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Abstract: We considered a primal-mixed method for the Darcy–Forchheimer boundary value problem.
This model arises in fluid mechanics through porous media at high velocities. We developed an a
posteriori error analysis of residual type and derived a simple a posteriori error indicator. We proved
that this indicator is reliable and locally efficient. We show a numerical experiment that confirms the
theoretical results.
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1. Introduction

The Darcy–Forchheimer model constitutes an improvement of the Darcy model which
can be used when the velocity is high [1]. It is useful for simulating several physical
phenomena, remarkably including fluid motion through porous media, as in petroleum
reservoirs, water aquifers, blood in tissues or graphene nanoparticles through permeable
materials. Let Ω be a bounded, simply connected domain in R2 with a Lipschitz-continuous
boundary ∂Ω. The problem reads as follows: given known functions g and f , find the
velocity u and the pressure p such that

µ

ρ
K−1u +

β

ρ
|u|u +∇p = g in Ω,

∇ · u = f in Ω,

u · n = 0 on ∂Ω,

(1)

where µ is the dynamic viscosity, ρ denotes the fluid density, β is the Forchheimer number K
denotes the permeability tensor, g represents gravity, f is compressibility, and n is the unit
outward normal vector to ∂Ω.

We make use of the finite element method to approximate the solution of problem
(1). We present the approach by Girault and Wheeler [1], who introduced the primal
formulation, in which the term ∇ · u undergoes weakening by integration by parts. It
is shown in [1] that problem (1) has a unique solution in the space X ×M, where X :=
[L3(Ω)]2 and M := W1,3/2(Ω) ∩ L2

0(Ω) (we use the standard notations for Lebesgue and
Sobolev spaces).

2. Discrete Problem

To pose a discrete problem, we can use a family {Th}h>0 of conforming triangulations
to divide the domain Ω̄ such that Ω̄ =

⋃
T∈Th

T, ∀h, where h > 0 represents the mesh
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size. Here we follow [2] and choose the following conforming discrete subspaces of X and
M, respectively:

Xh :=
{

vh ∈ [L2(Ω)]2; ∀T ∈ Th, vh|T ∈ [P0(T)]2
}
⊂ X ,

Mh := Q1
h ∩ L2

0(Ω) ⊂ M ,

where Q1
h :=

{
qh ∈ C0(Ω); ∀T ∈ Th, qh|T ∈ P1(T)

}
.

Then, the discrete problem consists in finding (uh, ph) ∈ Xh ×Mh such that
∫

Ω

(µ

ρ
K−1uh +

β

ρ
|uh|uh

)
· vh dx +

∫
Ω
∇ph · vh dx =

∫
Ω

g · vh dx, ∀vh ∈ Xh,∫
Ω
∇qh · uh dx = −

∫
Ω

qh f dx, ∀qh ∈ Mh.
(2)

It is shown in [2] that problem (2) has a unique solution and that the sequence
{(uh, ph)}h converges to the exact solution of problem (1) in X×M. Furthermore, under
additional regularity assumptions on the exact solution, some error estimates were derived
in [2].

3. Novel Error Estimator and Adaptive Algorithm

We denote by EΩ , E∂Ω and ET , respectively, the sets of edges e belonging to the interior
domain, the boundary and the element T; he denotes the length of a particular edge e;
and hT is the diameter of a given element T. We denote by Je(v) the jump of v across the
edge e in the direction of ne, a fixed normal vector to side e. Finally, we use the operator
Ã(uh, ph) := µ

ρ K−1uh +
β
ρ |uh|uh +∇ph − g.

On every triangle T ∈ Th, we propose the following a posteriori error indicator:

θT =
(

h2
T ||Ã(uh, ph)||2[L2(T)]2 + ||∇ · uh − f ||2L2(T) +

1
2 ∑

e∈EΩ∩∂T
h−1

T ||Je(uh · n)||2L2(e) + ∑
e∈E∂Ω∩∂T

h−1
T ||uh · n||2L2(e)

)1/2

We also define the global a posteriori error indicator θ :=
(

∑
T∈Th

θ2
T

)1/2
.

Theorem 1. For the primal-mixed method (2), there exists a positive constant C1, independent of
h, and a positive constant C2, independent of h and T, such that

||(u− uh, p− ph)||X×M ≤ C1θ,

θT ≤ C2||(u− uh, p− ph)||[L3(wT)]2×W1,3/2(wT)
, ∀ T ∈ Th ,

where wT =
⋃
ET∩ET′ 6=Ø T′.

We propose an adaptive algorithm based on the a posteriori error indicator θ. Given
an initial mesh, we follow the iterative procedure described in Figure 1. Each new mesh is
generated as suggested in [3].
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Figure 1. Adaptive algorithm flux diagram.

4. Numerical Experiment

We performed several simulations in FreeFem++ [4], validating the theoretical results.
Here we select an example on an L-shaped domain, Ω = (−1, 1)2\[0, 1]2, and focus on the
data f and g so that the exact solution is

p(x, y) =
1

x− 1.1
, u(x, y) =

(
exp(x) sin(y)
exp(x) cos(y)

)
. (3)

Thus the solution has a singularity in pressure close to the line x = 1. Figure 2 shows
the mesh refinement by the adaptive algorithm. Figure 3, bottom, represents the evolution
with respect to degrees of freedom (DOF) of error and indicator; on the right, we can
observe the evolution of the efficiency index with DOF.

Figure 2. Example 1. Initial mesh (270 DOF) on the (top); intermediate adapted mesh with 1512 DOF
on the (bottom).
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Figure 3. Example 1. (Top): Error and indicator evolution vs. DOF. (Bottom): Efficiency index vs.
DOF.

5. Discussion

The adaptive algorithm was tested on an example with a singularity. From Figure 2 we
can observe that the algorithm refined the mesh near the singularity, as expected. Since it is
an academic example with a known solution, we could compute the exact error. The graphs
in Figure 3 confirm that the error was lower for the adaptive refinement. Additionally, since
the exact error and estimator followed close to parallel lines, we confirm that the indicator
gives a consistent measure of the error. This could also be checked by the efficiency index,
which is the ratio of indicator to exact total error.
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