 0 = 0 o) 10
ot +Z(Vz - 7)) €, +Z Rik‘*’ZHule Vi

=1 k=1 =1
__1 ( 0970 508_”8)
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: X
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k=1

where RY, and &(h)? are given by (B.11) and (B.19).
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