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Abstract: The present work proposes several modifications to optimize both emissions and consump-
tion in a commercial marine diesel engine. A numerical model was carried out to characterize the
emissions and consumption of the engine under several performance parameters. Particularly, five
internal modifications were analyzed: water addition; exhaust gas recirculation; and modification
of the intake valve closing, overlap timing, and cooling water temperature. It was found that the
result on the emissions and consumption presents conflicting criteria, and thus, a multiple-criteria
decision-making model was carried out to characterize the most appropriate parameters. In order
to analyze a high number of possibilities in a reasonable time, an artificial neural network was
developed.

Keywords: engine; emissions; consumption; artificial neural network; multi-criteria decision-making;
computational fluid dynamics

1. Introduction

Though compression ignition engines are widely used in marine propulsion due to
their important advantages, especially efficiency, their pollutant emissions threaten public
health. Particularly, NOx and SOx are considered especially damaging [1–4]. In the marine
field, even stricter limitations imposed by the IMO (International Maritime Organization)
and other organizations regulate emissions from ships [5–8]. Regarding SOx, the maximum
content in the fuels is limited for ships that do not have any post-treatment device. Re-
garding NOx, IMO establishes even stricter maximum emissions depending on the engine
and region. According to this, many NOx reduction measures have been developed along
the years. Briefly, these measures can be classified into primary and secondary. Primary
measures focus on avoiding NOx formation during combustion, whereas secondary mea-
sures remove NOx from the flue gases. Between the most employed primary measures, one
can refer to modifications in the injection system, exhaust gas recirculation (EGR), water
addition, modification of the distribution diagram, modification of the working pressures,
and other parameters. An important handicap is that most of these measures reduce NOx
emissions at the expense of incrementing specific fuel consumption (SFC) and/or other
emissions. In this regard, MCDM (multi-criteria decision-making) constitutes a formal tool
for choosing between several alternatives which involve conflicting criteria. MCDM makes
decision-making more effective when there are conflicting criteria, and minimizes human
intervention in the decision process [9,10].

A decision-making process can be complemented by artificial neural networks (ANNs).
ANNs are powerful data models that simulate the human brain, since these can learn the
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problem based on the available data, and develop a prediction. ANN models learn the struc-
ture of the process, and establish a relationship between the inputs and outputs. Recent
works have indicated that the application of ANN techniques in decision-making problems
is useful, and some researchers have used ANN models for MCDM analyses [11–15]. These
prediction studies focused on ANN used together with MCDM, and applied this methodol-
ogy to different aspects, such as supplier selection for industries [16–19], failure estimation
in hydroelectric power plants [20], machine selection [21], store location selection [22],
manufacturing technology investments [23], diagnosis of prostate cancer [24], etc. In these
works, MCDM and ANN were used in an integrated manner, since MCDM is formulated,
and ANNs are employed to learn the relation among alternatives and criteria, and rank the
alternatives.

The present paper proposes a hybrid MCDM-ANN methodology to analyze several
internal modifications to optimize both emissions and consumption from a compression
ignition marine engine. The results obtained show that this methodology constitutes a
robust tool for modeling the decision-making problem, since the decision-makers can
analyze the different possibilities by changing the inputs, and observing the results in a
fast and simple way. This model was applied to select the most appropriate water to fuel
ratio, EGR rate, overlap timing, intake valves closings, and cooling water temperature.

2. Materials and Methods

This section firstly describes the engine analyzed, and the corresponding CFD analysis
employed to obtain the data samples necessary to train, learn, and test the ANN. After that,
the MCDM and ANN methodologies are treated.

2.1. Engine Analyzed and CFD Analysis

The present work analyzes the commercial diesel engine Wärtsilä 6L 46. This is a
four-stroke engine with six in-line cylinders, and each cylinder has two inlet and two
exhaust valves. The CFD analysis and validation with experimental results was developed
and described in previous works [25–30], and thus, the procedure is not shown here in deep
detail. The simulations were realized using the open software OpenFOAM. Turbulence
was treated through the k-ε model. The fuel heat-up and evaporation were treated through
the Dukowicz [31] model, and the fuel droplet breakup through the Kelvin–Helmoltz and
Rayleigh–Taylor [32] models. As combustion, NOx formation, and NOx reduction, Ra
and Reitz’s [33], Yang et al.’s [34], and Miller and Glarborg’s [35] kinetic schemes were
employed, respectively.

A comparison between the numerical and experimental results is illustrated in
Figures 1 and 2. Particularly, Figure 1 illustrates the emissions of NOx, carbon monoxide
(CO), and hydrocarbons (HC), as well as SFC obtained numerically and experimentally
at several loads, and Figure 2 illustrates the in-cylinder pressure and heat release rate
obtained numerically and experimentally at 100% load. Other loads provided similar
results, and thus, are not shown again. Both figures provide a satisfactory correspondence
between the experimental results and the numerical ones provided by the CFD model.
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The data obtained through this CFD model were used as samples to train, validate, 
and test the ANN. One-hundred and forty-five cases were characterized through CFD 
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from 60 to 120°, intake valve closings from 510 to 570°, and cooling water temperatures 
from 70 to 90 °C. Some of these results are shown in Figures 3–7. In these figures, emis-
sions are represented in g/kWh instead ppm or %. The reason for this is to work with the 
same units as specific consumption. This way, all data that will be further employed in 
the MCDM model are introduced in the same unit. As can be seen in Figures 3–7, NOx 
emissions are reduced with increments of the water to fuel ratio and EGR rate, whereas 
NOx emissions are incremented with decrements of the overlap, intake valves closing, and 
cooling water temperature. It is well known that NOx is formed mainly due to the high 
temperatures reached along the combustion process [36,37]. If these temperatures are re-
duced, NOx emissions are reduced too. Unfortunately, low combustion temperatures lead 
to lower power and, thus, higher consumption. Besides, lower combustion temperatures 
promote incomplete combustion, which is the main source of CO and HC emissions. Ac-
cording to these results, it can be seen that SFC, NOx, CO, and HC emissions constitute 
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The data obtained through this CFD model were used as samples to train, validate,
and test the ANN. One-hundred and forty-five cases were characterized through CFD using
water to fuel ratios between 0 and 50%, EGR rates from 0 to 50%, overlap timings from 60
to 120◦, intake valve closings from 510 to 570◦, and cooling water temperatures from 70
to 90 ◦C. Some of these results are shown in Figures 3–7. In these figures, emissions are
represented in g/kWh instead ppm or %. The reason for this is to work with the same units
as specific consumption. This way, all data that will be further employed in the MCDM
model are introduced in the same unit. As can be seen in Figures 3–7, NOx emissions are
reduced with increments of the water to fuel ratio and EGR rate, whereas NOx emissions
are incremented with decrements of the overlap, intake valves closing, and cooling water
temperature. It is well known that NOx is formed mainly due to the high temperatures
reached along the combustion process [36,37]. If these temperatures are reduced, NOx
emissions are reduced too. Unfortunately, low combustion temperatures lead to lower
power and, thus, higher consumption. Besides, lower combustion temperatures promote
incomplete combustion, which is the main source of CO and HC emissions. According to
these results, it can be seen that SFC, NOx, CO, and HC emissions constitute conflicting
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criteria, since none of the measures proposed in the present work are able to reduce all of
them simultaneously.
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2.2. MCDM Analysis

Taking into account the 145 alternatives analyzed through the CFD model, and the
four criteria considered (SFC, NOx, CO, and HC emissions), a 145 × 4 data matrix can be
constituted with 145 rows and 4 columns. This is shown in red in Table 1, in which the
first and last rows are illustrated. This table also shows the water to fuel ratio (W), EGR
rate (E), overlap timing (O), intake valves closing (I), and cooling water temperature (C)
corresponding to each alternative.

Table 1. Decision matrix.

Case
(i)

W
(%)

E
(%)

O
(◦CA)

I
(◦CA)

C
(◦CA)

Criterion (j)

j = 1
SFC

j = 2
NOx

j = 3
CO

j = 4
HC

1 0 0 60 510 70 179.34 9.75 6.51 6.71
2 10 0 60 510 70 179.88 8.65 6.77 6.72
. . . . . . . . . .
. . . . . . . . . .

100 50 50 120 570 90 172.17 3.44 5.60 4.87
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An important issue in MCDM methods is establishing the criteria weights. The criteria
weights represent the degree of importance of each criterion. Although some objective
methods are available in the literature, subjective methods are recommended to establish
the criteria weights, since these are directly defined by experts in the field [10,38], i.e., the
experts have an important participation, and the weights are assigned based on experience
and knowledge. On the contrary, objective methods are based in mathematical expressions
that do not involve expertise or the experience of experts. In the present work, two
main requirements were considered, consumption and emissions. A 20% importance was
provided to consumption, and 80% to emissions. Regarding emissions, the importance of
NOx, CO, and HC was distributed equally, i.e., 33.3% for each one. To summarize, these
values in per-unit basis are shown in Table 2. Logically, each column in Table 1 sums 1
for the requirements. Regarding sub-requirements, the value of the part of the column
corresponding to SFC is 1, and the part of the column corresponding to emissions sums 1
too. The weight of each criterion is obtained by multiplying the weight of the requirement
by the weight of the sub-requirement, leading to 0.2, 0.267, 0.267, and 0.267 for SFC, NOx,
CO, and HC emissions, respectively. Logically, these weights also sum 1. A sensibility
analysis of the values assigned to the criteria weights will be shown in the results section.

Table 2. Criteria weights, per unit basis.

Requirement (α) Sub-Requirement (β)

SFC (0.2) SFC (1)

Emissions (0.8)
NOx (0.333)
CO (0.333)
HC (0.333)

Another important step is normalizing the decision matrix. Normalization is used to
eliminate the units of each criterion so that all the criteria become dimensionless, and to
set the ratings of different alternatives into the same range. Normalization changes the
different measurable values into comparable similar ones. Many normalization techniques
are available in the literature [39]. In the present work, the so-called linear max-min
normalization technique was employed, according to which each normalized value, Vij, is
given by:

Vij = 1 −
Xij

Xj,max
(1)

where by Xij is each value of the decision matrix. In the present work, the adequacy index
was computed by the WSM (weighted sum method), according to which, the adequacy in-
dex is given by Equation (2). This procedure is also called SAW (simple additive weighting)
or WLC (weighted linear combination). Taking into account the normalization procedure
applied, the most appropriate alternative is the one corresponding to the maximum AI.

AIi =
n

∑
j=1

wjVij (2)

whereby AI is the adequacy index, wj is the weight of the j-th criterion, and n is the number
of criteria.

2.3. ANN Analysis

In order to analyze a number of alternatives much higher than 145, an ANN was
established using the software Matlab 2021b. The general structure of an ANN is based on
interconnected nodes organized into three parallel layers: input; hidden; and output. Input
nodes contain the independent variables, whereas output nodes contain the dependent
ones. The ANN obtains information by the network through a learning process, similarly
to the human brain, i.e., imitates the learning ability of the human brain. The network used
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in the present work is illustrated in Figure 4. Five independent variables were employed,
the water to fuel ratio (W), EGR rate (E), overlap timing (O), intake valves closings (I), and
cooling water temperature (C); and one output variable, the adequacy index (AI). The 145
cases analyzed through CFD were employed as samples to train, validate, and test the
network.

There is no exact rule to define the number of hidden layers and hidden nodes. Several
methods to decide the number of the hidden layers can be found in the literature, and the
general recommendation is to employ only one hidden layer for most problems [16,40], and
the multi-layered structure is only recommended for complex problems [20]. Regarding the
number of neurons in the hidden layer, a low quantity of hidden layer neurons increases
the error. On the other hand, a high quantity of hidden layer neurons may lead to high
computational cost and over-fitting. In the present work, several networks with neurons
between 3 and 25 were tested to determine the optimum number of hidden layers for the
present work. It was found that the most accurate results were obtained with 16 neurons.

As mentioned above, the 145 alternatives analyzed through the CFD model were
employed to train, validate, and test the ANN. 101 samples, randomly selected, were used
to train the network, 22 to validate it, and 22 to test it. The performance of the network is
summarized in Figure 8. This figure illustrates the training, validation, and test regression
plots. As can be seen, the curves of the four images are basically diagonal, thus, providing
a good data fitting. The global R value, 0.99825, indicates an appropriate fit, since the
optimum is R = 1, showing that these results are suitable for the operating conditions
analyzed.
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3. Results

Using this hybrid MCDM-ANN model, 203,244,741 alternatives were analyzed under
water to fuel ratios between 0 and 50%, EGR rates from 0 to 50%, overlap timings from
60 to 120◦, intake valve closings from 510 to 570◦, and cooling water temperatures from
70 to 90 ◦C. The advantage of employing ANNs is that it is possible to analyze this huge
quantity of alternatives with a low computational cost. On the other hand, analyzing
203,244,741 cases using CFD is too computationally expensive for the current technology.
Figure 9 shows the most appropriate option provided, corresponding to the maximum
AI of these alternatives analyzed. The most appropriate configuration illustrated in this
figure presents 50% water addition, 50% EGR rate, 60◦ overlap timing, 510◦ intake valve
closing, and 78 ◦C cooling water temperature. This solution was obtained using the criteria
weights shown in Table 2. It is useful to realize a sensitivity analysis of these criteria
weights. According to this, Table 3 shows the most appropriate configuration under
different weights assigned to the consumption. In this sensitivity analysis, the emissions
were assigned equally with the remaining weight. As can be seen, if the SFC weight is
increased, the water to fuel ratio and EGR rate decrease. The reason for this is the effect
of these parameters on combustion, which is incremented. The NOx variation with water
addition and EGR rate are important too, especially with the EGR rate. The values of the
overlap timing, intake valves closing, and cooling water temperature are a compromise
between emissions and consumption. The scavenging of the combustion gases is related
to the overlap period. Short overlap periods lead to excessive quantities of residual gas
in the cylinder, thus, reducing NOx emissions, but increasing HC and CO due to a poorer
combustion. Regarding the intake valves closing, if these valves are closed early, less air
enters the cylinder. This leads to low combustion temperatures and, thus, NOx emissions.
On the contrary, CO and HC emissions are high at early intake valve closings. Regarding
the cooling water temperature, this highly affects the temperature inside the cylinder.
According to this, low values of the cooling water temperature lead to low NOx emissions,
but high CO and HC emissions, as well as consumption.
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Table 3. Most appropriate option under several criteria weights for the consumption.

ASFC W (%) E (%) O (◦) I (◦) C (◦C)

20 50 50 60 510 86

30 46 50 104 548 90

40 32 39 120 570 90

50 22 28 120 570 90

4. Conclusions

This work proposes a hybrid MCDM-ANN model for selecting the most appropriate
working parameters in the commercial marine engine Wärtsilä 6L 46. The aim is to reduce
emissions and consumption as much as possible, and five parameters were analyzed: water
addition; exhaust gas recirculation; and modification of the intake valve closing, overlap
timing, and cooling water temperature. Since it is impossible to reduce both emissions
and consumption simultaneously modifying these parameters, an MCDM model was
developed to select the most appropriate option. Also, in order to analyze a high quantity
of alternatives, an ANN was developed. 145 cases were employed to train, validate, and
test the ANN, and the data corresponding to these 145 cases were obtained through a
validated CFD model. A satisfactory prediction accuracy was obtained for the ANN. The
main advantage of the CFD model is that it provides data avoiding expensive and laborious
experimental setups. In order to obtain these data experimentally, it would be necessary
to modify the engine for each alternative analyzed. The present work shows the utility of
ANNs to analyze engines, and provide a useful tool for decision-making when selecting
engine parameters.

In future works, this methodology will be employed to analyze other important
parameters, such as injection timing, injection pressure, intake pressure, etc. Five relevant
measures were chosen for the present work, but the model can be extended to include as
many measures as data are possible to obtain.

Author Contributions: Conceptualization, M.I.L.G., J.T.M., J.M.R.L., and C.G.C.; methodology,
M.I.L.G., J.T.M., J.M.R.L. and C.G.C.; software, M.I.L.G., J.T.M., J.M.R.L. and C.G.C.; validation,
M.I.L.G.; formal analysis, M.I.L.G., J.T.M., J.M.R.L. and C.G.C.; investigation, M.I.L.G., J.T.M., J.M.R.L.
and C.G.C.; resources, M.I.L.G., J.T.M., J.M.R.L. and C.G.C.; writing—original draft preparation,
M.I.L.G.; writing—review and editing, J.M.R.L., J.T.M. and C.G.C.; visualization, M.I.L.G., J.T.M.,
J.M.R.L. and C.G.C.; supervision, J.T.M., J.M.R.L. and C.G.C. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Sinay, J.; Puškár, M.; Kopas, M. Reduction of the NOx Emissions in Vehicle Diesel Engine in Order to Fulfill Future Rules

Concerning Emissions Released into Air. Sci. Total Environ. 2018, 624, 1421–1428. [CrossRef]
2. Lamas, M.I.; Rodríguez, C.G.; Rodríguez, J.D.; Telmo, J. Numerical Model of SO2 Scrubbing with Seawater Applied to Marine

Engines. Pol. Marit. Res. 2016, 23, 42–47. [CrossRef]
3. Chríbik, A.; Polóni, M.; Lach, J. Effect of Gas Mixture Composition on the Parameters of an Internal Combustion Engine. Acta

Polytech. 2012, 52, 23–27. [CrossRef]
4. Polóni, M.; Chríbik, A. Low-Energy Synthesis Gases from Waste as Energy Source for Internal Combustion Engine. SAE Int. J.

Engines 2020, 13, 633–648. [CrossRef]
5. Seddiek, I.S.; Elgohary, M.M.; Ammar, N.R. The Hydrogen-Fuelled Internal Combustion Engines for Marine Applications with a

Case Study. Brodogradnja 2015, 66, 23–38.

http://doi.org/10.1016/j.scitotenv.2017.12.266
http://doi.org/10.1515/pomr-2016-0019
http://doi.org/10.14311/1540
http://doi.org/10.4271/03-13-05-0040


Int. J. Environ. Res. Public Health 2021, 18, 12823 10 of 11

6. El Gohary, M.M.; Ammar, N.R.; Seddiek, I.S. Steam and SOFC Based Reforming Options of PEM Fuel Cells for Marine Applications.
Brodogradnja 2015, 66, 61–76.

7. Puškár, M.; Kopas, M.; Sabadka, D.; Kliment, M.; Šoltésová, M. Reduction of the Gaseous Emissions in the Marine Diesel Engine
Using Biodiesel Mixtures. J. Mar. Sci. Eng. 2020, 8, 330. [CrossRef]
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