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Abstract

This doctoral thesis is dedicated to functional regression for scalar response. In par-

ticular, we focus on functional semiparametric models, which combine the practical

advantages of parametric and nonparametric approaches, surpassing both method-

ologies. Accordingly, several semiparametric models involving a functional single-

index component were studied from a theoretical and practical perspective. First,

for the functional single-index model (FSIM) and the semi-functional partial lin-

ear single-index model (SFPLSIM), we provide uniform consistency results (over all

parameters involved) for kernel- and k-Nearest-Neighbours-based statistics related

to the estimation of the semiparametric component. Second, for the sparse semi-

functional partial linear single-index model (SSFPLSIM), we develop a variable se-

lection procedure in the linear component based on penalized least squares (PLS).

The good behaviour of this method is theoretically assured (rates of convergence of

the estimators are obtained, as well as asymptotic behaviour of the variable selec-

tion procedure). Third, the SSFPLSIM is adapted to the case in which covariates

with linear effect come from the discretization of a curve. For this new model, the

multi-functional partial linear single-index model (MFPLSIM), the variable selection

problem was also studied. Consequently, two new algorithms were proposed (provid-

ing theoretical results that ensure their good performance) to solve the inefficiency

of the PLS method when it is directly applied to the MFPLSIM. For all the models

and procedures mentioned above, theoretical results are accompanied by both sim-

ulation studies and real data applications which illustrate the good performance of

the proposed methodology in practice.
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Resumo

Esta tese está adicada ao estudo da regresión funcional con variable resposta escalar.

En particular, centrámonos en modelos funcionais semi-paramétricos, os cales com-

binan as vantaxes prácticas dos enfoques paramétrico e non-paramétrico, superando

a ambas metodolox́ıas. Desta maneira, estudáronse, tanto dende o punto de vista

teórico como dende a perspectiva práctica, varios modelos semi-paramétricos que

involucran unha compoñente funcional single-index. En primeiro lugar, para o func-

tional single-index model (FSIM) e para o semi-functional partial linear single-index

model (SFPLSIM) establecemos resultados de consistencia uniforme (sobre todos

os parámetros involucrados) para os estat́ısticos de tipo núcleo e tipo k-veciños-

máis-próximos relacionados coa estimación da compoñente semi-paramétrica do mo-

delo. En segundo lugar, para o sparse semi-functional partial linear single-index

model (SSFPLSIM) desenvolvemos un procedemento de selección de variables na

compoñente linear baseado en mı́nimos cadrados penalizados (PLS, iniciais de pe-

nalized least squares). O bo comportamento deste método asegurouse dende o punto

de vista teórico (obtendo taxas de converxencia dos estimadores, aśı como o com-

portamento asintótico do procedemento de selección de variables). En terceiro lugar,

o SSFPLSIM adaptouse ao escenario no cal as covariables con efecto linear proveñen

da discretización dunha curva. Para este novo modelo, o multi-functional partial

linear single-index model (MFPLSIM), estudouse tamén o problema da selección de

variables e propuxéronse dous novos algoritmos (dos que aseguramos teoricamente

o seu bo comportamento) para resolver a ineficacia do método PLS cando se aplica

directamente ao MFPLSIM. Para todos os modelos e procedementos citados, os re-

sultados teóricos acompañáronse de estudos de simulación e aplicacións a datos reais

que ilustran o bo comportamento na práctica da metodolox́ıa presentada.
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Resumen

Esta tesis está dedicada al estudio de la regresión funcional con variable respuesta

escalar. En particular, nos centramos en modelos funcionales semi-paramétricos, los

cuales combinan las ventajas prácticas de los enfoques paramétrico y no-paramétrico,

superando a ambas metodoloǵıas. De esta forma, se estudiaron, tanto desde el punto

de vista teórico como desde la perspectiva práctica, varios modelos semi-paramétricos

que involucran una componente funcional single-index. En primer lugar, para el func-

tional single-index model (FSIM) y para el semi-functional partial linear single-index

model (SFPLSIM) establecemos resultados de consistencia uniforme (sobre todos los

parámetros involucrados) para los estad́ısticos de tipo núcleo y de tipo k-vecinos-

más-próximos relacionados con la estimación de la componente semi-paramétrica del

modelo. En segundo lugar, para el sparse semi-functional partial linear single-index

model (SSFPLSIM) desarrollamos un procedimiento de selección de variables en la

componente linear basado en mı́nimos cuadrados penalizados (PLS, iniciales de pe-

nalized least squares). El buen comportamiento de este método se ha asegurado desde

el punto de vista teórico (obteniendo tasas de convergencia de los estimadores, aśı

como el comportamiento asintótico del procedimiento de selección de variables). En

tercer lugar, el SSFPLSIM se ha adaptado al escenario en el cual las covariables con

efecto linear provienen de la discretización de una curva. Para este nuevo modelo,

el multi-functional partial linear single-index model (MFPLSIM), se ha estudiado

también el problema de selección de variables y se propusieron dos nuevos algorit-

mos (de los que aseguramos teóricamente su buen comportamiento) para resolver la

ineficiencia del método PLS cuando se aplica directamente al MFPLSIM. Para todos

los modelos y procedimientos citados, los resultados teóricos se acompañaron de estu-

dios de simulación y aplicaciones a datos reales que ilustran el buen comportamiento

en la práctica de la metodoloǵıa presentada.
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Introduction

Nowadays, Functional Data Analysis (FDA) is one of the main disciplines of Statis-

tics. The emergence of functional variables in applications made it necessary to adapt

the traditional methodology for finite-dimensional data to these infinite-dimensional

structures, as well as the development of new statistical tools. The point is that

the direct use of traditional techniques would force us to work with the discretized

observations of functional variables. However, this way of proceeding would have

at least three important disadvantages: the existence of strong correlations between

the resulting variables, the waste of the functional origin or the dimension of the

problem (the ratio between sample size and number of variables).

Precisely, dimensionality was one of the first concerns in the FDA literature.

Researchers realized that transforming the functional data sample into elements of

finite-dimensional spaces allows a simpler statistical treatment and easier practical

interpretation. These facts led to the development of dimension reduction techniques,

such as functional principal component analysis (see Dauxois et al. [30], Silverman

[103], Boente and Fraiman [16] or Li and Hsing [73]), partial least squares (see Preda

and Saporta [91], Krämer et al. [70], Delaigle and Hall [32] or Aguilera et al. [2] for

the regression context, Preda et al. [92] for the supervised classification setting and

Reiss and Ogden [99] or Febrero-Bande et al. [43] for a comparison between functional

principal component and partial least squares approaches) or variable selection in

the regression framework (for the extension of ideas in the multivariate context, as

Tibshirani [104] or Fan and Lv [40], see Aneiros and Vieu [4] or Aneiros and Vieu

[5]).

The mentioned tools have been used in the functional regression setting (mainly

in linear modelling). Nevertheless, recent surveys highlighted the need to go further
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Introduction

and develop flexible dimension reduction models for functional regression (see Cuevas

[29], Goia and Vieu [55], Vieu [108] or Aneiros et al. [8]). For this purpose, semipara-

metric ideas seem to be the suitable candidates. Semiparametric modelling combines

the flexibility of the nonparametric approach with the advantages of involving para-

meters in the estimation (see Goia and Vieu [54]): on the one hand, interpretability

in practical applications; on the other hand, less sensitivity to dimension effects.

However, functional semiparametric regression is still a very undeveloped field.

For these reasons, this dissertation deals with several semiparametric models

that involve one or more functional covariates, focusing on the estimation task. The

exposition will be organized as explained below:

� Chapter 1 provides an introduction to the statistical framework in which this

dissertation is located. The semiparametric regression models that we are

going to analyse are presented, together with other regression models related

to them. These models will be used in applications to compare results.

� Chapter 2 develops a new automatic and location-adaptive procedure for es-

timating regression in the functional single-index model (FSIM). This proced-

ure is based on k-Nearest-Neighbours (kNN) ideas. The asymptotic study

includes results of uniform consistency over all the parameters involved in the

estimation by means of the kNN-based statistic. In addition, we establish

analogous asymptotic results for the Nadaraya-Watson kernel-based statistic,

which are used as preliminary tools. The results obtained generalize to the

case of unknown functional index those provided by Kara-Zaitri et al. [66, 67]

for the functional nonparametric model. One of the main characteristics of

the convergence rates obtained is that they are similar to those achieved in

the one-dimensional setting. This feature gives evidence of the dimension re-

duction property of the studied methodology. An important consequence of

these asymptotics is that they provide theoretical validation to automatic data-

driven selectors of the involved parameters, making both procedures (kernel-

and kNN-based one) directly usable in practice. The local feature of the kNN

approach ensures higher predictive power compared to usual kernel estimates.

This fact was illustrated in a simulation study and in an application to a chem-

ometric dataset (Tecator’s data). The investigations developed in this chapter
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are published in Novo, Aneiros, and Vieu [87].

� Chapter 3 extends uniform consistency results obtained in Chapter 2 to a

more complex model, which combines partial linear ideas with a functional

single-index component, the semi-functional partial linear single-index model

(SFPLSIM). Asymptotics were accompanied by simulated experiments which

highlight the advantages of the kNN procedure over alternative techniques. In

addition, the real data application based on Tecator’s data shows how semi-

parametric modelling outperforms alternative modelling ideas. The results

obtained in this chapter are published in Novo, Aneiros, and Vieu [89].

� Chapter 4 aims to address dimensionality reduction in the regression context

when the predictors are a mixture of functional variable and high-dimensional

vector. A flexible model is proposed, combining both sparse linear ideas and

semiparametric modelling, the sparse semi-functional partial linear single-index

model (SSFPLSIM). A procedure for selecting relevant variables in the linear

component of the model is presented. This procedure is based on penalized

least squares (PLS). A wide variety of asymptotic results is provided: this

includes rates of convergence of the estimators, as well as the asymptotic be-

haviour of the variable selection procedure. The rates of convergence obtained

for the estimator of coefficients in the linear component are the same than those

provided by Aneiros et al. [7] in a less complex setting (and the same reached

by Fan and Lv [40] in the linear regression context). Furthermore, we showed

that the proposed variable selection procedure satisfies the oracle property (see

Fan and Li [38]) and that the functional single-index component is estimated

with the same rate as if the functional variable were unidimensional (support-

ing the dimension reduction property of the proposed methodology). Practical

issues are analysed through finite sample simulated experiments, while an ap-

plication to Tecator’s data illustrates the usefulness of our methodology. The

investigations developed in this chapter are published in Novo, Aneiros, and

Vieu [88].

� In Chapter 5, a new sparse semiparametric model is proposed, which incorpor-

ates the influence of two functional random variables in a scalar response in
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a flexible and interpretable way. One of the functional covariates is included

through a single-index structure, and the other one linearly, but through the

high-dimensional vector formed by its discretized observations. That is, this

model is an adaptation of the SSFPLSIM to the case of real covariates in the

linear component with functional origin. However, the direct application of the

methodology presented in Chapter 4 is unfeasible: on the one hand, a lot of

computational time is needed to carry out variable selection, even for moderate

values of the discretization size; on the other hand, the variable selection pro-

cedure may be negatively affected by the strong correlations between the covari-

ates with linear effect. Accordingly, two new algorithms are presented to select

relevant variables in the linear component and to estimate the MFPLSIM. Both

procedures take advantage of the functional origin of the linear covariates. The

first method is a fast algorithm which provides results in reasonable time, even

for very large values of the discretization size. The second algorithm is a refined

procedure, which adds a second step to the fast algorithm, allowing to com-

plete and specify the set of relevant variables selected by the fast method (the

second algorithm is an adaptation of the variable selection method presented

in Aneiros and Vieu [4]). Since the second algorithm proceed in two stages,

it requires dividing the sample into two parts. Some asymptotic results will

theoretically support both methods. Finite sample experiments will show the

scope of application of both algorithms: the first method provides a solution

(without loss in predictive power) to the huge computational time required

by standard variable selection methods to estimate the MFPLSIM, and since

it does not need the division of the sample, it provides better results under

small sample size than the second algorithm; the second method completes the

set of relevant linear covariates provided by the first, improving its predictive

efficiency in the case of enough sample size. A real data application will show

the great applicability of the presented methodology, due to its high predictive

power, the interpretability of the outputs and the low computational cost. The

investigations contained in this chapter are part of the paper Novo, Aneiros,

and Vieu [90], which was submitted for publication.

� In Chapter 6 a brief summary of conclusions is presented, together with some
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investigation ideas to be developed in the future.
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Chapter 1

Towards functional semiparametric

regression

1.1 Introduction

Nowadays, technological advances in collecting and storage data make more and more

frequent having observations of variables which are measured over a continuum1(at

a time interval, over a surface. . . ). As a consequence, measurements in form of

curves, images or even more complex structures are obtained, instead of scalars or

multivariate vectors. Then, in many applied sciences (as medicine, environmetrics,

chemometrics, biometrics, econometrics. . . ) the study of real phenomenons produces

observations of functional variables, that is, functional data.

To better understand what functional data are, let us start introducing two data-

sets in the field of chemometrics containing functional variables. In chemometrics for

analysing and/or detecting some components of a chemical mixture, a common pro-

cedure is to observe spectrometric data. This kind of data is obtained by measuring

light absorbance of the mixture at several different wavelengths (which will pro-

duce functional data). In this way, lengthy, expensive (and sometimes dangerous)

chemical experiments can be avoided just by analysing the spectrometric data.

The first chemometric dataset that we are going to present is the well-known

1Or which can be assumed to be measured over a continuum (for instance, values are obtained
at many discrete time points).
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Tecator’s data (for more details on the description, see Ferraty and Vieu [47]).

Given 215 finely chopped pieces of meat, Tecator’s data contain their corresponding

near-infrared absorbance spectra observed on 100 equally spaced wavelengths in the

range 850–1050 nm. Tecator’s data are available at http://lib.stat.cmu.edu/

datasets/tecator.

Figure 1.1: Original chemometric data: absorbance versus wavelength.
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Figure 1.1 plots absorbance versus wavelength for 15 randomly selected pieces of

meat. As can be observed, each unit clearly appears as a discretized curve. Because

of the fineness of the grid, we can consider each of them as a continuous curve. Figure

1.2 displays samples of both the absorbance curves and their second derivatives.

Tecator’s dataset also contains measurements of the fat percentage of each piece

of meat. Obtaining this scalar variable requires more expensive and longer chemical

experiments, so spectrometric data is used to predict its value in a new piece of

meat. In statistical literature, the problem of predicting the fat content using spec-

2
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trometric curves was widely studied and it will be also of our interest throughout

this dissertation.

Figure 1.2: Sample of 100 absorbance curves (left panel) together with their second
derivatives (right panel).
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The second chemometric dataset we are going to present is known as Sugar

data. At a sugar plant in Scandinavia, 268 samples were obtained by sampling

sugar every 8 hours for 3 months. For each sample, the absorbance spectra observed

in 571 equally spaced wavelengths in the range 275–560 nm (measured in 0.5 nm

intervals) was obtained. But in this case, measurements at two different excitation

wavelengths were recorded, generating two functional variables: absorbance spectra

at excitation wavelengths 240 nm (the first functional variable, which will be denoted

as ζ) and at excitation wavelengths 290 nm (the second functional variable, which

will be named X ). Sugar dataset is available at http://www.models.kvl.dk/Sugar_

Process. Samples of both curves can be seen in Figure 1.3.

3

http://www.models.kvl.dk/Sugar_Process
http://www.models.kvl.dk/Sugar_Process


Chapter 1. Towards functional semiparametric regression

Figure 1.3: Left panel: Absorbance curves at excitation wavelengths 240 nm (ζ).
Right panel: Absorbance curves at excitation wavelengths 290 nm (X ).
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As part of the experiment, the ash content of sugar, Y , was also determined for

each sample. The practical question here is whether one can predict the value of ash

content for a new sample simply by using the two functional variables derived from

the spectrometric analysis. In this dissertation, we will discuss this issue throughout

Chapter 5.

From a statistical point of view, a variable X is called a functional variable

if it takes values in an infinite-dimensional space (the functional space). Then, a

functional dataset is composed of observations of n functional variables (X1, . . . ,Xn)

identically distributed as X . In this case, “data atoms” are random functions and

datasets contain samples of these random functions. Functional variables have an

important distinctive feature: they are infinite-dimensional, in contrast to usual

data types found in Statistics. Therefore, statistical methods used in non-functional

(finite-dimensional) setting fail when we work with functional data and new specific

4
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statistical methodology had to be developed.

The term Functional Data Analysis (FDA) was coined by Ramsay [94] and

Ramsay and Dalzell [95] to refer to those statistical tools designed for dealing with

functional data. But the origins of FDA are older than the name given to the

area, and can be dated to the mid-20th century with the works of Karhunen [68]

or Grenander [56] (see Section 2 in Müller [84] for an overview in the early history

of FDA). However, scientific production in FDA was sporadic at first. The pop-

ularization FDA come with the end of the nineties as functional data started to be

common in practical applications and as monographs reviewing a selection of topics

in FDA appear (for instance, Bosq [17], Ramsay and Silverman [96], Ramsay and

Silverman [97] or Ferraty and Vieu [47]). In the last two decades, FDA became one

of the main topics in Statistics and there is an extensive literature in FDA covering

multiple areas (see Wang et al. [112] for an overview): principal component analysis,

clustering and classification for functional data, correlation and functional regres-

sion. . . but there are still many methodological challenges for analysing functional

data (see, for instance, Aneiros et al. [9] for an overview of methodological issues in

FDA).

Precisely, regression became one of the trending topics in FDA. Regression is a

tool that is commonly used with two main objectives: on the one hand, to model

the dependence between a variable of interest (the response variable) and other vari-

ables (the explanatory variables or covariates) which often are easier to obtain or to

measure; on the other hand, using the proposed model to predict the value of the

response variable for new values of the covariates. Regression problems have been

widely studied for real or multivariate variables and, as functional data appear in

applications, researchers became increasingly interested in relating functional vari-

ables to other variables of interest (functional or not). As a consequence, there is an

extensive literature on functional regression modelling (see Greven and Scheipl [57]

for a general presentation), for both functional response and/or functional covari-

ates. Regarding the case of scalar response with functional covariates, this literature

focused mainly on parametric models2 (see Chapter 11 of Hsing and Eubank [63]) or

on nonparametric models (popularized by Ferraty and Vieu [47]; see Geenens [53],

2Let X be a random variable valued in some infinite-dimensional space H and let γ be a mapping
defined on H and depending on the distribution of X . A model for the estimation of γ consists in

5
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Ling and Vieu [76] for recent surveys), but semiparametric regression is still a very

underdeveloped field in FDA (see, however, Goia and Vieu [54] for a review). As

will be discussed throughout this dissertation, semiparametric framework is a good

middle point between parametric and nonparamentric methodologies, outperform-

ing both of them in many senses: it allows flexibility (unlike parametric models) and

interpretability and dimension reduction (unlike nonparametric models).

In order to briefly present the framework in which this dissertation is placed, this

chapter is dedicated to making an introduction to the functional semiparametric

regression models that we are going to study. For this, we will also describe other

models proposed in literature, which are a pillar for the studied ones and with which

we will compare them. The presentation will start from the simplest models to finally

deal with the more complex structures that we will analyse in this thesis. In Section

1.2 we are going to introduce models with scalar response and only one functional

covariate. In Section 1.3, we will present models which combine in an additive way

scalar covariates with linear effect and a functional covariate with non-linear effect.

Finally, in Section 1.4 we will make an introduction to sparse regression, focused

on the models that we are going to study and in those with which we will compare

them.

1.2 Univariate functional models for scalar response

In this section we are going to make a brief review of models with scalar response

variable and a single covariate, which has functional nature.

1.2.1 The functional linear model

The natural extension of the traditional simple linear model is the functional linear

model (FLM) proposed in Cardot et al. [24]. The FLM is a parametric model defined

introducing some constraint of the form
γ ∈ C.

The model is called a functional parametric model for the estimation of γ if C is indexed by a finite
number of elements of H. Otherwise, the model is called a functional nonparametric model. For
more details on the definition see Ferraty and Vieu [47].

6
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by the relationship

Y = γ0 +

∫
I
γ(t)X (t)dt+ ε, (1.1)

where Y is a scalar random variable, while X (t) with t ∈ I is a functional random

covariate valued in L2(I); γ(·) is an unknown coefficient-function (square integrable)

defined on I and γ0 is an unknown real parameter. Finally, ε denotes de random

error verifying E(ε|X ) = 0.

Estimation of model (1.1) has been extensively studied in literature: Cardot et al.

[24] use functional principal component analysis to estimate γ(·), Cardot et al. [25]

propose procedures based on B-spline basis, Ramsay and Silverman [97] estimate

model (1.1) using Fourier basis functions, Preda and Saporta [91] carry out estima-

tion using partial least squares procedure. . .

The interpretability of the estimation of γ(·) is one of the main advantages of the

FLM. In fact, this feature becomes even more important in practical applications of

FDA because of infinite-dimensionality of the data. However, the FLM assumes a

linear relation between the response and the functional covariate, a hypothesis which

is rarely verified in practice and which could be very restrictive in many contexts.

1.2.2 The functional nonparametric model

An alternative to the FLM is the functional nonparametric model (FNM), proposed

in Ferraty and Vieu [46]. The FNM is given by the expression

Y = m(X ) + ε. (1.2)

In model (1.2) the relation between the scalar response, Y , and the functional random

covariate, X , is modelled by an unknown non-linear operator m(·) : H → R. Finally,

ε is the random error verifying E(ε|X ) = 0.

Compared to the FLM, the main advantage of the FNM is its flexibility: there is

no assumption about the form of the operator m(·). This fact gives the model great

applicability in practice with good predictive power. However, the lack of parameters

makes it difficult to interpret estimations of the FLM.

7
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1.2.2.1 Estimators

Since the estimation of model (1.2) is related to the methodology that we are going

to present in this dissertation, we will do a more detailed explanation about the

estimation procedure. To estimate m(·) following a nonparametric approach, the

functional covariate X is assumed to be valued in a semi-metric space H (in order

to quantify proximity between functional elements). Let us denote by d(·, ·) a semi-

metric3 in H.

Ferraty and Vieu [47] propose the functional extension of the classical Nadaraya-

Watson kernel estimator (see Nadaraya [86] and Watson [113]) for estimating the

FNM (1.2). That is, given a sample {(Yi,Xi)}ni=1 of n pairs independent and identi-

cally distributed (i.i.d.) to (Y,X ), which verify the FNM (1.2):

Yi = m(Xi) + εi (i = 1, . . . , n),

the kernel estimator of m(·) is given by the expression

m̂(χ) =

∑n
i=1 YiK (h−1d(Xi, χ))∑n
i=1 K (h−1d(Xi, χ))

, ∀χ ∈ H, (1.3)

where h ∈ R+ is the bandwidth, d is the semi-metric and K is the real valued kernel.

Some observations should be made about expression (1.3):

� Note that the main difference between expression (1.3) and the Nadaraya-

Watson estimator in the finite-dimensional case is the presence of the semi-

metric for measuring proximity between functional elements. Since H is an

infinite-dimensional space, the equivalence between norms fails (in contrast to

what happens in the finite-dimensional Euclidean space). Therefore, in the

functional case we must pay special attention to the choice of the semi-metric.

� Since ∀χ1, χ2 ∈ H, the value of d(χ1, χ2) is always a non-negative quantity,

3d is a semi-metric on some space H, if verifies:

1. ∀χ ∈ H, d(χ, χ) = 0.

2. ∀χ1, χ2, χ3 ∈ H, d(χ1, χ2) ≤ d(χ1, χ3) + d(χ3, χ2).

For details about semi-metrics, see Chapter 3 in Ferraty and Vieu [47].
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K must have non-negative support. This leads to the use of asymmetrical

functions for kernel as in the multivariate case (unlike the univariate case).

Estimator (1.3) was widely studied in literature: rates of convergence of the estimator

(1.3) can be seen in Ferraty and Vieu [46] or in Ferraty and Vieu [47], and for recent

results about (1.3) see, for instance, Kara-Zaitri et al. [67].

An alternative to the kernel estimator is the use of the k-Nearest-Neighbours

(kNN) estimator. The kNN procedures are based on the estimation in each element

of the considered space using only the k sample observations that are closest to this

element. The kNN estimator of m(·), proposed in Burba et al. [22], can be seen as

an extension of the kernel estimator and is given by the expression

m̂∗(χ) =

∑n
i=1 YiK

(
H−1
k,χd(Xi, χ)

)∑n
i=1K

(
H−1
k,χd(Xi, χ)

) , ∀χ ∈ H, (1.4)

where k ∈ Z+ is a smoothing factor and K is an asymmetrical kernel. In addition,

we have denoted

Hk,χ = min

{
h ∈ R+ such that

n∑
i=1

1B(χ,h)(Xi) = k

}
, (1.5)

with

B(χ, h) = {z ∈ H : d (χ, z) ≤ h} . (1.6)

Note that, unlike the kernel case, in the kNN estimator (1.4) the smoothing para-

meter Hk,χ (1.5) depends on χ and on k. For that reason, kNN ideas have been

used in early nonparametric one-dimensional literature to build location-adaptive4

smoothers (see e.g. Collomb [28] or Devroye et al. [33]), and they have recently been

extended to nonparametric FDA (see, for instance, Biau et al. [15] and Kara-Zaitri

et al. [66] for recent results, and Section 2.2 in Ling and Vieu [76] for a survey).

The kNN estimator is more appealing than the kernel one for two reasons. On

the one hand, it involves a local smoothing factor Hk,χ making it possible to capture

4Note that, in nonparametric statistics, an estimator is said to be “location-adaptive” when the
smoothing parameter depends on the element in which one wishes to estimate, χ; in the particular
case of nonparametric regression estimation by means of the kNN estimator, the corresponding
smoothing parameter is a bandwidth depending on the fixed value k as well as on χ.

9



Chapter 1. Towards functional semiparametric regression

local features of the data (while the smoothing factor h of the kernel statistic does

not depend on χ). On the other hand, this local smoothing factor depends only on

a discrete parameter k taking values in the finite set {1, 2, . . . , n}. This fact makes

it much easier to select k in practice than the bandwidth h appearing in kernel

methods (which takes values in a continuous interval). Nevertheless, the price to

pay for such flexibility of the procedure is that the theoretical properties are much

more difficult to analyse (because of the randomness of the smoothing factor Hk,χ,θ).

More precisely, neither of the two terms in the ratio (1.4) can be written as a sum

of independent and identically distributed variables (as can be written those that

appear in (1.3)); therefore their analysis will require much more sophisticated tools

than standard limit theorems for i.i.d. sequences.

1.2.3 The functional single-index model

A nice middle-point between the FLM and FNM is the functional single-index model

(FSIM) proposed in Ferraty et al. [48]. The FSIM is a semiparametric model given

by the expression

Y = r (〈θ0,X〉) + ε,

where Y denotes a scalar response X is a functional explanatory random variable

valued in a separable Hilbert space H with inner product 〈·, ·〉, ε is a random error

verifying E (ε|X ) = 0, θ0 ∈ H is the functional index and r(·) is the unknown link

function. As usual, it is assumed that an only index of X is sufficient to summarize

all the information carried in X to predict Y . In this way, the functional index θ0

appears as a filter allowing the extraction of the part of X explaining the response

Y (see Ait-Säıdi et al. [3]).

The FSIM is the first model of study in this dissertation. In fact, Chapter 2

is devoted to contributions on its estimation (both from theoretical and practical

point of view). The FSIM can be seen as an extension of the FLM (see Hsing and

Eubank [63] for discussion), as well as a special case of the FNM (see Ferraty and

Vieu [47]). In fact, the FSIM is an appealing trade-off between these two approaches.

On the one hand, it is much more flexible, and hence more reliable in practice than

the parametric model (1.1). On the other hand, it presents much less sensitivity

10
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to dimensionality effects than the nonparametric model (1.2) since it involves the

estimation of the one-dimensional function r(·) instead of the nonlinear infinite-

dimensional operator m(·). These facts allow us to say that the FSIM is a nice

competitor for models (1.1) and (1.2).

1.3 Semi-functional partial linear regression for

scalar response

In practical applications it is usual to find more than one covariate. In particular, it

is common the situation in which, in addition to a functional explanatory variable,

there are several scalar variables related to the response. For instance, in Tecator’s

dataset there are also measurements of the percentage of protein and the percentage

of moisture for each piece of meat, which can also help to predict the fat content.

In these situations partial linear ideas could be an interesting approach. In this

section, we will present some regression models which combine partial linear ideas

with nonparametric or semiparametric modelling.

1.3.1 The semi-functional partial linear model

The first model that we are going to mention is the semi-functional partial linear

model (SFPLM) proposed in Aneiros-Pérez and Vieu [11]. The SFPLM is given by

the expression

Y = X1β01 + · · ·+Xpβ0p +m (X ) + ε, (1.7)

where Y denotes the scalar response, (X1, . . . , Xp)
> is a vector of real random co-

variates while X is a explanatory variable of functional nature valued in a semi-

metric space; (β01, . . . , β0p)
> is the vector of unknown real coefficients and m(·)

denotes an unknown real-valued operator; ε denotes the random error verifying

E(ε|X1, . . . , Xp,X ) = 0.

Estimation of the SFPLM was widely studied in literature (see Aneiros-Pérez and

Vieu [11], Aneiros-Pérez and Vieu [13] or Shang [101] for estimation based on kernel

procedures and Ling et al. [77] for estimation based on kNN methods) as well as

applications and extensions (see Aneiros-Pérez and Vieu [12] for applications of this
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model to time-series prediction or Lian [74] for the extension to the case in which

the linear variable is also of functional nature). This literature showed that the

SFPLM provides both interesting asymptotics and good practical behaviour, since it

combines the interpretability of the effect of the linear variables with the flexibility of

the effect of the functional variable. However, as the functional variable enters in the

model nonparametrically, this component of the model has the usual disadvantages

of lack of interpretability and sensitivity to dimensionality effects of the FNM.

1.3.2 The semi-functional partial linear single-index model

An alternative to the SFPLM is the semi-functional partial linear single-index model

(SFPLSIM), firstly presented in Wang et al. [110]. The SFPLSIM is given by the

relationship

Y = X1β01 + · · ·+Xpβ0p + r (〈θ0,X〉) + ε,

where Xj (j = 1, . . . , p) and Y are real random variables, while X is a functional

random variable valued in a separable Hilbert space H with inner product denoted

by 〈·, ·〉. ε denotes a random error verifying E (ε|X1, . . . , Xp,X ) = 0. The vector

βββ0 = (β01, . . . , β0p)
> ∈ Rp, the functional direction θ0 ∈ H and the link real-valued

function r(·) are supposed unknown. As in the FSIM, it is assumed that an only

index of X is sufficient to summarize all the information carried in X to predict Y ,

and in this case, also to predict X1, . . . , Xp.

The SFPLSIM is the second model that we are going to analyse in this disserta-

tion: Chapter 3 is devoted to contributions related to the estimation task, both from

practical and theoretical perspective. In the literature, the model presented in this

section was mainly studied in the case in which covariates both in the linear and the

semiparametric component are of finite-multidimensional (not functional) nature.

That is the case of the partially linear single-index model (PLSIM) introduced in

Carroll et al. [26]. The SFPLSIM arises from the need to build a model that takes

care of both the functional X using functional single-index ideas (see, for instance,

Ait-Säıdi et al. [3], Chen et al. [27] or Ma [81]) and of the multivariate covariate

using partial linear ideas (see e.g. Aneiros-Pérez and Vieu [11] or Feng and Xue

[45]). That combination of ideas provides a flexible model with a great advantage in

12
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practice in comparison with the SFPLM: all covariates (functional or not) enter in

the model involving an interpretable parameter. Furthermore, the SFPLSIM inherits

the characteristic dimension reduction property of the FSIM.

1.4 Sparse regression for scalar response

Another frequent situation in practical applications is the case in which there are a

very large number of observed real covariates, pn, but only a few of them, sn, have a

real effect on the response variable. From a statistical point of view, that is a typical

sparse regression problem. In this situation, the estimation of the model involves a

previous/simultaneous task: using a variable selection method in order to discard

the non-influential variables.

In this section we are going to present three sparse models: the first one belongs

to the non-functional framework, but it helps to present ideas which will be used

later in this dissertation; the second model and the third one also involve a func-

tional covariate and can be seen as an extension of the SFPLM and the SFPLSIM,

respectively.

1.4.1 The sparse linear model

Sparse regression problem was firstly studied in the multivariate/high-dimensional

context. The sparse linear model (SLM) is given by the expression

Y = β00 +X1β01 + · · ·+Xpnβ0pn + ε, (1.8)

where Y is the real response and X1, . . . , Xpn are real random covariates; in addition,

βββ0 = (β00, β01, . . . , β0pn)> is the vector of unknown real parameters. As usual, ε is

the random error verifying E(ε|X1, . . . , Xpn) = 0. Moreover, only sn from the pn

covariates have an influence on the response (that is, only sn covariates are associated

with β0j 6= 0).

The production in variable selection procedures for model (1.8) started with naive

ideas such as stepwise regression (backward (Efroymson [36]), forward (Weisberg

[114]) or both), forward-stagewise regression or best subset regression (Furnival and

13
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Wilson [52]). However, these methods are computationally intensive, unstable (see

Breiman [20] or Fan and Li [38]) and it is hard to derive sampling properties. They

are “discrete procedures” (variables are either selected or discarded), so they often

exhibit high variance, and therefore, in some cases they do not reduce the prediction

error of the full model. For that, other techniques appeared, like shrinkage methods

(also known as regularization, penalty-based or penalized methods). Shrinkage proce-

dures are more continuous, and do not suffer as much from high variability (see Hastie

et al. [62]). Most of these procedures attempt to select variables automatically and

simultaneously (a notorious exception is bridge regression for Lδ norms with δ > 1;

see Frank and Friedman [51]). These methods are based on adding a penalization

term in the estimation task which generates a sparse solution, in the sense that some

estimated coefficients are zero. Penalized methods are highly developed. Having a

sample {(Xi1, . . . , Xipn , Yi)}ni=1 of n vectors i.i.d to (X1, . . . , Xpn , Y ), the penalized

estimator of the vector of unknown parameters, is the solution of the optimization

problem

β̂ββ0 = arg min
βββ∈Rpn

(L(βββ) + P(βββ)) , (1.9)

where L(·) is a real-valued function which depends on the model and on its estim-

ation procedure; if the estimation is made through penalized least squares, then

L(βββ) = (YYY −XXXβββ)>(YYY −XXXβββ), where YYY = (Y1, . . . , Yn)> , XXX = (XXX1, . . . ,XXXn)> and

XXX i = (Xi1, . . . , Xipn)> (i = 1, . . . , n). P(·) is a penalty function and depends on a

parameter λ > 0 which controls the amount of penalizations, and then, the sparse-

ness of the resultant vector.

The penalty function employed has a big influence to the properties of the de-

rived estimator (see Fan and Li [38]) and in the literature there are several pro-

posals for this penalization term. Among penalty functions, the majority of them

are based on norms. Probably the most famous shrinkage method based on norms

was proposed in Tibshirani [104], where L1 penalty was used P(βββ) = λ
∑pn

j=1 |βj|.
He gave the name least absolute shrinkage and selection operator (LASSO) method

to the combination of this penalty with the least squares procedure. However,

some objections emerged about this penalty. On the one hand, LASSO estima-

tors do not satisfy oracle properties (see Fan and Li [38]). On the other hand,

Meinshausen and Bühlmann [83] showed that in LASSO the optimal λ for predic-
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tion gives inconsistent variable selection results. For that, other penalties were stud-

ied. Zou [119] proposed adaptive LASSO, where the penalty term has the form

P(βββ) = λ
∑pn

j=1wj|βj| and wj with j = 1, . . . , pn are known weights. They showed

that if the weights are data-dependent and cleverly chosen, then the adaptive LASSO

estimators can have the oracle properties. Another famous proposal is the elastic-

net penalty (see Zou and Hastie [120]) which is a compromise between L1 and L2

penalties: P(βββ) = λ2

∑pn
j=1|βj| + λ1

∑pn
j=1 β

2
j . In a general way, Huang et al. [64]

studied bridge penalties P(βββ) = λ
∑pn

j=1|βj|δ (related with the Lδ norm) and showed

that they verify the oracle property for 0 < δ < 1. In addition, a robust approach

was studied in Wang et al. [111], where instead of least squares estimation, they used

least absolute deviation (LAD) with L(βββ) =
∑n

i=1|Yi −
∑pn

j=1 βjXij| combined with

L1 penalty (LAD-LASSO).

Probably the main competitor of penalties based on norms is the proposal in Fan

[37] later studied in Fan and Li [38]: the smoothly clipped absolute deviation penalty

(SCAD) defined, for a > 2, as

P(βββ) =

pn∑
j=1

Pλ(βj) where Pλ(u) =


λ |u| |u| < λ,

(a2−1)λ2−(|u|−aλ)2

2(a−1)
λ ≤ |u| < aλ,

(a+1)λ2

2
|u| ≥ aλ

(1.10)

(Fan and Li [38] suggested to take a = 3.7). SCAD penalty improves properties

of L1 penalty, satisfying the oracle property. For that, it was often used in works

related to generalized linear models (GLM), in which were assumed that Yi is a real

variable verifying E(Yi|XXX i) = g−1(ηi) with ηi = XXX>i βββ (i = 1, . . . , n) and where g(·)
is a known injective continuous link function. Fan and Li [38] studied GLM and

proposed obtaining a penalized log-likelihood estimator using SCAD. That is, the

estimator derived from (1.9) when L(βββ) denotes the conditional log-likelihood of Yi

and P(βββ) is the SCAD (1.10).

Although we have focused the exposition in shrinkage methods, other different

procedures have been proposed in literature to select relevant variables. In the con-

text of linear modelling, Efron et al. [35] proposed least angle regression (LARS)

algorithm, a refined version of the forward stagewise procedure that uses a simple
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mathematical formula to accelerate the computations. This method is computa-

tionally efficient and it has LASSO (LARS-LASSO) and forward stagewise methods

as variants. Other different ideas are the Dantzig selector proposed in Candès and

Tao [23], based on linear programming, or the sure independence screening proce-

dure proposed in Fan and Lv [39], based on correlations. And the enumeration of

methods could go on.

In general, methodology dealing with estimation-variable selection in model (1.8)

can be classified by differencing two situations:

� The context of bounded pn (that is, pn = p, since the number of covariates

not depends on the sample size; standard regression). The mentioned works of

Tibshirani [104], Zou [119] or Fan and Li [38] belong to this context.

� The context of divergent pn (that is, pn → ∞ as n → ∞; high-dimensional

regression). Results in this framework came latter. Here we can cite the

mentioned work of Huang et al. [64], or Huang et al. [65] who studied the

behaviour of the adaptive LASSO estimator under divergent pn. We also should

mention Fan and Peng [41] and Fan and Lv [40] who studied variable selection

in the GLM (of which model (1.8) is a particular case) via penalized log-

likelihood with SCAD penalty in this new context, or the mentioned work of

Candès and Tao [23].

From a theoretical perspective, in the case of bounded pn, authors obtain the same

rate of convergence for the estimator of the linear coefficients in (1.8) as in standard

linear regression (n−1/2) (see Fan and Li [38]); while for divergent pn, under general

conditions, various authors obtained the rate
√
sn/n (see Fan and Lv [40]).

The introduction of more complex models, containing even functional objects,

led to adapt some of the mentioned procedures to perform variable selection in that

new framework (see Aneiros et al. [10] for a review in variable selection in functional

models). In particular, since the situation of very big pn started to be common in

practice, variable selection methodology adapted to diverging pn became of great

interest, and sparse models are usually studied in this general context.
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1.4.2 The sparse semi-functional partial linear model

In model (1.7), let us consider the following two changes: firstly, instead of a fix

number of covariates with linear effect (p), assume that we have a high number of real

explanatory variables (pn) and this number of covariates increases with n (pn →∞
as n → ∞); secondly, assume that only sn from the set of pn real explanatory

variables influence the response variable. In this situation we deal with a sparse

semi-functional partial linear model (SSFPLM):

Y = X1β01 + · · ·+Xpβ0pn +m (X ) + ε, (1.11)

where, as before, Y is the scalar response, X1 . . . , Xpn are real random covariates, X is

the functional random covariate valued in a semi-metric space, (β01, . . . , β0pn)> ∈ Rpn

is the vector of unknown parameters, m(·) the non-linear unknown link operator and

ε is the random error verifying E(ε|X1, . . . , Xpn ,X ) = 0.

Model (1.11) was proposed in Aneiros et al. [7] and it is a combination (in an

additive way) of a sparse high-dimensional multivariate predictor with a functional

nonparametric one. Aneiros et al. [7] proposed carrying out the variable selection-

estimation of (1.11) by means of the penalized least squares method with SCAD

penalty. In addition, they showed the existence of a
√
sn/n-consistent estimator for

the vector of linear parameters as well as an oracle property for the variable selec-

tion procedure. They also obtained the rate of convergence for the nonparametric

estimator of the non-linear functional component.

1.4.3 The sparse semi-functional partial linear single-index

model

An alternative of the SSFPLM is the sparse semi-functional partial linear single-

index model (SSFPLSIM), which is an extension of the SFPLSIM to the case of

divergent pn and only sn influential variables. The SSFPLSIM is defined by the

relationship

Y = X1β01 + · · ·+Xpnβ0pn + r (〈θ0,X〉) + ε,
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where Y denotes a scalar response, X1, . . . , Xpn are random covariates taking values

in R and X is a functional random covariate valued in a separable Hilbert space

H with inner product 〈·, ·〉. In this equation, βββ0 = (β01, . . . , β0pn)> ∈ Rpn , θ0 ∈ H
and r(·) are a vector of unknown real parameters, an unknown functional direction

and an unknown smooth real-valued function, respectively. Finally, ε is the random

error, which verifies E (ε|X1, . . . , Xpn ,X ) = 0. As usual, it assumed that an only

index of X is sufficient to summarize all the information carried in X to predict Y

and to predict X1, . . . , Xpn .

Precisely, the SSFPLSIM proposed in Novo et al. [88] is the third model that

we are going to study in this dissertation. Chapter 4 is devoted to contributions

on the SSFPLSIM both from theoretical and practical point of view. Note that the

SSFPLSIM incorporates the situation of high number of covariates (that is, when

pn →∞ as n→∞) and the sparse feature with sn (sparseness parameter) that will

be supposed to be much smaller than pn (see technical assumptions later in Chapter

4). Then, the aim of Chapter 4 is to construct a procedure to select the relevant

covariates and, simultaneously, to estimate their corresponding effects, β0j. From a

theoretical point of view, the challenge is double: i) obtain consistency of the model

selection procedure; ii) get the same rate of convergence for the estimator of βββ0 in

the SSFPLSIM as those obtained in the standard literature for the SLM or for the

SSFPLM, that is, Op(
√
sn/n) (see Sections 1.4.1 and 1.4.2). Once the linear part

of the model is dealt with, the functional single-index component r (〈θ0, .〉) will be

estimated with univariate nonparametric rate of convergence (see Section 4.3).

1.4.4 Sparse regression involving scalar variables with func-

tional origin

In this section we are going to present a modification of the sparse models previously

presented (the SLM, the SSFPLM and the SSFPLSIM). The point is that in some

situations we have a scalar variable of interest, Y , and we want to know which

points of the grid in which is observed a functional variable, namely ζ(t), are the

most influential (impact points) on this scalar variable. In other words, we want

to select the relevant variables from the set of discretized observations of ζ. The

problem is that standard variable selection methods, coming from an adaptation of
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the multivariate methodology, can provide inadequate results. On the one hand,

these procedures are affected by the strong dependence between variables, which in

this case is directly derived from their functional origin. On the other hand, the large

number of observations makes it difficult to obtain results in a reasonable amount of

time. Therefore, specific methodology has to be developed in these cases.

In Aneiros and Vieu [4], a new method is presented, the partitioning variable

selection (PVS) procedure, for selecting impact points in the modification of the

sparse linear model given by the expression

Y = β00 +

pn∑
j=1

β0jζ(tj) + ε, (1.12)

where ζ is a random curve defined on some interval [a, b] and is observed in the

points a ≤ t1 < · · · < tpn ≤ b and ε denotes the random error. In addition,

(β00, β01, . . . , β0pn)> is a vector of unknown real coefficients. The main idea of the

PVS method is to create a two-stage algorithm for selecting relevant variables, taking

advantage of the fact that the covariates with linear effect come from a discretization

of a curve. In this case, variables that are close in the discretization will contain very

similar information about the response.

In Aneiros and Vieu [5], the PVS procedure has been extended to the multi-

functional version of the SSFPLM given by the expression

Y =

pn∑
j=1

β0jζ(tj) +m(X ) + ε, (1.13)

where X denotes a random variable valued on some semi-metric space, m(·) is an

unknown non-linear operator and notations used in expression (1.12) are maintained.

However, practical requirements of controlling dimensionality and associating inter-

pretable parameters to both functional objects lead us to propose a new model.

This new model, the so-called multi-functional partial linear single-index model

(MFPLSIM), will be studied in Chapter 5 and is an adaptation of the SSFPLSIM

to the case in which covariates with linear effect come from the discretization of a

functional variable. In other words, this model assumes that ζ acts only through its

pn discretized points while X acts in a continuous semiparametric way. That is, the
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MFPLSIM is defined by the following relationship:

Y =

pn∑
j=1

β0jζ(tj) + r (〈θ0,X〉) + ε,

where:

� as before, Y is a real random response and X denotes a random element be-

longing to some separable Hilbert space H with inner product denoted by 〈·, ·〉.
The second functional predictor ζ is supposed to be a random curve defined

on some interval [a, b] which is observed at the points a ≤ t1 < · · · < tpn ≤ b.

In addition, an only index of X is sufficient to summarize all the information

carried in X to predict Y and ζ(tj) (j = 1, . . . , pn).

� (β01, . . . , β0pn)> is a vector of unknown real coefficients and r(·) denotes a

smooth unknown link function. In addition, θ0 is an unknown functional di-

rection in H.

� ε denotes the random error.

In the MFPLSIM (as in models (1.12) and (1.13)), we assume that only a few

scalar variables from the set {ζ(t1), . . . , ζ(tpn)} are going to form part of the model.

Our wish in Chapter 5 is to study the MFPLSIM and its associated variable

selection problem. At this stage it is worth being pointed that this cannot be done

as direct application of methodologies used in the multivariate framework. This is

because the variables ζ(tj) come from a continuous variable, adding the two following

major methodological difficulties in the estimation and the variable selection task.

On one hand, the continuous nature of ζ causes strong correlation between them:

when tj is close from tk then the two corresponding variables ζ(tj) and ζ(tk) roughly

contain the same information about the response Y ; then the PLS method presented

in Chapter 4 can provide inaccurate results. On the other hand, in many applica-

tions pn is often a very large number; therefore, we deal with a very high-dimensional

problem. This has to be added together with the estimation of the direction θ0, which

is usually computationally expensive. This drawback means that neither the PLS

procedure and nor even the adaptation of the PVS methodology can be sufficient in
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some contexts. These additional difficulties make it crucial to develop specific tools

for selecting relevant variables and estimating the MFPLSIM in reasonable feasible

computational time. This is what will be presented in Chapter 5.
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Chapter 2

Contributions on the functional

single-index model

2.1 Introduction

As discussed in Chapter 1, one of the key issues in regression analysis is to build meth-

ods combining flexibility and interpretability of the derived estimations. Moreover,

these procedures should not be too sensitive to dimensionality effects.

These purposes have been the starting point for many advances around semipara-

metric modelling, firstly, in multivariate regression analysis (see Härdle et al. [61]),

and then, in the functional data framework. In that way, Ferraty et al. [48] and

Ait-Säıdi et al. [3] studied the FSIM, briefly presented in Section 1.2.3. Specifically,

the FSIM can be written as

Y = r (〈θ0,X〉) + ε, (2.1)

where Y denotes a scalar response X is a functional explanatory random variable

valued in a separable Hilbert space H with inner product 〈·, ·〉, ε is a random error

verifying E (ε|X ) = 0, θ0 ∈ H is the functional index and r(·) is the unknown link

function. Regarding the estimation of (2.1), conditions ensuring identifiability in
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FSIM have been stated. We assume that

〈θ0, θ0〉 = 1, (2.2)

and that for some arbitrary t0 in the domain of θ0

θ0(t0) > 0 (2.3)

(see e.g. Ait-Säıdi et al. [3]).

Ferraty et al. [48] focused on the case of known θ0 and obtained the pointwise

rate of convergence of a kernel estimator of r (〈θ0, χ〉), where χ ∈ H. The case

of unknown θ0 was covered in Ait-Säıdi et al. [3], where both the consistency and

optimality of a cross-validation-based estimator of θ0 were proved. In addition, the

FSIM (2.1) was extended in different directions, see Bouraine et al. [18], Chen et al.

[27], Ferraty et al. [50], Ma [81] and Wang et al. [110], among others.

This chapter presents a comprehensive study of the functional semiparametric

model FSIM (2.1). Section 2.2 develops a new automatic and location-adaptive

procedure for estimating regression in the FSIM based on kNN ideas. Section 2.3

states general asymptotic results for the kNN procedure, with the main interest of

being uniform over all the parameters of the model. As discussed in Section 2.3.4,

results for random data-driven choices of these parameters can be derived from this

uniformity feature, making our procedure directly applicable in practice. Although

our main goal is to study kNN procedures, we also get similar results for the standard

kernel approach throughout Section 2.3. The main feature of the rates of convergence

obtained is that they are similar to those achieved in one-dimensional problems,

which shows the dimensionality reduction property of the method. Suggestions to

address some practical issues related to the proposed methodology are shown in

Section 2.4. These suggestions are supported in Section 2.5 by means of a simulation

study which also compares the performance of the kNN- and kernel-based procedures.

Section 2.6 illustrates, through some benchmark real curves dataset, how the kNN

approach outperforms standard procedures. It also shows that the semiparametric

feature of the FSIM has not only nice predictive performance, but it also provides

easily interpretable and representable outputs. Finally, the proofs of the main results
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are presented in Section 2.7.

2.2 The statistics

Let {(Xi, Yi)}ni=1 be a sample of n pairs i.i.d. as (X , Y ), which verifies the FSIM

(2.1); that is,

Yi = r (〈θ0,Xi〉) + εi (i = 1, . . . , n).

For any θ ∈ H, we consider the operator

rθ(·) : H −→ R

defined as

rθ(χ) = r (〈θ, χ〉) , ∀χ ∈ H, (2.4)

and we define the projection semi-metric as follows

dθ (χ1, χ2) = |〈θ, χ1 − χ2〉| , for χ1, χ2 ∈ H. (2.5)

For each direction θ, we construct the kNN (Nadaraya-Watson type) statistic1 as

r̂∗k,θ(χ) =
n∑
i=1

w∗n,k,θ(χ,Xi)Yi, ∀χ ∈ H, (2.6)

where we have denoted

w∗n,k,θ(χ,Xi) =
K
(
H−1
k,χ,θdθ (Xi, χ)

)∑n
i=1K

(
H−1
k,χ,θdθ (Xi, χ)

) , (2.7)

being k ∈ Z+ a smoothing factor (k = kn depends on n) and K a kernel. In addition,

we have denoted

Hk,χ,θ = min

{
h ∈ R+ such that

n∑
i=1

1Bθ(χ,h)(Xi) = k

}
(2.8)

1Note that we use the term statistic instead of estimator since expression (2.6) (and likewise
expression (2.10)) depends on the unknown parameter θ.
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with

Bθ(χ, h) = {z ∈ H : dθ (χ, z) ≤ h} . (2.9)

The kNN statistic r̂∗k,θ can be seen as an extension of the usual kernel statistic

r̂h,θ(χ) =
n∑
i=1

wn,h,θ(χ,Xi)Yi ∀χ ∈ H, (2.10)

where

wn,h,θ(χ,Xi) =
K (h−1dθ(Xi, χ))∑n
i=1K (h−1dθ(Xi, χ))

, (2.11)

with h ∈ R+ being the bandwidth (h = hn depends on n). Note that the main differ-

ence between the statistics defined in expressions (2.6) and (2.10) and nonparametric

estimators defined for the FNM (1.4) and (1.3), respectively, is the semi-metric: in

the case of the FSIM we are forced to use the projection semi-metric (2.5), which

involves the unknown parameter θ.

The kNN statistic presents some advantages in practice compared to the kernel

one as formulated in Section 1.2.2 and as will be seen in practical applications in

this chapter and in Chapter 3. Basically, the kNN statistic allows adaptation to

heterogeneous designs (since Hk,χ,θ varies with χ) and the smoothing parameter k

is easier to select. However, its theoretical properties are more difficult to analyse.

These features of kNN estimates have been widely highlighted in one-dimensional

problems (see Györfi et al. [58] for a general discussion), but very little progress has

been made in the framework of functional regression. The existing literature on kNN

functional regression mainly focuses on nonparametric modelling (see Biau et al. [15],

Kudraszow and Vieu [71], Müller and Dippon [85], Kara-Zaitri et al. [66] and Ling

et al. [79] for the most recent advances, and see Ling and Vieu [76] for an exhaustive

survey) or partial linear modelling (see Ling et al. [77]), but to our knowledge this

chapter states the first advances in functional semiparametric regression.

In Section 2.3 we provide a complete study of the kNN procedure in the semi-

parametric model (2.1). The main idea is to establish asymptotic results in a uniform

sense over all the parameters of the method (that is, over the direction θ and over

the smoothing factor k). For that, we will follow the uniform in bandwidth ideas

widely developed in the non-functional setting (see e.g. Dony and Einmahl [34]) and
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recently adapted to the functional setting (see Kara-Zaitri et al. [67]). However, we

will have to include suitable technical changes to adapt such ideas to both the kNN

procedures and the infinite-dimensional parameter θ. Note that, although our main

purpose is to study the kNN procedure, we also get a full asymptotic analysis of the

standard kernel statistic (2.10) as a by-product, extending earlier results of Ferraty

et al. [48], Ait-Säıdi et al. [3], Chen et al. [27], Ferraty et al. [50].

2.3 Asymptotic theory

2.3.1 Presentation and general notation

Section 2.3.2 begins by presenting the uniform in bandwidth (UIB) and uniform in

the number of neighbours (UINN) consistency of the statistics r̂h,θ(χ) (2.10) and

r̂∗k,θ(χ) (2.6), respectively, when θ is fixed. Then, Section 2.3.3 extends these asymp-

totics by also providing uniform consistency over the functional parameter θ.

Let us first introduce some terms and notation:

� Throughout this dissertation, χ denotes a fixed element in H while θ is some

direction in H.

� Furthermore, note that in the infinite-dimensional space H, a universal refer-

ence measure is not available (in contrast to finite-dimensional spaces where

Lebesgue measure is taken as a reference). For that, the density function of

the variable X might not exist. One way to overcome this problem is to use

small-ball probability considerations (see Kara-Zaitri et al. [67]). For that, let

us define

φχ,θ(h) = P (dθ(X , χ) ≤ h) .

The function φχ,θ(·) controls the concentration of the data in the functional

space and it is usually known in literature as small-ball probability function.

This function has a direct impact on the variance of the estimators derived

from (2.6) and (2.10). For more details on the topological structure of the

functional space and its links to the small-ball probability function see Ferraty

and Vieu [47].
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� In addition, to present the asymptotic results we will need to define the fol-

lowing class of functions

Kθ =
{
· −→ K

(
h−1dθ(χ, ·)

)
, h > 0

}
, (2.12)

for each θ ∈ Θn, where Θn ⊂ H is the set of directions of interest. The class

(2.12) is contained in the class

KΘn = ∪θ∈ΘnKθ =
{
· −→ K

(
h−1dθ(χ, ·)

)
, h > 0, θ ∈ Θn

}
(2.13)

(note that both Kθ and KΘn are classes of functions that should satisfy condi-

tions (2.23) and (2.35), respectively; in addition, Assumption (2.25) allows the

size of Θn to grow to infinite as n does).

� Moreover, let Q be a probability measure on the space (H,A). Then, || · ||Q,2
means the norm L2(Q) defined on certain space S = {f : H −→ R}, while

dQ,2(·, ·) is the metric associated to the norm L2(Q); that is, for f, g ∈ S,

||f ||Q,2 =

(∫
H
|f(t)|2 dQ(t)

) 1
2

and

dQ,2(f, g) = ||f − g||Q,2 =

(∫
H
|f(t)− g(t)|2 dQ(t)

) 1
2

.

� Finally, given a metric space (K, d), N (ε,K, d) denotes the minimal number of

open balls (in the topological space given by d) with radius ε which are needed

to cover K. The quantity log(N (ε,K, d)) is called Kolmogorov’s ε-entropy of

the set K. This term was introduced by Kolmogorov and Tikhomirov [69] and

represents a measure of the complexity of the set: high entropy means that a

lot of information is needed to describe an element with accuracy ε (see Ferraty

et al. [49]).
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2.3.2 The case of θ0 known

Let us assume that the true direction, θ0, in the FSIM (2.1) is known. In order to

state the UIB and the UINN almost-complete convergence of the estimators r̂h,θ0(χ)

and r̂∗k,θ0(χ), some of the following assumptions will be used.

2.3.2.1 Assumptions for UIB and UINN consistency

About the small-ball probability. Let us assume that:

� For all h > 0,

φχ,θ0(h) > 0. (2.14)

That is, we assume that if we fix χ ∈ H, the probability that the variable

takes values in the ball of centre χ and radius h created with the projection

semi-metric (2.5) is greater than zero.

� There exist a constant 0 < C1 and sequences {an}, {bn} ⊂ R+ (an ≤ bn)

such that, for h ∈ [an, bn] with n large enough,

C1 ≤
φχ,θ0(h/2)

φχ,θ0(h)
. (2.15)

With this assumption we ensure that when we halve the radius of the

projection semi-metric ball, the probability of finding sample elements

does not drop drastically to zero.

� The sequences {an} and {bn} verify:

an → 0, bn → 0 and
log n

nmin {an, φχ,θ0(an)}
→ 0. (2.16)

These hypotheses ensure that the convergence rate in Proposition 2.2 (a)

tends to zero.

� There exist sequences {ρn} ⊂ (0, 1), {k1,n} ⊂ Z+ and {k2,n} ⊂ Z+ (k1,n ≤
k2,n ≤ n) such that

φ−1
χ,θ0

(
k2,n

ρnn

)
→ 0, (2.17)
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min

{
1− ρn

4

k1,n

lnn
,
(1− ρn)2

4ρn

k1,n

lnn

}
> 2 (2.18)

and
log n

nmin
{
φ−1
χ,θ0

(ρnk1,n/n), ρnk1,n/n
} → 0 (2.19)

Hypotheses (2.17) and (2.19) ensure that convergence rate in Proposition

2.2 (b) tends to zero.

About the model. We assume that:

� There exist constants β0 > 0 and C3 > 0, such that:

∀χ1, χ2 ∈ Nχ,θ0 , |rθ0(χ1)− rθ0(χ2)| ≤ C3dθ0 (χ1, χ2)β0 , (2.20)

where Nχ,θ0 denotes a fixed neighbourhood of χ in the topological space

induced by the semi-metric dθ0(·, ·). That is, it is assumed that the ob-

jective regression is Hölder continuous, which will have a direct impact on

the bias of the estimators.

� There exist constants m ≥ 2 and C4 > 0, such that:

E (|Y |m|X ) < C4 <∞, a.s. (2.21)

About the kernel. We assume that:

� For all u ∈ (0, 1/2), there exist constants 0 < C5 ≤ C6 <∞, such that:

C5 ≤ K(u) ≤ C6 (2.22)

and for all u 6∈ (0, 1/2), K(u) = 0. This condition is satisfied by the usual

discontinuous (asymmetrical) kernels.

� The class of functions Kθ0 (see (2.12)) is a pointwise measurable class2

2A class of functions K is said to be pointwise measurable if there exists a countable subclass
K0, such that for any function f ∈ K, there exists a sequence of functions {fm} in K0 such that:
|fm(z)− f(z)| = o(1) (see Kara-Zaitri et al. [67]).
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such that

sup
Q

∫ 1

0

√
1 + logN (ε||Fθ0||Q,2,Kθ0 , dQ,2)dε <∞, (2.23)

where Fθ0 is the minimal envelope function3 of the set Kθ0 and the su-

premum is taken over all probability measures Q on the measurable space

(H,A) with ||Fθ0||2Q,2 <∞. Note that this condition is a uniform integral

entropy condition used to characterise the Donsker-class of functions (see

van der Vaart and Wellner [106]); it allows to derive a uniform limit dis-

tribution and is useful for evaluating moments of empirical processes (see

Kara-Zaitri et al. [66]).

Remark 2.1 Assumptions (2.14), (2.15) and (2.20)-(2.22) are standard ones in the

setting of functional nonparametric regression models (see Ferraty and Vieu [47]),

while assumptions (2.16) and (2.23) are usual to obtain UIB consistency in such

setting (see Kara-Zaitri et al. [67]). In fact, assumptions (2.16) and (2.23) adapt

those used in Kara-Zaitri et al. [67] to the case where the nonparametric regression

function is rθ0(·) and the semi-metric to use in the kernel estimator is dθ0(·, ·). Fo-

cusing now on the UINN consistency, assumptions (2.17)-(2.19) adapt (in the same

way as in the previous case of UIB consistency) and correct those used in Kara-Zaitri

et al. [66]. Specifically, in Kara-Zaitri et al. [66], they forgot to include the para-

meter α in their expression (17). As a consequence, Assumption (H4) in Kara-Zaitri

et al. [66] should be modified in the way of our assumptions (2.17)-(2.19), where the

notation ρn was considered instead of α; in addition, α should be introduced in the

rates of convergence corresponding to their Theorem 3.1 in the same way as ρn in

our Theorem 2.2(b). The justification for these changes in both the assumptions and

the rates of convergence in Kara-Zaitri et al. [66] can be seen in the proof of our

Theorem 2.5(b). Finally, in the particular case of assumptions (2.15) and (2.22), it

is worth noting that they are even weaker than the corresponding ones in Kara-Zaitri

et al. [66, 67].

3An envelope function F for a class of functions K is any measurable function such that:
supf∈K |f(z)| ≤ F (z) (see Kara-Zaitri et al. [67]).
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2.3.2.2 Result

Our first result states the UIB and UINN consistency of the estimators r̂h,θ0(χ)

and r̂∗k,θ0(χ), respectively, of rθ0(χ). The type of convergence considered is almost

complete convergence (a.co.)4.

Proposition 2.2 Let us assume that conditions (2.14), (2.15) and (2.20)-(2.23)

hold.

(a) If Assumption (2.16) also holds, then we have that

sup
an≤h≤bn

|r̂h,θ0(χ)− rθ0(χ)| = O
(
bβ0
n

)
+Oa.co.

(√
log n

nφχ,θ0(an)

)
.

(b) If assumptions (2.17)-(2.19) also hold, then we have that

sup
k1,n≤k≤k2,n

|r̂∗k,θ0(χ)− rθ0(χ)| = O

(
φ−1
χ,θ0

(
k2,n

ρnn

)β0
)

+Oa.co.

(√
log n

ρnk1,n

)
.

Remark 2.3 Proposition 2.2(a) extends Theorem 3.1 in Ferraty et al. [48] to the

case where h varies in an interval [an, bn] (Ferraty et al. [48] focused on the case

an = bn = h). This fact represents a very important improvement because, as will be

shown in Section 2.3.4, one of the applications of Proposition 2.2(a) is the validation

of data-driven bandwidth selectors from an asymptotic point of view. In the same

way, Proposition 2.2(b) will be used in Section 2.3.4 to validate data-driven selectors

for the number of neighbours.

4For sequences of real random variables and positive real numbers, {Zn} and {un}, respectively,
it says that Zn = Oa.co.(un) if, and only if

∃η0 > 0

∞∑
n=1

P(|Zn| > η0un) <∞. (2.24)

This kind of convergence implies almost-sure convergence (and then, it also implies convergence in
probability). For more details, see Appendix in Ferraty and Vieu [47].
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2.3.3 The case of θ0 unknown

In practice, the direction θ0 is usually unknown, so it must be estimated. The results

that will be presented in this section, the uniform in both bandwidth and direction

(UIBD) and in both number of neighbours and direction (UINND) consistency of

r̂h,θ(χ) and r̂∗k,θ(χ), respectively, play a main role to study the asymptotic behaviour

of r̂ĥ(〈θ̂, χ〉) := r̂ĥ,θ̂(χ) and r̂∗
k̂
(〈θ̂, χ〉) := r̂∗

k̂,θ̂
(χ), where ĥ and k̂ denote some appro-

priate selectors for h and k, respectively, while θ̂ is a suitable estimator of θ0. First,

we list some additional assumptions that we will use to establish such results.

2.3.3.1 Additional assumptions for UIBD and UINND consistency

About the space of directions. We assume that

card(Θn) = nα with α > 0, (2.25)

which means that the number of directions contained in Θn depends on the

sample size and converges to infinity at an algebraic rate. In addition,

∀ θ ∈ Θn, 〈θ − θ0, θ − θ0〉1/2 ≤ C7bn. (2.26)

That is, the elements of Θn are relatively close to the target direction θ0.

About the functional explanatory variable. We assume that the functional co-

variate is bounded in the sense that

〈X ,X〉1/2 ≤ C8 (2.27)

(remember that 〈·, ·〉 denotes the inner product associated with H).

About the small-ball probability. We assume that:

� There exist constants 0 < C9 ≤ C10 <∞ and a function f : R −→ (0,∞)

such that

∀θ ∈ Θn, C9f(h) ≤ φχ,θ(h) ≤ C10f(h). (2.28)
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(Actually, it might be the case that f(·) = fχ(·). In the sake of brevity, we

have not added the subscript.) In this way, it is assumed that there exist

common lower and upper bounds for the small-ball probability functions

associated to each θ ∈ Θn (that is, uniform bounds on θ ∈ Θn).

� There exist constants 0 < C11 ≤ C12 <∞ and sequences {an}, {bn} ⊂ R+

(an ≤ bn) such that, for h ∈ [an, bn] with n large enough,

C11 ≤
f(h/2)

f(h)
≤ C12. (2.29)

Note that this hypothesis is an adaptation of Assumption (2.15) to the

case of unknown θ0.

� The sequences {an} and {bn} verifies:

an → 0, bn → 0 and
log n

nmin {an, f(an)}
→ 0. (2.30)

These assumptions generalize hypotheses (2.16) and ensure that conver-

gence rate in Theorem 2.5 (a) tends to zero.

� There exist sequences {ρn} ⊂ (0, 1), {k1,n} ⊂ Z+, {k2,n} ⊂ Z+ (k1,n ≤
k2,n ≤ n) and constants 0 < λ ≤ δ <∞ such that

λf−1

(
ρnk1,n

n

)
≤ φ−1

χ,θ

(
ρnk1,n

n

)
and φ−1

χ,θ

(
k2,n

ρnn

)
≤ δf−1

(
k2,n

ρnn

)
,

(2.31)

(we also need to assume lower and upper bounds for the inverse of the

small-ball probability function (for each θ ∈ Θn and at those particular

points) involving f−1(·), since both functions will be used in proofs for

the kNN statistic)

f−1

(
k2,n

ρnn

)
→ 0, (2.32)

min

{
1− ρn

4

k1,n

lnn
,
(1− ρn)2

4ρn

k1,n

lnn

}
> α + 2 (2.33)
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and
log n

nmin {λf−1(ρnk1,n/n), f (λf−1(ρnk1,n/n))}
→ 0. (2.34)

Note that assumptions (2.32), (2.33) and (2.34) are adaptations of as-

sumptions (2.17), (2.18) and (2.19), respectively, to the case of unknown

θ0. In addition, conditions (2.32) and (2.34) ensure that the convergence

rate in Theorem 2.5 (b) tends to zero.

About the kernel. The class of functions KΘn (see (2.13)) is a pointwise measur-

able class such that

sup
Q

∫ 1

0

√
1 + logN (ε‖FΘn‖Q,2,KΘn , dQ,2)dε <∞, (2.35)

where FΘn is the minimal envelope function of the set KΘn and the supremum

is taken over all probability measures Q on the measurable space (H,A) with

||FΘn||2Q,2 < ∞. Note that in case of unknown θ0, we need to impose the

uniform integral entropy condition to the class KΘn (2.13) instead of only to

the class Kθ0 as in (2.23).

Remark 2.4 Assumption (2.25) imposes that the set of directions Θn contains a

finite number of directions, but allows it to grow to infinity as the sample size in-

creases. In addition, taking into account the kind of results we want to establish

(UIBD and UINND consistency; see Theorem 2.5), it is necessary to impose some

condition to control the bias caused by the use of values θ ∈ Θn different from the

true value θ0 in the studied statistics. In particular, such condition should allow to

link the behaviour of dθ(·, ·) and dθ0(·, ·) (for details, see the proof of Lemma 2.17).

In this chapter this is done by means of Assumption (2.26). Note that, on the one

hand, Assumption (2.26) implies that the larger n is, the closer Θn and θ0 are; this

is needed to obtain uniform consistency results on Θn. On the other hand, the order

bn in Assumption (2.26) is a technical condition (the minimal one when our proof is

used) that allows to obtain the same rates of convergence as in the case of Θn = {θ0}
(see Proposition 2.2). The interested reader can find similar conditions to our As-

sumption (2.26) in Härdle et al. [60] and Xia and Li [115] (multivariate setting),

and Ma [81] (functional setting; see also Ferraty et al. [50] for a different version of
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Assumption (2.26)). Assumption (2.27), which imposes that the explanatory variable

is bounded, is not very restrictive in practice and is introduced to make the proofs

easier. The role of Assumption (2.28) is to ensure uniform results among all pos-

sible directions; that assumption generalizes Assumption (4) in Ait-Säıdi et al. [3]

and was also used in Wang et al. [110]. Assumption (2.29) is weaker than the usual

condition

0 < lim
h→0

f(sh)

f(h)
= τ(s) <∞, ∀s ∈ (0, 1)

(considered, for instance, in Kara-Zaitri et al. [66, 67]). The technical assumptions

(2.30) and (2.31)-(2.34) adapt those considered in Kara-Zaitri et al. [66, 67] (in

the context of functional nonparametric regression), respectively, to the setting of

the FSIM (2.1) (remember that, as noted in the last paragraph in Section 2.3.2.1,

Assumption (H4) in Kara-Zaitri et al. [66] should be modified in the way of our

assumptions(2.17)-(2.19)). Note that assumptions (2.28)-(2.34) (the ones related to

the small-ball probability), although technical, are not very restrictive. For instance,

Wang et al. [110] showed that, under suitable conditions, φχ,θ(h) ≈ Cχ,θh. Therefore,

one can consider f(h) = h. Then, for such functions φχ,θ(·) and f(·), assumptions

(2.28), (2.29) and (2.31) are trivially verified while assumptions (2.30), (2.32) and

(2.34) are satisfied under the conditions

log n

nan
→ 0,

k2,n

ρnn
→ 0 and

log n

ρnk1,n

→ 0,

respectively. In addition, for Assumption (2.33) to be verified it is sufficient that the

condition

(1− ρn)2 > 4(α + 2)
lnn

k1,n

holds (note that none of those three conditions are restrictive and they allow that

ρn → 1). Finally, Assumption (2.35) is a natural extension of Assumption (2.23) to

the current case where card(Θn) > 1.

2.3.3.2 Main results

Theorem 2.5 below states the UIBD and UINND consistency of r̂h,θ(χ) and r̂∗k,θ(χ),

respectively, under general assumptions while, to fix the ideas, Corollary 2.6 shows
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how the rates of convergence behave in some simple case. In particular, as will be seen

throughout Remark 2.7, these rates of convergence are similar to the optimal ones

for one-dimension problems. This fact evidences that the main goal of constructing

procedures insensitive to the dimensionality of the problem has been achieved.

Theorem 2.5 Let us assume that conditions (2.20)-(2.22), (2.25)-(2.29) and (2.35)

hold.

(a) If Assumption (2.30) also holds, then we have that

sup
θ∈Θn

sup
an≤h≤bn

|r̂h,θ(χ)− rθ0(χ)| = O
(
bβ0
n

)
+Oa.co.

(√
log n

nf(an)

)
.

(b) If assumptions (2.31)-(2.34) also hold, then we have that

sup
θ∈Θn

sup
k1,n≤k≤k2,n

∣∣r̂∗k,θ(χ)− rθ0(χ)
∣∣ = O

(
f−1

(
k2,n

ρnn

)β0
)

+ Oa.co.

(√
log n

nf (λf−1(ρnk1,n/n))

)
.

Corollary 2.6 Let us assume that conditions (2.20)-(2.22), (2.25)-(2.27) and (2.35)

hold. If in addition assumptions (2.28) and (2.31) hold with f(h) = h and ρn = ρ

(where 0 < ρ < 1 is a constant), and k2,n/n → 0 and log n/k1,n → 0, then we have

that

sup
θ∈Θn

sup
k1,n≤k≤k2,n

∣∣r̂∗k,θ(χ)− rθ0(χ)
∣∣ = O

((
k2,n

n

)β0
)

+Oa.co.

(√
log n

k1,n

)
.

Remark 2.7 Theorem 2.5 extends Proposition 2.2 to the case where θ0 is unknown.

As can be noted in Theorem 2.5(b), the parameters λ and ρn (defined in assumptions

(2.31)-(2.34)) affect to the rate of convergence of the kNN estimators. Actually,

that is a consequence of having formulated our assumptions about f(·) in a fairly

general way. Corollary 2.6 shows that, under the weak condition f(h) = h (see the

comments on assumptions in Section 2.3.3.1), these effects disappear. Focusing now

on the specific case f(h) = h, let us take
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� ho ∼ (log n/n)1/(2β0+1), ko ∼ (n2β0 log n)1/(2β0+1),

� an = ho − cn, bn = ho + cn, with cn = c(log n/n)1/(2β0+1) 0 < c < 1,

� k1,n = ko − dn, k2,n = ko + dn with dn = c(n2β0 log n)1/(2β0+1) 0 < c < 1.

Then, it can be seen from Theorem 2.5(a) and Corollary 2.6 that both estimates reach

the rate of convergence (
log n

n

)β0/(2β0+1)

,

which is the well-known optimal rate for nonparametric one-dimensional problems.

This attests to the dimensionality reduction property of our model and estimates.

2.3.4 Data-driven parameters selection

An application of Theorem 2.5(a) (Theorem 2.5(b)) is related to the theoretical

validation of both data-driven selectors for the bandwidth h (for the number of

neighbours k) and estimators for the direction θ0. Next result, which is a corollary of

Theorem 2.5, focuses on data-driven selectors based on cross-validation ideas (similar

results can be derived for other usual selectors).

Let us denote

CV (h, θ) = n−1

n∑
j=1

(
Yj − r̂(−j)

h,θ (Xj)
)2

and CV ∗(k, θ) = n−1

n∑
j=1

(
Yj − r̂∗(−j)k,θ (Xj)

)2

,

where, as usual, r̂
(−j)
h,θ (·) and r̂

∗(−j)
k,θ (·) are the leave-one-out versions of r̂h,θ(·) and

r̂∗k,θ(·), respectively. Then, one can consider the kernel-based estimator of θ0

θ̂h = arg min
θ∈Θn

CV (h, θ)

(for asymptotic properties of θ̂h, see Ait-Säıdi et al. [3]) and the kNN-based estimator

θ̂∗k = arg min
θ∈Θn

CV ∗(k, θ).

Following the same ideas, it seems natural to construct the data-driven selectors ĥ
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and k̂ as

ĥ = arg min
an≤h≤bn

CV
(
h, θ̂h

)
and k̂ = arg min

k1,n≤k≤k2,n

CV ∗
(
k, θ̂k

)
,

respectively. In that way, we have two automatic estimators of θ0: one based on

kernel estimation, θ̂ĥ, and another based on kNN ideas, θ̂∗
k̂
.

Corollary 2.8 (a) Under assumptions of Theorem 2.5(a), we have that

∣∣∣r̂ĥ,θ̂
ĥ
(χ)− rθ0(χ)

∣∣∣ = O
(
bβ0
n

)
+Oa.co.

(√
log n

nf(an)

)
.

(b) Under assumptions of Corollary 2.6, we have that

∣∣∣∣r̂∗k̂,θ̂∗
k̂

(χ)− rθ0(χ)

∣∣∣∣ = O

((
k2,n

n

)β0
)

+Oa.co.

(√
log n

k1,n

)
.

Remark 2.9 Corollary 2.8 validates the use of cross-validation ideas to construct

both estimators of the direction θ0 and data-driven selectors for the parameters h and

k (in other words, it justifies adaptive estimation based on cross-validation ideas in

the FSIM (2.1)). To the best of our knowledge, this is the first result in the literature

on kernel or kNN adaptive estimation in the FSIM (2.1). Actually, in the case of

kNN adaptive estimation, there are no such kind of results even in the multivariate

single-index model.

2.4 Practical issues

In the previous Section 2.3.4, it was given theoretical validation of the estimators of

the nonparametric link, r(·), based on both CV-kernel and CV-kNN ideas, r̂ĥ,θ̂
ĥ
(χ)

and r̂∗
k̂,θ̂∗

k̂

(χ), respectively. Therefore, in practice the only additional issues that must

be addressed are how to construct Θn, an, bn, k1,n and k2,n. That is the aim of this

section.

The set of functional directions, Θn. We propose to construct Θn in a similar

way as in Ait-Säıdi et al. [3]. Specifically:
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(i) Each direction θ ∈ Θn is obtained from a dn-dimensional space generated

by B-spline basis functions, {e1(·), . . . , edn(·)}. Therefore, we focus on

directions

θ(·) =
dn∑
j=1

αjej(·) where (α1, . . . , αdn) ∈ V . (2.36)

(ii) The set of vectors of coefficients in (2.36), V , is obtained by means of the

following procedure:

Step 1 For each (β1, . . . , βdn) ∈ Cdn , where C = {c1, . . . , cJ} ⊂ RJ denotes a

set of J “seed-coefficients”, construct the initial functional direction

θinit(·) =
dn∑
j=1

βjej(·).

Step 2 For each θinit in Step 1 that verifies the condition θinit(t0) > 0, where

t0 denotes a fixed value in the domain of θinit(·), compute 〈θinit, θinit〉
and construct

(α1, . . . , αdn) =
(β1, . . . , βdn)

〈θinit, θinit〉1/2
.

Step 3 Construct V as the set of vectors (α1, . . . , αdn) obtained in Step 2.

Therefore, the final set of eligible functional directions is

Θn =

{
θ(·) =

dn∑
j=1

αjej(·); (α1, . . . , αdn) ∈ V

}
.

Remark 2.10 As usual, in item (i) above we consider splines of order l ≥
1 (degree l − 1) and mn regularly spaced interior knots (so, dn = l + mn);

note that, from the Jackson type theorem in de Boor [31] (page 149), if θ0 is

sufficiently smooth, then it will be well approximated by some function in the

dn-dimensional space generated by B-spline basis. In addition, by construction

(see Step 2), each θ ∈ Θn verifies the constraints 〈θ, θ〉 = 1 and θ(t0) > 0; so

the identifiability of the FSIM (2.41) is guaranteed (for details, see Proposition
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1 in Ait-Säıdi et al. [3]). Of course, the larger J in Step 1 is, the higher the

size of Θn is (in fact, the number of initial functional directions in Step 1 is

Jdn). At this moment, it should be noted that our approach requires intensive

computation due to the optimization on both θ and h or k. Therefore, we

need to seek for a trade-off between the size of Θn and the performance of the

estimators. In that way, Ait-Säıdi et al. [3] suggested to consider l = 3 and

C = {−1, 0, 1}.

The set of values for h: [an, bn]. In practice, for selecting some parameter, for

instance h, via the minimization of some criterion function (e.g. the CV func-

tion), it is usual to minimize over a “wide” set, so that any reasonable set

of values for h (for instance the set [an, bn] verifying the technical conditions

assumed in the theoretical study) should be included in such wide set. The

question of automatic selection of the interval [an, bn] is still unsolved in one-

dimensional nonparametric statistics, and becomes of minor importance be-

cause the criterion function is usually quite flat around its minimum. Earlier

references in one-dimensional setting go back to Härdle and Marron [59] and

Marron [82], and the usual recommendation is to choose an interval such that

the corresponding bandwidths allow to use up to 95% of the sample. As we

will see later along Section 2.5, this recommendation will remain efficient in

the functional framework.

The set of values for k: {k1,n, k1,n + 1, . . . , k2,n}. The reasoning pointed just be-

fore for global kernel estimates is still valid for estimates using local bandwidths

(see Vieu [107] for earlier advances); therefore, the same recommendation can

be made for the choice of the set {k1,n, k1,n + 1, . . . , k2,n}.

2.5 Simulation study

The aim of this section is twofold. On the one hand, to support the suggestions

given in sections 2.3.4 and 2.4 related to practical issues inherent to our procedures:

selection of the bandwidth (h) and the number of neighbours (k), as well as of the

intervals [an, bn] and [k1,n, k2,n]. On the other hand, to show the better performance
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of the kNN-based estimators versus the kernel-based estimators when heterogeneous

designs are considered.

2.5.1 The design

For different values of n, observations i.i.d. {(Xi, Yi)}n+25
i=1 were generated from the

FSIM

Y = r (〈θ0,X〉) + ε, (2.37)

where:

� The functional covariate was generated from the expression

X (t) = a cos(2πt) + b sin(4πt) + 2c(t− 0.25)(t− 0.5) (t ∈ [0, 1]). (2.38)

The same mixture distribution was considered for the random variables a, b

and c in (2.38): U(5, 10) with probability 0.5, and U(20, 20.5) with probability

0.5, while each curve Xi was discretized in 100 equispaced points (0 = t1 <

t2 < · · · < t100 = 1).

� We considered as link function r(u) = u3 and as inner product 〈f, g〉 =∫ 1

0
f(t)g(t)dt.

� θ0 was selected at random in Θn (more details will be given at the end of this

section).

� Finally, ε is a centred Gaussian random variable with variance equal to 0.025

times the empirical variance of r (〈θ0,X〉) (i.e. signal-to-noise= 2.5%).

Figure 2.1 shows a sample of 50 curves (left panel) and the corresponding scatter

plot of {(〈θ0,Xi〉 , Yi)}50
i=1 (right panel). Clearly one can see two subsamples of curves,

being the variability in one of them much greater than in the other. This fact gives

rise to two clusters in the sample of projections, {〈θ0,Xi〉}50
i=1; so, taking into account

their location-adaptive property, one expects that the kNN-based estimators take

advantage on the kernel-based ones.

The sample Dn = {(Xi, Yi)}n+25
i=1 was split into two samples: a training sample,

Dn,train = {(Xi, Yi)}ni=1, and a testing sample, Dn,test = {(Xi, Yi)}n+25
i=n+1. The tuning
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parameters (ĥ and k̂) and the estimates of θ0 (θ̂ and θ̂∗) were constructed from

the training sample by means of the cross-validation procedure proposed in Section

2.3.4. The sets of functional directions (Θn), values for h ([an, bn]) and values for

k ({k1,n, k1,n + 1, . . . , k2,n}) were constructed as recommended in Section 2.4. The

value for t0 related to Θn (see Step 2 in Section 2.4) was fixed to t0 = 0.5, while the

considered order of the basis functions and number of interior knots were l = 3 and

mn = 3, respectively. As mentioned above, θ0 was selected at random in Θn; once

the values of t0, l and mn were established, we can indicate what are the coefficients

of θ0 in expression (2.36):

(1.201061, 1.201061, 1.201061, 1.201061, 0, 0) (2.39)

(see Step 3 in Section 2.4).

Figure 2.1: Sample of 50 curves X (left panel) together with the corresponding
scatter plot of {(〈θ0,X〉 , Y )} (right panel).
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Then, the testing sample was used to measure the quality of the corresponding

predictions (i.e., the performance of our procedures) through the mean squared error

of prediction (MSEP):

MSEPn =
1

ntest

n+ntest∑
i=n+1

(
Yi − Ŷi

)2

, (2.40)

where, in this case ntest = card(In,test) = 25 (since In,test = {n+ 1, . . . , n+ 25}) and

Ŷi denotes a predicted value for Yi.

2.5.2 Results

For each sample size considered (n = 50, 100, 200), M = 100 replicates were generat-

ed. In order to support the suggestions given in Section 2.4 to construct an, bn, k1,n

and k2,n, Figure 2.2 displays the average of the cross-validation functions obtained

from both the kernel-based estimator (left panel) and the kNN-based estimator (right

panel) when different values for the bandwidth h and the number of neighbours k

are considered, respectively.

An interesting practical consequence of what is shown in Figure 2.2 is that the

optimal value for h or k will not change as long as reasonable intervals are chosen.

Figure 2.3 shows the average of the MSEP functions obtained from both the

kernel-based estimator (left panel) and kNN-based estimator (right panel) when

different values for the bandwidth h and the number of neighbours k are considered,

respectively. The corresponding values when h and k are obtained from the cross-

validation method are reported in Table 2.1.
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Figure 2.2: Average of the cross-validation functions obtained from both the kernel-
based estimators (left panel) and the kNN-based ones as function of the bandwidth
(h) and the number of neighbours (k), respectively. The dashed lines show the
average of the cross-validation functions when optimal values for h (left panel) and
k (right panel) are considered. From top to bottom, the pairs (solid curve, dashed
line) correspond to n = 50, 100, 200.
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The main conclusions from Figure 2.3 and Table 2.1 are that, for each considered

sample size:

(i) The estimators are very sensitive to the values of their tuning parameters.

(ii) The recommendation given in Section 2.4 to construct an, bn, k1,n and k2,n is

appropriate (in the sense indicated in such section).

(iii) The cross-validation selectors are competitive ones.

(iv) The performance of the kNN-based estimator is better than the provided by

the kernel-based one.
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Figure 2.3: Average of the MSEP functions obtained from both the kernel-based
estimators (left panel) and the kNN-based ones as function of the bandwidth (h) and
the number of neighbours (k), respectively. The dashed lines show the average of the
MSEP functions when values for h (left panel) and k (right panel) obtained from the
cross-validation method are considered. From top to bottom, the pairs (solid curve,
dashed line) correspond to n = 50, 100, 200.
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Table 2.1: Average of the MSEPs obtained when the CV selectors for h and k are
used.

n = 50 n = 100 n = 200

kernel kNN kernel kNN kernel kNN

0.0271 0.0199 0.0197 0.0160 0.0155 0.0146
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2.6 Application to real data

This section is devoted to illustrate, using a real dataset, the usefulness of the FSIM

(2.1), as well as to compare the performance of the proposed adaptive kernel- and

kNN-based estimators, r̂ĥ,θ̂
ĥ
(·) and r̂∗

k̂,θ̂∗
k̂

(·), respectively, when the sample size in-

creases (for details on those estimators, see Section 2.3.4).

2.6.1 The data

We will analyse the previously mentioned Tecator’s data (see Section 1.1), a bench-

mark dataset in the setting of nonparametric functional modelling (see, for instance,

Burba et al. [22], Chen et al. [27] and Aneiros and Vieu [6] for functional non-

parametric pure, multiple index and sparse additive nonparametric regressions, res-

pectively). Specifically, Tecator’s data contain measurements of the fat contents

(Yi, i = 1, . . . , 215) and near-infrared absorbance spectra (Xi, i = 1, . . . , 215) ob-

served on 100 equally wavelengths in the range 850 − 1050 nm (see Figure 1.2 for

representation of samples of the absorbance curves and their second derivatives) of

215 finely chopped pieces of meat.

As usual when one deals with Tecator’s dataset, the second derivatives of the

absorbance curves (X (2)) will play the role of functional covariate. So, we focus on

the FSIM

Y = r
(〈
θ0,X (2)

〉)
+ ε. (2.41)

We are interested in the performance of our procedures for different sample sizes n.

Then, for each n = 50, 100, 160, we will consider subsamples

Dn =
{

(X (2)
i , Yi), i ∈ In

}
, where we have denoted In = {1, 2, . . . , n+ 55}.

Each subsample Dn was split at random into two samples: a training sample,

Dn,train = {(X (2)
i , Yi), i ∈ In,train},

and a testing sample,

Dn,test = {(X (2)
i , Yi), i ∈ In,test},
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where ntrain = card(In,train) = n, ntest = card(In,test) = 55, In,train ∪In,test = In and

In,train ∩ In,test = ∅.
In the estimation procedures, the parameters h, k, an , bn, k1,n and k2,n were

constructed from the training sample in the same way as in the simulation study (see

Section 2.4 or Section 2.5.1). Several sets of functional directions (Θn), depending

on the tuning parameter mn (number of interior knots), also were constructed as

recommended in Section 2.4. Values considered for mn were 2, 3, 4, 5, 6 (note that

the corresponding cardinals of Θn were 108, 243, 1053, 2187 and 9477, respectively),

and the used value was selected by means of cross-validation ideas. The value for

t0 related to Θn (see Step 2 in Section 2.4) was fixed to t0 = (850 + 1050)/2). The

Epanechnikov kernel was used in the nonparametric estimates r̂(·) and r̂∗(·).
The testing sample was used to measure the quality of the corresponding predic-

tions through the MSEP (see (2.40)).

2.6.2 Results

2.6.2.1 Performance of the procedures for different sample sizes n

In order to show the performance of the proposed procedures when the sample size

increases, twenty partitions (D(j)
n,train,D

(j)
n,test) of Dn were generated at random (n =

50, 100, 160; j = 1, . . . , 20). Then, the corresponding prediction errors, MSEP
(j)
n ,

were computed. Table 2.2 reports the average of such MSEPs.

Table 2.2: Average of the MSEPs obtained when the CV selectors for h, k and
nknots are used.

n = 50 n = 100 n = 160

kernel kNN kernel kNN kernel kNN

11.66 10.97 5.80 5.72 4.66 3.88

A main suggestion from Table 2.2 is that, for each considered sample size, the

performance of the kNN-based estimator is slightly better than the corresponding

to the kernel-based one. In addition, the performance of each estimator improves as

the sample size increases.
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2.6.2.2 Benchmark partition: Adaptive estimation in action

From now on, we focus on D160 (i.e., all the Tecator’s dataset) and the partition

given by I160,train = {1, 2, . . . , 160} and I160,test = {161, 162, . . . , 215}. Note that this

partition can be considered as a benchmark one in the sense that it is the usually

considered in papers analysing the Tecator’s dataset (see, for instance, Aneiros and

Vieu [6], Burba et al. [22] and Ferraty et al. [50], among others).

In a first attempt, we focus on the proposed kernel- and kNN-based estimates r̂(·)
and r̂∗(·), respectively. In both cases, the same value formn (m̂nCV = 4) was selected,

while the optimal bandwidth and number of neighbours where ĥCV = 15.80106 and

k̂CV = 9, respectively. In addition, the same estimate for θ0 (θ̂ = θ̂ĥCV = θ̂∗
k̂CV

) was

obtained.

Figure 2.4: Left panel: Estimate of the functional direction θ0. Right panel:
estimates of the regression r(·) by means of the kNN-based (solid line) and kernel-
based (dashed line) estimates.
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Figure 2.4 displays both the estimate for θ0 and the estimates of the regression

r(·) (i.e., r̂ĥCV (·) and r̂∗
k̂CV

(·)). On the one hand, the graphic of θ̂ suggests that the

two bumps around wavelengths 880 and 1000, as well as the peak around wavelength

940, could be important indicators of the fat content (note that this suggestion is

compatible with the findings in Aneiros and Vieu [6]). We would like to emphasize

that one of the advantages of the FSIM against functional models dealing with whole

curves instead of projected ones is the possibility of interpretation; as noted in the

previous sentence, nice and easy interpretation is obtained in our application. On

the other hand, the two estimates of the regression suggest nonlinear relationship

between the fat content and the absorbance spectra (in fact, the p-value of the

Ramsey’s RESET test for linearity is 0.000; for details, see Ramsey [98]). Finally,

it is worth highlighting the different behaviour of the considered estimates r̂ĥCV (·)
and r̂∗

k̂CV
(·): in general, the kernel-based estimate is smoother than the kNN-based

one. This fact is a consequence of two reasons: (i) the heterogeneity in the values of

the covariates
〈
θ̂,X (2)

i

〉
, and (ii) the bandwidth (ĥCV ) used in r̂ĥCV (·) is global (it

does not depend on χ) while the one used in r̂∗
k̂CV

(·) (Hk̂CV ,χ,θ̂
) is local (it depends

on χ). Actually, the local-adaptive bandwidth is a main appealing feature of kNN

estimators in different settings (not only in the FSIM); in fact, as it will be shown

in the rest of this section, such feature plays a major role in achieving accurate

predictions.

Table 2.3: Values of the MSEPs from some functional models.

Model Method MSEP

FLM Y = γ0 +
∫ 1050

850
X (2)(t)γ(t)dt+ ε FPC 7.17

FNM Y = m(X (2)) + ε
kernel 4.06

kNN 1.79

FSIM Y = r
(〈
θ0,X (2)

〉)
+ ε

kernel 3.49

kNN 2.69

Table 2.3 reports the values of the MSEPs obtained from the FSIM (2.41) when

50



Chapter 2. Contributions on the functional single-index model

it is estimated using both the kernel- and kNN-based adaptive estimators r̂ĥCV (·)
and r̂∗

k̂CV
(·), respectively. The corresponding values obtained from the FNM (1.2)

(using kernel-and kNN-based estimators) and the FLM (1.1) (estimating by means

of functional principal components regression (FPC); see e.g. Aguilera et al. [1]

for partial least squares regression, including an application to Tecator’s data, and

Febrero-Bande et al. [43] for a comparative study between these two dimensionality

reduction techniques) are also included in the table.

In our real data application, two main conclusions can be drawn from Table 2.3:

(i) the relationship between the fat content and the absorbance curve is nonlinear,

and (ii) the FSIM estimated by means of the proposed kNN estimator achieves

better predictive power than when it is estimated through the proposed kernel one.

Nevertheless, the smallest value of the MSEP is obtained when the kNN estimator

is applied to the FNM.

In a second attempt, we implement a full nonparametric boosting step in the

estimated FSIM. Specifically, we consider the following FNM to regress the residuals

(ε̂i) from the FSIM on the first derivative (X (1)
i ) of the absorbance curves (the order

of the derivative was selected using cross-validation ideas):

ε̂i = m
(
X (1)
i

)
+ ei, (2.42)

where ei denotes the corresponding random error. Then, if m̂(·) denotes the non-

parametric estimator of m(·) in (2.42), a new prediction for Yj in the test sample

can be constructed as

Ŷj = r̂
(〈
θ̂,X (2)

j

〉)
+ m̂

(
X (1)
j

)
(j = 161, . . . , 215).

Table 2.4 reports the values of the MSEP corresponding to such predictions when

both functions r(·) and m(·) are estimated by means of either kernel-based or kNN-

based estimators. Several conclusions can be drawn from Table 2.4. On the one

hand, it shows (again) the convenience of using kNN estimates instead of kernel

ones. On the other hand, it supports the idea of considering a boosting procedure

to take, from the whole curve, information not captured by the functional index.
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Table 2.4: Values of the MSEP when a full nonparametric boosting is applied on
the residuals of the FSIM.

Model Method MSEP

FSIM & FNM Y = r
(〈
θ0,X (2)

〉)
+m

(
X (1)

)
+ ε

kernel 1.74

kNN 1.53

2.6.3 Conclusions

This real data analysis illustrates both the interest of the semiparametric approach

and the efficiency of the kNN estimation procedure. On the one hand, because of

its location-adaptive feature, the kNN approach exceeds the performances of usual

global smoothers, such as kernel ones, while the cross-validation procedure makes

this estimate of fully automatic use. On the other hand, the semiparametric feature

of the FSIM approach has the double advantage of combining interpretability of the

outputs (see Figure 2.4) together with low prediction errors (see Tables 2.3 and 2.4).

2.7 Appendix Chapter 2: Proofs

From now on, C denotes a generic positive constant which may take different values

from one formula to another.

Before presenting the proofs of our Proposition 2.2, Theorem 2.5, Corollary 2.6

and Corollary 2.8, we first enunciate some known auxiliary results that play a main

role in our proofs. In such results, Z1, Z2, . . . , Zn are i.i.d. variables taking values

in a measurable space (Z,A) and K is a pointwise measurable class of functions

{g : Z −→ R} with envelope function F . In addition, we denote

αn(g) =
1√
n

n∑
i=1

(g(Zi)− E(g(Zi))), ||αn(g)||K = sup
g∈K
|αn(g)|, ||·||p = p

√
E(·)p
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and

J(1,K) = sup
Q

∫ 1

0

√
1 + logN (ε||F ||Q,2,K, dQ,2)dε,

where the supremum is taken over all the probability measures Q on the measure

space (Z,A) with ||F ||Q,2 <∞ (for additional notation, see Section 2.3).

2.7.1 Some auxiliary results

Lemma 2.11 (Theorem 2.14.1 in van der Vaart and Wellner [106], p. 239)

We have that:

|| ||αn(g)||K||p ≤ CJ(1,K) ||F ||p∨2 ,

where s ∨ t is the spermium of s and t.

Lemma 2.12 (Theorem 3.1 in Dony and Einmahl [34], p. 314) If the class

K is such that E ||αn(g)||K ≤ C ||F ||2, then, for any A ∈ A, we have:

E ||αn(g1A)||K ≤ 2C ||F1A||2 .

Lemma 2.13 (Bernstein type inequality in Dony and Einmahl [34], p. 321)

Assume that the variables Z1, Z2, . . . , Zn satisfy for some H > 0,

E (F p(Z)) ≤ p!

2
σ2Hp−2,

where σ2 ≥ E(F 2(Z)). Then, by denoting βn = E(||
√
nαn(g)||K) we have for any

t > 0:

P
{

max
1≤k≤n

∣∣∣∣∣∣√kαk(g)
∣∣∣∣∣∣
K
≥ βn + t

}
≤ exp

(
− t2

2nσ2 + 2tH

)
.

Lemma 2.14 (Lema 6.1 in Kara-Zaitri et al. [66], p. 186) Let X1, . . . , Xn be

independent Bernoulli random variables with P(Xi) = p for all i = 1, . . . , n. Set

U = X1 + · · ·+Xn and µ = pn. Then, for any w > 0, we have:

P (U ≥ (1 + w)µ) ≤ exp{−µmin{w,w2}/4},
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and if w ∈ (0, 1), we have

P (U ≤ (1− w)µ) ≤ exp{−µw2/2}.

2.7.2 Proof of Proposition 2.2

Results in Proposition 2.2(a) and Proposition 2.2(b) are direct consequence of The-

orems 3.1 in Kara-Zaitri et al. [66, 67], respectively. On the one hand, one should

note that, when θ0 is known, r̂h,θ0(·) and r̂∗k,θ0(·) are kernel- and kNN-type estimat-

ors, respectively, based on the semi-metric dθ0(·, ·), of the nonparametric regression

operator, rθ0(·), between the scalar variable Y and the functional covariate X . On

the one hand, in the case of Proposition 2.2(b), we must take into account the cor-

rection relative to the rate of convergence in Theorem 3.1 in Kara-Zaitri et al. [66]

indicated in the Remark 2.1.

Actually, our assumptions (2.15) and (2.22) are slightly different (weaker) of

assumptions (6) and (10) in Kara-Zaitri et al. [66] and assumptions H1 and H3 in

Kara-Zaitri et al. [67]; to show that their Theorems 3.1 hold using our assumptions

instead of the corresponding ones in Kara-Zaitri et al. [66, 67], it is sufficient to prove

Corollary 3.3 in Kara-Zaitri et al. [67] following the proof of our Corollary 2.16 (see

below). �

2.7.3 Proof of Theorem 2.5 (a)

We will follow the scheme used in Kara-Zaitri et al. [67], who focused on the UIB

consistency of the kernel estimator of the nonparametric regression (see (1.3)) in the

FNM (1.2). Although our theorem differs with respect to that of Kara-Zaitri et al.

[67] in both the model and the type of consistency to prove (we focus on the FSIM

(2.1) instead of the FNM (1.2) and our aim is the UIBD consistency instead of the

UIB one), their scheme of proof can be followed once the assumptions are adapted

in a suitable way.

Taking into account that

r̂h,θ(χ) =
ĝh,θ(χ)

F̂h,θ(χ)
,
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where we have denoted

ĝh,θ(χ) =
1

nφχ,θ(h)

n∑
i=1

K
(
h−1dθ (χ,Xi)

)
Yi

and

F̂h,θ(χ) =
1

nφχ,θ(h)

n∑
i=1

K
(
h−1dθ (χ,Xi)

)
,

we can write

r̂h,θ(χ)− rθ0(χ) = B̂h,θ(χ) +
R̂h,θ(χ)

F̂h,θ(χ)
+
Q̂h,θ(χ)

F̂h,θ(χ)
,

where

B̂h,θ(χ) =
E (ĝh,θ(χ))

E
(
F̂h,θ(χ)

) − rθ0(χ), R̂h,θ(χ) = −B̂h,θ(χ)
(
F̂h,θ(χ)− E

(
F̂h,θ(χ)

))

and

Q̂h,θ(χ) = (ĝh,θ(χ)− E (ĝh,θ(χ)))− rθ0(χ)
(
F̂h,θ(χ)− E

(
F̂h,θ(χ)

))
.

Thus, the proof of our Theorem 2.5(a) is completed once we prove the following four

results.

Lemma 2.15 Under assumptions (2.22), (2.25), (2.28), (2.30) and (2.35), we have

that:

sup
θ∈Θn

sup
an≤h≤bn

∣∣∣F̂h,θ(χ)− E
(
F̂h,θ(χ)

)∣∣∣ = Oa.co.

(√
log n

nf(an)

)
.

Corollary 2.16 Under assumptions of Lemma 2.15 together with Assumption (2.29),

there exists C > 0 such that

∞∑
n=1

P
(

inf
θ∈Θn

inf
an≤h≤bn

F̂h,θ(χ) < C

)
<∞.

Lemma 2.17 Under assumptions and (2.20), (2.22) and (2.26)–(2.29), we have

that:

sup
θ∈Θn

sup
an≤h≤bn

∣∣∣B̂h,θ(χ)
∣∣∣ = O

(
bβ0
n

)
.
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Lemma 2.18 Under assumptions (2.21), (2.22), (2.25), (2.28), (2.30) and (2.35),

we have that:

sup
θ∈Θn

sup
an≤h≤bn

|ĝh,θ(χ)− E (ĝh,θ(χ))| = Oa.co.

(√
log n

nf(an)

)
.

2.7.3.1 Proof of Lemma 2.15

Following the definition of rate of almost-complete convergence (see 2.24), we need

to prove that ∃η0 > 0 and b0 > 0 such that:

∞∑
n=1

P

(
sup
θ∈Θn

sup
an≤h≤b0

√
nf(an)

log n

∣∣∣F̂h,θ(χ)− E
(
F̂h,θ(χ)

)∣∣∣ ≥ η0

)
<∞.

Taking Assumption (2.28) into account, it suffices to prove that there exist η0 > 0

and b0 > 0 such that

∞∑
n=1

P

(
sup
θ∈Θn

sup
an≤h≤b0

√
nφχ,θ(an)

log n

∣∣∣F̂h,θ(χ)− E
(
F̂h,θ(χ)

)∣∣∣ ≥ η0

)
<∞. (2.43)

For bounding each addend in expression (2.43), Bernstein type inequality formulated

in Lemma 2.13 will be used. For that, we will make some previous calculations.

First of all, if we define

hj = 2jan, L(n) = max{j : hj ≤ 2b0},

it allows us to write

sup
θ∈Θn

sup
an≤h≤b0

√
nφχ,θ(an)

log n

∣∣∣F̂h,θ(χ)− E
(
F̂h,θ(χ)

)∣∣∣ ≤
sup
θ∈Θn

max
j=1,...,L(n)

sup
hj−1≤h≤hj

√
nφχ,θ(h)

log n

∣∣∣F̂h,θ(χ)− E
(
F̂h,θ(χ)

)∣∣∣ . (2.44)

In addition, since Assumption (2.25) is verified, Θn = {θ1, . . . , θnα}. Furthermore,
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if we denote

αn(g) =
1√
n

n∑
i=1

(g(Xi)− E (g(Xi))) , Kh,θ(Xi) = K(h−1dθ(χ,Xi),

we can write

F̂h,θ(χ)− E
(
F̂h,θ(χ)

)
=

1√
nφχ,θ(h)

αn(Kh,θ), (2.45)

and, for 1 ≤ j ≤ L(n) and 1 ≤ m ≤ nα,

Gj,m =
{
· −→ K

(
h−1dθm(χ, ·)

)
where hj−1 ≤ h ≤ hj

}
. (2.46)

Then, using (2.44), (2.45) and (2.46), we can establish the following chain of inequal-

ities:

P

(
sup
θ∈Θn

sup
an≤h≤b0

√
nφχ,θ(an)

log n

∣∣∣F̂h,θ(χ)− E
(
F̂h,θ(χ)

)∣∣∣ ≥ η0

)

≤ P

(
sup
θ∈Θn

max
j=1,...,L(n)

sup
hj≤h≤hj−1

√
nφχ,θ(h)

log n

∣∣∣F̂h,θ(χ)− E
(
F̂h,θ(χ)

)∣∣∣ ≥ η0

)

≤ P

(
sup
θ∈Θn

max
j=1,...,L(n)

sup
hj−1≤h≤hj

1√
n log nφχ,θ(h)

∣∣√nαn(Kh,θ)
∣∣ ≥ η0

)

≤ P

(
max

m=1,...,nα
max

j=1,...,L(n)
sup

hj−1≤h≤hj

1√
n log nφχ,θm(h)

∣∣∣∣√nαn(g)
∣∣∣∣
Gj,m
≥ η0

)

≤
nα∑
m=1

L(n)∑
j=1

P

(
1√

n log nφχ,θm (hj/2)

∥∥√nαn(g)
∥∥
Gj,m
≥ η0

)

≤ nαL(n) max
m=1,...,nα

max
j=1,...,L(n)

P
(

max
1≤k≤n

∥∥∥√kαk(g)
∥∥∥
Gj,m
≥ η0

√
n log nφχ,θm (hj/2)

)
.

(2.47)

In order to bound the probability that appears in (2.47) by means of the the Bern-

stein’s inequality formulated in Lemma 2.13, we first study the asymptotic behaviour

of

σ2 = E
(
G2
j,m(X )

)
and βn = E

(∥∥√nαn(g)
∥∥
Gj,m

)
,
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where Gj,m denotes the minimal envelope function of the class Gj,m. It follows from

Assumption (2.22) that

Gj,m(z) ≤ C61(0,1/2)

(
dθm(χ, z)

hj

)
= C61Bθm (χ,hj/2)(z).

Hence, for all p ≥ 1, we have that

E (Gj,m(X )p) ≤ Cp
6E
(
1Bθm (χ,hj/2)(X )

)
= Cp

6P (dθm(X , χ) < hj/2) = Cp
6φχ,θm (hj/2) .

In particular,

σ2 = O (φχ,θm (hj/2))

holds. Focusing now on βn, we obtain, by combining Assumption (2.35) together

with Lemma 2.11, that

E
(
‖αn(g)‖Gj,m

)
≤ E

(
‖αn(g)‖KΘn

)
≤ CJ(1,KΘn) ‖FΘn‖2 ≤ C ‖FΘn‖2 .

Thus, the conditions of Lemma 2.12 are verified for the class Gj,m and the envelope

function FΘn (note that, in particular, FΘn is an envelope function of the class Gj,m).

So, from such lemma it follows that

E
(∥∥αn (g1Bθm (χ,hj/2)

)∥∥
Gj,m

)
≤ C

∥∥F1Bθm (χ,hj/2)

∥∥
2
.

Finally, taking into account (2.22), we obtain that:

βn = E
(∥∥√nαn(g)

∥∥
Gj,m

)
= E

(∥∥√nαn (g1Bθm (χ,hj/2)

)∥∥
Gj,m

)
≤ C

√
nφχ,θm (hj/2).

Now, we can apply the Bernstein’s inequality (see Lemma 2.13) with

βn = O

(√
nφχ,θm (hj/2)

)
, σ2 = O (φχ,θm (hj/2)) and t =

η0

2

√
n log nφχ,θm (hj/2).
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In first place,

P
(

max
1≤k≤n

∥∥∥√kαk(g)
∥∥∥
Gj,m
≥ η0

√
n log nφχ,θm (hj/2)

)
≤ P

(
max

1≤k≤n

∥∥∥√kαk(g)
∥∥∥
Gj,m
≥ βn + t

)
(2.48)

(since, as n→∞, it is verified that

η0

√
n log nφχ,θm (hj/2) ≥ η0

2

√
n log nφχ,θm (hj/2) +O

(√
nφχ,θm(hj/2)

)
,

η0

2

√
n log nφχ,θm (hj/2) ≥ C

√
nφχ,θm(hj/2),

η0

2

√
log n ≥ C).

Then, using the Bernstein’s inequality in Lemma 2.13,

P
(

max
1≤k≤n

∥∥∥√kαk(g)
∥∥∥
Gj,m
≥ βn + t

)

≤ exp


−η2

0n log nφχ,θm

(
hj
2

)
8nCφχ,θm

(
hj
2

)
+ 4η0H

√
n log nφχ,θm

(
hj
2

)


≤ exp

−η2
0

log n

8C + C ′
√

logn
nφχ,θm (hj/2)


≤ exp

−η2
0

log n

8C + C ′
√

logn
nf(hj/2)


≤ n−C

′′η2
0 (2.49)

(note that the penultimate inequality is consequence of Assumption (2.28) and the

last one of Assumption (2.30)). Moreover, from (2.47) and (2.49) together with the

fact that L(n) ≤ 2 log n, we get that
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P

(
sup
θ∈Θn

sup
an≤h≤b0

√
nφχ,θ(an)

log n

∣∣∣F̂h,θ(χ)− E
(
F̂h,θ(χ)

)∣∣∣ ≥ η0

)
≤ Cn−C

′′η2
0+α log n.

(2.50)

Finally, by choosing now η0 such that C ′′η2
0 − α > 1, (2.43) follows from (2.50).

�

2.7.3.2 Proof of Corollary 2.16

On the one hand, from Assumption (2.22), we obtain, ∀h ∈ [an, bn] and ∀θ ∈ Θn

E
(
F̂h,θ(χ)

)
=

1

φχ,θ(h)
E
(
K

(
dθ(χ,X )

h

))
≥ C5

φχ,θ(h)
E
(

1(0,1/2)

(
dθ(χ,X )

h

))
= C5

P (dθ (χ,X ) ≤ h/2)

φχ,θ(h)

= C5
φχ,θ(h/2)

φχ,θ(h)
. (2.51)

Using (2.51), and applying assumptions (2.28) and (2.29), we obtain that, for n

large enough,

E
(
F̂h,θ(χ)

)
≥ C5

φχ,θ(h/2)

φχ,θ(h)
≥ C5C9

C10

f(h/2)

f(h)
≥ C5C9C11

C10

= C ′ > 0, (2.52)

∀h ∈ [an, bn] and ∀θ ∈ Θn.

Thus, denoting C = C ′/2, it is verified that

P
(

inf
θ∈Θn

inf
h∈[an,bn]

F̂h,θ(χ) ≤ C

)
≤ P

(
sup
θ∈Θn

sup
h∈[an,bn]

∣∣∣E(F̂h,θ(χ)
)
− F̂h,θ(χ)

∣∣∣ ≥ C

)
,

and Lemma 2.15 leads to the desired result. �
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2.7.3.3 Proof of Lemma 2.17

We have that∣∣∣B̂h,θ(χ)E
(
F̂h,θ(χ)

)∣∣∣ =
∣∣∣E (ĝh,θ(χ))− rθ0(χ)E

(
F̂h,θ(χ)

)∣∣∣
=

∣∣∣∣ 1

φχ,θ(h)
E
(
K

(
dθ(χ,X )

h

)
Y

)
− rθ0(χ)

φχ,θ(h)
E
(
K

(
dθ(χ,X )

h

))∣∣∣∣
=

∣∣∣∣ 1

φχ,θ(h)
E
[
K

(
dθ(χ,X )

h

)
E (Y | 〈X , θ0〉)

− rθ0(χ)K

(
dθ(χ,X )

h

)]∣∣∣∣
=

∣∣∣∣ 1

φχ,θ(h)
E
[
K

(
dθ(χ,X )

h

)
(rθ0(X )− rθ0(χ))

]∣∣∣∣
≤ C6

1

φχ,θ(h)
E
[
1Bθ(χ,h/2)(X )dθ0(X , χ)β0

]
. (2.53)

(Note that the inequality in (2.53) is a consequence of assumptions (2.20) and (2.22))

In addition, assumptions (2.26) and (2.27), together with Cauchy-Schwarz inequality,

allow us to write that, if dθ(X , χ) < h/2 holds, then, for all h ∈ [an, bn],

dθ0(X , χ) = dθ0(X , χ)− dθ(X , χ) + dθ(X , χ) ≤ |〈X − χ, θ0 − θ〉|+ dθ(X , χ)

≤ 〈X − χ,X − χ〉1/2 〈θ0 − θ, θ0 − θ〉1/2 + dθ(X , χ) ≤ 2C7C8bn + h/2 ≤ Cbn.

(2.54)

Now, from (2.53) and (2.54) together with assumptions (2.28) and (2.29), we

obtain that, for all h ∈ [an, bn] and for all θ ∈ Θn,

|B̂h,θ(χ)E(F̂h,θ(χ))| ≤ C
φχ,θ(h/2)

φχ,θ(h)
bβ0
n ≤ C

f(h/2)

f(h)
bβ0
n ≤ Cbβ0

n . (2.55)

Finally, (2.52) and (2.55) complete the proof. �
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2.7.3.4 Proof of Lemma 2.18

This proof follows the same scheme as proof of Lemma 2.15. Taking Assumption

(2.28) into account, it suffices to prove that there exist η′0 > 0 and b0 > 0 such that

∞∑
n=1

P

{
sup
θ∈Θn

sup
an≤h≤b0

√
nφχ,θ(an)

log n
|ĝh,θ(χ)− E (ĝh,θ(χ))| ≥ η′0

}
<∞. (2.56)

For carrying out the proof, as in the proof of Lemma 2.15, we will make some

calculations in order to apply Bernstein’s inequality formulated in Lemma 2.13.

Firstly, let us define hj = 2jan and L(n) = max{j : hj ≤ 2b0}. In addition, let

us denote

α′n(g) =
1√
n

n∑
i=1

(Yig(Xi)− E (Yig(Xi))) ,

G ′j,m =
{

(z, y) −→ yK
(
h−1dθm(χ, z)

)
where hj−1 ≤ h ≤ hj

}
and G′j,m denotes the minimal envelope function of the class G ′j,m (1 ≤ j ≤ L(n) and

1 ≤ m ≤ nα).

Similarly to the proof of Lemma 2.15, we obtain that

P

{
sup
θ∈Θn

sup
an≤h≤b0

√
nφχ,θ(an)

log n
|ĝh,θ(χ)− E (ĝh,θ(χ))| ≥ η′0

}

≤ nαL(n) max
m=1,...,nα

max
j=1,...,L(n)

P
(

max
1≤k≤n

∥∥∥√kα′k(g)
∥∥∥
Gj,m
≥ η′0

√
n log nφχ,θm (hj/2)

)
.

(2.57)

Taking into account Assumption (2.21) and Assumption (2.22), we get:

E
(
G′j,m(X , Y )p

)
≤ Cpφχ,θm (hj/2) . (2.58)

(Note that, we can write

E
(
Y pK

(
h−1
j dθm(χ,X )

)p) ≤ E
(
E (Y p| 〈θ0,X〉)K

(
h−1
j dθm(χ,X )

)p)
≤ E

(
E (|Y |p| 〈θ0,X〉)K

(
h−1
j dθm(χ,X )

)p)
≤ C4C

p
6φχ,θm (hj/2) .)
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Let us denote

σ′2 = E
(
G′j,m(X , Y )2

)
, β′n = E

(∥∥√nα′n(g)
∥∥
G′j,m

)
.

Using (2.58), we get that

σ′2 = O (φχ,θm (hj/2)) ,

and utilizing the same ideas as for the proof of Lemma 2.15, we obtain

β′n = O

(√
nφχ,θm (hj/2)

)
.

Now, from the Bernstein’s inequality (see Lemma 2.13), it is obtained that

P
{

max
1≤k≤n

∥∥∥√kα′k(g)
∥∥∥
G′j,m
≥ η′0

√
n log nφχ,θm (hj/2)

}
≤ P

{
max

1≤k≤n

∥∥∥√kα′k(g)
∥∥∥
G′j,m
≥ β′n + t

}
≤ n−C

′η′20 , (2.59)

while from (2.57) and (2.59) we have that

P

{
sup
θ∈Θn

sup
an≤h≤b0

√
nφχ,θ(an)

log n
|ĝh,θ(χ)− E (ĝh,θ(χ))| ≥ η′0

}
≤ nαn−C

′η′20 log n. (2.60)

Finally, by choosing η′0 such that C ′η′20 − α > 1, (2.56) follows from (2.60). �

2.7.4 Proof of Theorem 2.5 (b)

We will follow the scheme of Kara-Zaitri et al. [66], but taking into account that in

our setting, for a fixed k, the random bandwidth also depends on θ.
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We have that

sup
θ∈Θn

sup
k1,n≤k≤k2,n

∣∣r̂∗k,θ(χ)− rθ0(χ)
∣∣

= sup
θ∈Θn

sup
k1,n≤k≤k2,n

∣∣r̂∗k,θ(χ)− rθ0(χ)
∣∣ 1{

φ−1
χ,θ

(
ρnk1,n
n

)
≤Hk,χ,θ≤φ−1

χ,θ

(
k2,n
ρnn

)}
+ sup

θ∈Θn

sup
k1,n≤k≤k2,n

∣∣r̂∗k,θ(χ)− rθ0(χ)
∣∣ 1{

Hk,χ,θ 6∈
(
φ−1
χ,θ

(
ρnk1,n
n

)
,φ−1
χ,θ

(
k2,n
ρnn

))},

where ρn ∈ (0, 1) was defined in Assumption (2.31). Thus, taking Assumption (2.25)

into account, the proof of our theorem is completed once we prove the three following

results:

sup
θ∈Θn

sup
φ−1
χ,θ

(
ρnk1,n
n

)
≤h≤φ−1

χ,θ

(
k2,n
ρnn

) |r̂h,θ(χ)− rθ0(χ)| = O

(
f−1

(
k2,n

ρnn

)β0
)

+Oa.co. (
√
cn) ,

(2.61)
∞∑
n=1

nα∑
m=1

k2,n∑
k=k1,n

P
(
Hk,χ,θm ≤ φ−1

χ,θm

(
ρnk1,n

n

))
<∞, (2.62)

and
∞∑
n=1

nα∑
m=1

k2,n∑
k=k1,n

P
(
Hk,χ,θm ≥ φ−1

χ,θm

(
k2,n

nρn

))
<∞, (2.63)

where we have denoted

cn =
log n

nf (λf−1(ρnk1,n/n))
.

On the one hand, the proof of (2.61) is a direct consequence of Theorem 2.5(a).

Specifically, taking assumptions (2.31), (2.32) and (2.34) into account, it suffices to

consider an = λf−1
(
ρnk1,n

n

)
and bn = δf−1

(
k2,n

ρnn

)
in Theorem 2.5(a). On the other

hand, to prove (2.62) and (2.63) we will use Lemma 2.14 and we will proceed in a

similar way as in Kara-Zaitri et al. [66]. Firstly, note that
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P
(
Hk,χ,θ ≤ φ−1

χ,θm

(
ρnk1,n

n

))
≤ P

(
n∑
i=1

1
Bθm

(
χ,φ−1

θm

(
ρnk1,n
n

)) (Xi) ≥ k

)

= P

(
n∑
i=1

1
Bθm

(
χ,φ−1

θm

(
ρnk1,n
n

)) (Xi) ≥ k
k1,nρn
k1,nρn

)
.

(2.64)

In the same way,

P
(
Hk,χ,θ ≥ φ−1

χ,θm

(
k2,n

nρn

))
≤ P

(
n∑
i=1

1
Bθm

(
χ,φ−1

θm

(
k2,n
nρn

)) (Xi) ≤ k
k2,nρn
k2,nρn

)
.

(2.65)

In both expressions (2.64) and (2.65), we have a sum of independent variables fol-

lowing a Bernouilli distribution. In the first case, that sum of variables has mean

µ = nE
(

1
Bθm

(
χ,φ−1

θm

(
ρnk1,n
n

)) (X )

)
= nP

(
dθm (χ,X ) ≤ φ−1

θm

(
ρnk1,n

n

))
= nφχ,θm

(
φ−1
χ,θm

(
ρnk1,n

n

))
= ρnk1,n, (2.66)

while in the second case, following the same procedure, the mean is

µ = nE
(

1
Bθm

(
χ,φ−1

θm

(
k2,n
ρnn

)) (X )

)
=

k2,n

ρn
. (2.67)

Then, by means of Lemma 2.14, taking ω = k/(k1,nρn)−1 for expression (2.64), and

ω = 1− kρn/k2,n for expression (2.65), one can obtain:

P
(
Hk,χ,θ ≤ φ−1

χ,θm

(
ρnk1,n

n

))
≤ exp

{
−(1− ρn)k1,n

4

}
+ exp

{
−(1− ρn)2k1,n

4ρn

}
(2.68)

and

P
(
Hk,χ,θ ≥ φ−1

χ,θm

(
k2,n

nρn

))
≤ exp

{
−(1− ρn)2k2,n

2ρn

}
. (2.69)
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Note that the first addend in the bound (2.68) is related to the case where min{ω2, ω} =

ω, while the second one, which was forgotten in Kara-Zaitri et al. [66], corresponds

to the case where min{ω2, ω} = ω2; for details on the role of ω, see Lemma 2.14.

Therefore, it is obtained that

nα∑
m=1

k2,n∑
k=k1,n

P
(
Hk,χ,θm ≤ φ−1

χ,θm

(
ρnk1,n

n

))
≤ nαk2,n

(
n−

1−ρn
4

k1,n
lnn + n−

(1−ρn)2

4ρn

k1,n
lnn

)
≤ nα+1− 1−ρn

4

k1,n
lnn + nα+1− (1−ρn)2

4ρn

k1,n
lnn ,

(2.70)

and

nα∑
m=1

k2,n∑
k=k1,n

P
(
Hk,χ,θm ≥ φ−1

χ,θm

(
k2,n

nρn

))
≤ nαk2,nn

− (1−ρn)2

2ρn

k2,n
lnn ≤ nα+1− (1−ρn)2

2ρn

k2,n
lnn .

(2.71)

Finally, from Assumption (2.33) together with the bounds (2.70) and (2.71), we

obtain (2.62) and (2.63). This completes the proof of the theorem. �

2.7.5 Proof of Corollary 2.6

It is enough to check that the assumptions used in Theorem 2.5(b) hold and then,

to write the corresponding rate of convergence for the particular case considered in

Corollary 2.6. �

2.7.6 Proof of Corollary 2.8

Trivial. �
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Chapter 3

Contributions on the

Semi-Functional Partial Linear

Single-Index Model

3.1 Introduction

In the previous chapter, uniform rates of consistency over all the parameters involved

in kNN and kernel estimators of the FSIM were stated. Such results, in addition to

the value on their own, have at least two important applications. On the one hand,

as formulated in Section 2.3.4, they give theoretical validation to data-driven choices

of the parameters of the model. On the other hand, these results are, somehow, a

pillar to obtain analogous asymptotics for more complex models which are extension

of the FSIM.

Precisely, in this chapter we are going to take advantage of this second fact, deal-

ing with the SFPLSIM, briefly presented in Section 1.3.2. Specifically, the SFPLSIM

is given by the expression

Y = X1β01 + · · ·+Xpβ0p + r (〈θ0,X〉) + ε, (3.1)

where Xj (j = 1, . . . , p) and Y are real random variables, while X is a functional

random variable valued in a separable Hilbert spaceH with inner product denoted by
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〈·, ·〉. In expression (3.1), ε denotes a random error verifying E (ε|X1, . . . , Xp,X ) = 0.

The vector βββ0 = (β01, . . . , β0p)
> ∈ Rp, the functional direction θ0 ∈ H and the link

real-valued function r(·) are supposed unknown. Moreover, to ensure identifiability

of model (3.1) we assume conditions (2.2) and (2.3) (see e.g. Ait-Säıdi et al. [3]; see

also Wang et al. [110] for other ways to ensure identifiability).

One of the nice features of the model (3.1) is to allow sets of predictors to be a

mixture of functional and multivariate ones. In addition, the model combines single-

index ideas (for dealing with the functional predictor) together with partial linear

ideas (for dealing with the multivariate one). Therefore, it is a semiparametric model,

which are more interesting candidates for reducing dimensionality effects, but being

able to capture, as wide as possible, information on the data (see the Introduction

of this dissertation).

The aim of this chapter is to develop a kNN procedure for estimating the smooth

component of the model (3.1) (see Section 3.2). In Section 3.3, rates of uniform

consistency are obtained in a general way allowing for fully automatic estimates. As

a by-product, we state similar results for usual Nadaraya-Watson functional kernel

regression. A short simulation study is reported along Section 3.4 for highlighting

the advantages of the kNN procedure. Finally, the Tecator’s dataset is analysed

in Section 3.5 and a comparative study will show the interest of semiparametrics.

Technical proofs are gathered in the Section 3.6.

3.2 The statistics

First of all, assume that we have a statistical sample of n vectors {(Xi1, . . . , Xip,Xi, Yi)}ni=1

i.i.d. as (X1, . . . , Xp,X , Y ) verifying model (3.1). That is,

Yi = Xi1β01 + · · ·+Xipβ0p + r (〈θ0,Xi〉) + εi (i = 1, . . . , n).

For each θ ∈ H, we consider the operator rθ(·) : H −→ R defined in (2.4). Note

that, in this case

rθ0(X ) = E
(
Y −XXX>βββ0|X

)
, (3.2)

where XXX = (X1, . . . , Xp)
> and βββ0 = (β01, . . . , β0p)

>; kNN ideas are used for es-
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timating rθ0(·) from a smoothing factor k = kn ∈ Z+ and a kernel function K as

follows:

r̂∗k,θ,βββ(χ) =
n∑
i=1

w∗n,k,θ(χ,Xi)
(
Yi −XXX>i βββ

)
, (3.3)

where w∗n,k,θ(·,Xi) was defined in (2.7). It is worth being noted that this kNN statistic

is an extension of the usual Nadaraya-Watson one,

r̂h,θ,βββ(χ) =
n∑
i=1

wn,h,θ(χ,Xi)
(
Yi −XXX>i βββ

)
, (3.4)

where wn,h,θ(·,Xi) was defined in (2.11) with h ∈ R+ being the bandwidth (h = hn

depends on n).

We should emphasize that, to estimate r(·) in (3.1) by means of (3.3) and (3.4),

it is needed to introduce in (3.3) and (3.4) estimates not only for θ0 (as in the case

of the FSIM; see Chapter 2) but also for βββ0. This fact is the major difficulty for the

theoretical study of the estimator of r(·) presented in this chapter compared to that

of the FSIM (2.1).

3.3 Asymptotic theory

3.3.1 Additional assumptions

In order to state results of uniform (over k, θ and βββ) almost-complete consistency

for r̂∗k,θ,βββ(χ) and r̂h,θ,βββ(χ), in addition, to assumptions presented in Section 2.3, we

need to formulate the following technical assumptions:

About the model. We assume that:

� The conditional moments of the errors of the linear regression verify

∃m ≥ 2, ∃C > 0 such that E
(
|Y −XXX>βββ0|m|X

)
< C <∞, a.s. (3.5)

� Furthermore, let us denote by Nχ,θ0 a fixed neighbourhood of χ ∈ H in
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the topological space induced by the semi-metric dθ0(·, ·) (2.5), and denote

gj,θ0(χ) = E (Xij| 〈θ0,Xi〉 = 〈θ0, χ〉) (j = 1, . . . , p),

that is, the functional single-index regression operators of each Xj over

X . Hölder type conditions are verified for regression operators, in the

sense that exist constants 0 ≤ C < ∞ and α0 > 0 such that, ∀χ1, χ2 ∈
Nχ,θ0 , ∀z ∈ {rθ0 , g1,θ0 , . . . , gp,θ0},

|z(χ1)− z(χ2)| ≤ Cdθ0 (χ1, χ2)α0 . (3.6)

Furthermore, for fixed χ ∈ H it is verified that

max
j=1,...,p

|gj,θ0(χ)| = O (1) . (3.7)

About the space of linear parameters. It is assumed that vectors βββ are not far

from the target vector βββ0, in the sense that there exists a sequence {cn}, with

cn → 0 as n→∞, such that

Ψn = {βββ ∈ Rp; ||βββ − βββ0||= O(cn)} . (3.8)

Remark 3.1 These hypotheses allow to deal with the complexity of the model and

to obtain general results, but they are actually not very restrictive. On one hand,

(3.5), (3.6), (3.7) are standard assumptions in regression models mixing linear and

nonparametric structures (see e.g. Aneiros-Pérez and Vieu [11]). On the other

hand, Assumption (3.8) is added for controlling the bias in the estimation of the

linear coefficients in model (3.1).

3.3.2 Main results

The next Theorem 3.2 is the main part of this chapter.

Theorem 3.2 Assume that conditions (2.22), (2.25)-(2.29), (2.35), (3.1) and (3.5)-

(3.8) hold

70



Chapter 3. Contributions on the SFPLSIM

(a) If in addition Assumption (2.30) holds, then we have that

sup
βββ∈Ψn

sup
θ∈Θn

sup
an≤h≤bn

|r̂h,θ,βββ(χ)− rθ0(χ)| = O (bα0
n ) +Oa.co.

(√
log n

nf(an)

)
+O (cn) .

(b) If in addition assumptions (2.31)-(2.34) hold, then we have that

sup
βββ∈Ψn

sup
θ∈Θn

sup
k1,n≤k≤k2,n

|r̂∗k,θ,βββ(χ)− rθ0(χ)| = O

(
f−1

(
k2,n

ρnn

)α0
)

+Oa.co.

(√
log n

nf (λf−1(ρnk1,n/n))

)
+O (cn) .

Remark 3.3 Note that the first two terms in both rates of convergence are the same

as those gotten in Theorem 2.5 for the FSIM (2.1). The third term in the rates

corresponds to the bias of estimating the linear coefficients of the model. For small

enough values of cn, this third term could be much smaller than both previous ones.

This fact highlights that the presence of linear component in the SFPLSIM does not

deteriorate the asymptotics. Note also that, under standard additional conditions on

f(·), ρn, k1,n and k2,n (or an and bn) (see Remark 2.7), the rates in Theorem 3.2 are

the same as if X were one-dimensional. In other words, the semiparametric model

has achieved its goal of being insensitive to dimensionality effects.

Theorem 3.2 confirms the well-known fact that practical using of both, kernel-

and kNN-based methods, is linked with the choice of a smoothing parameter (k or h,

respectively) balancing bias and variance effects. One of the most important features

of our result for kNN (respectively, for kernel) is to be uniform over k ∈ [k1,nk2,n]

(respectively, h ∈ [an, bn]), βββ ∈ Ψn and θ ∈ Θn. That feature allows to say that the

same asymptotics are available when k (h), βββ and θ are random variables valued in

[k1,nk2,n] ([an, bn]), Ψn and Θn, respectively. In particular, when k (h), βββ and θ are

data-driven selected. This property is formulated in the next corollary, whose proof is

obvious (because of the uniform feature of previous theorem). That corollary makes

the proposed methodology completely automatic, in the sense that the main parameter

(i.e. k or h), as well as the other two (i.e. βββ and θ) can be selected from the sample

without deteriorating its asymptotic behaviour.
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3.3.3 Data-driven parameters selection

Corollary 3.4 � Assume that ĥ, β̂ββĥ and θ̂ĥ are random variables taking values

in [an, bn], Ψn and Θn, respectively, being data-driven in the sense that they

depend on the statistical sample Dn = {(Xi1, . . . , Xip,Xi, Yi), i = 1, . . . , n}.
Under assumptions of Theorem 3.2(a), we have that

∣∣∣r̂ĥ,θ̂
ĥ
,β̂ββ
ĥ
(χ)− rθ0(χ)

∣∣∣ = O (bα0
n ) +Oa.co.

(√
log n

nf(an)

)
+O (cn) .

� Assume that k̂, β̂ββ
∗
k̂ and θ̂∗

k̂
are random variables taking values in [k1,nk2,n], Ψn

and Θn, respectively, being data-driven in the sense that they depend on the

statistical sample Dn. Under assumptions of Theorem 3.2(b), we have that

|r̂∗
k̂,θ̂∗

k̂
,β̂ββ
∗
k̂
(χ)− rθ0(χ)| = O

(
f−1

(
k2,n

ρnn

)α0
)

+Oa.co.

(√
log n

nf (λf−1(ρnk1,n/n))

)
+ O (cn) .

This corollary allows to have asymptotics for any automatic data-driven parameters.

To fix the ideas let us just mention one example. Kernel-based estimators θ̂ĥ and

β̂ββĥ, and kNN-based estimators θ̂∗
k̂

and β̂ββ
∗
k̂ could be constructed from the ordinary

least squares (OLS) procedure applied to a linear model in which the effects of the

functional covariate have been extracted. That is, estimators in the kernel case were

constructed by minimizing the score function

Qh (βββ, θ) =
1

2

(
ỸYY h,θ − X̃XXh,θβββ

)> (
ỸYY h,θ − X̃XXh,θβββ

)
, (3.9)

while in the kNN case we minimize the score function

Q∗k (βββ, θ) =
1

2

(
ỸYY
∗
k,θ − X̃XX

∗
k,θβββ
)> (

ỸYY
∗
k,θ − X̃XX

∗
k,θβββ
)
. (3.10)

In expressions (3.9) and (3.10), XXX = (XXX1, . . . ,XXXn)>, with XXX i = (Xi1, . . . , Xip)
>,

and YYY = (Y1, . . . , Yn)>, while for any (n × q)-matrix AAA (q ≥ 1), any θ ∈ Θn and
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bandwidth h or number of neighbours k, respectively, we denote

ÃAAh,θ = (III −WWW h,θ)AAA with WWW h,θ = (wn,h,θ(Xi,Xj))i,j , (3.11)

and

ÃAA
∗
k,θ =

(
III −WWW ∗

k,θ

)
AAA with WWW ∗

k,θ =
(
w∗n,k,θ(Xi,Xj)

)
i,j
.

Then cross-validation ideas (either leave-one-out or k-fold cross-validation) could be

used to obtain an estimate k̂ and ĥ (see Section 2.3.4).

3.4 Simulation study

3.4.1 The design

Samples of i.i.d. data Dn = {(Xi1, Xi2, Xi3,Xi, Yi)}n+25
i=1 were generated from the

model

Yi = Xi1β01 +Xi2β02 +Xi3β03 +αr (〈θ0,Xi〉) + (1−α)m(Xi) + εi (i = 1, . . . , n+ 25).

(3.12)

Note that the case α = 1 gives the SFPLSIM studied in this chapter, while values

α ∈ [0, 1) allow to show a sensitivity analysis of the proposed method; in particular,

case α = 0 provides the SFPLM (1.7). In model (3.12):

� The functional covariate, Xi (i = 1, . . . , n+25), was generated following expres-

sion (2.38). As in that expression, to build a dataset of heterogeneous curves,

the random variables ai, bi and ci were independent variables, uniformly distrib-

uted either on [5, 10] with probability 0.5 or on [20, 20.5] with probability 0.5

(note that independence means both between and within vectors (ai, bi, ci)
>).

These curves were discretized on the same grid of 100 equispaced points in

[0, 1].

� The vector of real covariates, (Xi1, Xi2, Xi3)> (i = 1, . . . , n+25), was generated

from a multivariate normal distribution with zero mean and covariance matrix

given by (ρ|j−k|)jk (j, k = 1, 2, 3). Two values for ρ were considered: ρ = 0

(independence between linear covariates) and ρ = 0.5.

73



Chapter 3. Contributions on the SFPLSIM

� The i.i.d. random errors, εi (i = 1, . . . , n + 25), were simulated from a

N(0, σ2
ε = cσ2

r) where σ2
r is the empirical variance of Xi1β01 +Xi2β02 +Xi3β03 +

αr (〈θ0,Xi〉) + (1− α)m(Xi). The signal-to-noise ratio c has been taken equal

to c = 0.025.

� The true vector of linear coefficients was βββ0 = (β01, β02, β03)> = (−1, 0.5, 1.5)>.

� The true direction of projection, θ0, was constructed as described in Section

2.4. Values l = 3 and mn = 3 were considered and the vector of coefficients of

θ0 in expression (2.36) was that given in (2.39).

� The inner product and the link function in the semiparametric component were

〈f, g〉 =
∫ 1

0
f(t)g(t)dt and r(〈θ0, χ〉) = 〈θ0, χ〉3, respectively.

� As link function of the nonparametric component we have considered m(χi) =

2
√
ci (note that Xi = Xai,bi,ci).

For each simulation case (n, ρ, α) ∈ {50, 100, 200} × {0, 0.5} × {0.8, 0.9, 1}, M =

100 independent samples were generated from (3.12). Each sample Dn was split into

two subsamples: a training sample, Dn,train = {(Xi1, Xi2, Xi3,Xi, Yi)}ni=1, and a test-

ing sample, Dn,test = {(Xi1, Xi2, Xi3,Xi, Yi)}n+25
i=n+1. The tuning parameters (ĥ and k̂)

were constructed from the training sample by means of the 10-fold cross-validation

procedure. In addition, we only use the training sample for getting estimates of θ0

(θ̂0 with the kernel-based method and θ̂∗0 with the kNN-based one) and of βββ0 (β̂ββ0 with

the kernel-based procedure and β̂ββ
∗
0 with the kNN-based one). These estimates were

obtained by minimizing the score functions (3.9) and (3.10), respectively, as sugges-

ted at the end of Section 3.3.2. The set of eligible directions Θn was constructed as

recommended in Section 2.4.

For measuring the performance of the proposed estimators we computed

||β̂ββ0 − βββ0||2 =
3∑
j=1

(
β̂0j − β0j

)2

, ||β̂ββ
∗
0 − βββ0||2 =

3∑
j=1

(
β̂∗0j − β0j

)2

,

||θ̂0 − θ0||2 =

∫ 1

0

(
θ̂0(t)− θ0(t)

)2

dt, ||θ̂∗0 − θ0||2 =

∫ 1

0

(
θ̂∗0(t)− θ0(t)

)2

dt, (3.13)

and the MSEP (2.40), with ntest = 25.

74



Chapter 3. Contributions on the SFPLSIM

3.4.2 Results

The results are summarized in Tables 3.1, 3.2 and 3.3 below. It appears that both

methods are benefited by the increase of the sample size. Furthermore, the de-

pendence between the covariates (ρ = 0.5) with linear effect is detrimental in the

estimation of the linear coefficients, but benefits the estimation of θ0 and it has a

positive effect on the MSEP, as it decreases with respect to the independent case

(ρ = 0) (this behaviour has been observed in other contexts like variable selection;

see Huang et al. [65] or Bühlmann and Meier [21] for the SLM, Xie and Huang

[116] for the sparse nonfunctional partial linear model or Aneiros et al. [7] for the

SSFPLM).

More importantly, it seems that for both independent covariates and correlated

ones, the kNN-based procedure clearly outperforms results obtained with the kernel-

based procedure by capturing heterogeneous structure of the data. Finally, the pro-

posed procedure is not very sensitive, at least in this example, to slight modifications

(high values of α) in the effect of the functional covariate.

Table 3.1: Averaged MSEPs with 10-fold cross-validation selectors for h and k.

n = 50 n = 100 n = 200

α ρ kernel kNN kernel kNN kernel kNN

1
0 0.1959 0.1626 0.1619 0.1297 0.1239 0.1024

0.5 0.1791 0.1393 0.1458 0.1154 0.1068 0.0893

0.9
0 0.2088 0.1785 0.1674 0.1431 0.1350 0.1121

0.5 0.1838 0.1583 0.1500 0.1278 0.1187 0.0992

0.8
0 0.2193 0.1976 0.1858 0.1591 0.1473 0.1200

0.5 0.2016 0.1767 0.1654 0.1426 0.1307 0.1067
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Table 3.2: Averaged squared errors for βββ0 with 10-fold cross-validation selectors
for h and k.

n = 50 n = 100 n = 200

α ρ kernel kNN kernel kNN kernel kNN

1
0 0.0133 0.0097 0.0043 0.0041 0.0021 0.0018

0.5 0.0181 0.0120 0.0059 0.0058 0.0025 0.0021

0.9
0 0.0140 0.0105 0.0047 0.0044 0.0022 0.0020

0.5 0.0183 0.0138 0.0063 0.0064 0.0026 0.0024

0.8
0 0.0141 0.0117 0.0049 0.0047 0.0025 0.0022

0.5 0.0187 0.0154 0.0067 0.0069 0.0029 0.0028

Table 3.3: Averaged squared errors for θ0 with 10-fold cross-validation selectors for
h and k.

n = 50 n = 100 n = 200

α ρ kernel kNN kernel kNN kernel kNN

1
0 0.0950 0.0507 0.0715 0.0413 0.0603 0.0070

0.5 0.0933 0.0463 0.0659 0.0389 0.0618 0.0061

0.9
0 0.0958 0.0656 0.0713 0.0595 0.0679 0.0330

0.5 0.0931 0.0622 0.0697 0.0586 0.0643 0.0302

0.8
0 0.0921 0.0781 0.0871 0.0759 0.0732 0.0757

0.5 0.0895 0.0758 0.0851 0.0746 0.0756 0.0751

3.5 Application to real data

This section is devoted to illustrate the usefulness of the SFPLSIM (3.1), as well as

to compare the performance of kernel and kNN procedures.
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3.5.1 The data

As in Chapter 2, in this real data application we will analyse Tecator’s data (see

Sections 1.1 and 2.6.1), but in this case we will consider two new scalar covariates,

and we will only study the benchmark partition (see Section 2.6.2.2). As remember,

“Tecator’s data” contains measurements of contents of fatness (Yi) for 215 pieces of

meat, as well as the near-infrared absorbance spectras (Xi) observed on 100 equally

wavelengths in the range 850−1050 nm. The new scalar covariates considered in this

section are the contents of protein (X1i) and the contents of moisture (X2i) of each

piece. Remember that left panel in Figure 1.2 showed a sample of 100 absorbance

curves.

Our purpose in this real data application is to model the link between fat content

and the other variables, with aim to predict the fat content. We will split the original

sample into two subsamples: a training sample, Dtrain = {(Xi1, Xi2,Xi, Yi)}160
i=1, and

a testing one, Dtest = {(Xi1, Xi2,Xi, Yi)}215
i=161. The estimation task is made only

by means of the training sample, while the testing sample is used to measure the

quality of the predictions. Then, to quantify the prediction error we use the MSEP

(see (2.40)) with n = 160 and ntest = 55.

3.5.2 Results

Firstly, we predict the fat content of meat using two simple models involving only

the two scalar covariates: a bivariate linear model (LM) and an additive spline model

(ASM). Both models give similar results, which are reported in Table 3.4.

Table 3.4: MSEP for models with two scalar covariates.

Model MSEP

LM Y = β01X1 + β02X2 + ε 1.95

ASM Y = r(X1) + r(X2) + ε 1.93

In addition, we report in Table 3.5 the results obtained in Section 2.6.2.2 with

simple models involving only the functional covariate, such as the FLM (1.1), the
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FNM (1.2), the FSIM (2.1), and the FSIM combined with the application of a full

nonparametric boosting step to its residuals (FSIM & FNM). It can be observed

that kNN-based estimation outperforms kernel-based one in each case. However,

even using the kNN procedure, each model gives results more or less similar to those

obtained with models in Table 3.4.

Table 3.5: Values of the MSEPs for some functional models.

Model Method MSEP

FLM Y = γ0 +
∫ 1050

850
X (2)(t)γ(t)dt+ ε FPC 7.17

FNM Y = m(X (2)) + ε
kernel 4.06

kNN 1.79

FSIM Y = r
(〈
θ0,X (2)

〉)
+ ε

kernel 3.49

kNN 2.69

FSIM & FNM Y = r
(〈
θ0,X (2)

〉)
+m(X (1)) + ε

kernel 1.74

kNN 1.53

Finally, we used models incorporating both scalar and functional covariates,

namely the SFPLM (1.7) and the SFPLSIM (3.1) proposed in this chapter. For

both models, we use OLS-based estimators for estimating βββ0 (and also θ0 in the

SFPLSIM case) and 10-fold cross-validation for selecting k, h, the order q of the

derivatives of the absorbance curves (X (q)
i ) and the number mn of regularly interior

knots of the B-spline basis functions considered to construct the set of eligible di-

rections Θn (for details, see Section 3.4.1). Table 3.6 summarizes the results. In

both cases, the kNN-based estimation procedures outperform the kernel-based ones

and the SFPLSIM offers lower MSEP than the SFPLM. More importantly, these

models involving both kinds of covariate give a much smaller prediction error than

models using only one kind of variables (as those in Tables 3.4 and 3.5). All in

all, the SFPLSIM model with kNN estimates leads to the lowest MSEP among all

models/estimates studied.
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Table 3.6: Values of the MSEPs for some functional partial linear models.

Model Method MSEP

SFPLM Y = β01X1 + β02X2 +m(X (1)) + ε
kernel 0.87

kNN 0.69

SFPLSIM Y = β01X1 + β02X2 + r
(〈
θ0,X (1)

〉)
+ ε

kernel 0.77

kNN 0.60

To conclude, it should be noted that, in addition to this good predictive beha-

viour, another great advantage of the SFPLSIM is that the functional variable enters

in the model through an interpretable parameter: θ0. The obtained estimations of

this functional direction in the SFPLSIM, using both kNN and kernel-based estima-

tion procedures, can be seen in Figure 3.1. The estimated directions show two peaks

and two bumps that could give information on which wavelength ranges have the

highest influence on the fat content.

Figure 3.1: Estimates of the functional direction θ0 using kNN-based (red line) and
kernel-based (black line) estimators.
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3.5.3 Conclusions

The SFPLSIM studied in this chapter together with the kNN-based estimation pro-

cedure offered the best results in terms of predictive power in this real data appli-

cation. In addition, the semiparametric feature of the model allows the interpreta-

bility of the derived estimations. We also would like to remember that, to obtain

our estimate of θ0, our method proposes to minimize on a predefined index set Θn.

Therefore, its computational cost is higher than that required by efficient proposals

based on functional dimension reduction techniques, as that in Wang et al. [110].

The advantage of our method against such proposals is (at least in this example)

its great predictive power: considering the same Tecator subsamples and measure of

the predictive performance as in Wang et al. [110], our procedure improves in a 35%

the predictive power of the method in Wang et al. [110].

3.6 Appendix Chapter 3: Proofs

Before starting the proofs, we are going to introduce some additional notation. The

kernel statistic and the kNN statistic associated with the estimation of gj,θ0(·) (j =

1, . . . , p), will be defined for each θ ∈ Θn, respectively, as:

ĝj,h,θ(χ) =
n∑
i=1

wn,h,θ(χ,Xi)Xij and ĝ∗j,k,θ(χ) =
n∑
i=1

w∗n,k,θ(χ,Xi)Xij ∀χ ∈ H.

3.6.1 Proof of Theorem 3.2 (a)

The main idea of the proof consists in applying existing results for kernel estimates

in the FSIM (see section 2.3.3) without additional multivariate predictors. Then, we

will have to deal with the estimation of the linear coefficients βββ0.

For fixed χ ∈ H, the following decomposition can be made:
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|r̂h,θ,βββ(χ)− rθ0(χ)| =

∣∣∣∣∣
n∑
i=1

wn,h,θ(χ,Xi)
(
Yi −XXX>i (βββ − βββ0 + βββ0)

)
− rθ0(χ)

∣∣∣∣∣
=

∣∣∣∣∣
n∑
i=1

wn,h,θ(χ,Xi)
(
Yi −XXX>i βββ0

)
− rθ0(χ)

+
n∑
i=1

wn,h,θ(χ,Xi)XXX>i (βββ0 − βββ)

∣∣∣∣∣
≤

∣∣∣∣∣
n∑
i=1

wn,h,θ(χ,Xi)
(
Yi −XXX>i βββ0

)
− rθ0(χ)

∣∣∣∣∣
+

∣∣∣∣∣
p∑
j=1

(ĝj,h,θ(χ) + gj,θ0(χ)− gj,θ0(χ)) (β0j − βj)

∣∣∣∣∣
≤

∣∣∣∣∣
n∑
i=1

wn,h,θ(χ,Xi) (rθ0(Xi) + εi)− rθ0(χ)

∣∣∣∣∣
+

∣∣∣∣∣
p∑
j=1

(ĝj,h,θ(χ)− gj,θ0(χ)) (β0j − βj)

∣∣∣∣∣
+

∣∣∣∣∣
p∑
j=1

gj,θ0(χ) (β0j − βj)

∣∣∣∣∣ . (3.14)

Now, using Theorem 2.5 (a) it is obtained that

sup
θ∈Θn

sup
an≤h≤bn

∣∣∣∣∣
n∑
i=1

wn,h,θ(χ,Xi) (rθ0(Xi) + εi)− rθ0(χ)

∣∣∣∣∣ = O (bα0
n )+Oa.co.

(√
log n

nf(an)

)
.

(3.15)

Using again Theorem 2.5 together with Condition (3.8),∣∣∣∣∣
p∑
j=1

(ĝj,h,θ(χ)− gj,θ0(χ)) (β0j − βj)

∣∣∣∣∣
≤ p1/2 max

j=1,...,p
sup
θ∈Θn

sup
an≤h≤bn

|ĝj,h,θ(χ)− gj,θ0(χ)| ||βββ − βββ0||

= O (bα0
n cn) +Oa.co.

(
cn

√
log n

nf(an)

)
. (3.16)
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In addition, from conditions (3.7) and (3.8) we get:

max
j=1,...,p

|gj,θ0(χ)| ||βββ − βββ0|| = O(cn). (3.17)

Finally, applying (3.15)–(3.17) in (3.14), and using that cn → 0 as n→∞ we obtain

the claimed result:

sup
βββ∈Ψn

sup
θ∈Θn

sup
an≤h≤bn

|r̂h,θ,βββ(χ)− rθ0(χ)| = O (bα0
n ) +Oa.co.

(√
log n

nf(an)

)

+O (bα0
n cn) +Oa.co.

(
cn

√
log n

nf(an)

)
+O(cn)

= O (bα0
n ) +Oa.co.

(√
log n

nf(an)

)
+O(cn). �

3.6.2 Proof of Theorem 3.2 (b)

Following an analogous reasoning to (3.14), we can obtain

∣∣r̂∗k,θ,βββ(χ)− rθ0(χ)
∣∣ ≤ ∣∣∣∣∣

n∑
i=1

w∗n,k,θ(χ,Xi) (rθ0(Xi) + εi)− rθ0(χ)

∣∣∣∣∣
+

∣∣∣∣∣
p∑
j=1

(
ĝ∗j,k,θ(χ)− gj,θ0(χ)

)
(β0j − βj)

∣∣∣∣∣
+

∣∣∣∣∣
p∑
j=1

gj,θ0(χ) (β0j − βj)

∣∣∣∣∣ . (3.18)

Now, using Theorem 2.5, it is obtained that

sup
θ∈Θn

sup
k1,n≤h≤k2,n

∣∣∣∣∣
n∑
i=1

w∗n,k,θ(χ,Xi) (rθ0(Xi) + εi)− rθ0(χ)

∣∣∣∣∣
= O

(
f−1

(
k2,n

ρnn

)α0
)

+Oa.co.

(√
log n

nf (λf−1(ρnk1,n/n))

)
. (3.19)
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Using again Theorem 2.5 and Condition (3.8),∣∣∣∣∣
p∑
j=1

(
ĝ∗k,j,θ(χ)− gj,θ0(χ)

)
(β0j − βj)

∣∣∣∣∣ = O

(
cnf

−1

(
k2,n

ρnn

)α0
)

+Oa.co.

(
cn

√
log n

nf (λf−1(ρnk1,n/n))

)
.

(3.20)

The desired result is obtained by combining (3.19), (3.20) and (3.17) with (3.18),

and using that cn → 0 as n→∞. �
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Chapter 4

Contributions on the sparse

semi-functional partial linear

single-index model

4.1 Introduction

Today, most of multivariate data analysis methodologies have been adapted to

functional data, as it has been evidenced by several recent surveys on FDA (see

e.g. Cuevas [29], Goia and Vieu [55] and Aneiros et al. [8]). Due to the infinite-

dimensionality of random variables in FDA, one of the main issues to ensure the

good performance of any statistical procedure is to control, in one way or another,

the dimensionality of the model (see the Introduction of this dissertation). In fact,

this dimensionality challenge is not so far from what exists in the related field of Big

Data analysis, in which traditionally the statistical variable is a high-dimensional

vector. In the recent past, the necessary links between the two fields have been

highlighted by both the Big Data community (see e.g. Scott [100]) and the FDA

one (see e.g. Goia and Vieu [55] and Aneiros et al. [8]). Moreover, in many fields

of applications, one could find data consisting of mixtures of functional and high-

dimensional variables. Then, the statistical methodologies to be built have to cross

both fields of FDA and Big Data.

This chapter is part of this category, since our purpose is to develop a new model
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for regression problems involving some scalar response, Y , and predictors composed

of some functional variable, X , and some high-dimensional vector, (X1, . . . , Xpn).

This new model must take into account three important features of our problem: i)

firstly, additive ideas are needed to separate the effects of the functional predictor, X ,

from those of the multivariate one, (X1, . . . , Xpn); ii) secondly, sparse ideas are needed

to control the high number of variables, pn (which is allowed to go to infinity as n

does), involved in the multivariate predictor; iii) finally, functional semiparametric

ideas are required to model the effect of the infinite-dimensional predictor, X . These

features lead us to the SSFPLSIM, which has been briefly presented in Section 1.4.3.

Specifically, the SSFPLSIM is given by the expression

Y = X1β01 + · · ·+Xpnβ0pn + r (〈θ0,X〉) + ε, (4.1)

where Y denotes a scalar response, X1, . . . , Xpn are random covariates taking values

in R and X is a functional random covariate valued in a separable Hilbert space H
with inner product 〈·, ·〉. In this equation, βββ0 = (β01, . . . , β0pn)> ∈ Rpn , θ0 ∈ H and

r(·) are a vector of unknown real parameters, an unknown functional direction and

an unknown smooth real-valued function, respectively. In addition, ε is the random

error, which verifies

E (ε|X1, . . . , Xpn ,X ) = 0. (4.2)

Finally, we will consider the same conditions (2.2) and (2.3) presented in the FSIM

(2.1) to ensure identifiability.

Model (4.1) is a generalization of the SFPLSIM (3.1) studied in the previous

chapter focusing on the estimation of the semiparametric component. The difference

between SFPLSIM and model (4.1) is that the latter incorporates the possibility of

having a divergent number of linear parameters and sparseness in the linear compo-

nent. Accordingly, in this chapter we put special attention on the linear component.

A variable selection method and estimators of the components of the model will be

constructed along Section 4.2, while a wide set of asymptotics will be provided in

Section 4.3. Finite sample behaviour of the method will be assessed through Monte

Carlo experiments in Section 4.4. In addition, Section 4.5 provides an application to

Tecator’s data. Technical proofs and lemmas are gathered in the Section 4.6.
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4.2 The penalized least-squares estimators

For simultaneously estimating the linear β-parameters and selecting the relevant

X-covariates in the SSFPLSIM (4.1) we will use a penalized least-squares (PLS)

approach. That is, assume that we have a statistical sample of n vectors

{(Xi1, . . . , Xipn ,Xi, Yi)}ni=1,

i.i.d. as (X1, . . . , Xpn ,X , Y ) verifying the SSFPLSIM (4.1):

Yi = Xi1β01 + · · ·+Xipnβ0pn + r(〈θ0,Xi〉) + εi (i = 1, . . . , n).

Step 1 The first idea is to transform the SSFPLSIM (4.1) into a linear model by

extracting from Yi and Xij (j = 1, . . . , pn) the effect of the functional covariate

Xi when is projected on the direction θ0. Specifically, if we denote XXX i =

(Xi1, Xi2, . . . , Xipn)> (i = 1, . . . , n), the fact that

Yi − E (Yi| 〈θ0,Xi〉) = (XXX i − E (XXX i| 〈θ0,Xi〉))>βββ0 + εi (i = 1, . . . , n) (4.3)

allows to consider the following approximate linear model:

ỸYY θ0 ≈ X̃XXθ0βββ0 + εεε, (4.4)

where, as in Chapters 2 and/or 3, the following notations were used:

� XXX = (XXX1, . . . ,XXXn)> and YYY = (Y1, . . . , Yn)>.

� For any (n× q)-matrix AAA (q ≥ 1) and θ ∈ H, we denote

ÃAAθ = (III −WWW h,θ)AAA, where WWW h,θ = (wn,h,θ(Xi,Xj))i,j

with wn,h,θ(·, ·) being the weight function defined in (2.11).

� εεε = (ε1, . . . , εn)>.

Note that, to obtain (4.4), the conditional expectations in (4.3) were estimated

by means of functional nonparametric techniques (kernel-based procedures).
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Step 2 The penalized least-squares approach is applied to model (4.4). In this way,

the considered penalized profile least-squares function is defined as

Q (βββ, θ) =
1

2

(
ỸYY θ − X̃XXθβββ

)> (
ỸYY θ − X̃XXθβββ

)
+ n

pn∑
j=1

Pλjn (|βj|) , (4.5)

where βββ = (β1, . . . , βpn)>, Pλjn (·) is a penalty function and λjn > 0 is a tuning

parameter (as commented in Section 1.4.1, the role of the sum in (4.5) is to

penalize the presence of non zero β-parameters; in fact, under suitable condi-

tions on Pλ (see e.g. Fan and Li [38]), the penalized least-squares estimators

produce sparse solutions (many estimated coefficients are zero)). At this mo-

ment it is noteworthy, on the one hand, the fact that the objective function

Q in (4.5) is not necessarily convex. This is the reason why, as usual in the

related literature (see e.g. Fan and Li [38], Fan and Peng [41] and Wang and

Zhu [109]), our asymptotic results in next section are focused on a local min-

imizer, (β̂ββ0, θ̂0), of Q (in particular, existence of such local minimizer will be

established in Theorem 4.2). On the other hand, this parameter estimation

procedure can be used also as a variable selection method in a simple way: if

β̂0j is a non-null component of β̂ββ0, then Xj is selected as an influential variable.

Step 3 Finally, after estimating βββ0 and θ0, we can deal with the estimation of the

nonlinear function rθ0(·) ≡ r (〈θ0, ·〉) in (4.1). A natural way is employing again

nonparametric procedures and smoothing (using kernel-based estimators) the

partial residuals Yi −XXX>i β̂ββ0; that is,

r̂θ (χ) =
n∑
i=1

wn,h,θ(χ,Xi)
(
Yi −XXX>i β̂ββ0

)
; (4.6)

then, the estimator of rθ0 (χ) will be r̂θ̂0 (χ). Note that the same bandwidth,

h, is used to estimate both the functional index θ0 and the parameter βββ0 from

(4.5), as well as to estimate the smooth real-valued function r(·) from (4.6).

Although the partial residuals in (4.6) could be smoothed by considering a dif-

ferent bandwidth, we have adopted the more usual procedure of using the same

bandwidth twice (see e.g. Liang et al. [75] for the case of a non-functional par-
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tial linear single-index model). Extension to the case with different bandwidths

does not involve any additional difficulties.

4.3 Asymptotic theory

4.3.1 Some initial notation

Let us first introduce some notation to be used in the results of this chapter, as well

as in their proofs:

� The set of indices of the covariates with linear effect will be denoted as Jn,

that is Jn = {1, . . . , pn}, and the set of indices corresponding to the influential

variables will be referred as Sn, that is Sn = {j ∈ Jn; β0j 6= 0} (the complement

of Sn will be denoted as Sn). In addition, sn will mean card(Sn).

� Given any vector vvv ∈ Rpn and any pn×pn matrixMMM , vvvSn andMMMSn×Sn denote the

vector and the matrix obtained from vvv and MMM retaining only the components

corresponding to the index sets Sn and Sn × Sn, respectively.

� For any θ ∈ H, and for 1 ≤ i ≤ n, 1 ≤ j ≤ pn, we denote

g0,θ(Xi) = E (Yi| 〈θ,Xi〉) ,

and

gj,θ(Xi) = E (Xij| 〈θ,Xi〉) ,

that is, g0,θ(·) and gj,θ(·) are the functional single-index regression operators of

Yi over Xi, and of Xij (j = 1, . . . , pn) over Xi, respectively. Finally, the errors

of these regressions are denoted by ηij,θ0 with 1 ≤ i ≤ n, 1 ≤ j ≤ pn:

ηij,θ0 = Xij − gj,θ0(Xi),

and

ηηηi,θ0 = (ηi1,θ0 , . . . , ηipn,θ0)> .
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� ∆min(MMM) and ∆max(MMM) denote the smallest and the largest eigenvalues of the

matrix MMM , respectively.

� The symbol || · || is used for denoting the L2 norm of vectors and matrices.

The same symbol is also employed for denoting the norm induced by the inner

product 〈·, ·〉. Specifically:

||aaa|| =
(
a2

1 + · · ·+ a2
q

)1/2
for aaa = (a1, . . . , aq)

> ∈ Rq,

||AAA|| = max
06=xxx∈Rq

||AxAxAx||
||xxx||

for any r × q matrix AAA

and

||χ|| = 〈χ, χ〉1/2 for any χ ∈ H.

� ∀ χ, θ ∈ H and ∀ε > 0, we will use the notation:

B(θ, ε) = {θ′ ∈ H; d(θ, θ′) < ε},

where, ∀ χ, χ′ ∈ H, d (χ, χ′) = ||χ− χ′||.

4.3.2 Assumptions

In order to state the rates of convergence of the proposed estimators and the model

selection consistency, we will use a large number of assumptions (some of them very

technical). Such number is directly related to the complexity of the model and the

results to be obtained. These assumptions, which will be justified in next Remark

4.1, are the following:

Conditions on the set of values of X and the topologies induced by dθ(·, ·).
The functional variable X is valued in some subset C of H such that can be

covered in the following way

C ⊂
Nθ
C,ε⋃

k=1

Bθ(χ
θ
ε,k, ε), ∀θ ∈ Θn. (4.7)
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In (4.7), N θ
C,ε is the minimal number of open balls in (H, dθ(·, ·)) of radius ε

which are necessary to cover C (note that the number N θ
C,ε and the centres of

the balls, χθε,k, depend on θ and ε). In addition,

Θn = {θ ∈ H; d(θ, θ0) ≤ vn} with vn → 0 as n→∞. (4.8)

That is, directions belonging to Θn are relatively close to the target direction

(and much closer as n→∞).

Conditions on the entropies and the balls in (4.7). Let us denote

NC,ε = sup
θ∈Θn

N θ
C,ε, ψC(ε) = log(NC,ε), k0

(θ,k,ε) = arg min
k′∈
{

1,...,N
θ0
C,ε

} d(χθε,k, χ
θ0
ε,k′).

(4.9)

That is, ψC(ε) denotes the Kolmogorov ε-entropy of the subset C in the topology

induced by dθ∗(·, ·), where θ∗ = arg supθ∈Θn N θ
C,ε (for details on the Kolmogorov

ε-entropy, see last item in Section 2.3.1). In addition, k0
(θ,k,ε) is the subscript

associated to the centre of the θ0-ball with radius ε (χθ0ε,k) which minimizes the

“distance”(measured with the semi-metric induced by the inner product) to

the centre of the kth θ-ball with the same radius (χθε,k). In the sake of brevity,

for the particular case ε = 1/n, we will use the notation

χθk = χθ1/n,k and k0 = k0
(θ,k,1/n).

On the one hand, it is assumed that

∃β > 1 such that pn exp

{
(1− β log pn)ψC

(
1

n

)}
→ 0 as n→∞. (4.10)

On the other hand, we assume that the maximum “distance” (measured with

the semi-metric associated to the inner product) between the centre of the kth

θ-ball with radius 1/n and the nearest θ0-ball of the same radius verifies

sup
θ∈Θn

max
k∈{1,...,Nθ

C,1/n}
d(χθk, χ

θ0
k0) = O(1/n). (4.11)
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Conditions on the small-ball probabilities. There exist constants C1 > 0, 0 <

C2 ≤ C3 <∞ and a function f : R −→ (0,∞) such that∫ 1

0

f (hs) ds > C1f (h) , (4.12)

and

∀χ ∈ C and ∀θ ∈ Θn, C2f(h) ≤ φχ,θ(h) ≤ C3f(h) (4.13)

(that is, the function f(·) bounds small-ball probability functions, avoiding

dependence on χ and θ).

Conditions linking the entropies and the small-ball probabilities. In order

to control the entropy of the set C, it is assumed that there exists a constant

C4 > 0 such that, for n large enough,

ψC

(
1

n

)
≤ C4nf(h)

αn log pn
, where αn →∞ as n→∞. (4.14)

Conditions on the kernel K.

For all u ∈ [0, 1), K(u) 6= 0 and for all u ∈ (−∞, 0) ∪ (1,+∞), K(u) = 0.

In addition, K is Lipschitz continuous on [0, 1),

and, if K(1) = 0, K also satisfies for all u ∈ [0, 1) that

−∞ < C5 < K ′(u) < C6 < 0, where C5 and C6 denote constants. (4.15)

Note that from a theoretical point of view, we have to differentiate the case

where K is a continuous kernel (K(1) = 0) from the case where K(·) is not

continuous. The case K(1) = 0 is more delicate and additional assumptions

are needed.

Conditions on the smoothness. Hölder type conditions are assumed for involved

functional single-index regressions; that is, for some constants 0 ≤ C7 <∞ and

α > 0, ∀(χ, χ′) ∈ C × C, and ∀z ∈ {g0,θ0 , g1,θ0 , . . . , gpn,θ0}, it is verified that

|z(χ)− z(χ′)| ≤ C7dθ0(χ, χ′)α. (4.16)
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Conditions on the random variables.

{(Yi, Xi1, . . . , Xipn ,Xi)} are random vectors i.i.d. verifying model (4.1).

(4.17)

{ηηηi,θ0} and {εi} are independents. (4.18)

〈X ,X〉1/2 < C8,where C8 denotes a positive constant. (4.19)

Conditions on the moments. Let C9, Cηθ0 and Cmε be positive constants. On

the one hand, conditional moments of the involved regressions are bounded, in

the sense that, ∀m ≥ 2, there exists a continuous operator in C, σm(·), such

that ∀χ ∈ C,

max
j∈{1,...,pn}

{E (|Y1|m| 〈θ0,X1〉 = 〈θ0, χ〉) ,E (|X1j|m| 〈θ0,X1〉 = 〈θ0, χ〉)} < σm(χ)

< C9.

(4.20)

On the other hand, the errors of the regressions also verify some moment

conditions:

∀ m ≥ 2 and ∀1 ≤ j ≤ pn, E|η1j,θ0|m ≤ Cηθ0

(
m!

2

)
. (4.21)

∃mε > 4 such that E |ε1|mε ≤ Cmε . (4.22)

In addition, there exists a constant C10 such that

0 < C10 < ∆min (BBBθ0Sn×Sn) , (4.23)

where BBBθ0 = E
(
ηηη1θ0ηηη

>
1θ0

)
. In particular, BBBθ0Sn×Sn is a definite positive matrix.

Conditions on the non null parameters and the penalty functions. Let C11

and C12 be positive constants. The penalty function verifies the following con-
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ditions:

Pλjn(·) is a continuous and nonnegative function verifying Pλjn(0) = 0,

(4.24)

Pλjn(·) is differentiable excepted perhaps at 0, (4.25)

with second derivative verifying Lipschitz continuity∣∣∣P ′′λjn (a)− P ′′λjn(b)
∣∣∣ ≤ C11|a− b|, ∀a, b > C12λjn, (4.26)

and the first derivative verifying

lim inf
n→∞

min
j∈Sn

{
lim inf

d→0+

P ′λjn(d)

λjn

}
> 0. (4.27)

Finally, the non null parameters verify

min
j∈Sn

{
|β0j|
λjn

}
→∞ as n→∞, (4.28)

which explicitly shows the rate at which the PLS approach can distinguish

nonvanishing parameters from 0. In addition, it is also assumed that linear

coefficients are bounded

max
j∈Sn
{|β0j|} = O(1). (4.29)

Remark 4.1 The hypotheses listed above are, in general, usual (or natural exten-

sions of those) in the related literature. For instance, conditions (4.7), (4.10) and

(4.14) are linked with the topology of (C, dθ) and, in the particular case of known θ0,

they are common when it is needed to obtain uniform orders over C (see e.g. Ferraty

et al. [49] or Aneiros et al. [7]). In the general case dealt here, where θ0 is unknown

and one needs to control the behaviour of the profile function Q(·, ·) (4.5) around θ0,

conditions (4.7), (4.10) and (4.14) are the natural extension of the corresponding to

such particular case. In the same way, conditions (4.8), (4.12) and (4.13) also allow

to control the effect of θ. Specifically, Condition (4.8) establishes the set of values

of θ where the profile function Q(·, ·) achieves a local minimum (see Ma [81]), while
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conditions (4.12) and (4.13) are natural extensions of usual assumptions (related

to the concentration properties of the probability measure of the functional variable

X ) from the case of known θ0 (see e.g. Ferraty et al. [49]) to that of unknown θ0

(see e.g. Chapter 2 or Ait-Säıdi et al. [3]). In addition, conditions (4.15)-(4.23)

are standard ones in nonparametric and semiparametric regression estimation when

functional covariates are present (see e.g. Ferraty et al. [49], Aneiros et al. [7], Wang

et al. [110]). Basically, they are mild conditions on the kernel, on the smoothness

of the nonparametric components involved (related to both the response variable and

the scalar covariates), on the dependence within the model and on the moments of

the variables. Focusing now on the conditions directly linked to the penalty proce-

dure (conditions (4.24)-(4.29)), they are usual assumptions in the topic of variable

selection using nonconcave penalized functions (see e.g. Fan and Li [38], Fan and

Peng [41], Aneiros et al. [7]). Note that a main role of these conditions is to produce

sparse solutions, i.e., automatically to set to zero small estimated coefficients to re-

duce model complexity. In addition, under some specific condition (see, for instance,

Aneiros et al. [7]), the SCAD penalty function (1.10) verifies our assumptions. Fi-

nally, Condition (4.11) is really specific to the functional framework addressed here

and, therefore, requires a deeper reasoning. It will be discussed in a more general

setting in Section 4.6.7 (see Remark 4.11).

4.3.3 Results

Our first result focuses on both the existence and rate of convergence of a local

minimizer of the penalized least-squares objective function Q (βββ, θ) (see (4.5)). Let

us denote

δn = max
j∈Sn

{∣∣∣P ′λjn (|β0j|)
∣∣∣} , ρn = max

j∈Sn

{∣∣∣P ′′λjn (|β0j|)
∣∣∣} and un =

√
sn
(
n−1/2 + δn

)
.

(4.30)
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Theorem 4.2 Assume that conditions (4.2), (4.7), (4.8) and (4.10)-(4.29) hold.

Assume, in addition, that pn →∞ as n→∞, pn = o
(
n1/2

)
and

max
{
ns2

nh
4α, snh

α log n
}

= O(1),

s2
n log pn log2 n = O

(
nf(h)

ψC (1/n)

)
,

s2
n log2 n = O

(
n

(
f(h)

ψC (1/n)

)2
)
,

nsnvn = O(hf(h))

and

max

{
ρn,

un
minj∈Sn {λjn}

,
un∆

1/2
max(BBBθ0)

minj∈Sn {λjn}
,
n−1/2+1/mε log n

minj∈Sn {λjn}

}
= o(1).

Then, there exists a local minimizer
(
β̂ββ0, θ̂0

)
of Q (βββ, θ) such that

∥∥∥β̂ββ0 − βββ0

∥∥∥ = Op(un) and
∥∥∥θ̂0 − θ0

∥∥∥ = Op(vn)

(Note that vn was defined in (4.8)).

Remark 4.3 Theorem 4.2 can be seen, in a certain sense, as an extension of The-

orem 3.1 in Aneiros et al. [7] from the case Θn = {θ0} (i.e., vn = 0 in (4.8); equiva-

lently, θ0 known) to the case where {θ0} ⊂ Θn (i.e., θ0 unknown). For verifying that,

we only need to consider the results in Aneiros et al. [7] when the semi-metric dθ0(·, ·)
is used. From Theorem 4.2 we obtain that the rate of convergence (un) achieved by

the local minimizer β̂ββ0 is the same as that reached in the least complex scenario stud-

ied in Aneiros et al. [7] (as well as in the linear model considered in Fan and Lv

[40], where δn = 0), and this was one of our main aims. Naturally, for this to be

possible, it is necessary to have a very good estimator of the parameter θ0. Such

estimator is obtained by means of the local minimizer θ̂0 (note that the local feature

of the minimizers plays a main role to obtain fast rates of convergence).

Our second result states the model selection consistency. Let us denote

Ŝn =
{
j ∈ Jn; β̂0j 6= 0

}
,
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where β̂ββ0 = (β̂01, . . . , β̂0pn)> is the estimator in Theorem 4.2.

Theorem 4.4 (Model selection consistency) Under assumptions in Theorem 4.2,

we have that

P
(
Ŝn = Sn

)
→ 1 as n→∞.

The following result focuses on the asymptotic distribution of certain projections

of β̂ββ0. First, let us introduce some additional notation. We will denote

ccc = (c1, . . . , cpn)> , being cj = P ′λjn (|β0j|) sgn(β0j)1{j∈Sn},

and

VVV = diag {V1, . . . , Vpn} , where Vj = P ′′λjn (|β0j|) 1{j∈Sn}.

In addition, we will denote σ2
ε = E(ε2

i ), while AAAn will be any q× sn matrix such that

AAAnAAA
>
n → AAA as n→∞, where AAA is a q × q definite positive matrix.

Theorem 4.5 (Asymptotic normality) Adding the following conditions to as-

sumptions in Theorem 4.2 (where, if sn = 1, log sn must be interpreted as 1):

∃β′ > 1 such that sn exp

{
(1− β′ log sn)ψC

(
1

n

)}
→ 0 as n→∞,

max
{
ns3

nh
4α, n2/mεsnh

2α log2 n, s3
nh

2α log2 n, n−1s3
n, ns

3
nδ

4
n

}
= o(1)

and

max
{
n2/mεsn log sn log2 n, s3

n log sn log2 n
}

= o

(
nf(h)

ψC (1/n)

)
,

the following result can be established:

n1/2AAAnCCCθ0,Sn

(
β̂ββ0Sn − βββ0Sn + (BBBθ0Sn×Sn + VVV Sn×Sn)−1 cccSn

)
d−→ N(000,AAA),

where we have denoted CCCθ0,Sn = σ−1
ε BBB

−1/2
θ0Sn×Sn (BBBθ0Sn×Sn + VVV Sn×Sn).

Remark 4.6 Theorems 4.4 and 4.5 show that β̂ββ0 enjoys the oracle property with the

meaning given, for instance, in Xie and Huang [116]: “the estimator can correctly
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select the nonzero coefficients with probability converging to one, and that the esti-

mators of the nonzero coefficients are asymptotically normal with the same means

and covariances that they would have if the zero coefficients were known in advance”.

In the setting of multivariate regression (not functional), the interested reader can

find estimators verifying such property in Fan and Peng [41] (linear regression), Xie

and Huang [116] (partially linear regression) or Wang and Zhu [109] (partial linear

single-index regression), among others. See also Aneiros et al. [7] for the case of the

semi-functional partial linear regression.

Finally, the next theorem states the uniform rate of convergence of the statistic

r̂θ (χ) in (4.6).

Theorem 4.7 Under assumptions of Theorem 4.2, if in addition the following con-

ditions are verified:

A) ∀(χ, χ′) ∈ C × C, |rθ0(χ)− rθ0(χ′)| ≤ C13dθ0 (χ, χ′)α, where α was defined in

(4.16),

B) supχ∈C,j∈Sn |gj,θ0(χ)| = O(1)

and

C) ψC (1/n)→∞ as n→∞,

then, we have that

sup
θ∈Θn

sup
χ∈C
|r̂θ (χ)− rθ0 (χ)| = Op

(
hα +

√
ψC (1/n)

nf(h)

)
+Op (

√
snun) .

Corollary 4.8 Under assumptions of Theorem 4.7, it is verified that

sup
χ∈C

∣∣r̂θ̂0 (χ)− rθ0 (χ)
∣∣ = Op

(
hα +

√
ψC (1/n)

nf(h)

)
+Op (

√
snun) .

Corollary 4.9 Under assumptions of Theorem 4.7, if in addition the following con-

ditions hold:
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A) ∀θ ∈ Θn, the random variables 〈θ,X〉 are valued in the same compact subset,

R, of R, and are absolutely continuous with respect to the Lebesgue measure,

with density fθ satisfying

0 < inf
θ∈Θn, u∈R

fθ(u) ≤ sup
θ∈Θn, u∈R

fθ(u) <∞,

B) h ≈ C(log n/n)1/(2α+1),

C) sn ≈ cnγ with 0 < 2γ < 1− 2α/(2α + 1)

and

D) δn = O(n−1/2) (δn was defined in (4.30)),

then we have that

sup
θ∈Θn

sup
χ∈C
|r̂θ (χ)− rθ0 (χ)| = Op

((
log n

n

)α/(2α+1)
)

and

sup
χ∈C

∣∣r̂θ̂0 (χ)− rθ0 (χ)
∣∣ = Op

((
log n

n

)α/(2α+1)
)
.

Remark 4.10 Theorem 4.7 extends, in the sense commented in Remark 4.3, The-

orem 3.3 in Aneiros et al. [7] from the case Θn = {θ0} (i.e., vn = 0 in (4.8);

equivalently, θ0 known) to the case where {θ0} ⊂ Θn (i.e., θ0 unknown). Corollary

4.9 shows a nice property of dimensionality reduction: the semi-functional nonpara-

metric component rθ0(·) ≡ r(〈θ0, ·〉) is estimated with univariate nonparametric rate

(note that Condition A imposed in Corollary 4.9 was used, e.g., in Ferraty et al. [50],

while Condition D is satisfied, for instance, for the SCAD penalty function; finally,

Condition B considers a bandwidth with optimal rate for univariate nonparametric

regression while Condition C is a non-restrictive technical assumption).

4.4 Simulation study

The aim of this section is to show the finite sample behaviour of the two statistical

procedures presented before for the SSFPLSIM (4.1); that is, firstly, the penal-

99



Chapter 4. Contributions on the SSFPLSIM

ized least-squares procedure (for both variable selection and estimation of the linear

parameters βββ0) and secondly, the single-index approach for estimating the functional

semiparametric component of the model.

4.4.1 The design

For (n, pn) ∈ {(100, 50), (200, 100)}, samples of i.i.d. data {(Xi1, . . . , Xipn ,Xi, Yi)}ni=1

were constructed according to the following model:

Yi = Xi1β01 + · · ·+Xipnβ0pn + r (〈θ0,Xi〉) + εi, (i = 1, . . . , n), (4.31)

where:

� The vectors of real covariates, (Xi1, . . . , Xipn)> (i = 1, . . . , n), were generated

from a multivariate normal distribution with zero mean and covariance matrix

given by (ρ|j−k|)jk (j, k = 1, . . . , pn). Two values for ρ (namely ρ = 0 and

ρ = 0.5) were considered.

� The functional covariate, Xi (i = 1, . . . , n), was generated from expression

Xi(t) = ai cos(2πt) + bi sin(4πt) + 2ci(t− 0.25)(t− 0.5) ∀t ∈ [0, 1], (4.32)

where now the random variables ai, bi and ci (i = 1, . . . , n) were independent

and uniformly distributed on the interval [0, 10] (note that we refer to inde-

pendence both between and within vectors (ai, bi, ci)
>). These curves were

discretized on the same grid of 100 equispaced points in [0, 1].

� The i.i.d. random errors, εi (i = 1, . . . , n), were simulated from a N(0, σε)

distribution, where σ2
ε = cσ2

r with σ2
r denoting the empirical variance of the

regression Xi1β01+· · ·+Xipnβ0pn+r (〈θ0,Xi〉). Note that c is the signal-to-noise

ratio, and two values (namely c = 0.01 and c = 0.05) were considered.

� The true vector of linear coefficients was

βββ0 = (β01, . . . , β0pn)> = (3, 1.5, 0, 0, 2, 0, . . . , 0)>.
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� The true direction of projection, θ0, was constructed as described in Section

2.4. Values l = 3 and mn = 3 were considered and the vector of coefficients of

θ0 in expression (2.36) was:

(α1, . . . , αdn)> = (0, 1.741539, 0, 1.741539,−1.741539,−1.741539)>. (4.33)

� The inner product and the link function considered were 〈f, g〉 =
∫ 1

0
f(t)g(t)dt

and r(〈θ0, χ〉) = 〈θ0, χ〉3, respectively.

Figure 4.1 shows a sample of 200 curves generated from (4.32) in its left panel,

while in the right panel, in black colour and solid line, the functional direction θ0 is

displayed.

Figure 4.1: Sample of 200 curves generated from (4.32) (left panel) and func-
tional direction θ0 (right panel). In addition, in right panel, it is displayed the

estimation, θ̂0, of θ0 obtained from a particular sample in the scenario (n, pn, ρ, c) =
(100, 50, 0, 0.05).
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For each simulation case ((n, pn), ρ, c) ∈ {(100, 50), (200, 100)} × {0, 0.5}×
{0.01, 0.05}, M = 100 independent samples were generated from model (4.31). For

each sample, we obtained an estimator of the pair (βββ0, θ0) by minimizing the pe-

nalized profile least-squares function Q (βββ, θ) (see (4.5)). For that, we considered
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eligible functional directions as explained in Section 2.4. Epanechnikov kernel was

used while the penalty function considered was the SCAD (1.10). The value a = 3.7

is usually considered in literature (see Fan [37], Fan and Li [38] or Aneiros et al. [7]).

To reduce the quantity of tuning parameters, λj, to be selected for each sample, we

consider λj = λσ̂β0,j,OLS
, where β0,j,OLS denotes the OLS estimate of β0,j in (4.31)

and σ̂β0,j,OLS
is the estimated standard deviation. This tuning parameter, λ, as well

as the bandwidth, h, were selected by means of the BIC procedure. More specifically,

the BIC value corresponding to (β̂ββ0,h,λ, θ̂0,h,λ) (the estimate of the parameter (βββ0, θ0)

in the linear model (4.4) obtained by minimizing the profile least-squares function

(4.5)) was computed from the routine select of the R package grpreg (see Breheny

and Huang [19]). The main reason why we have used this selector is its low computa-

tional cost compared to cross-validation-based selectors (which are time consuming

procedures). Moreover, this BIC selector shows good behaviour both in this sim-

ulation study and in the real data application reported in Section 4.5. Then, it is

noteworthy that its low computational cost takes a main relevance in the estimation

of such a complex model as the SSFPLSIM.

4.4.2 Results

First results of the simulation study are presented in Table 4.1 and Figure 4.2 (vari-

able selection) and Table 4.2 (βββ0 estimation).

Table 4.1 shows both the average percentage (restricted only to the true zero

coefficients) of coefficients correctly set to zero and the average percentage (restricted

only to the true non-zero coefficients) of coefficients erroneously set to zero.

From Table 4.1 we can observe that, as sample size increases, our procedure can

detect a greater percentage of non-significant variables. In addition, the percentage

of significant variables erroneously set to zero decreases. It is noteworthy that posi-

tive dependence between variables gives some advantage in detecting non-significant

variables, but it is detrimental to the detection of the significant ones (similar con-

clusions were obtained in nonfunctional both linear (Huang et al. [65]) and partial

linear (Xie and Huang [116]) models, as well as in the semi-functional partial linear

model (Aneiros et al. [7])). We can also observe that results are better for c = 0.01

than c = 0.05, especially for finding the true relevant variables.

102



Chapter 4. Contributions on the SSFPLSIM

Table 4.1: Column “Correct”: Average percentage (restricted only to the true zero
coefficients) of coefficients correctly set to zero. Column “Incorrect”: Average per-
centage (restricted only to the true non-zero coefficients) of coefficients erroneously
set to zero.

ρ = 0 ρ = 0.5

n pn c Correct Incorrect Correct Incorrect

100 50
0.05 77.404 16.667 84.447 24.333

0.01 92.830 1.000 96.319 7.667

200 100
0.05 85.052 2.667 91.072 11.333

0.01 98.619 0.000 99.732 2.667

Figure 4.2 shows barplots with the percentage of times that each non-zero coef-

ficient (β01 = 3, β02 = 1.5 and β05 = 2) is not set to zero. Therefore, since the linear

covariates are identically distributed, Figure 4.2 allows to analyse the influence of the

size of each β0j non-zero coefficient in the detection of the jth variable as influential

one. A first conclusion is that, as intuition says, as bigger is the value of β0j, greater

is the percentage of success. In general, results also improve if we increase the sample

size or if we reduce c (and then, σ2
ε). In addition, positive dependence between vari-

ables makes more difficult the detection of the significant variables, especially for

smaller values of β0j.

Table 4.2 reports information about the performance of the penalized least-

squares (PLS) estimator of βββ0 in the SSFPLSIM (4.31). Specifically, on the one

hand it shows both the mean and standard deviation of the squared errors,

∣∣∣∣∣∣β̂̂β̂β0 − βββ0

∣∣∣∣∣∣2 =

pn∑
j=1

(
β̂0j − β0j

)2

, (4.34)

obtained from the M replicates when both the proposed PLS approach and the

ordinary least-squares (OLS) estimator are applied to the SSFPLSIM.
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Figure 4.2: Percentage of times that each non-zero coefficient of βββ0 is not set to
zero. We use grey for β02 = 1.5, pink for β05 = 2 and blue for β01 = 3. Dark colours
correspond to n = 100, while light colours match n = 200. Values ρ = 0 and ρ = 0.5
are considered.
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(b) c = 0.01
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On the other hand, Table 4.2 reports the corresponding mean and standard deviation

of the squared errors obtained from the OLS approach assuming that one knows in

advance what are the non-null coefficients (oracle estimator). Note that the oracle

estimator can’t be used in practice, but can be seen as a benchmark method in

simulation. As expected, the oracle estimator performs the best and the OLS one

performs the worst. The proposed PLS estimator shows a good behaviour, since its

performance is much closer to the oracle estimator than to the OLS one. In addition,

its behaviour improves significantly when the sample size increases (note that the

estimation of θ0 is needed, which, given the complexity of the SSFPLSIM, requires

a sufficient sample size) or the signal-to-noise ratio (c) decreases. Note also that the

dependence in the linear covariates has effects on both estimators (oracle and OLS)

and on the variable selection procedure (PLS): in general, small values of ρ provide

better results.

Table 4.2: Mean and standard deviation (SD) of the squared errors (4.34) obtained
from ORACLE, (the proposed) PLS and OLS procedures.

ORACLE PLS OLS

c ρ n Mean SD Mean SD Mean SD

0.05

0
100 1.879 1.855 12.742 13.241 89.209 51.619

200 0.796 0.628 4.055 2.807 61.023 26.082

0.5
100 2.347 2.882 11.014 9.610 148.431 91.162

200 1.051 0.956 4.804 3.821 99.872 41.521

0.01

0
100 0.440 0.502 1.359 1.063 22.425 17.874

200 0.175 0.140 0.656 0.519 12.847 4.738

0.5
100 0.540 0.733 2.645 1.720 37.210 30.573

200 0.231 0.207 1.825 1.080 21.067 7.868

In addition, in this simulation study we are going to show the practical beha-

viour of the estimators related to the semiparametric component. For that, Table

4.3 reports mean and standard deviation of the squared errors (3.13) obtained in
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the estimation of θ0 (by means of kernel-based procedures). From Table 4.3 we

can conclude that the performance of the proposed estimator for the single-index

(infinite-dimensional) parameter, θ0, clearly improves when the sample size increases

or the signal-to-noise ratio (c) decreases (in a similar way as happened for estimation

of the linear (finite-dimensional) parameter βββ0). In addition, it appears that, once

the variable selection is performed, the estimation errors are not really affected by

higher values of ρ.

Table 4.3: Mean and standard deviation (SD) of the squared errors (3.13) obtained
from the proposed procedure (by means of kernel-based estimation).

c ρ n Mean SD

0.05

0
100 0.010 0.011

200 0.003 0.007

0.5
100 0.009 0.011

200 0.004 0.004

0.01

0
100 0.004 0.008

200 0.001 0.004

0.5
100 0.004 0.007

200 0.001 0.004

In order to measure the performance of the proposed estimator (r̂(·)) for the

nonparametric component (r(·)), M independent test samples with sample size

ntest = 100, {
X (k)
j

}ntest
j=1

, k = 1, . . . ,M,

were constructed in a similar way as in Section 4.4.1 (note that these M test samples

were also independent of the M (training) samples considered until now).
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Figure 4.3: Boxplots of the squared errors (4.35) obtained from the proposed
procedure for the several considered scenarios.

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

n=100,ρ=0 n=100,ρ=0.5  

0
10

20
30

40
50

60

●
●●

●●●
●

●

●

●

●

●

●●

●
●

●
●

●

n=200,ρ=0 n=200,ρ=0.5

0
10

20
30

40
50

60

(a) c = 0.05

●

●

●

●

●

●

●
●

●

●

●

●

●
●

n=100,ρ=0 n=100,ρ=0.5  

0
5

10
15

●

●

●

●

●

●
●
●●

●
●

●

●

●●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●●

●

●

●

n=200,ρ=0 n=200,ρ=0.5

0
5

10
15

(b) c = 0.01

107



Chapter 4. Contributions on the SSFPLSIM

Then, the performance of the estimate for r(·) constructed from the k-th training

sample was measured by means of the MSEP

MSEPk =
1

ntest

ntest∑
j=1

(
r̂k

(〈
θ̂0k,X (k)

j

〉)
− r

(〈
θ0,X (k)

j

〉))2

, (4.35)

where θ̂0k and r̂k(·) denote estimators for θ0 and r(·), respectively, constructed from

information in the k-th training sample. Figure 4.3 displays, for each considered

scenario, boxplots with the corresponding MSEPk values. In a similar way as for

estimation of both the linear (finite-dimensional) parameter βββ0 (see Table 4.2) and

the single-index (infinite-dimensional) parameter θ0 (see Table 4.3), Figure 4.3 shows

that the performance of the estimate of the nonparametric component, r̂(·), clearly

improves when the sample size increases or the signal-to-noise ratio (c) decreases.

Finally, Figure 4.4 displays, for a particular replicate, values of r (〈θ0, ·〉) versus

r̂
(〈
θ̂0, ·
〉)

, as well as both r (〈θ0, ·〉) and r̂ (〈θ0, ·〉) versus 〈θ0, ·〉. For a graphic

representation of the estimate of θ0 obtained from such particular replicate, see right

panel in Figure 4.1 (red color and dashed line).

Figure 4.4: Real and estimated values, from a particular sample in the scenario
(n, pn, ρ, c) = (100, 50, 0, 0.05), related to the semiparametric component, r (〈θ0, ·〉),
of the SSFPLSIM (4.31). The curve in the right panel is the true r(·).
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4.5 Application to real data

In this section, Tecator’s dataset is modelled through different functional regression

models, including the SSFPLSIM (4.1) proposed in this chapter. The results ob-

tained show the usefulness of both the SSFPLSIM and the proposed PLS estimation

procedure.

Before beginning the next sections dedicated to present variables, modelling, vari-

able selection and prediction, we indicate that, in the estimation of the three models

that require variable selection (that is, SLM (1.8), SSFPLM (1.11) and SSFPLSIM

(4.1) in Table 4.5), both the tuning parameter, λ, and the bandwidth, h, were se-

lected by means of the BIC procedure. Moreover, the Epanechnikov kernel and the

penalty function SCAD (with parameter a = 3.7) were used to estimate them (in a

similar way as in the simulation study in Section 4.4). In addition, in the SSFPLSIM

the order of the splines was l = 3, while the number of regularly interior knots, mn,

was selected by means of the BIC procedure (resulting m̂n = 4); for details on the

role of the splines, see (2.36) in Section 2.4.

4.5.1 The data

In this real data application, as happened in Section 3.5, we will consider as variables

the percentages of fat, protein and moisture contents (Yi, X1i and X2i, respectively)

and the near-infrared absorbance spectra, Xi, of 215 finely chopped pieces of meat.

The variables Yi, X1i and X2i are scalar, while the corresponding near-infrared ab-

sorbance spectra (observed on 100 equally spaced wavelengths (tj, j = 1, . . . , 100) in

the range 850–1050 nm) can be considered as a continuous curve. As usual when one

deals with Tecator’s dataset, we will use the second derivatives of the absorbance

curves, X (2)
i , as functional covariate instead of the original curve (see e.g. Ferraty and

Vieu [47] for details). Figure 2.4 displays samples of both the absorbance curves and

their second derivatives. For making comparisons with results obtained in previous

chapters for the Tecator’s dataset, note that in Chapter 2 we also have used second

derivatives of the absorbance curves; however, in Chapter 3 the first derivatives

were employed (the order of the derivative was selected by means of the 10-folds-CV

procedure).
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Our purpose in this section is modelling the relationship between the fat content

(response), the protein and moisture contents (scalar covariates), and the absorbance

spectra (functional covariate) and then, use the model to predict the fat content. In

addition, we are interested in whether there are any interaction effects, quadratic

effects and/or cubic effects between these scalar covariates.

In order to compare the behaviour of each considered model and estimation

procedure, we will split the original sample into two subsamples: a training sample,

Dtrain = {(Xi1, Xi2,X (2)
i , Yi)}160

i=1,

and a testing one,

Dtest = {(Xi1, Xi2,X (2)
i , Yi)}215

i=161

(that is, benchmark partition will be used). In this way, all the estimation task

is made only by means of the training sample, while the testing sample is used to

measure the quality of the predictions. To quantify the error in the prediction task,

the MSEP (2.40) will be used with n = 160 and ntest = 55.

4.5.2 Results

In literature, several models have been used to describe the relation between the fat

content and the absorbance spectra (see e.g. Ferraty and Vieu [47] for a functional

nonparametric model, and Chen et al. [27] for a multiple index functional model).

In Chapter 2, we modelled this dataset using the FSIM (2.1) and compared the

performance of the obtained predictions to that provided by the FLM (1.1) and the

FNM (1.2). Such three models as well as the corresponding MSEPs obtained from

kernel-based estimation procedures (in the case of FNM and FSIM) and functional

principal components regression (in the case of FLM) are summarized in Table 4.4.

To improve the performance of the FNM and FSIM, as we have done in Section

3.5, Aneiros-Pérez and Vieu [11] and Wang et al. [110] included in such models,

respectively, information from the scalar covariates X1 and X2. Nevertheless, in

Chapter 3, as well as in those two papers, only linear effects of X1 and X2 were

considered: no interaction effects, and neither quadratic nor cubic effects. In order to

take into account such potential effects, one can extend the case studies of Section 3.5,
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Aneiros-Pérez and Vieu [11] and Wang et al. [110] by considering as linear covariates

X2j−1 = Xj
1 and X2j = Xj

2 (j = 1, · · · , qn), and Xpn = X1X2 (we have denoted

pn = 2qn + 1). The corresponding semi-functional partial linear model (SFPLM)

and SSFPLSIM for the particular case of pn = 7 (equivalently, for models allowing

linear, quadratic and cubic effects, as well as interaction between the covariates X1

and X2) are shown in Table 4.5. The SLM (1.8) is also included in such table. Table

4.5 also reports the selected variables when the PLS procedures in Fan and Peng

[41] (SLM), Aneiros et al. [7] (SSFPLM) and our proposal (SSPLSIM) are applied,

as well as the corresponding MSEPs.

Table 4.4: Values of the MSEPs from some functional models.

Model MSEP

FLM Y = γ0 +
∫ 1050

850
X (2)(t)γ(t)dt+ ε 7.17

FNM Y = m(X (2)) + ε 4.06

FSIM Y = r
(〈
θ0,X (2)

〉)
+ ε 3.49

Table 4.5: Values of the MSEPs from some scalar parametric and functional semi-
parametric models when PLS variable selection methods are used. The selected
variables are also shown.

Model Selected variables MSEP

SLM Y =
∑7

j=1 Xjβ0j + ε X1, X2, X7 1.95

SFPLM Y =
∑7

j=1Xjβ0j +m(X (2)) + ε X1, X2 1.48

SSFPLSIM Y =
∑7

j=1 Xjβ0j + r
(〈
θ0,X (2)

〉)
+ ε X1, X2, X4, X5 1.29

Several conclusions can be drawn from Tables 4.4 and 4.5. First, Table 4.4 shows

that the FSIM improves results of both the FLM and FNM. Second, Table 4.5

indicates that to add scalar linear effects in the FNM and FSIM (or, equivalently, to

add functional nonparametric or semiparametric effects in the SLM) improves the

predictive power of these simpler models. In addition, the percentages of protein (X1)
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and moisture (X2) contents have a linear influence on the percentage of fat content

(Y ). X1 and X2 also present cubic and quadratic influence on Y , respectively, when

the SSFPLSIM is considered, while interaction effects (the covariate X7 is selected)

are only detected in the SLM. Finally, Table 4.5 also shows that our proposed model

(SSFPLSIM), which is a mix of all these ideas (semiparametric and partial linear

ideas), presents the better performance.

Figure 4.5: Predicted values from the SSFPLSIM vs Observed values.
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Figure 4.5 displays the predicted values (Ŷi, i = 161, . . . , 215) from the SS-

FPLSIM versus the observed ones (Yi, i = 161, . . . , 215). The high predictive power

of the SSFPLSIM is evident. The estimates of the functional directions, θ0, in the

FSIM and SSFPLSIM are displayed in Figure 4.6 (left panel). It is worth being noted

that both graphics of θ̂0 suggests that the two bumps around wavelengths 880 and

1000, as well as the peak around wavelength 940, could be important indicators of

the fat content (note that this suggestion is compatible with the findings in Section

2.6). Finally, Figure 4.6 (right panel) shows the estimate of the smooth real-valued

function, r(·), in the SSFPLSIM.
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Figure 4.6: Left panel: Estimates of the functional directions (θ0) in the FSIM and
SSFPLSIM. Right panel: Estimate of the function r(·) in the SSFPLSIM.
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4.5.3 Conclusions

Our real data application evidences the advantages of using the SSFPLSIM (4.1)

together with the proposed PLS procedure in terms of accuracy of predictions. In

addition, as in the case of FSIM (2.1), the SSFPLSIM presents the advantage of the

interpretation of the estimated direction of projection, θ̂0, which could also comple-

ment the information about how the (second derivative of the) spectrometric curves

affect to the fat content.

4.6 Appendix Chapter 4: Proofs

This section presents the proofs of our main results. For that, a major role is played

by the technical lemmas provided in Section 4.6.7.3. Note that the Remark 4.11 in

Section 4.6.7.1 justifies that such lemmas can be applied under the conditions of our

theorems.

Without loss of generality, we will assume that Sn = {1, . . . , sn}.
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4.6.1 Proof of Theorem 4.2

Before starting the proof, let us complete in the following way the notations intro-

duced in Section 4.3.1 of the chapter:

gggj,θ0 = (gj,θ0(X1), . . . , gj,θ0(Xn))> (0 ≤ j ≤ pn), GGGθ0 = (ggg1,θ0 , . . . , gggpn,θ0) ,

and for each θ ∈ Θn:

ĝj,θ(χ) =
n∑
i=1

wn,h,θ(χ,Xi)Zij with Zi0 = Yi and Zij = Xij (1 ≤ j ≤ pn),

ĝggj,θ = (ĝj,θ(X1), . . . , ĝj,θ(Xn))> (0 ≤ j ≤ pn) and ĜGGθ =
(
ĝgg1,θ, . . . , ĝggpn,θ

)
.

In addition, we denote

ηηηθ0 = (ηηη1,θ0 , . . . , ηηηn,θ0)> ,

and

Q∗ (βββSn , θ) =
1

2

(
ỸYY θ − X̃XXθSnβββSn

)> (
ỸYY θ − X̃XXθSnβββSn

)
+ n

sn∑
j=1

Pλjn (|βj|) .

To obtain the desired result, it suffices to prove that there exists a local minimizer(
β̂ββ0Sn , θ̂0

)
of Q∗(βββSn , θ) such that

∥∥∥β̂ββ0Sn − βββ0Sn

∥∥∥ = Op(un),
∥∥∥θ̂0 − θ0

∥∥∥ = Op(vn) (4.36)

and (
β̂ββ0, θ̂0

)
=

((
β̂ββ
>
0Sn ,000

>
pn−sn

)>
, θ̂0

)
is a local minimizer of Q(·, ·), (4.37)

where 000pn−sn is a vector of zero components with dimension pn − sn.

First, we will obtain the results in (4.36). For that, it suffices to show that, for

any given γ > 0, there exists a constant C such that, for n large enough,

P
(

inf
||uuu||=C,θ∈Θ∗n

Q∗ (βββ0Sn + unuuu, θ) > Q∗ (βββ0Sn , θ0)

)
≥ 1− γ,
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where uuu = (u1, . . . , usn)> ∈ Rsn and Θ∗n = {θ ∈ Θn; d(θ, θ0) = vn}. Let us denote

Q∗(βββSn , θ) = L∗(βββSn , θ) + P∗(βββSn), (4.38)

where

L∗(βββSn , θ) =
1

2

(
ỸYY θ − X̃XXθSnβββSn

)> (
ỸYY θ − X̃XXθSnβββSn

)
and P∗(βββSn) = n

∑
j∈Sn

Pλjn (|βj|) .

We have that

Q∗(βββ0Sn , θ0)−Q∗ (βββ0Sn + unuuu, θ) = A1 + A2, (4.39)

where

A1 = L∗(βββ0Sn , θ0)−L∗ (βββ0Sn + unuuu, θ) and A2 = P∗(βββ0Sn)−P∗(βββ0Sn +unuuu). (4.40)

Focusing on A1, we can write

2A1 =
(
ỸYY
>
θ0
ỸYY θ0 − 2ỸYY

>
θ0
X̃XXθ0Snβββ0Sn

)
+
(
X̃XXθ0Snβββ0Sn

)>
X̃XXθ0Snβββ0Sn

−
(
ỸYY
>
θ ỸYY θ − 2ỸYY

>
θ X̃XXθSnβββ0Sn

)
−
(
X̃XXθSnβββ0Sn

)>
X̃XXθSnβββ0Sn

+2un

(
ỸYY
>
θ X̃XXθSn −

(
X̃XXθSnβββ0Sn

)>
X̃XXθSn

)
uuu

−u2
nuuu
>X̃XX

>
θSnX̃XXθSnuuu ≡ A11 + A12 − A13 − A14 + 2unA15 − A16. (4.41)

Taking into account that

ỸYY θ0 = ggg0,θ0 − ĝgg0,θ0 + ηηηθ0Snβββ0Sn + εεε and ỸYY θ = ggg0,θ0 − ĝgg0,θ + ηηηθ0Snβββ0Sn + εεε,

as well as that

X̃XXθ0Sn =
(
GGGθ0 − ĜGGθ0

)
Sn

+ ηηηθ0Sn and X̃XXθSn =
(
GGGθ0 − ĜGGθ

)
Sn

+ ηηηθ0Sn ,
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we obtain that

A11 =
(
ggg0,θ0 − ĝgg0,θ0

)> (
ggg0,θ0 − ĝgg0,θ0

)
+ 2

(
ggg0,θ0 − ĝgg0,θ0

)>
εεε

−2
(
ggg0,θ0 − ĝgg0,θ0

)> (
GGGθ0 − ĜGGθ0

)
Sn
βββ0Sn − 2εεε>

(
GGGθ0 − ĜGGθ0

)
Sn
βββ0Sn

+εεε>εεε− (ηηηθ0Snβββ0Sn)> ηηηθ0Snβββ0Sn − 2 (ηηηθ0Snβββ0Sn)>
(
GGGθ0 − ĜGGθ0

)
Sn
βββ0Sn ,

(4.42)

A12 = βββ>0Sn

(
GGGθ0 − ĜGGθ0

)>
Sn

(
GGGθ0 − ĜGGθ0

)
Sn
βββ0Sn

+2βββ>0Sn

(
GGGθ0 − ĜGGθ0

)>
Sn
ηηηθ0Snβββ0Sn + (ηηηθ0Snβββ0Sn)> ηηηθ0Snβββ0Sn , (4.43)

A13 =
(
ggg0,θ0 − ĝgg0,θ

)> (
ggg0,θ0 − ĝgg0,θ

)
+ 2

(
ggg0,θ0 − ĝgg0,θ

)>
εεε

−2
(
ggg0,θ0 − ĝgg0,θ

)> (
GGGθ0 − ĜGGθ

)
Sn
βββ0Sn − 2εεε>

(
GGGθ0 − ĜGGθ

)
Sn
βββ0Sn

+εεε>εεε− (ηηηθ0Snβββ0Sn)> ηηηθ0Snβββ0Sn − 2 (ηηηθ0Snβββ0Sn)>
(
GGGθ0 − ĜGGθ

)
Sn
βββ0Sn ,

(4.44)

A14 = βββ>0Sn

(
GGGθ0 − ĜGGθ

)>
Sn

(
GGGθ0 − ĜGGθ

)
Sn
βββ0Sn

+2βββ>0Sn

(
GGGθ0 − ĜGGθ

)>
Sn
ηηηθ0Snβββ0Sn + (ηηηθ0Snβββ0Sn)> ηηηθ0Snβββ0Sn (4.45)

and

A15 =
(
ggg0,θ0 − ĝgg0,θ

)> (
GGGθ0 − ĜGGθ

)
Sn
uuu+

(
ggg0,θ0 − ĝgg0,θ

)>
ηηηθ0Snuuu

−βββ>0Sn

((
GGGθ0 − ĜGGθ

)>
Sn

(
GGGθ0 − ĜGGθ

)
Sn

+
(
GGGθ0 − ĜGGθ

)>
Sn
ηηηθ0Sn

)
uuu

+εεε>
(
GGGθ0 − ĜGGθ

)
Sn
uuu+ εεε>ηηηθ0Snuuu. (4.46)

Let us denote

B = A11 + A12 − A13 − A14. (4.47)
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From decompositions (4.42)-(4.45), it is easy to obtain that

B =
(
ĝgg0,θ0 − ĝgg0,θ

)> (
ĝgg0,θ0 + ĝgg0,θ

)
+ 2ggg>0,θ0

(
ĝgg0,θ − ĝgg0,θ0

)
+ 2εεε>

(
ĝgg0,θ − ĝgg0,θ0

)
+2ggg>0,θ0

(
ĜGGθ0 − ĜGGθ

)
Sn
βββ0Sn + 2

(
ĝgg0,θ0 − ĝgg0,θ

)>
GGGθ0Snβββ0Sn

+2
(
ĝgg>0,θĜGGθSn − ĝgg

>
0,θ0
ĜGGθ0Sn

)>
βββ0Sn + 2εεε>

(
ĜGGθ0 − ĜGGθ

)
Sn
βββ0Sn

+2βββ>0SnĜGG
>
θ0Sn

(
ĜGGθ − ĜGGθ0

)
Sn
βββ0Sn + βββ>0Sn

(
ĜGGθ0 − ĜGGθ

)>
Sn

(
ĜGGθ0 + ĜGGθ

)
Sn
βββ0Sn

= B1 +B2 +B3 +B4 +B5 +B6 +B7 +B8 +B9. (4.48)

Now, we are going to obtain bounds (in probability) for each term, Bk (k = 1, . . . , 9),

in (4.48). Let us denote, for 0 ≤ j ≤ pn,

(
ĝggj,θ0 − ĝggj,θ

)
=
(
d′j1, . . . , d

′
jn

)>
and

(
ĝggj,θ0 + ĝggj,θ

)
=
(
d′′j1, . . . , d

′′
jn

)>
.

On the one hand, from Lemma 4.18 we have that

max
0≤j≤pn

sup
θ∈Θ∗n

max
1≤i≤n

|d′ji| = Op

(
vn

hf(h)

)
. (4.49)

On the other hand, from the uniform convergence of ĝj,θ(χ) to gj,θ0(χ) (see Lemma

4.17) together with the fact that

max
0≤j≤pn

max
1≤i≤n

|gj,θ0(Xi)| = O(1) (4.50)

(see Assumption (4.20)), we obtain that

max
0≤j≤pn

sup
θ∈Θ∗n

max
1≤i≤n

|ĝj,θ(Xi)| = Op(1); (4.51)

then,

max
0≤j≤pn

sup
θ∈Θ∗n

max
1≤i≤n

|d′′ji| = Op (1) . (4.52)
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Taking into account (4.49) and (4.52), we have that

|B1| =

∣∣∣∣∣
n∑
i=1

d′0id
′′
0i

∣∣∣∣∣ ≤ n max
1≤i≤n

|d′0i| max
1≤i≤n

|d′′0i| = Op

(
n

vn
hf(h)

)
uniformly on θ ∈ Θ∗n.

(4.53)

From (4.49) and (4.50) we obtain that

|B2| = 2

∣∣∣∣∣
n∑
i=1

g0,θ0 (Xi) d′0i

∣∣∣∣∣ ≤ 2n max
1≤i≤n

|g0,θ0 (Xi)| max
1≤i≤n

|d′0i|

= Op

(
n

vn
hf(h)

)
uniformly on θ ∈ Θ∗n. (4.54)

From Lemma 4.12 and expression (4.49) we obtain that

|B3| = 2

∣∣∣∣∣
n∑
i=1

d′0iεi

∣∣∣∣∣ = Op

(
n1/2+1/mε

vn
hf(h)

log n

)
uniformly on θ ∈ Θ∗n.

(4.55)

Let us denote
(
ĜGGθ0 − ĜGGθ

)
Sn
βββ0Sn = (e′1, . . . , e

′
n)>. From Lemma 4.18 and As-

sumption (4.29) we obtain:

sup
θ∈Θ∗n

max
1≤i≤n

|e′i| = Op

(
sn

vn
hf(h)

)
. (4.56)

As a consequence, using (4.56) and expression (4.50):

|B4| =

∣∣∣∣ggg>0,θ0 (ĜGGθ0 − ĜGGθ

)
Sn
βββ0Sn

∣∣∣∣ =

∣∣∣∣∣
n∑
i=1

g0,θ0 (Xi) e′i

∣∣∣∣∣ ≤ n max
1≤i≤n

|g0,θ0 (Xi)| max
1≤i≤n

|e′i|

= Op

(
nsn

vn
hf(h)

)
uniformly on θ ∈ Θ∗n. (4.57)

Let us denote GGGθ0Snβββ0Sn = (g1, . . . , gn)>. If we take into account hypotheses
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(4.29) and (4.50), we obtain

max
1≤i≤n

|gi| = Op(sn). (4.58)

Therefore, using (4.49) and (4.58) we have

|B5| = 2
∣∣∣(ĝgg0,θ0 − ĝgg0,θ

)>
GGGθ0βββ0Sn

∣∣∣ = 2

∣∣∣∣∣
n∑
i=1

d′0igi

∣∣∣∣∣ ≤ n max
1≤i≤n

|d′0i| max
1≤i≤n

|gi|

= Op

(
nsn

vn
hf(h)

)
uniformly on θ ∈ Θ∗n. (4.59)

Let us use the notation
(
ĜGGθ0 − ĜGGθ

)
Sn

=
(
b′ij
)

1≤i≤n
1≤j≤sn

. The application of Lemma

4.18 gives us

sup
θ∈Θ∗n

max
1≤i≤n

max
1≤j≤sn

∣∣b′ij∣∣ = Op

(
vn

hf(h)

)
. (4.60)

Therefore, Assumption (4.29), Lemma 4.12 and expression (4.60) give us:

|B7| =

∣∣∣∣εεε> (ĜGGθ0 − ĜGGθ

)
Sn
βββ0Sn

∣∣∣∣ =

∣∣∣∣∣
sn∑
j=1

n∑
i=1

εib
′
ijβ0j

∣∣∣∣∣ ≤ sn max
1≤j≤sn

∣∣∣∣∣
n∑
i=1

εib
′
ij

∣∣∣∣∣ max
1≤j≤sn

|β0j|

= Op

(
n1/2+1/mεsn

vn
hf(h)

log n

)
uniformly on θ ∈ Θ∗n. (4.61)

Let us denote ĜGG
>
θ0Sn

βββ>0Sn = (g′1, . . . , g
′
n)>. If we take into account assumptions

(4.29) and (4.51), we obtain

max
1≤i≤n

|g′i| = Op(sn). (4.62)

Using expressions (4.62) and (4.56), we have:

|B8| =

∣∣∣∣βββ>0SnĜGG>θ0Sn (ĜGGθ − ĜGGθ0

)
Sn
βββ0Sn

∣∣∣∣ =

∣∣∣∣∣
n∑
i=1

g′ie
′
i

∣∣∣∣∣ = n max
1≤i≤n

|g′i| max
1≤i≤n

|e′i|

= Op

(
ns2

nvn
hf(h)

)
uniformly on θ ∈ Θ∗n.

(4.63)
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Let us denote
(
ĜGGθ0 + ĜGGθ

)
Sn
βββ0Sn = (e′′1, . . . , e

′′
n)>. By virtue of expression (4.51)

and Assumption (4.29), we can write:

sup
θ∈Θ∗n

max
1≤i≤n

|e′′i | = Op(sn). (4.64)

Now application of (4.56) and (4.64) gives us

|B9| =

∣∣∣∣βββ>0Sn (ĜGGθ0 − ĜGGθ

)>
Sn

(
ĜGGθ0 + ĜGGθ

)
Sn
βββ0Sn

∣∣∣∣ =

∣∣∣∣∣
n∑
i=1

e′ie
′′
i

∣∣∣∣∣ ≤ n max
1≤i≤n

|e′′i | max
1≤i≤n

|e′i|

= Op

(
ns2

n

vn
hf(h)

)
uniformly on θ ∈ Θ∗n. (4.65)

The term B6 can be re-written in the following manner:

B6 =
(
ĝgg0,θ − ĝgg0,θ0

)>
ĜGGθSnβββ0Sn + ĝgg>0,θ0

(
ĜGGθ − ĜGGθ0

)
Sn
βββ0Sn = B61 +B62.

If one considers (4.51) instead of (4.50), then similar arguments as those used to

obtain the orders of B5 and B4 (see (4.59) and (4.57), respectively) give

B61 = Op

(
nsn

vn
hf(h)

)
and B62 = Op

(
nsn

vn
hf(h)

)
uniformly on θ ∈ Θ∗n,

respectively; so we have that

B6 = Op

(
nsn

vn
hf(h)

)
uniformly on θ ∈ Θ∗n. (4.66)

It is noteworthy that, as consequence of our assumptions, all the Op(·) in (4.53)-

(4.55), (4.57), (4.59), (4.61), (4.63), (4.65) and (4.66) are Op(nu
2
n). Therefore, we

have proved that

B = Op(nu
2
n) uniformly on θ ∈ Θ∗n. (4.67)

The term A15 (see (4.46)) can be studied in a similar way as (A6) in Aneiros et al.

[7], but considering our Lemma 4.17 instead of Lemma A.3 of Aneiros et al. [7].

Specifically, let us denote

rn =
log pnψC (1/n)

nf(h)
, (4.68)
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and
(
ggg0,θ0 − ĝgg0,θ

)> (
GGGθ0 − ĜGGθ

)
Sn

= (a1, . . . , asn). From Lemma 4.17 we obtain that

sup
θ∈Θ∗n

max
1≤j≤sn

|aj| = Op

(
n
(
h2α + rn

))
(4.69)

(take into account that, because it is assumed that nsnvn = O(hf(h)), it is verified

that r∗n = rn, where vn was defined in (4.8) while r∗n was defined in (4.114) and used

in Lemma 4.17). Then, Cauchy-Schwarz inequality and (4.69) give:

∣∣∣∣(ggg0,θ0 − ĝgg0,θ

)> (
GGGθ0 − ĜGGθ

)
Sn
uuu

∣∣∣∣ =

∣∣∣∣∣
sn∑
j=1

ajuj

∣∣∣∣∣ = Op

(
ns1/2

n

(
h2α + rn

))
‖uuu‖

uniformly on θ ∈ Θ∗n. (4.70)

Furthermore, if in addition we use Assumption (4.29), we obtain∣∣∣∣βββ>0Sn (GGGθ0 − ĜGGθ

)>
Sn

(
GGGθ0 − ĜGGθ

)
Sn
uuu

∣∣∣∣ = Op

(
ns3/2

n (h2α + rn)
)
‖uuu‖

uniformly on θ ∈ Θ∗n. (4.71)

Let us denote,
(
gggj,θ0 − ĝggj,θ

)
= (dj1, . . . , djn)> for 0 ≤ j ≤ pn. From Lemma 4.17 we

have that

max
0≤j≤pn

sup
θ∈Θ∗n

max
1≤i≤n

|dji| = Op (hα +
√
rn) . (4.72)

In addition, as a consequence of Cauchy-Schwarz inequality, Lemma 4.13 and (4.72),

we obtain that

∣∣∣(ggg0,θ0 − ĝgg0,θ

)>
ηηηθ0Snuuu

∣∣∣ =

∣∣∣∣∣
sn∑
j=1

n∑
i=1

d0iηij,θ0uj

∣∣∣∣∣ ≤ s1/2
n max

1≤j≤sn

∣∣∣∣∣
n∑
i=1

d0iηij,θ0

∣∣∣∣∣ ‖uuu‖
= Op

(
n1/2s1/2

n (hα +
√
rn) log n

)
‖uuu‖ uniformly on θ ∈ Θ∗n.

(4.73)

Let us denote βββ>0Sn

(
GGGθ0 − ĜGGθ

)>
Sn

= (e1, . . . , en)>. From Assumption (4.29) and
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Lemma 4.17 it is obtained

sup
θ∈Θ∗n

max
1≤i≤n

|ei| = Op (sn (hα +
√
rn)) . (4.74)

The use of Cauchy-Schwarz inequality, Lemma 4.13 and (4.74) gives us

∣∣∣∣βββ>0Sn (GGGθ0 − ĜGGθ

)>
Sn
ηηηθ0Snuuu

∣∣∣∣ =

∣∣∣∣∣
sn∑
j=1

n∑
i=1

eiηij,θ0uj

∣∣∣∣∣ ≤ s1/2
n max

1≤j≤sn

∣∣∣∣∣
n∑
i=1

eiηij,θ0

∣∣∣∣∣ ‖uuu‖
= Op

(
n1/2s3/2

n (hα +
√
rn) log n

)
‖uuu‖

uniformly on θ ∈ Θ∗n. (4.75)

Let us use the notation
(
GGGθ0 − ĜGGθ

)
Sn

= (bij) 1≤i≤n
1≤j≤sn

. Application of Lemma 4.17

gives us

sup
θ∈Θ∗n

max
1≤i≤n

max
1≤j≤sn

|bij| = Op (hα +
√
rn) . (4.76)

Finally, using Cauchy-Schwarz inequality, Lemma 4.12 and (4.76) we obtain

∣∣∣∣εεε> (GGGθ0 − ĜGGθ

)
Sn
uuu

∣∣∣∣ =

∣∣∣∣∣
sn∑
j=1

n∑
i=1

bijεiuj

∣∣∣∣∣ ≤ s1/2
n max

1≤j≤sn

∣∣∣∣∣
n∑
i=1

bijεi

∣∣∣∣∣ ‖uuu‖
= Op

(
n1/2+1/mεs1/2

n (hα + r1/2
n ) log n

)
‖uuu‖

uniformly on θ ∈ Θ∗n. (4.77)

Then, from Lemma 4.23 together with the fact that all the orders Op(·) involved

in (4.70), (4.71), (4.73), (4.75) and (4.77) are Op(nun), we obtain that

A15 = Op(nun) ‖uuu‖ uniformly on θ ∈ Θ∗n. (4.78)

Now we focus on the term A16 (see (4.41)). Using Lemma 4.20 (considering sn, XXXθSn

and BBBθ0Sn×Sn instead of pn, XXXθ and BBBθ0 , respectively) we have that

A16 = nu2
n

(
uuu>BBBθ0Sn×Snuuu+ op(1)

)
(4.79)

uniformly over {uuu ∈ Rpn , ||uuu|| = C} and over θ ∈ Θ∗n. From (4.41), (4.47), (4.67),
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(4.78) and (4.79), we obtain that

2A1 = Op(nu
2
n) +Op

(
nu2

n

)
||uuu|| − nu2

n

(
uuu>BBBθ0Sn×Snuuu+ op(1)

)
, (4.80)

where all the orders of convergence are uniform in ||uuu|| = C and over θ ∈ Θ∗n.

Focusing now on A2 (see (4.40)), let us note that A2 is only linked to the linear

part of the model (4.1). Therefore, as in (A14) in Aneiros et al. [7], a Taylor expansion

together with assumptions (4.27), (4.28) and un/minj∈Sn λjn = o(1) give

A2 = −
sn∑
j=1

(
nunP ′λjn (|β0j|)sgn(β0j)uj + nu2

nP ′′λjn (|β0j|)u2
j(1 + o(1))

)
= O

(
nuns

1/2
n δn

)
||uuu||+O

(
nu2

nρn
)
||uuu||2. (4.81)

Finally, from expressions (4.39), (4.80) and (4.81), we obtain that

Q∗(βββ0Sn , θ0)−Q∗ (βββ0Sn + unuuu, θ0 + vnv) = Op(nu
2
n) +Op

(
nu2

n

)
||uuu||

+O
(
nuns

1/2
n δn

)
||uuu||+O

(
nu2

nρn
)
||uuu||2

−nu2
n

(
uuu>BBBθ0Sn×Snuuu+ op(1)

)
. (4.82)

Therefore, taking into account that s
1/2
n δn = O(un) and ρn → 0 as n→∞, together

with Assumption (4.23), it is possible to choose a sufficiently large C in such a way

that the last term in (4.82) dominates the other terms uniformly on ||uuu|| = C. This

fact completes the proof of (4.36).

Now, we will obtain the result in (4.37). Because of
(
β̂ββ0Sn , θ̂0

)
is a local minimizer

of Q∗(βββSn , θ) verifying (4.36), to prove (4.37) it suffices to obtain that:

Q
((

β̂ββ
>
0Sn ,000

>
pn−sn

)>
, θ̂0

)
= min
||βββSn ||≤Cun

Q
((

β̂ββ
>
0Sn ,βββ

>
Sn

)>
, θ̂0

)
, (4.83)

where βββSn = (βsn+1, . . . , βpn)>. For that, we will show that both

∂Q
(
βββ, θ̂0

)
∂βj

∣∣∣∣∣∣
βββ=βββjϑ

> 0 for 0 < ϑ < Cun (4.84)
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and
∂Q
(
βββ, θ̂0

)
∂βj

∣∣∣∣∣∣
βββ=βββjϑ

< 0 for −Cun < ϑ < 0 (4.85)

hold, where j ∈ {sn+1, . . . , pn} and βββjϑ denotes a vector with dimension pn obtained

from
(
β̂ββ
>
0Sn ,βββ

>
Sn

)>
by changing their jth component by ϑ. Simple calculations give,

for sn + 1 ≤ j ≤ pn,

∂Q
(
βββ, θ̂0

)
∂βj

∣∣∣∣∣∣
βββ=βββjϑ

= −
(
X̃XX θ̂0

)>
j

(
ỸYY θ̂0
− X̃XX θ̂0

βββ0

)
+
(
X̃XX θ̂0

)>
j
X̃XX θ̂0

(
βββjϑ − βββ0

)
+nP ′λjn (|ϑ|) sgn(ϑ), (4.86)

where
(
X̃XX θ̂0

)
j

denotes de jth column of X̃XX θ̂0
. Therefore, to prove (4.84) and (4.85)

it suffices to show that the sign of (4.86) is determined by sgn(ϑ). On the one hand,

we have that(
X̃XX θ̂0

)>
j

(
ỸYY θ̂0
− X̃XX θ̂0

βββ0

)
=

(
gggj,θ0 − ĝggj,θ̂0

)> (
ggg0,θ0 − ĝgg0,θ̂0

)
+
(
gggj,θ0 − ĝggj,θ̂0

)>
εεε

−
(
gggj,θ0 − ĝggj,θ̂0

)> (
GGGθ0 − ĜGGθ̂0

)
βββ0 + ηηη>j,θ0

(
ggg0,θ0 − ĝgg0,θ̂0

)
+ηηη>j,θ0εεε− ηηη

>
j,θ0

(
GGGθ0 − ĜGGθ̂0

)
βββ0. (4.87)

The quantities in expression (4.87) can be bounded in the same way as we have

done to bound expression A15 obtaining (4.78) but now using Lemma 4.12 instead

of Lemma 4.23 (note that θ̂0 ⊂ Θn). Therefore, it can be obtained that(
X̃XX θ̂0

)>
j

(
ỸYY θ̂0
− X̃XX θ̂0

βββ0

)
= Op

(
n1/2+1/mε log n

)
. (4.88)
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On the other hand, we have that∣∣∣∣(X̃XX θ̂0

)>
j
X̃XX θ̂0

(
βββjϑ − βββ0

)∣∣∣∣ ≤ ∣∣∣∣∣∣∣∣(X̃XX θ̂0

)
j

∣∣∣∣∣∣∣∣ ∣∣∣∣∣∣X̃XX θ̂0

∣∣∣∣∣∣ ∣∣∣∣βββϑj − βββ0

∣∣∣∣
=

∣∣∣∣∣∣∣∣(X̃XX θ̂0

)
j

∣∣∣∣∣∣∣∣ ∣∣∣∣∣∣∆max

(
X̃XX
>
θ̂0
X̃XX θ̂0

)∣∣∣∣∣∣ ∣∣∣∣βββjϑ − βββ0

∣∣∣∣ .
(4.89)

From Lemma 4.20 together with Assumption (4.21) we obtain that∣∣∣∣∣∣∣∣(X̃XX θ̂0

)
j

∣∣∣∣∣∣∣∣ = Op

(
n1/2

)
(4.90)

uniformly over sn + 1 ≤ j ≤ pn, while using a similar reasoning of that employed in

proof of Lemma 4.20 we have that

X̃XX
>
θ̂0
X̃XX θ̂0

= nBBBθ0 + op(n). (4.91)

Therefore, from (4.89), (4.90) and (4.91) together with the fact that
∣∣∣∣βββjϑ − βββ0

∣∣∣∣ =

Op(un), we obtain that∣∣∣∣(X̃XX θ̂0

)>
j
X̃XX θ̂0

(
βββjϑ − βββ0

)∣∣∣∣ = Op

(
nun∆1/2

max(BBBθ0)
)
. (4.92)

Finally, using (4.86), (4.88) and (4.92) we obtain that

∂Q
(
βββ, θ̂0

)
∂βj

∣∣∣∣∣∣
βββ=βββjϑ

= nλjn
(
Op

(
n−1/2+1/mελ−1

jn log n
)

+Op

(
λ−1
jn un∆1/2

max(BBBθ0)
)

+ λ−1
jnP ′λjn (|ϑ|) sgn(ϑ)

)
.

Thus, taking into account our assumptions, we have proved that the sign of

∂Q
(
βββ, θ̂0

)
/∂βj|βββ=βββjϑ is completely determined by that of ϑ. Therefore equations

(4.84) and (4.85) are checked and, as a consequence, the proof of (4.37) is completed.

Because we have proven both (4.36) and (4.37), the proof of our Theorem 4.2

concludes. �
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4.6.2 Proof of Theorem 4.4

Taking our Theorem 4.2 into account, similar steps as those used to prove Theorem

3.2(a) in Aneiros et al. [7] can be followed to obtain the proof of our Theorem 4.4.

Specifically, by construction β̂ββ
>
0 = (β̂ββ

>
0Sn ,000

>
pn−sn) and then,

P
(
Sn 6= Ŝn

)
= P

(
∃j ∈ Sn such that j 6∈ Ŝn

)
≤ P

(
∃j ∈ Sn such that

∣∣∣β̂0j − β0j

∣∣∣ = |β0j|
)

≤ P
(
∃j ∈ Sn such that

∣∣∣β̂0j − β0j

∣∣∣ ≥ min
`∈Sn
|β0`|

)
≤ P

(∥∥∥β̂ββ0 − βββ0

∥∥∥ ≥ min
`∈Sn
|β0`|

)
≤ P

(∥∥∥β̂ββ0 − βββ0

∥∥∥ ≥ min
`∈Sn
|λ`n|

)
,

where the last inequality is derived from Assumption (4.28). Now using that un/minj∈Sn λjn =

o(1) and Theorem 4.2 we obtain that

P
(∥∥∥β̂ββ0 − βββ0

∥∥∥ ≥ min
`∈Sn
|λ`n|

)
−→ 0 as n→∞,

concluding the proof.

�

4.6.3 Proof of Theorem 4.5

Because
(
β̂ββ0Sn , θ̂0

)
is a local minimum of Q∗(βββSn , θ), for each j ∈ Sn it is verified

that:
∂Q∗ (βββSn , θ)

∂βj

∣∣∣∣
(βββSn ,θ)=(β̂ββ0Sn

,θ̂0)
= 0. (4.93)

After some Taylor expansion and using assumptions (4.26), (4.28), the fact that
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un/minj∈Sn{λjn} = o(1) and Theorem 4.2, we obtain that

∂Q∗ (βββSn , θ)

∂βj

∣∣∣∣
(βββSn ,θ)=(β̂ββ0Sn

,θ̂0)
= −

(
X̃XX θ̂0

)>
j

(
ỸYY θ̂0
− X̃XX θ̂0Sn

βββ0Sn

)
+
(
X̃XX θ̂0

)>
j
X̃XX θ̂0Sn

(
β̂ββ0Sn − βββ0Sn

)
+nP ′λjn (|β0j|) sgn(β0j) + nP ′′λjn (|β0j|)

(
β̂0j − β0j

)
+Op(nu

2
n).

Then, by virtue of (4.93), it can be written

000 = −X̃XX
>
θ̂0Sn

(
ỸYY θ̂0
− X̃XX θ̂0Sn

βββ0Sn

)
+ X̃XX

>
θ̂0Sn

X̃XX θ̂0Sn

(
β̂ββ0Sn − βββ0Sn

)
+ncccSn + nVVV Sn×Sn

(
β̂ββ0Sn − βββ0Sn

)
+Op

(
s1/2
n nu2

n

)
. (4.94)

Now, from (4.94) and Lemma 4.22 we have that

n1/2 (BBBθ0Sn×Sn + VVV Sn×Sn + op(1))
(
β̂ββ0Sn − βββ0Sn + (BBBθ0Sn×Sn + VVV Sn×Sn + op(1))−1 cccSn

)
= n−1/2X̃XX

>
θ̂0Sn

(
ỸYY θ̂0
− X̃XX θ̂0Sn

βββ0Sn

)
+Op

(
s1/2
n n1/2u2

n

)
. (4.95)

We should note that the first term on the right-hand side of the equality (4.95)

matches the term A15 in (4.41) (when θ = θ̂0 is considered in (4.41)) after multiplying

it by n−1/2 and removing uuu. Note also that the orders in (4.70), (4.71), (4.73), (4.75)

and (4.77) are still true if both the vector uuu is removed and pn in rn is changed

by sn (note that pn comes from Lemma 4.17, where the maximum is taken over

pn elements; in the particular case of expressions (4.70), (4.71), (4.73), (4.75) and

(4.77), the corresponding number of elements is sn). Therefore, taking into account

the decomposition (4.46) of A15, denoting by γn the maximum of the orders in

equations (4.70), (4.71), (4.73), (4.75) and (4.77) when pn in rn is changed by sn,

and multiplying each side of (4.95) by AAAnσ
−1
ε BBB

−1/2
θ0Sn×Sn , we obtain that

n1/2AAAnσ
−1
ε BBB

−1/2
θ0Sn×Sn (BBBθ0Sn×Sn + VVV Sn×Sn)

(
β̂ββ0Sn − βββ0Sn + (BBBθ0Sn×Sn + VVV Sn×Sn)−1 cccSn

)
= n−1/2AAAnσ

−1
ε BBB

−1/2
θ0Sn×Snηηη

>
θ0Sn

εεε+AAAnBBB
−1/2
θ0Sn×SnOp

(
n−1/2γn + s1/2

n n1/2u2
n

)
. (4.96)
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Note that from assumptions in Theorem 4.5, (n−1/2γn + s
1/2
n n1/2u2

n) = o(1) holds.

Now using that AAAnAAA
>
n → AAA together with Assumption (4.23), we have that

||AAAnBBB−1/2
θ0Sn×Sn||

2 ≤ ||AAAn||2||BBB−1/2
θ0Sn×Sn||

2 = ∆max (AAA) (1 + o(1))
1

∆min (BBBθ0Sn×Sn)
= O(1).

Therefore, expression (4.96) can be simplified in the following way:

n1/2AAAnσ
−1
ε BBB

−1/2
θ0Sn×Sn (BBBθ0Sn×Sn + VVV Sn×Sn)×

×
(
β̂ββ0Sn − βββ0Sn + (BBBθ0Sn×Sn + VVV Sn×Sn + op(1))−1 cccSn

)
= n−1/2AAAnσ

−1
ε BBB

−1/2
θ0Sn×Snηηη

>
θ0Sn

εεε+ op(1).

As a consequence, the result will be proved if we show that

n−1/2AAAnσ
−1
ε BBB

−1/2
θ0Sn×Snηηη

>
θ0Sn

εεε =
n∑
i=1

ZZZni
d−→ N(000,AAA), (4.97)

where we use the notation ZZZni = n−1/2AAAnσ
−1
ε BBB

−1/2
θ0Sn×Snηηηi,θ0Snεi.

For that, following exactly the same development used in Aneiros et al. [7], we

obtain that the i.i.d. sequence of q-dimensional random vectors {ZZZni} satisfies the

conditions of the Lindeberg–Feller central limit theorem. Specifically, firstly it is

verified that

n∑
i=1

V ar(Zni) = n−1σ−2
ε AAAnBBB

−1/2
θ0Sn×Sn

n∑
i=1

V ar(ηηηi,θ0Snεi)(BBB
−1/2
θ0Sn×Sn)>AAA>n

= AAAnBBB
−1/2
θ0Sn×SnBBBθ0Sn×Sn

(
BBB
−1/2
θ0Sn×Sn

)>
AAA>n = AAAnAAA

>
n → AAA. (4.98)

Secondly, to check Lindeberg’s condition note that

n∑
i=1

E
(
‖Zni‖2 1‖Zni‖>ε

)
= nE

(
‖Zni‖2 1‖Zni‖>ε

)
≤ nE

(
‖Zni‖4)1/2 E

(
1‖Zni‖>ε

)1/2

= nE
(
‖Zni‖4)1/2 P (‖Zni‖ > ε)1/2 . (4.99)
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Then, taking into account Assumption (4.22), it is verified that E(ε4) <∞, and

Assumption (4.21) gives us that max1≤j≤sn E(η4
i,jθ0

) = O(1). Therefore, we obtain

for fixed i (i = 1, . . . , n)

E
(
‖Zni‖4) = n−2σ−4

ε

∥∥∥AAAnBBB1/2
θ0Sn×Sn

∥∥∥4

E
(
(ηηη>i,θ0Snηηηi,θ0Sn)2

)
E
(
ε4
i

)
= O

((
sn

n∆min(BBBθ0Sn×Sn

)2
)
. (4.100)

Moreover, from Markov’s inequality it is obtained

P (‖Zni‖ > ε) ≤
E
(
‖Zni‖2)
ε2

= O

(
sn

n∆min(BBBθ0Sn×Sn)

)
. (4.101)

Finally, from expressions (4.99)-(4.101) and taking into account that

s3
n/n∆3

min(BBBθ0Sn×Sn) = o(1) we obtain that

n∑
i=1

E
(
‖Zni‖2 1‖Zni‖>ε

)
= O

((
sn

n1/3∆min(BBBθ0Sn×Sn)

)3/2
)

= o(1).

Therefore, conditions on the Lindeberg-Feller central limit theorem are verified.

Then, since assumptions (4.2) and (4.18) are verified, expression (4.98) gives us

E

(
n∑
i=1

ZZZni

)
= 000,

Var

(
n∑
i=1

ZZZni

)
= AAA>nAAAn → AAA. (4.102)

Therefore, the result (4.97) is verified, which completes the proof. �

129



Chapter 4. Contributions on the SSFPLSIM

4.6.4 Proof of Theorem 4.7

We have that

|r̂θ (χ)− rθ0 (χ)| =

∣∣∣∣∣
n∑
i=1

wn,h,θ (χ,Xi) (rθ0 (Xi) + εi)− rθ0 (χ)

+
∑
j∈Sn

ĝj,θ(χ)
(
β0j − β̂0j

)∣∣∣∣∣
≤

∣∣∣∣∣
n∑
i=1

wn,h,θ (χ,Xi) (rθ0 (Xi) + εi)− rθ0 (χ)

∣∣∣∣∣
+

∣∣∣∣∣∑
j∈Sn

(ĝj,θ(χ)− gj,θ0(χ))
(
β0j − β̂0j

)∣∣∣∣∣
+

∣∣∣∣∣∑
j∈Sn

gj,θ0(χ)
(
β0j − β̂0j

)∣∣∣∣∣
≤

∣∣∣∣∣
n∑
i=1

wn,h,θ (χ,Xi) (rθ0 (Xi) + εi)− rθ0 (χ)

∣∣∣∣∣
+s1/2

n sup
χ∈C,j∈Sn,θ∈Θn

|ĝj,θ(χ)− gj,θ0(χ)|
∣∣∣∣∣∣β̂ββ0 − βββ0

∣∣∣∣∣∣
+s1/2

n sup
χ∈C,j∈Sn,θ∈Θn

|gj,θ0(χ)|
∣∣∣∣∣∣β̂ββ0 − βββ0

∣∣∣∣∣∣ . (4.103)

Applying to the decompositions considered in the proofs of Lemmas 4.14-4.17 (see

Section 4.6.7), the techniques used in Ferraty et al. [49] to prove their Theorem 2,

we obtain that

sup
χ∈C,θ∈Θn

∣∣∣∣∣
n∑
i=1

wn,h,θ (χ,Xi) (rθ0 (Xi) + εi)− rθ0 (χ)

∣∣∣∣∣ = Op

(
hα +

√
ψC (1/n)

nf(h)

)
(4.104)

(remember that, as a consequence of our assumptions on vn, we have that ψΘn (1/n) =

0). In addition, Lemma 4.17 gives us

sup
χ∈C,j∈Sn,θ∈Θn

|ĝj,θ(χ)− gj,θ0(χ)| = Op (hα +
√
rn) , (4.105)

where rn was defined in (4.68).
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Therefore, since supχ∈C,j∈Sn |gj,θ0(χ)| = O(1), using Theorem 4.2 and expressions

(4.103), (4.104) and (4.105), we can finally obtain

sup
θ∈Θn

sup
χ∈C
|r̂θ (χ)− rθ0 (χ)| = Op

(
hα +

√
ψC (1/n)

nf(h)

)
+Op

(
s1/2
n un (hα +

√
rn)
)

+Op

(
s1/2
n un

)
= Op

(
hα +

√
ψC (1/n)

nf(h)

)
+Op

(
s1/2
n un

)
. �

4.6.5 Proof of Corollary 4.8

Trivial. �

4.6.6 Proof of Corollary 4.9

From the first part and second one in Condition A in Corollary 4.9, one obtains that

ψC (1/n) ≈ log n (see Example 4 in Ferraty et al. [49], page 338) and f(h) ≈ h (see

Lemma 13.6 in Ferraty and Vieu [47]), respectively. Therefore, taking into account

that h ≈ C(log n/n)1/(2α+1), it is obtained that

hα +

√
ψC (1/n)

nf(h)
= O

((
log n

n

)α/(2α+1)
)
. (4.106)

In addition, taking into account that un = O(
√
snn

−1/2) (see Condition D in Corol-

lary 4.9), together with the fact that sn ≈ cnγ with 0 < 2γ ≤ 1− 2α/(2α + 1), one

obtains that
√
snun ≈ c′nγ−1/2 = O

((
log n

n

)α/(2α+1)
)
. (4.107)

(4.106) and (4.107) conclude the proof. �

4.6.7 Technical lemmas

This section shows some known lemmas used to prove the results in this chapter. In

addition, novel lemmas, as well as their proofs, are presented. Their interest is not
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restricted to the proof of our theorems, they could be useful in other contexts. In fact,

some assumptions used in our novel lemmas are more general than the corresponding

ones imposed in our theorems.

4.6.7.1 General assumptions

Let us present some additional assumptions to be used in some of the lemmas in

Section 4.6.7.3.

Condition on the set of directions and the associated topology. The set of

directions, Θn (see (4.8)), satisfies

Θn ⊂
NΘn,ε⋃
j=1

B(θε,j, ε), where ε = 1/n (4.108)

and NΘn,ε is the minimal number of open balls in (H, d(·, ·)) of radius ε which

are necessary to cover Θn.

Conditions on the entropies and the balls in (4.7). Let ψΘn(ε) denotes the

Kolmogorov entropy of (Θn, d(·, ·)) (that is, ψΘn(ε) = log(NΘn,ε)). It is assumed

that:

∃β > 1 such that pn exp

{
(1− β log pn)

(
ψC

(
1

n

)
+ ψΘn

(
1

n

))}
→ 0

as n → ∞,

(4.109)

and

sup
θ∈Θn

max
k∈{1,...,Nθ

C,1/n}
d(χθk, χ

θ∗

k∗) = O(1/n) (for notation, see (4.115)). (4.110)

Condition linking the entropies and the small-ball probabilities. There ex-

ists a constant C13 > 0 such that, for n large enough,

ψC

(
1

n

)
+ ψΘn

(
1

n

)
≤ C13nf(h)

αn log pn
, where αn →∞ as n→∞ (4.111)
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(the function f(·) was defined in (4.12) and (4.13)).

Remark 4.11 In the theorems presented in this chapter, the condition imposed on

vn (i.e., nsnvn = O(hf(h))) implies that

Θn ⊂ B(θ0, 1/n). (4.112)

Nevertheless, that does not necessarily happen in the novel lemmas proposed in Sec-

tion 4.6.7.3 (they are applicable under more general scenarios). For this reason, the

more general Assumption (4.108), as well as the new assumptions (4.109), (4.110)

and (4.111), are introduced here (note that assumptions (4.10), (4.11) and (4.14),

used in our theorems, are particular cases of (4.109), (4.110) and (4.111), respective-

ly: it suffices to consider NΘn,ε = 1 and θε,1 = θ0 in (4.108)). Assumptions (4.108),

(4.109) and (4.111) (together with (4.7) and (4.13) in Section 4.3.2) are common

when one needs to obtain uniform orders over C and Θn (see, for instance, Wang

et al. [110]). Finally, Condition (4.110) is really specific to the functional setting ad-

dressed here and, therefore, requires a deeper discussion. It is a technical assumption

that links the topologies of (C, dθ(·, ·)) and (Θn, d(·, ·)), allowing to bound the differ-

ence dθ(χ
θ
k, ·)−dθ∗(χθ

∗

k∗ , ·) by means of bounds based on the topology of (Θn, d(·, ·)) (for

details, see the proof of Lemma 4.14). In fact, Condition (4.110) could be changed

by the more general (but maybe harder to interpret) one

sup
χ∈C

sup
θ∈Θn

max
k∈
{

1,...,Nθ
C,1/n

} ∣∣dθ (χθk, χ)− dθ∗ (χθ∗k∗ , χ)∣∣ = O (1/n) .

It is worth noting that Condition (4.110) is satisfied if, for instance, the following

assumption holds:

d(χθk, χ
θ∗

k∗) ≤ Cd(θ, θ∗), uniformly on θ ∈ Θn and k ∈
{

1, . . . , N θ
C,1/n

}
, (4.113)

where C denotes a positive constant. Actually, Condition (4.113) can be seen as a

smoothness assumption: roughly speaking, it imposes “smooth changes” between the

coverings (4.7) induced by the topologies of (C, dθ(·, ·)) (θ ∈ Θ) when the indexes θ

are close (to be more precise, see the definition of both k∗ and θ∗ in (4.115)).
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4.6.7.2 Additional notation

The following notation,

k∗(θ,k,ε) = arg min

k′∈
{

1,...,N
θj(θ,ε)
C,ε

} d(χθε,k, χ
θε,j(θ,ε)
ε,k′ ), where j(θ,ε) = arg min

j∈{1,...,NΘn,ε}
d(θ, θε,j),

and

r∗n =
log pn (ψC (1/n) + ψΘn (1/n))

nf(h)
, (4.114)

generalizes the previous notation k0
(θ,k,ε) (see (4.9)) and rn (see (4.68)), respectively,

to the more general setting considered in Section 4.6.7. In the sake of brevity, we

will denote

χθk = χθ1/n,k, θ
∗ = θ1/n,j(θ,1/n)

and k∗ = k∗(θ,k,1/n). (4.115)

Finally, we introduce the statistics

F̂θ(χ) =

∑n
i=1 K (dθ (χ,Xi) /h)

nE (K (dθ (χ,X ) /h))
and ĝ∗j,θ(χ) = F̂θ(χ)ĝj,θ(χ) (j = 0, 1, . . . , pn) ,

which will be used in the proofs of some of our lemmas.

4.6.7.3 Results

Lemma 4.12 (Lemma 3 in Aneiros-Pérez and Vieu [12]) Let {Vi}ni=1 be a zero-

mean, stationary, independent and real process verifying that ∃m > 4 such that

max1≤i≤n E|Vi|m = O(1). Assume that {aij, i, j = 1, . . . , n} is a sequence of positive

numbers such that max1≤i,j≤n |aij| = O(an). Then,

max
1≤j≤n

∣∣∣∣∣
n∑
i=1

aijVi

∣∣∣∣∣ = Op

(
ann

1/2+1/m log n
)
.

The conclusion of this lemma remains unchanged when aij are random variables

satisfying the conditions earlier in probability.

Lemma 4.13 (Lemma A.2 in Aneiros et al. [7]) Let {Vijk}ni=1

(1 ≤ j ≤ un, 1 ≤ k ≤ vn) be independent random variables with zero mean and
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∀m ≥ 2, E|Vijk|m ≤ CV (m!/2), where 0 < CV < ∞ is a constant. Assume that

{aijk, 1 ≤ i ≤ n, 1 ≤ j ≤ un, 1 ≤ k ≤ vn} is a set of positive numbers such that

max 1≤i≤n
1≤j≤un
1≤k≤vn

|aijk| = O(an). If unvnn
− logn → 0 as n→∞ then:

max
1≤j≤un

max
1≤k≤vn

∣∣∣∣∣
n∑
i=1

aijkVijk

∣∣∣∣∣ = Op

(
ann

1/2 log n
)
.

The conclusion of this lemma remains unchanged when aijk are random variables

satisfying the conditions earlier in probability.

Lemma 4.14 Under assumptions (4.7), (4.12), (4.13), (4.15), (4.19) and (4.108)-

(4.111), if in addition supθ∈Θn 〈θ, θ〉
1/2 = O(1) and Xi are i.i.d, we have that there

exists a positive constant, C, such that, for all ε > 0 and n large enough,

P
(

sup
θ∈Θn

sup
χ∈C

∣∣∣F̂θ(χ)− 1
∣∣∣ > ε

√
r∗n

)
≤ C

(
p−Cε

2

n +
(
NΘn,1/nNC,1/n

)1−Cε2 log pn
)
.

Proof of Lemma 4.14. To carry out the proof of this lemma, we will follow the same

steps used in Ferraty et al. [49] to demonstrate their Lemma 8. Firstly, the following

decomposition can be made:

sup
θ∈Θn

sup
χ∈C

∣∣∣F̂θ(χ)− 1
∣∣∣ ≤ F1 + F2 + F3, (4.116)

where we have denoted

F1 = sup
θ∈Θn

sup
χ∈C

∣∣∣F̂θ(χ)− F̂θ
(
χθk(θ,χ,1/n)

)∣∣∣ ,
F2 = sup

θ∈Θn

sup
χ∈C

∣∣∣F̂θ (χθk(θ,χ,1/n)

)
− E

(
F̂θ

(
χθk(θ,χ,1/n)

))∣∣∣
and

F3 = sup
θ∈Θn

sup
χ∈C

∣∣∣E(F̂θ (χθk(θ,χ,1/n)

))
− E

(
F̂θ(χ)

)∣∣∣ ,
with

k(θ,χ,1/n) = arg min
k∈{1,...,Nθ

C,1/n}
dθ(χ, χ

θ
1/n,k) (4.117)
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(see also notation (4.115)).

Furthermore, note that using hypotheses (4.13) and (4.15), if K(1) > C > 0, it

is verified that ∀θ ∈ Θn and ∀χ ∈ C there exist constants 0 < C < C ′ <∞ such that

Cf(h) ≤ E(K(dθ(χ,Xi)/h)) ≤ C ′f(h). (4.118)

The same result it is obtained when K(1) = 0 with the combination of assumptions

(4.13) and (4.12) (see Lemma 4.4 in Ferraty and Vieu [47]).

Study of the term F1.

Starting with the term F1, if we denote

Ii = 1
Bθ(χ,h)∪Bθ

χθk
(θ,χ, 1

n)
,h

 (Xi) ,

we can write

F1 ≤ sup
θ∈Θn

sup
χ∈C

1

n

n∑
i=1

∣∣∣∣∣∣ K (dθ(χ,Xi)/h)

E (K (dθ(χ,Xi)/h))
−

K
(
dθ

(
χθk(θ,χ,1/n)

,Xi
)
/h
)

E
(
K
(
dθ(χθk(θ,χ,1/n)

,Xi)/h
))
∣∣∣∣∣∣

≤ C

f(h)
sup
θ∈Θn

sup
χ∈C

1

n

n∑
i=1

∣∣∣∣∣∣K
(
dθ (χ,Xi)

h

)
−K

dθ
(
χθk(θ,χ,1/n)

,Xi
)

h

∣∣∣∣∣∣ Ii,
where in the last inequality we have used (4.118). Now we have to consider two

situations derived from Assumption (4.15):

� Case K(1) = 0. K is Lipschitz continuous on [0, 1]. Therefore,∣∣∣∣∣∣∣∣∣K
(
dθ(χ,Xi)

h

)
−K


dθ

(
χθk

(θ,χ, 1
n)
,Xi
)

h


∣∣∣∣∣∣∣∣∣ ≤

C

h
dθ

(
χ, χθk

(θ,χ, 1
n)

)
.
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Then,

F1 ≤
C

n
sup
θ∈Θn

sup
χ∈C

n∑
i=1

1

nhf(h)
Ii.

Let us denote

Zi =
1

nhf(h)
Ii (i = 1, . . . , n).

It is clear that

Zi = O

(
1

nhf(h)

)
.

Furthermore,

E (Zi) =
1

nhf(h)
P
(
{dθ (χ,Xi) < h}

⋃{
dθ

(
χθk

(θ,χ, 1
n)
,Xi
)
< h

})
≤ 1

nhf(h)

(
φχ,θ(h) + φχθk

(θ,χ, 1
n)

,θ(h)

)

≤ C

nh
,

where we have used Assumption (4.13) for obtaining the last inequality, and

using this assumption again it is obtained that

Var (Zi) =
1

n2h2f(h)2
Var (Ii) ≤

C

n2h2f(h)
.

A standard inequality for sums of bounded random variables (see Corollary

A.9 in Ferraty and Vieu [47]) gives us that exists a positive constant, C, such

that, for all ε > 0 and n large enough

P
(
F1 > ε

√
r∗n
)
≤ P

(
sup
θ∈Θn

sup
χ∈C

C

n

n∑
i=1

Zi > ε
√
r∗n

)
≤ Cp−Cε

2

n . (4.119)

� Case K(1) > C > 0. Now K is Lipschitz on [0, 1). In this case, we have to

decompose F1 into the following terms:

F1 ≤ C sup
θ∈Θn

sup
χ∈C

(F11 + F12 + F13) , (4.120)
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where:

F11 =
1

nf(h)

n∑
i=1

∣∣∣∣∣∣K
(
dθ (χ,Xi)

h

)
−K

dθ(χθk(θ,χ, 1
n )
,Xi)

h

∣∣∣∣∣∣ I∗i ,
F12 =

1

nf(h)

n∑
i=1

K

(
dθ (χ,Xi)

h

)
1
Bθ(χ,h)∩Bθ(χθk(θ,χ,1/n)

,h)
(Xi) ,

F13 =
1

nf(h)

n∑
i=1

K

dθ(χθk(θ,χ, 1
n )
,Xi)

h

 1
Bθ(χ,h)∩Bθ

χθk
(θ,χ, 1

n)
,h

 (Xi) ,

with

I∗i = 1
Bθ(χ,h)∩Bθ

χθk
(θ,χ, 1

n)
,h

 (Xi) .

In the case of F11, one can carry out the same steps followed for the case

K(1) = 0, obtaining the same result:

P
(
F11 > ε

√
r∗n
)
≤ Cp−Cε

2

n . (4.121)

In the case of F12, a similar reasoning to that made for the case K(1) = 0

allows us to write

F12 ≤
C

n

n∑
i=1

Wi with Wi =
1

f(h)
1
Bθ(χ,h)∩Bθ(χθk(θ,χ,1/n)

,h)
(Xi) .

Using Assumption (4.12) and the inequality for sums of bounded random vari-

ables used before (see Corollary A.9 in Ferraty and Vieu [47]) one has

F12 = O

(
1

nf(h)

)
+Oa.co.

(√
log(pn)

n2f(h)2

)
. (4.122)

The same rate can be stated for the term F13. Then, putting together this

results (4.121), (4.122), and using Assumption (4.14), we obtain that there
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exists a positive constant, C, such that, for all ε > 0 and n large enough

P
(
F1 > ε

√
r∗n
)
≤ Cp−Cε

2

n . (4.123)

Study of the term F3.

Focusing now in the term F3, it is clear that

F3 ≤ E
(

sup
θ∈Θn

sup
χ∈C

∣∣∣F̂θ(χ)− F̂θ
(
χθk(θ,χ,1/n)

)∣∣∣) .
Therefore, following similar steps than in the case of F1 we obtain that

F3 = O
(√

r∗n
)
. (4.124)

Study of the term F2.

Focusing now on F2, we have that

F2 ≤ F21 + F22 + F23, (4.125)

where we have denoted

F21 = sup
θ∈Θn

max
k∈
{

1,...,Nθ
C,1/n

}
∣∣∣F̂θ(χθk)− F̂θ∗ (χθ∗k∗)∣∣∣ ,

F22 = sup
θ∈Θn

max
k∈
{

1,...,Nθ
C,1/n

}
∣∣∣F̂θ∗ (χθ∗k∗)− E

(
F̂θ∗
(
χθ
∗

k∗

))∣∣∣
and

F23 = sup
θ∈Θn

max
k∈
{

1,...,Nθ
C,1/n

}
∣∣∣E(F̂θ∗ (χθ∗k∗))− E

(
F̂θ
(
χθk
))∣∣∣

(for notation, see (4.115)). First, we consider the terms F21 and F23. Taking into
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account that

∣∣dθ (χθk,Xi)− dθ∗ (χθ∗k∗ ,Xi)∣∣ ≤ ∣∣dθ (χθk, χθ∗k∗)+ dθ
(
χθ
∗

k∗ ,Xi
)
− dθ∗

(
χθ
∗

k∗ ,Xi
)∣∣

≤
〈
χθk − χθ

∗

k∗ , χ
θ
k − χθ

∗

k∗

〉1/2 〈θ, θ〉1/2 +
∣∣〈θ − θ∗, χθ∗k∗ −Xi〉∣∣

≤ d
(
χθk, χ

θ∗

k∗

)
〈θ, θ〉1/2 + d

(
χθ
∗

k∗ ,Xi
)
d (θ, θ∗) ,

and using assumptions (4.19) and (4.110), together with the condition supθ∈Θn 〈θ, θ〉
1/2 =

O(1), we obtain that

sup
θ∈Θn

max
k∈
{

1,...,Nθ
C,1/n

} ∣∣dθ (χθk,Xi)− dθ∗ (χθ∗k∗ ,Xi)∣∣ = O (1/n) .

Therefore, similar steps as those used to obtain (4.119) can be followed to get

P
(
F21 > ε

√
r∗n
)
≤ Cp−Cε

2

n and F23 = O
(√

r∗n
)
. (4.126)

Finally, we study the term F22. We have that

F22 = max
j∈{1,...,NΘn,1/n}

max
k∈
{

1,...,N
θj
C,1/n

}
∣∣∣F̂θj (χθjk )− E

(
F̂θj

(
χ
θj
k

))∣∣∣ ,
and

P
(
F22 > ε

√
r∗n
)

≤ NΘn,
1
n
NC, 1

n
max

j∈
{

1,...,N
Θn,

1
n

} max
k∈
{

1,...,N
θj

C, 1
n

}P
(∣∣∣F̂θj (χθjk )− E

(
F̂θj

(
χ
θj
k

))∣∣∣ > ε
√
r∗n

)
.

Let

Zi =
1

E

(
K

(
dθj

(
χ
θj
k ,X

)
h

)) ∣∣∣∣∣K
(
dθj(χ

θj
k ,Xi)
h

)
− E

(
K

(
dθj(χ

θj
k ,Xi)
h

))∣∣∣∣∣ .

Using assumptions (4.13), (4.15) and expression (4.118), Zi = O(1/f(h)) and
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also V ar(Zi) = O(1/f(h)). Therefore, we can use Bernstein-type inequality (see,

Corollary A.9 in Ferraty and Vieu [47]) to obtain

P
(∣∣∣F̂θj (χθjk )− E

(
F̂θj

(
χ
θj
k

))∣∣∣ > ε
√
r∗n

)
= P

(
1

n

∣∣∣∣∣
n∑
i=1

Zi

∣∣∣∣∣ > ε
√
r∗n

)

≤ 2 exp

{
−Cε2 log pn

(
ψC

(
1

n

)
+ ψΘn

(
1

n

))}
≤ C

(
NΘn,

1
n
NC, 1

n

)−Cε2 log pn
.

Note that in the last inequality we have used that ψC
(

1
n

)
= log(NC, 1

n
) and ψΘn

(
1
n

)
=

log(NΘn,
1
n
). As a consequence:

P
(
F22 > ε

√
r∗n
)
≤ C

(
NΘn,

1
n
NC, 1

n

)1−Cε2 log pn
. (4.127)

Then, taking into account (4.116), (4.119), (4.123) and (4.124) and putting together

(4.125), (4.126) and (4.127), the proof is completed. �

Lemma 4.15 Under the assumptions of Lemma 4.14, if in addition assumptions

(4.2), (4.17), (4.18) and (4.20) hold, then there exists a positive constant, C, such

that, for all ε > 0 and n large enough

P
(

sup
θ∈Θn

sup
χ∈C

∣∣ĝ∗j,θ(χ)− E
(
ĝ∗j,θ(χ)

)∣∣ > ε
√
r∗n

)
≤ C

(
p−Cε

2

n +
(
NΘn,1/nNC,1/n

)1−Cε2 log pn
)
,

uniformly on j = 0, 1, . . . , pn.

Proof of Lemma 4.15. This proof can be easily obtained combining the techniques

considered in the proof of Lemma 11 in Ferraty et al. [49] with the decompositions

(adapted to the new setting) used in the proof of our Lemma 4.14. �

Lemma 4.16 Under assumptions (4.8), (4.13), (4.15), (4.16) and (4.19), if in ad-

dition vn in (4.8) verifies vn = O(h), we have that

sup
θ∈Θn

sup
χ∈C

∣∣E (ĝ∗j,θ(χ)
)
− gj,θ0(χ)

∣∣ = O (hα) ,
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uniformly on j = 0, 1, . . . , pn.

Proof of Lemma 4.16. Firstly, we note that, if dθ(X , χ) < h holds, then, from the

fact that vn = O(h) together with Assumption (4.19), we have that

dθ0(X , χ) ≤ |dθ0(X , χ)− dθ(X , χ)|+ dθ(X , χ) = |〈X − χ, θ0 − θ〉|+ dθ(X , χ)

≤ 〈X − χ,X − χ〉1/2 〈θ0 − θ, θ0 − θ〉1/2 + dθ(X , χ) ≤ Ch. (4.128)

Inequalities (4.128) and (4.118) allow to follow the same steps as in the proof of

Lemma 10 in Ferraty et al. [49]:

∣∣E (ĝ∗j,θ(χ)
)
− gj,θ0(χ)| ≤

∣∣∣∣ 1

E (K(dθ(χ,X )/h))
E
(
K

(
dθ(χ,Xi)

h

)
Zij

)
− gj,θ0(χ)

∣∣∣∣
≤ 1

E (K(dθ(χ,X )/h))
E
(
K

(
dθ(χ,Xi)

h

)
|E (Zij| 〈θ0,X〉)− gj,θ0(χ)|

)
≤ 1

E (K(dθ(χ,X )/h))
E
(
K

(
dθ(χ,Xi)

h

)
|gj,θ0(X )− gj,θ0(χ)|

)
.

Now using assumptions (4.13) and (4.16), together with (4.128) and (4.118) we

obtain

∣∣E (ĝ∗j,θ(χ)
)
− gj,θ0(χ)

∣∣ ≤ C

E
(
K
(
dθ(χ,X )

h

))E(K (dθ(χ,Xi)
h

))
1Bθ(χ,h)(Xi)dθ0(Xi, χ)α

≤ Chα. �

Lemma 4.17 Under assumptions (4.2), (4.7), (4.8), (4.12), (4.13), (4.15)-(4.20)

and (4.108)-(4.111), if in addition vn in (4.8) verifies vn = O(h) and pn → ∞ as

n→∞, then

max
0≤j≤pn

sup
θ∈Θn

sup
χ∈C
{|ĝj,θ(χ)− gj,θ0(χ)|} = Op

(
hα +

√
r∗n
)
.
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Proof of Lemma 4.17. It is verified that

k̂j,θ(χ) =
(
ĝ∗j,θ(χ)− E

(
ĝ∗j,θ(χ)

))
+
(
E(ĝ∗j,θ(χ))− gj,θ0(χ)

)
+
(

1− F̂θ(χ)
)
gj,θ0(χ),

(4.129)

where we have denoted

k̂j,θ(χ) = F̂θ(χ) (ĝj,θ(χ)− gj,θ0(χ)) . (4.130)

Therefore, from Lemmas 4.14-4.16 together with (4.129), we obtain that there

exists a positive constant, C, such that, for all ε > 0 and n large enough,

P
(

sup
θ∈Θn

sup
χ∈C

∣∣∣k̂j(χ)
∣∣∣ > ε

(
hα +

√
r∗n
))
≤ C

(
p−Cε

2

n +
(
NΘn,1/nNC,1/n

)1−Cε2 log pn
)
,

(4.131)

uniformly on j = 0, 1, . . . , pn.

In addition, taking Lemma 4.14 into account together with the facts that r∗n → 0

and pn →∞ as n→∞, we obtain that, for any 0 < δ < 1 and n large enough,

P
(

inf
θ∈Θn

inf
χ∈C

F̂θ(χ) ≥ δ

)
≥ 1− P

(
sup
θ∈Θn

sup
χ∈C

∣∣∣F̂θ(χ)− 1
∣∣∣ > 1− δ

)
≥ 1− P

(
sup
θ∈Θn

sup
χ∈C

∣∣∣F̂θ(χ)− 1
∣∣∣ > δε

√
r∗n

)
≥ 1− C

(
p−Cδ

2ε2

n +
(
NΘn,1/nNC,1/n

)1−Cδ2ε2 log pn
)
≥ 1/2.

(4.132)
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Now, from (4.131) and (4.132) we have that

P

 sup
θ∈Θn

sup
χ∈C

∣∣∣k̂j(χ)
∣∣∣

F̂θ(χ)
> ε(hα +

√
r∗n)


≤ P

 sup
θ∈Θn

sup
χ∈C

∣∣∣k̂j(χ)
∣∣∣

F̂θ(χ)
> ε(hα +

√
r∗n) | inf

θ∈Θn
inf
χ∈C

F̂θ(χ) ≥ δ


+P
(

inf
θ∈Θn

inf
χ∈C

F̂θ(χ) < δ

)
≤ C

(
p−Cδ

2ε2

n +
(
NΘn,1/nNC,1/n

)1−Cδ2ε2 log pn
)
. (4.133)

Finally, using (4.133) we obtain that,

P

(
sup

0≤j≤pn
sup
θ∈Θn

sup
χ∈C

|k̂j(χ)|
F̂θ(χ)

> ε(hα +
√
r∗n)

)

≤
pn∑
j=0

P

(
sup
θ∈Θn

sup
χ∈C

|k̂j(χ)|
F̂θ(χ)

> ε(hα +
√
r∗n)

)
≤ Cpn

(
p−Cδ

2ε2

n + (NΘn,1/nNC,1/n)1−Cδ2ε2 log pn
)
. (4.134)

The proof is completed taking into account the notation (4.130) and choosing δ

and ε in (4.134) such that Cδ2ε2 = β (see (4.109)). �

Lemma 4.18 Under assumptions of Lemma 4.17, if in addition pn/n
logn → 0 as

n→∞, then

max
0≤j≤pn

sup
θ∈Θn

sup
χ∈C
{|ĝj,θ(χ)− ĝj,θ0(χ)|} = Op

(
vn

hf(h)

)
.

Proof of Lemma 4.18. Let us denote

F̂ ∗θ (χ) =

∑n
i=1K(dθ(Xi, χ)/h)

nf(h)
and ĝ∗∗j,θ(χ) = F̂ ∗θ (χ)ĝj,θ(χ).
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It is easy to obtain the decomposition

ĝj,θ(χ)− ĝj,θ0(χ) =
1

F̂ ∗θ (χ)
ĝ∗∗j,θ(χ)− 1

F̂ ∗θ0(χ)
ĝ∗∗j,θ0(χ)

=
1

F̂ ∗θ (χ)

(
ĝ∗∗j,θ(χ)− ĝ∗∗j,θ0(χ)

)
+ ĝ∗∗j,θ0(χ)

(
1

F̂ ∗θ (χ)
− 1

F̂ ∗θ0(χ)

)
.

(4.135)

Now, we are going to analyze the terms in (4.135). Let us denote

Zi0 = Yi and Zij = Xij (1 ≤ j ≤ pn).

∣∣ĝ∗∗j,θ(χ)− ĝ∗∗j,θ0(χ)
∣∣ ≤ ∑n

i=1 |K(dθ (Xi, χ) /h)−K(dθ0 (Xi, χ) /h)| |Zij|
nf(h)

≤
∑n

i=1C |dθ (Xi, χ)− dθ0 (Xi, χ)| |Zij|
nhf(h)

≤ vn
hf(h)

C

n

n∑
i=1

|Zij|

= Op

(
vn

hf(h)

)
, (4.136)

uniformly over 0 ≤ j ≤ pn, θ ∈ Θn and χ ∈ C. The second inequality in (4.136)

is a consequence of Assumption (4.15), while assumptions (4.8) and (4.19) give the

third inequality. Finally, the equality comes from Assumption (4.20) together with

Lemma 4.13 applied to the centred variables {|Zij| − E(|Zij|}i)).

In a similar way (considering Zij = 1 in (4.136)), one obtains

∣∣∣F̂ ∗θ (χ)− F̂ ∗θ0(χ)
∣∣∣ = Op

(
vn

hf(h)

)
, (4.137)

uniformly over θ ∈ Θn and χ ∈ C.

Now, we focus on ĝ∗∗0,θ0(χ). Since expression (4.118) is verified, there exist positive
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constants, C∗ and C
′∗, such that

C∗F̂θ(χ) ≤ F̂ ∗θ (χ) ≤ C∗
′
F̂θ(χ). (4.138)

On the one hand, from (4.138) together with Lemma 4.14 we obtain that

C∗ (1 + op(1)) ≤ F̂ ∗θ (χ) ≤ C∗
′
(1 + op(1)) , (4.139)

uniformly over θ ∈ Θn and χ ∈ C. On the other hand, from the uniform convergence

of ĝj,θ(χ) to gj,θ0(χ) (see Lemma 4.17) together with the fact that

max
0≤j≤n

max
1≤i≤n

|gj,θ0(Xi)| = O(1)

(see Assumption (4.20)), we obtain that

max
0≤j≤pn

sup
θ∈Θ∗n

max
1≤i≤n

|ĝj,θ(Xi)| = Op(1). (4.140)

As a consequence of (4.139) and (4.140), we have that

ĝ∗∗j,θ(χ) = F̂ ∗θ (χ)ĝj,θ(χ) = Op(1), (4.141)

uniformly over 0 ≤ j ≤ pn, θ ∈ Θn and χ ∈ C.
Finally, (4.135), (4.136), (4.137), (4.139) and (4.141) give the result of the lemma.

�

Lemma 4.19 (Lemma A.4 in Aneiros et al. [7]) Let us assume that ηηη>i,θ0 (i =

1, . . . , n) are i.i.d. random vectors. If, in addition, E
(
η4
θ0,1j

)
< C uniformly on

1 ≤ j ≤ pn, then

uuu>
(
ηηη>θ0ηηηθ0 − nBBBθ0

)
uuu = Op

(
n1/2pn

)
, uniformly over {uuu ∈ Rpn , ||uuu|| = M}.

Lemma 4.20 Let us assume that ηηηi,θ0 (i = 1, . . . , n) are i.i.d. random vectors.

Under assumptions (4.7), (4.8), (4.12), (4.13), (4.15), (4.16), (4.19)-(4.21) and

(4.108)-(4.111) (g0,θ0 and Y not included in assumptions (4.16) and (4.20), re-

spectively), if in addition vn in (4.8) verifies vn = O(h), pn → ∞, pn = o(n1/2),
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nh4α = O(1) and

log2 pn = O

(
n

(
f(h)

ψC (1/n) + ψΘn (1/n)

)2
)

as n→∞, then we have that

uuu>
(
X̃XX
>
θ X̃XXθ − nBBBθ0

)
uuu = op(n), uniformly over {uuu ∈ Rpn , ||uuu|| = M} and over θ ∈ Θn.

Proof of Lemma 4.20. To prove this result, the outline used in proof of Lemma A.5

in Aneiros et al. [7] can be exactly followed, but now our Lemma 4.17 is needed to

conclude instead of Lemma A.3 in Aneiros et al. [7]. �

Lemma 4.21 (Lemma A.6 in Aneiros et al. [7]) Let us assume that ηηηi,θ0Sn (i =

1, . . . , n) are i.i.d. random vectors. If in addition s2
n/n = o(1) and max1≤j≤sn E(η4

1j,θ0
) =

O(1), then ∣∣∣∣n−1ηηη>θ0Snηηηθ0Sn −BBBθ0Sn×Sn
∣∣∣∣ = op(1),

Lemma 4.22 Let us assume that ηηηi,θ0Sn (i = 1, . . . , n) are i.i.d. random vectors. If,

in addition, assumptions (4.7), (4.8), (4.12), (4.13), (4.15), (4.16), (4.19), (4.20)

and (4.108)-(4.111) hold (but using sn instead of pn, and g0,θ0 and Y not included

in assumptions (4.16) and (4.20), respectively), and vn in (4.8) verifies vn = O(h),

pn →∞ and

max

{
h, snh

α, s2
n/n, s

2
n log sn/

(
n

(
f(h)

ψC (1/n) + ψΘn (1/n)

))}
= o(1),

then

n−1X̃XX
>
θSnX̃XXθSn = BBBθ0Sn×Sn + op(1), uniformly over θ ∈ Θn.

Proof of Lemma 4.22. The scheme of proof of Lemma A.7 in Aneiros et al. [7] can

be exactly followed, taking into account that Lemma A.3 and Lemma A.6 in Aneiros

et al. [7] should be replaced by Lemma 4.17 and Lemma 4.21, respectively, of this

chapter. �

Lemma 4.23 (Lemma A.8 in Aneiros et al. [7]) Let us assume that
(
ηηη>i,θ0Sn , εi

)
(i = 1, . . . , n) are i.i.d random vectors with mean zero, and {ηηηi,θ0Sn} and {εi} are
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independent. If, in addition, E(εi) = 0, E(ε2
i ) < C, E(η1j,θ0) < C uniformly on

1 ≤ j ≤ sn, then

εεε>ηηη>θ0Snuuu = Op

(
n1/2s1/2

n

)
, uniformly over {uuu ∈ Rpn , ||uuu|| = M}.
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Chapter 5

Contributions on the sparse

bi-functional partial linear

single-index model

5.1 Introduction

In this chapter, we are going to investigate the situation in which multiple functional

predictors are included in the statistical sample. Therefore, we study a new model

based on the mixture of partial linear, single-index and sparse ideas, the MFPLSIM

briefly presented in Section 1.4.4. For the sake of making the study clearer and easier

to follow, we are going to focus the presentation on the bi-functional case. The main

idea is to model the effects of each functional covariate in a different way: one of the

functional covariates (X ) enters in the model through a semiparametric single-index

continuous structure; the other one (ζ) enters linearly in the model, but through

the pn-dimensional vector built from its discretized observations. Specifically, the

MFPLSIM is given by the expression

Y =

pn∑
j=1

β0jζ(tj) + r (〈θ0,X〉) + ε, (5.1)
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where Y is a real random response and X denotes a random element belonging to

some separable Hilbert space H with inner product denoted by 〈·, ·〉. The second

functional predictor ζ is supposed to be a random curve defined on some interval

[a, b] which is observed at the points a ≤ t1 < · · · < tpn ≤ b. (β01, . . . , β0pn)> is a

vector of unknown real coefficients and r(·) denotes a smooth unknown link function.

In addition, θ0 is an unknown functional direction in H and ε denotes the random

error. For identifiability of model (5.1), it is needed to assume conditions (2.2) and

(2.3).

As commented in Chapter 1, the main difference between the model dealt in

this chapter, MFPLSIM, and that considered in Chapter 4, the SSFPLSIM (4.1), is

the fact that, in the SSFPLSIM the covariates with linear effect do not come from a

functional variable. In fact, the MFPLSIM has the nice feature to allow incorporating

both continuous and point-wise effects of functional variables, involving interpretable

parameters in both cases. Furthermore, one has to take into account that we have

very big number, pn, of linear covariates, while only a few of them could possess a real

influence on the response. As in the previous chapter, we will denote the set of indices

corresponding with the relevant variables as Sn = {j = 1, . . . , pn, such that β0j 6= 0},
and sn = ]Sn where the notation ]A = card(A)1 was used. Therefore, this flexible

model needs to be combined with an accurate variable selection method.

The problem is that the application of the standard PLS method presented in

Chapter 4 to the MFPLSIM becomes dramatically infeasible. That is due to the

huge computational time required by the PLS method to perform the variable se-

lection even for moderate values of pn. In addition, standard procedures, coming

from an adaptation of the multivariate methodology to FDA, do not take into ac-

count the strong correlation structure present between linear covariates because of

its functional origin (although there exist in the statistical literature some propos-

als to select covariates in linear models with features that can be ordered in some

meaningful way: group LASSO, see Bakin [14]; fused LASSO, see Tibshirani et al.

[105]; among others). Accordingly, we are going to develop two new algorithms for

variable selection (in the linear component) and estimation of the MFPLSIM, which

take advantage of the functional origin of these scalar variables included in the linear

1For the sake of brevity, through this chapter this notation will be used.
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component of the model. In both algorithms, the MFPLSIM will be transformed

in certain linear regression model in which the correlation between covariates is at-

tenuated, and then some standard PLS procedure is applied. For that, one could

consider some of the penalties briefly described in Section 1.4.1. As in the previous

chapter, we will use the SCAD penalty (1.10), which enjoys the oracle property (see

Fan and Li [38]).

Focusing now on the interest of the MFPLSIM in practice, a nice example can

be developed for chemometrics. For this field of applied sciences, functional data

analysis is traditionally of great interest (see Ferraty and Vieu [47] and references

therein). This example we will based on Sugar data presented in Section 1.1. In

Sugar data, for each sample of sugar, the absorbance spectra from 275 to 560 nm

was measured in 0.5 nm intervals (therefore, pn = 571) at excitation wavelengths

240 nm (ζ) and at excitation wavelengths 290 nm (X ). Samples of both curves can

be seen in Figure 1.3. The ash content of each sugar sample, Y , was also determined

and the practical question is how the value of ash content for a new sample can be

predicted just by looking at its spectrometric curves. This is a typical regression

problem with scalar response (the ash content Y ). At this stage, there are two

alternative ways to deal with the spectrometric data:

i) Consider data as pn-dimensional vectors compound of the values observed at

the discretized wavelengths.

ii) Consider data as curves obtained by smoothing the discretized observations.

Undoubtedly both approaches may have its own advantages and/or drawbacks, but

it should be noted that both have to face the same dimensionality problem. Option

i) leads to a multivariate regression analysis with number of variables (2pn = 1142

variables) that is much larger than the sample size itself (n = 268). Moreover, there is

a specific additional difficulty linked with the high correlation between variables. To

deal with this discretized point of view, it is required to develop a suitable adaptation

of the techniques used in Big Data Analysis, such as sparse modelling. Alternatively,

Option ii) involves only two predictors (namely, the curves ζ and X ) but each of them

are elements of an infinite-dimensional space. To deal with this continuous point of

view, it is necessary to develop a suitable adaptation of regression techniques, which
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should be insensitive to the dimensionality of the covariates, such as semiparametric

modelling.

All in all, given the complexity of the sample, it is strongly recommended to

analyse such spectrometric data in a way as flexible as possible. The methodology

developed in this chapter achieves this goal by building a model that is a mixture of

Options i) and ii) and providing statistical methods that combine both sparse and

semiparametric ideas.

This chapter will be organized as follows. In Section 5.2 we will focus on the

sparse feature of the MFPLSIM (5.1) and we will present two new variable selection

algorithms. The first method is a fast algorithm which provides the variable selection

and estimation of the MFPLSIM in a reasonable amount of time, even for very big

values of pn. The second variable selection procedure is a more refined method

which adds a second step to the fast algorithm, allowing to complete and precise

the set of relevant variables selected by the fast method (the second algorithm is

an adaptation to model MFPLSIM of the PVS procedure presented in Aneiros and

Vieu [4]). This In Section 5.3 a wide scope of asymptotics is obtained for giving

mathematical support to both procedures. In Section 5.4, finite sample simulated

experiments in two different scenarios will allow us to compare computational time

and prediction accuracy of the fast algorithm and the PLS procedure and of the fast

algorithm and the second proposed method, respectively. In the second scenario, the

precision of impact point selection will be also quantified. Some conclusions will be

derived, providing the scope of application of the proposed algorithms in practice.

In Section 5.5 the real data application presented in Section 5.1 will be analysed

by means of the proposed methods. That will be the opportunity to illustrate the

triple interest of our methodology: high predictive power, interpretable outputs and

reasonably low computational time. The proofs of theoretical results are reported in

Section 5.6.

5.2 The algorithms

In this section we are going to present two new algorithms for variable selection in

the specific setting of the MFPLSIM (5.1). Both methods take advantage of the
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following fact: in the multivariate case, more variables in the linear part means,

in general, more different external information about the response; as a contrast,

when linear covariates have functional origin, with bigger pn we obtain more precise

information about the single continuous process that generates the curve ζ to be

discretized.

5.2.1 The FASSMR algorithm

In practice, the progress in measurement technologies leads to a huge number of

discretizations of the functional variable ζ. It is well-known that for any standard

variable selection method (such as the PLS presented in Chapter 4, for instance),

the larger pn, the more computational time is required. Therefore, a crucial point

for producing results in reasonable time is to provide algorithms saving as much as

computational time as possible.

This fact leads us to propose the following fast algorithm for sparse semipara-

metric multi-functional regression (FASSMR). The main idea of this algorithm is to

consider a reduced model, with only some (very few) linear covariates (but covering

the entire discretization interval of ζ), and discarding directly the other linear covar-

iates (since one could expect that they contain very similar information about the

response). This idea is described below.

For introducing the variable selection algorithm, as usual, assume that we have

a statistical sample of size n:

{(ζi,Xi, Yi)}ni=1 i.i.d. as (ζ,X , Y ). (5.2)

verifying model MFPLSIM (5.1); that is

Yi =

pn∑
j=1

β0jζi(tj) + r (〈θ0,Xi〉) + εi, (i = 1, . . . , n).

We assume, without lost of generality, that the number pn of linear covariates can be

expressed as follows: pn = qnwn with qn and wn integers. The previous consideration

allows us to present a subset of the initial pn linear covariates, which will contain

only wn equally spaced discretized observations of ζ covering the whole interval [a, b].
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This subset will be the following:

R111
n =

{
ζ
(
t111k
)
, k = 1, . . . , wn

}
, (5.3)

where t111k = t[(2k−1)qn/2] and [z] denotes the smallest integer not less than z ∈ R.

It is noteworthy that correlation between consecutive variables withinR111
n is much

less important than in the whole set of pn initial linear covariates. Therefore, it is

expected that the standard PLS method will work better applied to variables in

R111
n than applied to the full set of pn linear covariates. Moreover, we hope that

computational time will be greatly reduced if we use moderate values for wn. As

a consequence, the standard PLS variable selection procedure will be carried out

among variables in R111
n.

In this way, we are going to consider the following reduced model, which involves

only linear covariates belonging to R111
n:

Yi =
wn∑
k=1

β111
0kζi(t

111
k) + r111

(〈
θ111

0,Xi
〉)

+ ε111
i . (5.4)

For this model, the set of relevant indices and its estimation can be denoted by

S111
n = {k = 1, . . . , wn, β111

0k 6= 0},

Ŝ111
n = {k = 1, . . . , wn, β̂111

0k 6= 0},

with s111
n = ](S111

n) and ŝ111
n = ]

(
Ŝ111
n

)
. In addition, it is assumed that

∃c, ∀n, inf
n

min
k∈S111

n

∣∣β111
0k

∣∣ > c > 0. (5.5)

Then, the variable selection task can be developed following the next steps:

1. The first idea is to transform model (5.4) into a linear model, by extracting

from Yi and ζi(t
111
k) (k = 1, . . . , wn) the effect of the functional variable Xi when

is projected on the direction θ111
0. Specifically,

Yi − E
(
Yi|
〈
θ111

0,Xi
〉)

=
wn∑
k=1

β111
0k

(
ζi(t

111
k)− E

(
ζi(t

111
k)|
〈
θ111

0,Xi
〉))

+ ε111
i . (5.6)
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Since in expression (5.6) the conditional expectations are unknown, they may

be estimated by means of regression. Nadaraya-Watson kernel estimators are

used for this task. Then, we are going to consider the following n × n-matrix

of local weights:

WWW h,θ = (wn,h,θ(Xi,X`))i,`=1,...,n ,

where wn,h,θ(χ,Xi) was defined in (2.11). As a result, we will obtain the fol-

lowing transformed variables, for each θ ∈ H:

ỸYY θ = (III −WWW h,θ)YYY , ζ̃ζζ
111

θ = (III −WWW h,θ)ζζζ
111,

where ζζζ111 is the n×wn matrix (ζi(t
111
k), 1 ≤ i ≤ n, 1 ≤ k ≤ wn), and YYY the is the

vector of responses (Y1, . . . , Yn)>.

2. The standard PLS variable selection procedure is applied among the set R111
n.

Specifically, the penalized profile least squares function is minimized over the

pair (βββ111, θ111) with βββ111 ∈ Rwn and θ111 ∈ Θ111
n ⊂ H:

Q111
(
βββ111, θ111

)
=

1

2

(
ỸYY θ111 − ζ̃ζζ

111

θ111βββ
111
)> (

ỸYY θ111 − ζ̃ζζ
111

θ111βββ
111
)

+ n
wn∑
k=1

Pλkn
(
|β111
k|
)
, (5.7)

being Pλkn (·) the SCAD penalty function defined in (1.10).

3. We denote by (β̂ββ
111

0, θ̂
111
0) a local minimizer of the criterion Q111(·, ·), where β̂ββ

111

0 =

(β̂111
01, . . . , β̂

111
0wn)>. Then, ζ(t111k) is selected in R111

n if, and only if, β̂111
0k 6= 0.

Remark 5.1 As expected, to obtain asymptotic results related to the presented vari-

able selection algorithm (FASSMR), two kinds of assumptions should be considered.

On the one hand, specific assumptions to treat with covariates with linear effect com-

ing from the discretization of a curve (functional nature of the linear covariates).

On the other hand, general assumptions to deal with the standard PLS procedure.

Both kinds of assumptions will be shown in Section 5.3 (see forthcoming conditions

(5.18)-(5.21) and (5.22), (5.23), respectively). We should emphasize that assump-

tions related to the standard PLS procedure (conditions (5.22) and (5.23)) will be

formulated in a rather general form. In that way, different sets of hypotheses could
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give rise to these assumptions. For instance, in Chapter 4, we can find conditions

under which (5.22) and (5.23) hold. In addition, in Section 4.3 (i) the existence of

a local minimizer, (β̂ββ
111

0, θ̂
111
0), of Q111(·, ·) is ensured, (ii) the corresponding convergence

rates are obtained, and (iii) the subset of eligible directions, Θ111
n, is characterized the-

oretically (practical considerations about Θ111
n are included in Section 5.4.1.2). In ad-

dition, specific requirements for a general penalty function Pλ(·) are included. These

assumptions are satisfied by the SCAD penalty used throughout this dissertation.

Finally, note that to treat with partial linear single-index models, it is frequent to

impose some additional assumption to ensure identifiability. Such assumption links

the two kinds of covariates in the model (ζ and X , in the case of our MFPLSIM),

and it prevents the possibility that covariates with different types of effect (linear or

semiparametric) are equal (see, for instance, condition (vi) in Liang et al. [75] and

Condition (4.23) in the previous chapter for cases of scalar and functional covari-

ates, respectively). In this chapter, Condition (4.23) is implicitly assumed (as far

as we know, the investigation in Chapter 4 is the only work in the statistical litera-

ture dealing with penalized variable selection in sparse semi-functional partial linear

single-index regression).

5.2.1.1 The outputs of the FASSMR algorithm

Once the variable selection procedure is carried out, the parameters of the model can

be estimated. Then, coming back to model (5.1) and considering the whole set of

initial of pn linear covariates, a variable ζ(tj) ∈ {ζ(t1), . . . , ζ(tpn)} is selected if, and

only if, it belongs to R111
n and its estimated coefficient, which can be denoted by β̂111

0kj
,

is non null. Therefore, the following estimated set of relevant variables is obtained:

Ŝn =
{
j = 1, . . . , pn, such that tj = t111kj with ζ(t111kj) ∈ R

111
n and β̂111

0kj
6= 0
}
.

In addition, a natural choice for the estimates of the linear coefficients and of θ0 is

to use the estimates obtained from the variable selection procedure. That is,

β̂0j =

{
β̂111

0kj
if j ∈ Ŝn,

0 otherwise,
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θ̂0 = θ̂111
0.

Finally, denoting by β̂ββ0 the vector of estimated parameters, an estimator of the

function rθ0(·) ≡ r(〈θ0, χ〉) can be obtained by smoothing the residuals of the para-

metric fit:

r̂θ̂0(χ) ≡ r̂
(〈
θ̂0, χ

〉)
=

∑n
i=1

(
Yi − ζζζ>i β̂ββ0

)
K
(
dθ̂0 (χ,Xi) /h

)∑n
i=1K

(
dθ̂0 (χ,Xi) /h

) , (5.8)

where we have denoted ζζζ i = (ζi(t1), . . . , ζi(tpn))>. Note that the estimation of rθ0(·)
is the obtained for r111

θ1110
(·). In other words, r̂θ̂0(χ) = r̂111

θ̂1110
(χ).

Remark 5.2 Once we have presented our FASSMR algorithm, we will make some

comments about the design points (tj, j = 1, . . . , pn) over which the curve ζ is

discretized and about the theoretical or computational complexity of the algorithm.

Focusing on the design, note that, for the sake of simplicity, it was assumed an

equispaced grid. Actually, that is not restrictive in practice. In fact, if data are un-

balanced one can (as a first stage) smooth each observed curve, and then compute the

smoothed curves at some regularly spaced points to create a new (balanced) curves

dataset. Anyway, it should be noted that our results hold if the assumption of equis-

paced grid is changed by a grid a ≤ t1 < · · · < tpn ≤ b supposed to be regular in the

sense: ∃c1, c2 such that ∀j = 1, . . . , pn − 1, 0 < c1p
−1
n < tj+1 − tj < c2p

−1
n < ∞.

Focusing on the theoretical or computational complexity of the algorithm, we should

take into account: (i) the construction of the linear models for the application of

the variable selection procedure (that is, the estimate of the conditional expectations

in (5.6)), and (ii) the application of the variable selection procedure to such linear

models. For a fixed value θ ∈ Θ111
n (see the definition of Θ111

n in Remark 5.1), and given

tuning parameters h, wn and λ, the computational complexity for (i) is O(n2wn),

while for (ii) the computational complexity of the more computationally efficient al-

gorithm we know is O(nwn) (see Shi et al. [102]). Therefore, the computational

complexity of the proposed FASSMR algorithm is O(n2wn]Θ
111
n). Moreover, for the

standard PLS procedure (see Chapter 4) such complexity is O(n2pn]Θn) (Θn is the

set of eligible directions θ for estimating the full model (5.1); usually, Θn = Θ111
n).

Then, it is expected that, in practice, when wn << pn, our algorithm will be much
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faster than the standard one (especially when wn << n << pn). Finally, note that

the factor n2 in the orders above is more a consequence of model complexity than

of algorithm complexity (specifically, it is due to the presence of the nonparametric

component r(·) in the MFPLSIM; that is, if r(·) were known, n2 should be replaced

by n).

5.2.2 IASSMR: A refined variable selection algorithm

From the previous section we can derive that the FASSMR provides an important

computational time saving if we compare it with the direct application of standard

procedures (like the PLS method). However, since the algorithm is based on directly

discarding variables, the price for this big improvement in efficiency is that the set

of relevant variables could not be exactly obtained in many contexts.

Therefore, the natural question is whether we could propose an additional al-

gorithm to solve this problem. The new method should take into account the func-

tional origin of the linear covariates and should be able to select a more precise set

of impact points, but without destroying the main features (in particular, its fast

implementation) of the FASSMR.

Following these principles, we present in this section the improved algorithm

for sparse semiparametric regression (IASSMR). Roughly speaking, the idea of the

IASSMR is to add a second stage, which takes into account the qn variables in the

neighbourhood of the selected in the first stage by the FASSMR. Then, a second

variable selection procedure is applied among this new set of variables. This idea is

described below.

For developing the IASSMR, the sample (5.2) is split into two independent sub-

samples asymptotically of the same size n1 ∼ n2 ∼ n/2. One of them will be used

in the first stage of the method and the other, in the second stage:

E111 = {(ζi,Xi, Yi), i = 1, . . . , n1},

E222 = {(ζi,Xi, Yi), i = n1 + 1, . . . , n1 + n2 = n}.

From now on, the superscript sss with sss = 111,222 indicates the stage of the method in

which the sample, function, variable or parameter is involved.
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First stage. The FASSMR is applied, but now using only the subsample E111:

1. The variable selection procedure is started among variables belonging to

R111
n, see (5.3). The MFPLSIM is transformed into a linear model as in

(5.6). Note that since we only use E111, we obtain a n1×n1-matrix of local

weights WWW111
h,θ = (wn1,h,θ(Xi,X`))i,`=1,...,n1

, where wn1,h,θ(χ,Xi) was defined

in (2.11). In addition, for each θ ∈ H, we denote ỸYY
111

θ =
(
III −WWW111

h,θ

)
YYY 111,

with YYY 111 = (Y1, . . . , Yn1)> and ζ̃ζζ
111

θ =
(
III −WWW111

h,θ

)
ζζζ111, where, abusing of nota-

tion, we denote by ζζζ111 the n1×wn matrix (ζi(t
111
k), 1 ≤ i ≤ n1, 1 ≤ k ≤ wn).

2. The standard PLS variable selection procedure is applied within the set

R111
n by minimizing the penalized least squares criterion over the pair

(βββ111, θ111), with βββ111 ∈ Rwn and θ111 ∈ Θ111
n:

Q111
(
βββ111, θ111

)
=

1

2

(
ỸYY

111

θ111 − ζ̃ζζ
111

θ111βββ
111
)> (

ỸYY
111

θ111 − ζ̃ζζ
111

θ111βββ
111
)

+ n1

wn∑
k=1

Pλkn
(
|β111
k|
)
.

(5.9)

3. We obtain (β̂ββ
111

0, θ̂
111
0) by minimizing (5.9); then, ζ(t111k) is selected in R111

n if,

and only if, β̂111
0k 6= 0.

Second stage. Variables in the neighbourhood of the ones selected in the first stage

are included. Then the PLS procedure is carried out again. For that, we

consider only the subsample E222. Specifically:

1. A new set of variables is considered:

R222
n =

⋃
{k,β̂111

0k 6=0}

{
ζ(t(k−1)qn+1), . . . , ζ(tkqn)

}
.

Denoting by rn = ](R222
n), we can rename the variables in R222

n as follows:

R222
n =

{
ζ(t2221), . . . , ζ(t222rn)

}
,
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and consider the following model

Yi =
rn∑
k=1

β222
0kζi(t

222
k) + r222

(〈
θ222

0,Xi
〉)

+ ε222
i . (5.10)

2. As in the first stage, model (5.10) is transformed into a linear model in

the same way as in (5.6):

Yi − E
(
Yi|
〈
θ222

0,Xi
〉)

=
rn∑
k=1

β222
0k

(
ζi(t

222
k)− E

(
ζi(t

222
k)|
〈
θ222

0,Xi
〉))

+ ε222
i , (5.11)

but now we use the subsample E222 for obtaining the estimator of the con-

ditional expectations. Therefore, WWW222
h,θ is obtained analogously to WWW111

h,θ

but employing E222 instead of E111. As in the previous stage, for each θ ∈ H,

ỸYY
222

θ =
(
III −WWW222

h,θ

)
YYY 222 with YYY 222 = (Yn1+1, . . . , Yn)> and ζ̃ζζ

222

θ =
(
III −WWW222

h,θ

)
ζζζ222

with ζζζ222 the n2 × rn matrix
(
ζi(t

222
k), n1 + 1 ≤ i ≤ n, 1 ≤ k ≤ rn

)
, and βββ222 =

(β222
1 , . . . , β

222
rn)>.

3. The PLS procedure is applied again, but now within the set R222
n by mini-

mizing the profile least squares function over the pair (βββ222, θ222), with βββ222 ∈
Rrn and θ222 ∈ Θ222

n ⊂ H:

Q222
(
βββ222, θ222

)
=

1

2

(
ỸYY θ222 − ζ̃ζζ

222

θ222βββ
222
)> (

ỸYY θ222 − ζ̃ζζ
222

θ222βββ
222
)

+ n2

rn∑
k=1

Pλkn
(
|β222
k|
)
.

(5.12)

4. The minimizer of the criterion Q222(·, ·) is denoted by
(
β̂ββ

222

0, θ̂
222
0

)
. At the end

of the second stage, ζ(t222k) is selected in R222
n if the associated coefficient,

β̂222
0k, is non-null.

Remark 5.3 Theoretical considerations for subsets Θ222
n and Θ111

n and local-minimizer

existence in the IASSMR are the same as those given in the Remark 5.1 for the

FASSMR.
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5.2.2.1 The outputs of IASSMR algorithm

At the end of this two-stage procedure, a variable ζ(tj) ∈ {ζ(t1), . . . , ζ(tpn)} is se-

lected if and only if belongs to R222
n and its estimated coefficient in the second stage,

said β̂222
0kj

, is non-null. Therefore, the following estimated set of relevant variables is

obtained:

Ŝn =
{
j = 1, . . . , pn, such that tj = t222kj , with ζ(t222kj) ∈ R

222
n and β̂222

0kj
6= 0
}
. (5.13)

In this case, a natural way to obtain estimates of the linear coefficients and of the

direction θ0 is to use the estimates from the second stage of the algorithm. That is:

β̂0j =

{
β̂222

0kj
if j ∈ Ŝn,

0 otherwise,
(5.14)

θ̂0 = θ̂222
0. (5.15)

If we denote by β̂ββ0 the vector of estimated linear coefficients, an estimator of the

function rθ0(·) ≡ r(〈θ0, χ〉) can be obtained by smoothing the residuals of the linear

component as in (5.8), but now with β̂0j and θ̂0 obtained as in (5.14) and (5.15),

respectively. In other words, r̂θ̂0(χ) = r̂222
θ̂2220

(χ).

Remark 5.4 Once we have presented our IASSMR algorithm, we will make some

comments about both the considered subsamples (E111 and E222 for first and second stages,

respectively) and the theoretical or computational complexity of the algorithm. Focus-

ing on E111 and E222, note that since they are different (and therefore independent) the

bias of selection is avoided and proofs of our asymptotic results are greatly facilitated.

In addition, although in our general presentation we choose n1 ∼ cn and n2 ∼ n−n1

for c = 1/2 (maybe the natural choice), it could be considered any value 0 < c < 1

(this fact does not affect the asymptotic properties while, in some scenarios as those

where the sample size (n) is too small, it could be convenient to consider c 6= 1/2).

Focusing now on the theoretical or computational complexity of the algorithm, we

should take into account: (i) the construction of the linear model to be treated in the
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first stage, (ii) the application of the variable selection procedure to such linear model,

(iii) the construction of the linear model to deal with in the second stage, and (iv)

the application of the variable selection procedure to such linear model. For a fixed

value θ ∈ Θn (in the sake of clarity, we consider Θn = Θ111
n = Θ222

n), and given tuning

parameters h, wn and λ, the computational complexities related to the first stage ((i)

and (ii)) are O(n2wn) and O(nwn), respectively. For the second stage ((iii) and (iv)),

the computational complexities depend on rn (the number of covariates in the linear

model of the second stage), which is a random variable. It can be seen in Aneiros

and Vieu [4] that, under suitable conditions, it is verified that rn = O(sn) with prob-

ability 1 (w.p.1). Then, the computational complexities related to (iii) and (iv) are

O(n2sn) and O(nsn) w.p.1, respectively. To sum up, the computational complexity of

the proposed IASSMR algorithm is O(n2wn]Θn)+O(n2sn]Θn) w.p.1. Therefore, it is

expected that, in practice, in the usual case where max{sn, wn} << pn, the IASSMR

algorithm will be much faster than the standard one (especially in situations where

max{sn, wn} << n << pn) but slower than the FASSMR algorithm (especially in

situations where sn >> wn); for the computational complexities of the IASSMR

algorithm and the standard PLS procedure, see Remark 5.2.

5.3 Asymptotic theory

5.3.1 Asymptotics for the FASSMR algorithm

For presenting theoretical results related to the variable selection performed by the

FASSMR, we have to assume some technical conditions:

Conditions on the non-null parameters We assume standard hypotheses such

as

]Sn = sn = o(pn), (5.16)

or

∃c, ∀n,
∑
j∈Sn

|β0j| < c <∞. (5.17)
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Conditions on the curve ζ. The curve ζ is observed in a grid such that

∃c1, c2, ∀j = 1, . . . , pn − 1, 0 <
c1

pn
< tj+1 − tj <

c2

pn
<∞. (5.18)

In addition,

ζ is Lipschitz continuous on its support, (5.19)

and bounded away from zero; that is:

∃c, ∀t ∈ [a, b], |ζ(t)| ≥ c > 0. (5.20)

Conditions on the coefficients of the model. Let us assume that

∃c, ∀j = 1, . . . , qn, ∀k = 1, . . . , wn, β0j+(k−1)qn 6= 0 =⇒∣∣∣∣∣
qn∑
j=1

β0j+(k−1)qn

∣∣∣∣∣ > c > 0. (5.21)

Conditions on the standard variable selection method. Let us consider the

SFPLSIM,

Y =
wn∑
k=1

α0jXj + g (〈δ0,X〉) + ε, (5.22)

where Xj are random real covariates, δ0 is an unknown functional direction and

if we denote by S∗n = {k = 1, . . . , wn, α0j 6= 0} and ](S∗n) = s∗n, it is verified

that s∗n = o(wn). The standard SCAD-PLS procedure leads to estimates α̂0j

of α0j satisfying the following property:

P ({k = 1, . . . , wn; α0k = 0} = {k = 1, . . . , wn; α̂0k = 0})→ 1,

when n→∞. (5.23)

Remark 5.5 Note that suitable conditions under which (5.23) holds can be seen in

Section 4.3. On the other hand, Assumption (5.21) is specific of the functional setting

addressed here in this chapter (scalar variables with functional origin). Assumption

(5.21) was first introduced in Aneiros and Vieu [4]; discussion and examples under
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which this condition is satisfied can be seen in Aneiros and Vieu [4, 5].

Finally, for introducing the theoretical result, for each j = 1, . . . , pn, we denote

by kj the unique integer k ∈ {1, . . . , wn} such that j ∈ {(k− 1)qn + 1, . . . , kqn}. The

following result establishes the relationship between the variable selection procedures

related to the MFPLSIM (5.1) and the reduced model (5.4), in the following sense: if

the jth (j = 1, . . . , pn) variable is relevant in the MFPLSIM (5.1), for n big enough,

the corresponding kthj neighbouring variable in model (5.4) will be estimated as non-

null; conversely, if the kth variable is estimated as non-null in model (5.4), there will

exist a neighbouring variable in the MFPLSIM (5.1) which will be relevant.

Proposition 5.6 Under conditions (5.1), (5.2), (5.4), (5.5), (5.16)-(5.23), assum-

ing that wn →∞ when n→∞, it is verified that:

1. P
(
∀j ∈ Sn, β̂111

0kj
6= 0
)
−→ 1 when n→∞.

2. P
(
∀k ∈ Ŝ111

n, ∃j ∈ {1, . . . , qn} such that β0j+(k−1)qn 6= 0
)
−→ 1 when n→∞.

5.3.2 Asymptotics for the IASSMR algorithm

For introducing asymptotic results related to the estimators from the IASSMR, let

us add some hypotheses to those needed for the FASSMR:

Conditions on the coefficients of the model.

∀k = 1, . . . , wn, ∃0 < ak <∞,
qn∑
j=1

β0j+(k−1)qn 6= 0 =⇒ ]Sk ∼ akqn as n→∞,

(5.24)

where, for any k = 1, . . . , wn,

Sk = {j = 1, . . . , pn, such that j = 1 + (k − 1)qn, . . . , kqn and β0j 6= 0} .

Conditions on the standard variable selection method. Let us consider the

SFPLSIM

Y =
∑
j∈Pn

α0jXj + g (〈δ0,X〉) + ε, (5.25)

164



Chapter 5. Contributions on the MFPLSIM

where Pn ⊂ {1, . . . , pn} with ]Pn = O(wn) or ]Pn = O(sn). The standard

SCAD-PLS procedure leads to estimates α̂0j of α0j and δ̂0 of δ0 satisfying

properties:

P ({j ∈ Pn; α0j = 0} = {j ∈ Pn; α̂0j = 0}) −→ 1, as n→∞, (5.26)

∃γ ≥ 0 such that ||α̂αα0 −ααα0|| = Op

(
n−1/2 (]Pn)γ

)
(5.27)

and ∃d : R→ (0,∞) such that
∣∣∣∣∣∣δ̂0 − δ0

∣∣∣∣∣∣ = Op

(
n−1d(h) (]Pn)γ−3/2

)
,

(5.28)

where we denote by ααα0 = (α0j, j ∈ Pn)> and α̂αα0 = (α̂0j, j ∈ Pn)>.

Conditions on the semiparametric estimate. Let us consider the following semi-

parametric models:

Y = g0 (〈δ0,X〉) + ε,

Xj = gj (〈δ0,X〉) + ηj, j = 1, . . . , pn,

and denote gj,δ0(χ) ≡ gj (〈δ0, χ〉) with j = 0, . . . , pn. Let ĝj,δ0(χ) be the cor-

responding semiparametric estimate for gj,δ0(χ), with j = 0, . . . , pn, obtained

from the models above by using the same kind of weights used in the IASSMR,

and δ ∈ Θn ⊂ H. The following assumptions will be needed

sup
δ∈Θn

sup
χ∈C
{|ĝ0,δ(χ)− g0,δ0(χ)|} = Op (an) , (5.29)

max
j∈Sn

sup
δ∈Θn

sup
χ∈C
{|ĝj,δ(χ)− gj,δ0(χ)|} = Op (bn) , (5.30)

max
j∈Sn

sup
χ∈C
{|gj,δ0(χ)|} = O (1) . (5.31)

Remark 5.7 On the one hand, Condition (5.24) is specific of the framework of

scalar variables with functional origin (for details, discussion and examples under

which this condition is satisfied, see Aneiros and Vieu [4, 5]). On the other hand, in

Chapter 4 we have pointed conditions under which (5.26)–(5.31) hold (see Section

4.3), including the characterization of the function d(·) and the functional subset Θn.

In the same way, in Lemma 4.17 are specified rates an and bn.
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Next theorem presents some asymptotic results related to our proposed estimators

obtained from the IASSMR algorithm. For expressions of Ŝn, β̂ββ0 and θ̂0, see (5.13),

(5.14) and (5.15), respectively.

Theorem 5.8 Under conditions (5.1), (5.2), (5.5), (5.16)-(5.21), (5.24)-(5.28),

and if wn →∞ as n→∞, it is obtained∣∣∣∣∣∣β̂ββ0 − βββ0

∣∣∣∣∣∣ = Op

(
n−1/2sγn

)
, (5.32)

∣∣∣∣∣∣θ̂0 − θ0

∣∣∣∣∣∣ = Op

(
n−1d(h)sγ−3/2

n

)
, (5.33)

and

P
(
Ŝn = Sn

)
−→ 1, n→∞. (5.34)

Finally, using the estimation of the linear coefficients obtained in (5.14), for each

θ ∈ H define

r̂θ(χ) ≡ r̂ (〈θ, χ〉) =

∑n
i=1

(
Yi − ζζζ>i β̂ββ0

)
K (dθ (χ,Xi) /h)∑n

i=1K (dθ (χ,Xi) /h)
, ∀χ ∈ H.

Theorem 5.9 Under assumptions of Theorem 5.8, if in addition conditions (5.29),

(5.30) and (5.31) are satisfied, h→ 0 and bn → 0 as n→∞, then

sup
θ∈Θn

sup
χ∈C
{|r̂θ(χ)− rθ0(χ)|} = Op (an) +Op

(
n−1/2sγ+1/2

n

)
. (5.35)

Corollary 5.10 Under assumptions of Theorem 5.9, if in addition Θ222
n ⊂ Θn and θ̂0

is the estimator of θ0 obtained in (5.15), we have that

sup
χ∈C

{∣∣r̂θ̂0(χ)− rθ0(χ)
∣∣} = Op (an) +Op

(
n−1/2sγ+1/2

n

)
. (5.36)

5.3.2.1 The grouped impact point case

In FDA, due to the continuity of the curve ζ, we could expect that the impact points

are grouped in some situations; that is, the significant variables are very close on the
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discretization. Let us denote the set of true impact points as

Tn = {tj, j = 1, . . . , pn, β0j 6= 0}, (5.37)

and its estimation as

T̂n = {tj, j = 1, . . . , pn, β̂0j 6= 0}, (5.38)

In the situation of Grouped-Impact-Point MFPLSIM (GIP-MFPLSIM), it could

make sense the introduction of the following condition:

Conditions on the grouping of the impact points. There exist some intervals

I1, . . . , IJn such that Ii ∩ Ij = ∅ and such that Tn ⊂ In where In = ∪Jnj=1Ij and

P (Tn = In) −→ 1 when n→∞. (5.39)

Corollary 5.11 Under the same conditions of Theorem 5.8, if, in addition, As-

sumption (5.39) holds, then

P
(
T̂n = In

)
−→ 1 when n→∞. (5.40)

5.4 Simulation study

In this section we are going to present two different scenarios of simulation to illus-

trate the behaviour in practice of the proposed algorithms, FASSMR and IASSMR.

5.4.1 First scenario

The aim of this first scenario is to show that the FASSMR algorithm achieves its main

goal: it provides a good performance in comparison with the standard PLS procedure

with much lower computational cost. In Section 5.4.1.1 we will introduce the model

on which the simulation is based. To ensure high degree of generality, the model

involves a mixture of smooth functional covariates together with very rough ones

(Brownian motions). Then, we will discuss in Section 5.4.1.2 some practical issues
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linked with the choice of the parameters of the method (with special attention to

the key parameter wn). Finally, results are reported along Section 5.4.1.3. Here, the

computational time and the quality of estimation have been quantified for both the

FASSMR and the standard PLS procedure. Section 5.4.1.4 provides a brief summary

of conclusions and motivates the second scenario presented in Section 5.4.2.

5.4.1.1 The design

For different values of the sample size, n ∈ {100, 200, 300}, and different number of

linear covariates, pn ∈ {101, 201, 501, 1001, 10001}, we generated observations i.i.d.

D = {(ζi,Xi, Yi)}n+100
i=1 from the model

Yi =

pn∑
j=1

β0jζi(tj) + r (〈θ0,Xi〉) + εi (i = 1, . . . , n+ 100), (5.41)

where:

� tj, with j = 1, . . . , pn, are equispaced points in [0, 1], with t1 = 0 and tpn = 1.

� ζi is a standard Brownian motion. We will consider only two non-null coef-

ficients β0j1 = 2 and β0j2 = −3, being tj1 = 0.18 and tj2 = 0.73 the impact

points (Figure 5.1 (a) shows 100 sample paths of standard Brownian motion

with influential points marked on dotted vertical lines).

� Curves involved in the non-linear component were generated from:

Xi(t) = ai cos(2πt) + bi sin(4πt) + 2ci(t− 0.25)(t− 0.5) ∀t ∈ [0, 1], (5.42)

where the random variables ai, bi and ci (i = 1, . . . , n + 100) are independent

(both between and within vectors (ai, bi, ci)
>) and uniformly distributed on the

interval [0, 6]. These curves were discretized on the same grid of 100 equispaced

points in [0, 1] (the representation of 100 of these curves can be seen in Figure

5.1 (b)).
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Figure 5.1: Graphical representation of some components of model (5.41). In (a)
dotted vertical lines mark the impact points at instants tj1 = 0.18 and tj2 = 0.73.
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� The true direction of projection was generated using the procedure described

in Section 2.4. Values l = 3 and mn = 3 were considered (note that the process

of optimization involved in the estimation of the MFPLSIM requires intensive

computation, which forces us to select a manageable number of interior knots)

and the vector of coefficients of θ0 in expression (2.36) was

(α1, . . . , αdn)> = (0, 1.741539, 0, 1.741539,−1.741539,−1.741539)>. (5.43)

Graphical representation of the theoretical θ0 can be seen in Figure 5.1 (c).

� The inner product and the link function considered were 〈f, g〉 =
∫ 1

0
f(t)g(t)dt

and r(〈θ0, χ〉) = 〈θ0, χ〉3, respectively.

� The i.i.d. random errors, εi (i = 1, . . . , n+ 100), were simulated from a normal

distribution with zero mean and standard deviation equals to 0.1 times the

standard deviation of the regression function
∑pn

j=1 β0jζi(tj) + r (〈θ0,Xi〉).

A total of M = 100 independent samples (i.e. M = 100 independent copies of D)

were generated from model (5.41). Each set D was split into two samples: a training

sample

Dtrain = {(ζi,Xi, Yi)}ni=1, (5.44)

and a testing sample,

Dtest = {(ζi,Xi, Yi)}n+100
i=n+1. (5.45)

The training sample was used to make the estimation of all the parameters involved

in (5.41). The testing sample was used to measure the quality of the corresponding

predictions (i.e., the performance of the procedures) through the MSEP (2.40) with

ntest = 100. For each sample, the FASSMR and the PLS procedures were applied.

5.4.1.2 Practical considerations

In practice, it is necessary to select some parameters to make the estimation using the

FASSMR. The same problems are presented for estimating by means of the standard

PLS method, except the choice of the division parameter w = wn. That is specific

to our new algorithm. Other important parameters to be chosen are the bandwidth
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h, involved in semiparametric estimation, and the tuning penalization parameter λk,

used in the variable selection procedure. Regarding to λk, to reduce the quantity of

tuning parameters to be selected for each sample, we consider penalty parameters of

the specific form λk = λσ̂β0k,OLS
, with k = 1, . . . , w, where β0k,OLS denotes the OLS

estimation of β0k in the reduced model associated to (5.41) for each w, and σ̂β0k,OLS

is the estimated standard deviation. The selection of those mentioned parameters,

as well as other related issues, can be performed as described below.

Firstly, the kernel K used was the Epanechnikov’s one throughout this chapter

(note that the choice of the kernel has low impact on the estimates). In addition,

since we are concerned with computational time saving, the parameters h, λ and

w will be selected by means of the BIC procedure (which has lower computational

cost than the cross-validation selectors). Specifically, the BIC value corresponding

to (β̂ββ
111

0,h,λ,w, θ̂
111
0,h,λ,w) (the estimate of the parameter (βββ111

0, θ
111
0) in the linear model (5.6))

was computed from the routine select of the R package grpreg.

To select the penalty parameter λ in practice, it is usual to search it in a grid,

{λmin, . . .}, where λmin denotes de minimum value. A sensitivity analysis of the

FASSMR (and the PLS) to the value λmin was implemented. For that, for each

value λmin considered, a grid of 100 values, {λmin, . . .}, was provided to the program.

Then λ̂(λmin) was selected in such grid by means of the BIC and the corresponding

MSEP(λ̂(λmin)) was computed. Panel (c) in Figure 5.2 shows that the FASSMR is

really affected by the value λmin, while for the PLS method small values should be

discarded.

To select the splitting parameter w, the main task is to choose the eligible values

for w before applying the BIC. Figure 5.2 shows the mean of MSEP over each value

of w ∈ W = {5, 6, . . . , 25} for M = 10 samples of size n = 100, using pn = 101

(panel (a)) and pn = 1001 (panel (b)). In addition, it reports the MSEP from the

FASSMR when w is selected using the BIC in W (see the solid horizontal line) or in

W ∗ (see the dashed horizontal line), where we have denoted

W ∗ = {10, 15, 20}. (5.46)
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Figure 5.2: Panel (a) and (b): Mean of MSEP for each value of wn ∈ W for
M = 10 samples of size n = 100 of (5.41) considering θ0 known. Solid horizontal line
is the mean of MSEP for the optimal value of wn ∈ W selected by the BIC. Dashed
line is the mean of MSEP obtained for the optimal value of wn ∈ W ∗ selected by the
BIC. Dotted line is the mean of the MSEP obtained through the PLS method for the
same M = 10 samples. Panel (c): MSEP when the tuning parameter λ (λ̂(λmin)) is
selected by minimizing the BIC over a grid starting in λmin (θ0 known).
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Finally, the MSEP obtained from the PLS procedure is also shown (see the dotted

horizontal line). The following conclusions can be derived from Figure 5.2 (panels

(a) and (b)):

� The FASSMR is very sensitive to the value w, especially when w is small.

This should be expected taking into account that the FASSMR is applied to

an artificial (or reduced) model which, for small values of w, could be very

different from the true model.

� The FASSMR improves PLS results in terms of MSEP for several values of w

between 5 and 25. Focusing now on the performance of the FASSMR when

w is selected in W by means of the BIC, we can conclude that the BIC is a

suitable method (the MSEP provided is reasonable (see the solid horizontal

line) and clearly improves the one obtained with the standard PLS procedure

(see the dotted horizontal line)).

� In the sake of reducing computational time, we could consider to select w in W ∗

(instead of in W ) by means of the BIC. The main reason for this (in addition

to reduce the computational time) is that there is no loss in terms of MSEP

using W ∗ (compare dashed and solid horizontal lines; results are even a bit

better in case pn = 1001 than using W as set of eligible values for w).

In conclusion, from now on, the set of eligible values for w will be W ∗, and the

selection will be made by means of the BIC procedure.

There is a minor question to be tuned and which is linked with the fact that, in

many practical situations, the condition pn = wnqn fails. We will use the solution

proposed in Aneiros and Vieu [5], based on consider not fixed qn = qn,k values

k = 1, . . . , wn, when pn/wn is not an integer number. Specifically:

qn,k =

{
[pn/wn] + 1 k ∈ {1, . . . , pn − wn[pn/wn]},

[pn/wn] k ∈ {pn − wn[pn/wn] + 1, . . . , wn},
(5.47)

where [z] denotes the integer part of z ∈ R.

Finally, in order to carry out the estimation of θ0, a suitable set of eligible dir-

ections, Θ111
n, should be considered. Accordingly, we follow again the procedure de-

scribed in Section 2.4.
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5.4.1.3 Results

Computational times (in seconds) required for estimating one sample using the

FASSMR and the PLS method are collected in Table 5.1. Some comments can

be made about the obtained times. On the one hand, PLS method is completely

inefficient for big values of pn. On the other hand, computational time saving is

evident by means of the FASSMR, which allows obtaining results in acceptable time

even for very big values of pn.

Table 5.1: Computational time in seconds needed for making the estimation of one
sample of model (4.31), using the PLS procedure and the FASSMR. Different values
of n and pn were considered. In the case of the FASSMR, the eligible values for wn
are those belonging to W ∗. The results were obtained with a computer with the
following features: Intel Core i7-7700HQ CPU, 8 GB RAM, 1 TB HDD, 256 GB
SSD.

n Method pn = 101 pn = 201 pn = 501 pn = 1001 pn = 10001

100
PLS 727.55 1324.2 2571.52 4959.70 43137.25

FASSMR 374.28 362.67 367.23 365.14 357.17

200
PLS 1089.18 2625.83 7211.37 14823.14 153540.27

FASSMR 1058.52 1034.00 1032.03 1008.02 702.67

300
PLS 3341.82 8091.13 20537.98 33868.11 224890.17

FASSMR 3184.35 3412.45 2361.60 3123.95 2448.00

In Table 5.2 means of MSEP (using M = 100 samples) in different scenarios are

computed for both methods. As can be derived from Table 5.2, using the FASSMR

there is no loss in terms of MSEP. Note that in Table 5.2 results are obtained using

100 samples; then, we do not consider big values of n and pn due to the huge com-

putational time needed by the PLS procedure even for estimating only one sample

(see again Table 5.1).
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Table 5.2: For M = 100 samples of model (4.31), mean of MSEP for the PLS
procedure and the FASSMR.

pn = 101 pn = 201 pn = 501

n Method Mean SD Mean SD Mean SD

100
PLS 1.2572 0.9546 1.3213 1.0078 1.3126 0.9688

FASSMR 1.1579 1.0335 1.2694 1.0675 1.2025 0.9507

200
PLS 0.7662 0.4630 0.7617 0.4209 0.7194 0.4606

FASSMR 0.6984 0.4274 0.8049 0.5000 0.7357 0.4860

5.4.1.4 Conclusions

The FASSMR allows to obtain the variable selection and estimation of model (5.1)

in a reasonable amount of time, even for very big values of pn. As can be derived

from the simulation study, the developed algorithm clearly exceeds the standard PLS

procedure in computational efficiency without loss in prediction power. Moreover, if

we apply the Diebold-Mariano test for comparing the forecast accuracy of the two

methods in each scenario of Table 5.2, we can obtain further conclusions: in some

scenarios, there are not significant differences between the PLS and the FASSMR

and in the scenarios where differences are significant, the FASSMR provides better

prediction power.

However, the price to pay for this big computational time improvement is that

the set of relevant variables could not be exactly obtained in many cases. That is

supported by the asymptotic analysis derived from Proposition 5.6. In some real data

applications, this lack of precision can be an inconvenient. In addition, situations

of grouped impact points can be common, in which case the FASSMR could not

provide the full set of influential variables.

5.4.2 Second scenario

In this section, Monte Carlo studies were carried out to compare the finite sample

behaviour of the FASSMR and the IASSMR in two different frameworks: a first
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design with spaced impact points and a second one with grouped impact points

(GIP).

In Section 5.4.2.1 we will introduce the first simulation model, which has spaced

impact points. We will briefly discuss some practical issues in Section 5.4.2.2. The

results for this first design are reported throughout Section 5.4.2.3, where the com-

putational time, the quality of the estimation and the precision of the impact point

selection have been quantified for both the FASSMR and the IASSMR. In Sec-

tion 5.4.2.4 we will present the second simulation model, which has grouped impact

points. The results of this second design will be addressed in Section 5.4.2.5. The

same features than in Section 5.4.2.3 were measured to compare both algorithms.

Finally, Section 5.4.2.6 provides a brief summary of conclusions and the scope of

application of each algorithm.

5.4.2.1 First design: spaced impact points

Observations i.i.d. D = {(ζi,Xi, Yi)}n+100
i=1 were generated from the model

Yi =

pn∑
j=1

β0jζi(tj) + r (〈θ0,Xi〉) + εi, (i = 1, . . . , n+ 100) (5.48)

where:

� Curves involved in the non-linear part, Xi = Xai,bi,ci were generated from ex-

pression (5.42), but now the random variables ai, bi and ci (which are inde-

pendent both between and within vectors (ai, bi, ci)
>) are uniformly distributed

on the interval [0, 5]. These curves were discretized on the same grid of 100

equispaced points in [0, 1].

� tj with j = 1, . . . , pn are equispaced points on [0, 1], with t1 = 0 and tpn = 1.

� Curves involved in the linear component were generated from the expression

ζi(tj) = citj + di (5.49)

where di is normally distributed with mean 0 and standard deviation equals to

1 and ci was defined in the first item. As a consequence, there will exist some
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dependence between X and ζ. In addition, we will consider only three non-null

coefficients: β0j1 = 4, β0j2 = 3 and β0j3 = −3.2, being tj1 = 0.02, tj2 = 0.50

and tj3 = 0.70 the impact points (left panel in Figure 5.3 shows 100 curves ζi

with influential points marked in dotted vertical lines).

� The true direction (θ0), the inner product (〈·, ·〉), the link function (r(·)) and

the random errors (εi) were generated as in Section 5.4.1.1.

M = 100 independent samples were generated from (5.48), which will be divided

in Dtrain (see (5.44)) and Dtest (see (5.45)). Values pn ∈ {101, 201, 501, 1001, 10001}
will be considered. In this case, instead of fixing the sample size to be equal for the

two methods, we are going to fix the sample size of the first step (the only step in

the FASSMR), n1 = 100, and we will vary the sample size of the second step, n2

(we will consider n2 ∈ {0, 100, 200}; case n2 = 0 corresponds with the FASSMR). To

perform the estimation using each method, we will follow the technical considerations

collected in Subsection 5.4.1.2. Note that, as in the FASSMR, in the IASSMR we

will use W ∗ (see (5.46)) as set of eligible values for wn. In addition, the set of eligible

directions, Θ222
n, was generated in the same way as Θ111

n (see Section 2.4).

Figure 5.3: Sample of 20 lines generated from (5.49), together with impact points
(dotted vertical lines) at instants tj1 = 0.02, tj2 = 0.50 and tj3 = 0.70.
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Note that in this simulation study we want to compare the practical behaviour

of the IASSMR and the FASSMR in computational efficiency and MSEP (2.40),

but also in precision of the impact point selection. That is, we want to quantify

the accuracy of the set Ŝn obtained using each procedure. However, the continuous

origin of the linear covariates makes difficult to difference the effect of points which

are very close in the discretization. For that, comparing Ŝn with Sn (for instance, by

means of classical measures such as false discovery rate, specificity and sensibility)

can be inappropriate, but it can make sense considering the following sets

In = [0.00, 0.05] ∪ [0.47, 0.53] ∪ [0.67, 0.73],

In = (0.05, 0.47) ∪ (0.53, 0.67) ∪ (0.73, 1],

and classifying as well-chosen all those selected points belonging to In and as wrongly-

chosen those belonging to In. That is, we are going to quantify Right= ]{In ∩ T̂n}
and Wrong= ]{In ∩ T̂n} for the IASSMR and the FASSMR, where T̂n was defined

in (5.38).

5.4.2.2 Practical considerations

In practice, as in the case of the FASSMR, various tuning parameters have to be

selected for performing the estimation associated to the IASSMR. Here, we focus on

the selection of the parameters h, λ and w because, since two stages are considered

in the IASSMR, some clarifications on the BIC procedure are needed. The goal

is to select such parameters in a way that the final estimator in the second stage

(equivalently, in the second model M2 (5.11)) achieves the minimum value for the

BIC. Specifically, since the covariates in M2 depend on the covariates selected in the

first model M1 (the model in stage 1), we first select, for each w, the covariates in M1

using the BIC procedure to choose the corresponding parameters h111
w and λ111

w. Then,

once M2=M2w is constructed, the BIC procedure is applied again to choose the

parameters h222
w and λ222

w corresponding to the estimators of (βββ222
0, θ

222
0) in M2w. Finally,

if we denote BIC222
w = BIC(h222

w, λ
222
w) (the BIC value corresponding to such estimators),

the selected parameters are w222
opt, h

222
w222
opt

and λ222
w222
opt

, where w222
opt = arg min BIC222

w.
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5.4.2.3 First design: results

Table 5.3: For M = 100 samples from the MFPLSIM (5.48), time in seconds needed
to make the estimation of one sample of size n = n1 + n2 (n1 = 100). The results
were obtained with a computer with the following features: Intel Core i7-7700HQ
CPU, 8 GB RAM, 1 TB HDD, 256 GB SSD.

n2 Method pn = 101 pn = 201 pn = 501 pn = 1001 pn = 10001

0 FASSMR 203.00 202.75 202.64 203.20 210.21

100 IASSMR 486.94 678.60 1243.92 2332.59 21278.42

200 IASSMR 840.93 1153.92 2435.96 6636.79 43554.89

Table 5.4: For M = 100 samples from the MFPLSIM (5.48), mean of MSEP for
the FASSMR and the IASSMR using n1 = 100 (n = n1 + n2).

pn = 101 pn = 201 pn = 501

n2 Method Mean SD Mean SD Mean SD

0 FASSMR 0.5877 0.3666 0.6122 0.4498 0.6164 0.4636

100 IASSMR 0.3888 0.1563 0.3965 0.1689 0.3800 0.1543

200 IASSMR 0.3174 0.1049 0.3161 0.1045 0.3166 0.1040

Tables 5.3-5.5 show the effect of adding a second step to the FASSMR in terms of

computational efficiency, MSEP and precision in the impact point selection, respec-

tively, as well as the influence of the sample size of this second step. As expected,

the second stage increases the total time required for estimation and this increase

is greater the larger the size of the discretization (because of the construction of

R222
n). However, from Tables 5.4 and 5.5 it can be derived that MSEP and precision

of impact point selection are clearly improved with a second stage (note that we

do not consider big values for pn because of the big computational time needed for

estimating one sample in the IASSMR case). Furthermore, if we analyse the effect
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of the increase of pn in Table 5.4, we can see that the IASSMR is less affected than

the FASSMR. In fact, in the IASSMR case there is no deterioration of the results.

Table 5.5: For M = 100 samples from the MFPLSIM (5.48), mean of the number of

variables rightly-chosen (]{In∩T̂n}) and wrongly-chosen (]{In∩T̂n}) by the FASSMR
and the IASSMR procedures using n1 = 100 (n = n1 + n2).

pn = 101 pn = 201 pn = 501

n2 Method Right Wrong Right Wrong Right Wrong

0 FASSMR 1.24 1.60 1.28 1.36 1.29 1.50

100 IASSMR 1.31 1.21 1.27 1.15 1.34 0.90

200 IASSMR 1.36 1.16 1.30 1.18 1.33 0.88

5.4.2.4 Second design: grouped impact points

As in Section 5.4.1, observations i.i.d. D = {(ζi,Xi, Yi)}n+100
i=1 were generated using

n ∈ {100, 200, 300} and pn ∈ {101, 201, 501, 1001, 10001}, but now, coming from the

following modification of model (5.41):

Yi =

pn∑
j=1

β0jζi(tj) + r (〈θ0,Xi〉) + εi, (i = 1, . . . , n+ 100) (5.50)

where, in this case:

� Ten non-null coefficients will be considered, which will be in correspondence

with the following impact points:

β0j1 = 1.0, tj1 = 0.15,

β0j2 = 1.2, tj2 = 0.16,

β0j3 = 1.0, tj3 = 0.17,

β0j4 = 1.2, tj4 = 0.18,

β0j5 = 1.0, tj5 = 0.19.



β0j6 = 1.0, tj6 = 0.70,

β0j7 = 1.2, tj7 = 0.71,

β0j8 = −1.2, tj8 = 0.72,

β0j9 = −1.2, tj9 = 0.73,

β0j10 = −1.2, tj10 = 0.74.

(5.51)
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� Curves involved in the non-linear part were generated from (5.42), but the

random variables ai, bi and ci (i = 1, . . . , n) are independent and uniformly

distributed on the interval [0, 5].

As a consequence of (5.51), we obtain a Grouped-Impact-Point MFPLSIM, GIP-

MFPLSIM (in fact, relevant variables are consecutive in the case pn = 101). M = 100

independent samples were generated from the GIP-MFPLSIM (5.50), which will be

divided into Dtrain (see (5.44)) and Dtest (see (5.45)). Subsequently, the FASSMR

and IASSMR procedures were applied following the same scheme and considerations

as in the first scenario, but now we are going to consider the same sample size for the

two procedures (which is closer to what happens in applications to real data). Then,

in the case of the IASSMR the sample is divided into two parts, one for the first stage

and one for the second stage. In this application we will consider n1 = n2 = n/2.

As before, we will compare both methods in computational time for estimating

one sample, MSEP (2.40) and precision of the impact point selection. Focusing in

this last point, we will consider the following sets

In = [0.14, 0.20] ∪ [0.69, 0.75],

In = [0, 0.14) ∪ (0.20, 0.69) ∪ (0.75, 1].

and we are going to quantify Right=]{In ∩ T̂n} and Wrong=]{In ∩ T̂n} for the

IASSMR and the FASSMR.

5.4.2.5 Second design: results

First of all, Table 5.6 shows computational times for estimating one sample using

both IASSMR and FASSMR. Looking at Table 5.6, we can see that the compu-

tational time needed by the IASSMR is affected by pn (as it is also derived from

Table 5.3), while the FASSMR is only affected by increasing n. It is noteworthy re-

mark that for moderate sample size (n = 200, 300) and small pn, computational time

needed by the IASSMR is similar or even smaller than that needed by the FASSMR.

This is due to the division of the sample in the IASSMR two-stage procedure.

Tables 5.7 and 5.8 allow us to analyse and compare the accuracy of the predictions

and the variable selection, respectively, performed by the FASSMR and the IASSMR.
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Note that we do not consider big values for pn because of the big computational time

needed for estimating one sample in the IASSMR case. Some general observations

can be derived from those tables:

i) The performance of both procedures improves with increasing sample size (n).

The effect of increasing number of linear covariates (pn) is more difficult to

analyse. Both procedures are adversely affected with increasing pn if we compare

the case pn = 101 with the cases pn = 201 and pn = 501. However, from pn = 201

to pn = 501 there is no deterioration on results. In fact, results for pn = 501 are

even better in some cases.

ii) For small sample size (n = 100), the FASSMR outperforms the results obtained

by the IASSMR in terms of MSEP for all considered values of pn. On the other

hand, the number of variables well selected is bigger in the IASSMR case, but

it is also bigger the number of wrongly selected variables.

iii) For moderate sample size (n = 200 and n = 300), the IASSMR provides better

results than the FASSMR for all considered values of pn.

Table 5.6: Computational time in seconds needed for making the estimation of
one sample from the GIP-MFPLSIM (5.50), using the IASSMR and the FASSMR,
for different values of n and pn. The eligible values for wn are those belonging to W ∗

(see (5.46)). The results were obtained with a computer with the following features:
Intel Core i7-7700HQ CPU, 8 GB RAM, 1 TB HDD, 256 GB SSD.

n Method pn = 101 pn = 201 pn = 501 pn = 1001 pn = 10001

100
FASSMR 405.53 479.6 436.22 260.44 251.28

IASSMR 653.26 1156.32 3016.60 4877.91 24860.64

200
FASSMR 983.36 822.14 805.41 580.97 558.92

IASSMR 931.11 1070.92 3047.36 5450.66 31641.58

300
FASSMR 2241.66 2080.84 1979.23 2062.11 2337.90

IASSMR 1684.22 1950.67 2290.78 9041.99 71789.74
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Table 5.7: For M = 100 samples from the GIP-MFPLSIM (5.50), mean of MSEP
obtained from the FASSMR and the IASSMR procedures.

pn = 101 pn = 201 pn = 501

n Method Mean SD Mean SD Mean SD

100
FASSMR 0.5827 0.3208 0.6908 0.3890 0.6803 0.3743

IASSMR 1.0988 2.0134 3.3929 5.6060 2.7154 4.9089

200
FASSMR 0.4076 0.1484 0.4579 0.1443 0.4510 0.1625

IASSMR 0.3954 0.2038 0.4097 0.2154 0.4255 0.2522

300
FASSMR 0.3573 0.1217 0.4127 0.1296 0.3857 0.1074

IASSMR 0.2916 0.1208 0.3142 0.1326 0.3018 0.1166

Table 5.8: For M = 100 samples from the GIP-MFPLSIM (5.50), mean of the

number of variables rightly-chosen (]{In ∩ T̂n}) and wrongly-chosen (]{In ∩ T̂n}) by
the FASSMR and the IASSMR procedures.

pn = 101 pn = 201 pn = 501

n Method Right Wrong Right Wrong Right Wrong

100
FASSMR 1.95 2.45 1.78 2.81 1.76 3.12

IASSMR 4.11 3.52 4.26 8.34 4.69 8.85

200
FASSMR 1.99 2.06 1.90 2.61 1.88 2.54

IASSMR 4.46 1.12 4.55 1.59 4.68 2.08

300
FASSMR 2.00 2.08 1.92 2.23 1.87 2.21

IASSMR 4.82 0.50 4.84 0.79 5.17 0.98

It should be noted that fact ii) is a consequence of dividing the sample of size

100 into two subsamples, of size 50, to perform the two-stage procedure associated

to the IASSMR. This sample size seems insufficient to get a good estimation of θ0.
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In the case of enough sample size (observation iii), the second stage in the

IASSMR makes it possible to recover some information that was lost during the

first stage. In this situation, results provided by the IASSMR are less affected by

the discretization size and by wn, surpassing those obtained with the FASSMR both

in MSEP and in number of variables well and wrongly selected.

5.4.2.6 Conclusions

The simulation study performed in the GIP-MFPLSIM illustrates the utility of re-

fining the FASSMR in order to obtain a more sophisticated algorithm. In particular,

as expected and as it was highlighted theoretically (see result (5.40)), the IASSMR

overcomes the drawbacks of the FASSMR in terms of impact points selection. This

improvement goes with high predictive performance and reasonable computational

costs. Furthermore, comparisons between the practical behaviour of the FASSMR

and IASSMR (which were performed in three ways: MSEP, accuracy of variable se-

lection and computational time) give us a guidelines about which algorithm should

be used in each practical situation. Basically, the main recommendations can be

summarized as follows:

� For small n and big pn we should use the FASSMR.

� For big/moderate n and small/moderate pn, it is advisable to use the IASSMR.

� For big both n and pn, the FASSMR will provide us a first approximation.

Results of the IASSMR will probably give us more precision in the set of

selected variables but, of course, with higher computational costs. However,

we should note that computational time required by the IASSMR will be much

lower than that needed by the standard PLS method.

5.5 Application to real data

The aim of this section is to show the usefulness of the presented methodology

through its application to solve a real problem: the prediction of the ash content in

a sugar sample, having its absorbance spectra at two different excitation wavelengths.
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Although the ash content can be determined by chemical analyses, the use of func-

tional regression to predict this variable will provide a high economical advantage.

Then, this section is devoted to analyse Sugar data (see Section 1.1) by using the

MFPLSIM and the algorithms described just before.

5.5.1 The data

Sugar data was presented in Section 1.1 and briefly described in Section 5.1. As

mentioned, we have 268 samples from (Y, ζ,X ), where Y is a scalar random variable

(ash content) and ζ and X are functional random variables (absorbance spectra

from 275 to 560 nm at excitation wavelengths 240 nm and 290 nm, respectively;

both variables were observed on pn = 571 equally spaced wavelengths in the interval

[275, 560]). Although the number of available samples was 268, two samples were

discarded in this application as extreme outliers. Therefore, our dataset consists in

266 samples D = {(ζi,Xi, Yi)}266
i=1, and our goal is to predict Y by means of ζ and X .

More details, can be seen in Sections 1.1 and 5.1, and for graphics of the curves, see

Figure 1.3.

In order to evaluate models and estimation methods that will be proposed,

the dataset, D, will be split into two subsamples: a training sample Dtrain =

{(ζi,Xi, Yi)}216
i=1 and a testing sample Dtest = {(ζi,Xi, Yi)}266

i=217. Therefore, the es-

timation task is made by means of Dtrain, while Dtest is used to measure the quality

of predictions. For that, we will use again the MSEP (2.40) with n = 216 and

ntest = 50.

5.5.2 Results

To get a first idea of the effect of each functional variable in the response, we have

carried out a preliminary study. Firstly, we have modelled data through two uni-

functional models: a FLM (1.1) and a FSIM (2.1), and in both cases, we have

constructed models with each functional variable. Secondly, we have modelled data

through a bi-functional model, which combines in an additive way a functional linear

component with a functional single-index one. In this model, called functional partial

linear single-index model (FPLSIM), both covariates enter with continuous effect in
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the response. We have built two FPLSIM, each one with a different variable in each

component of the model.

The FLM was estimated using functional principal component analysis (PCA) (by

means of the fregre.pc function in the fda.usc R package, see Febrero-Bande and

Oviedo de la Fuente [42]). The FSIM was estimated using kernel-based estimators

(see (2.10)) together with Epanecknikov kernel, selecting h by means of the BIC

criterion. θ was estimated by means of the procedure described in Section 2.4,

using l = 3 and selecting mn, see expression (2.36), by means of the cross-validation

procedure (as in Chapter 2). The FPLSIM was estimated following the procedure

described in Lian [74], using the previous described tools to perform the estimation

of the functional linear and functional single-index regressions involved.

Models and results of MSEP can be seen in Tables 5.9 and 5.10. From the

results obtained we can derive that a linear effect will be convenient for ζ, since the

lowest MSEP in Table 5.9 and also in Table 5.10 is obtained using such effect for

ζ. Comparing Tables 5.9 and 5.10 we can see that the addition of the variable X
semiparametrically provides a slight benefit on the prediction power.

Table 5.9: Uni-functional regression models and values of the criterion error.

Model MSEP

FLM
Y = γ0 +

∫ 560

275
X (t)γ(t)dt+ ε 4.5878

Y = γ0 +
∫ 560

275
ζ(t)γ(t)dt+ ε 2.2072

FSIM
Y = r (〈θ,X〉) + ε 3.6981

Y = r (〈θ, ζ〉) + ε 2.6802

Table 5.10: Bi-functional regression models (both variables enter with continuous
effect) and values of the criterion error.

Model MSEP

FPLSIM
Y =

∫ 560

275
X (t)γ(t)dt+ r (〈θ, ζ〉) + ε 2.8749

Y =
∫ 560

275
ζ(t)γ(t)dt+ r (〈θ,X〉) + ε 2.1854
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Therefore, it makes sense to consider the following model

Yi =
571∑
j=1

β0jζi(tj) + r (〈θ0,Xi〉) + εi, (5.52)

and to analyse the results obtained if we combine this model with the variable se-

lection tools presented throughout this chapter.

To estimate model (5.52), we apply the standard PLS method, the FASSMR

and the IASSMR. For this task, in the three cases, technical considerations collected

in Section 5.4.1.2 were used. Value l = 3 was considered in (2.36), while mn was

selected by means of the BIC criterion.

Table 5.11: Results obtained applying each variable selection method to model
(5.52).

Method MSEP ŝn m̂n ŵn pt

PLS 6.0375 53 4 - 9.8689

FASSMR 3.0329 8 2 15 1

IASSMR 2.0064 9 2 15 4.3399

Several comments can be made about Table 5.11, where the numerical results

are presented. The column pt contains the proportion of time needed by the three

methods to return the final results compared to the fastest algorithm of the three (the

FASSMR). On the one hand, the PLS method offers the most complex model: a total

of 53 linear covariates and a more complicated expression for the estimated direction

θ̂0 (4 regularly spaced interior knots are needed for its B-spline representation).

Furthermore, this complexity is accompanied by the worst result in MSEP and the

worst calculation time. On the other hand, the FASSMR clearly improves the PLS

results in terms of complexity of the model (we get a simpler model) and MSEP;

but the best result in MSEP is obtained by the IASSMR. This fact is related to

the set Ŝn obtained with this algorithm: the second stage in the IASSMR specifies

and completes the set of relevant variables provided by the FASSMR. Figure 5.4

illustrates this fact and shows us that some GIP structure may be present around
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385 nm. In addition, it illustrates the fact that none of the relevant variables selected

by the FASSMR is also selected by the IASSMR (note that this is not incoherent

since the goal of the IASSMR is to refine the selection made by the FASSMR). We

should also note that the IASSMR is faster than the PLS procedure.

Figure 5.4: Absorbance curves at excitation wavelengths 240 nm (ζ) with impact
points selected using the FASSMR (dashed vertical lines) and the IASSMR (solid
vertical lines).
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Finally, if we compare results in Tables 5.10 and 5.11 we will see that the

MFPLSIM (combined with the IASSMR) offers better prediction power than the

FPLSIM. This fact supports the idea that the MFPLSIM allows to include point-

wise effects of the functional variable which can not be reached using the continuous

curve.

Finally, as can be seen in Figure 5.5, the estimated direction using both intro-

duced algorithms has a quite similar shape: in both cases, it presents a bump around

325 nm and a peak around 475 nm, which could be important indicators of the effect

of X on the ash content of sugar.
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Figure 5.5: θ̂0 using IASSMR (solid line) and FASSMR (dashed line).
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5.5.3 Conclusions

The Sugar data application illustrates both the utility of the MFPLSIM in modelling

real problems and the good performance of the presented algorithms in the estimation

of this model. On the one hand, the MFPLSIM has two great advantages: it allows

the inclusion of more than one functional covariate in the model and, in addition,

these covariates enter involving interpretable parameters (βββ0 and θ0). On the other

hand, its semiparametric feature, combined with a good estimation tool, provides

low prediction errors. Furthermore, the algorithms developed for variable selection

and estimation of the MFPLSIM show a good behaviour compared to the standard

PLS method both in MSEP and computational time. The FASSMR provides a

preliminary quick result while the IASSMR gives refined estimates. In particular, the

combination of MFPLSIM and IASSMR seems a potent tool, since in this application

reaches the best result in MSEP.
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5.6 Appendix Chapter 5: Proofs

5.6.1 Proof of Proposition 5.6

Note that assertion 1 of Proposition 5.6 can be proved ensuring that

P
(
∃j ∈ Sn such that β̂111

0kj
= 0
)

=

P
(
∃j = 1, . . . , pn, β0j 6= 0 such that β̂111

0kj
= 0
)
−→ 0 when n→∞. (5.53)

For that, we should note that we are under the assumptions of Lemma 2 in Aneiros

and Vieu [4]. Using the first assertion of that lemma we obtain:

P
(
∃j = 1, . . . , pn, β0j 6= 0 such that β̂111

0kj
= 0
)
≤

P
(
∃k = 1, . . . , wn, β0k 6= 0 such that β̂111

0k = 0
)
. (5.54)

Now using Assumption (5.23), the right hand term of expression (5.54) tends to 0

as n tends to ∞. Then, (5.53) is proved and, as a consequence, the assertion 1 of

Proposition 5.6.

Following an analogous reasoning, assertion 2 of Proposition 5.6 can be proved

ensuring that

P
(
∃k ∈ Ŝ111

n such that ∀j ∈ {1, . . . , qn}, β0j+(k−1)qn = 0
)

=

P
(
∃k = 1, . . . , wn, β̂

111
0k 6= 0 such that ∀j ∈ {1, . . . , qn}, β0j+(k−1)qn = 0

)
−→ 0

when n→∞.

(5.55)

Using the Assumption (5.23), we obtain:

P
(
∃k = 1, . . . , wn, β̂

111
0k 6= 0 such that ∀j ∈ {1, . . . , qn}, β0j+(k−1)qn = 0

)
≤

P
(
∃k = 1, . . . , wn, β

111
0k 6= 0 such that ∀j ∈ {1, . . . , qn}, β0j+(k−1)qn = 0

)
+ o(1).

(5.56)

Now applying the second assertion in Lemma 2 in Aneiros and Vieu [4], the right
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hand term in (5.56) tends to 0 as n tends to∞. Therefore, (5.55) is proved and then

assertion 2 of Proposition 5.6. �

5.6.2 Proof of Theorem 5.8

This theorem provides three results. The proof of each of them is presented below.

5.6.2.1 Proof of (5.32)

If we define

R111∗
n =

{
j = 1, . . . , pn, such that ζ(tj) ∈ R111

n

}
,

R222∗
n =

{
j = 1, . . . , pn, such that ζ(tj) ∈ R222

n

}
,

one can write:∣∣∣∣∣∣β̂ββ0 − βββ0

∣∣∣∣∣∣2 =
∑
j∈R222∗

n

(
β̂222

0j − β222
0j

)2

+
∑

j 6∈R222∗
n ,j∈Sn

(β̂0j − β0j)
2. (5.57)

On the one hand, considering Pn = R222∗
n in (5.27) and taking into account that

]R222∗
n = O(sn), using the reasoning to achieve (A.8) in Aneiros and Vieu [4] we

obtain ∑
j∈R222∗

n

(
β̂222

0j − β222
0j

)2

= Op

(
n−1s2γ

n

)
. (5.58)

On the other hand, considering Pn = R111∗
n in (5.27) and using both Assumption

(5.26) and the first assertion in Proposition 5.6, we obtain

∑
j 6∈R222∗

n ,j∈Sn

(
β̂0j − β0j

)2

= Op

(
n−1s2γ

n

)
(5.59)

(for specific details, see proof of (A.12) in Aneiros and Vieu [4]). Therefore, result

(5.32) is obtained by combining (5.57) with (5.58) and (5.59). �

191



Chapter 5. Contributions on the MFPLSIM

5.6.2.2 Proof of (5.33)

It is verified that∣∣∣∣∣∣θ̂0 − θ0

∣∣∣∣∣∣ =
∣∣∣∣∣∣θ̂222

0 − θ0

∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣θ̂222
0 − θ222

0

∣∣∣∣∣∣+
∣∣∣∣θ222

0 − θ0

∣∣∣∣ . (5.60)

On the one hand, considering Pn = R222∗
n in (5.28) and using that ]R222∗

n = O(sn)

(see (A.9) and (A.10) in Aneiros and Vieu [4]), it is obtained that∣∣∣∣∣∣θ̂222
0 − θ222

0

∣∣∣∣∣∣ = Op

(
n−1d(h)sγ−3/2

n

)
. (5.61)

On the other hand, note that θ222
0 depends on the variable selection of the first

stage. Then, we can ensure for all η > 0 that

P
(∣∣∣∣θ222

0 − θ0

∣∣∣∣ ≥ ηn−1d(h)sγ−3/2
n

)
≤ P

(∣∣∣∣θ222
0 − θ0

∣∣∣∣ ≥ 0
)

= P
(
∃j ∈ Sn and j 6∈ R222∗

n

)
≤ P

(
∃j = 1, . . . , pn, β0j 6= 0 and β̂111

0kj
= 0
)
.

Therefore, using the first assertion in Proposition 5.6, we obtain for all η > 0

P
(∣∣∣∣θ222

0 − θ0

∣∣∣∣ ≥ ηn−1d(h)sγ−3/2
n

)
→ 0 as n→∞. (5.62)

Then, the desired result comes from the combination of (5.61) and (5.62) in (5.60).

�

5.6.2.3 Proof of (5.34)

As in Aneiros and Vieu [4], we can make the following decomposition:

P
(
Ŝn 6= Sn

)
≤ P

(
∃j ∈ R222∗

n , β
222
0j 6= 0 and β̂222

0j = 0
)

+ P
(
∃j ∈ Ŝ222

n, β
222
0j = 0

)
+ P

(
∃j = 1, . . . , pn, β0j 6= 0 and β̂111

0kj
= 0
)
, (5.63)

where we have denoted Ŝ222
n = {j ∈ R222∗

n , β̂
222
0j 6= 0}.

On the one hand, considering Pn = R222∗
n in (5.26), the first two terms in the right
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hand side of (5.63) tend to zero as n→∞.

On the other hand, applying the first assertion in Proposition 5.6, the third term

in the right hand side of (5.63) tends to zero as n→∞.

As a consequence, P
(
Ŝn 6= Sn

)
→ 0 as n→∞, and we obtain (5.34). �

5.6.3 Proof of Theorem 5.9

It is easy to obtain that:

|r̂θ(χ)− rθ0(χ)| ≤ |ĝ0θ(χ)− g0θ0(χ)|+
(
]
(
Sn ∪ Ŝn

))1/2

×(
sup

u∈C,j∈Sn∪Ŝn,θ∈Θn

|ĝjθ(u)− gjθ0(u)|
∣∣∣∣∣∣β̂ββ0 − βββ0

∣∣∣∣∣∣+ sup
u∈C,j∈Sn∪Ŝn

|gjθ0(u)|
∣∣∣∣∣∣β̂ββ0 − βββ0

∣∣∣∣∣∣)
(5.64)

On the one hand, using Condition (5.16) and (5.34) we obtain

]
(
Sn ∪ Ŝn

)
= Op(sn). (5.65)

On the other hand, from (5.31) and (5.34) it is obtained

sup
u∈C,j∈Sn∪Ŝn

|gjθ0(u)| = Op(1). (5.66)

As a consequence, using (5.64)-(5.66) and result (5.32), together with conditions

(5.29), (5.30) and assumptions bn → 0 and h → 0 as n → ∞, the desired result

(5.35) is obtained. �

5.6.4 Proof of Corollary 5.10

It is a direct consequence of (5.34). �
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Chapter 6

Conclusions and future work

In this dissertation several regression models with a functional single-index compo-

nent have been studied. This analysis has shown the great potential of semipara-

metric modelling when it is combined with appropriated estimation tools. The good

behaviour of the proposed models and methodologies for estimation (in the FSIM

and the SFPLSIM) or variable selection and estimation (in the SSFPLSIM and the

MFPLSIM) was ensured both theoretically (formulating and proving asymptotic re-

sults) and in practical applications (by means of finite-sample Monte Carlo studies

and real data applications). Precisely, in applications to real data, the superiority

of the proposed models and procedures over other approaches was demonstrated:

better predictive power (thanks to their flexibility and accuracy of the estimation

tools) and estimation involving interpretable parameters. These facts allow us to

prognosticate that this methodology can be very useful in applied areas.

However, from the applied point of view, the use of the proposed methodology re-

quires the computational implementation of the procedures in a statistical software.

This process could be a hard task (see, for instance, practical recommendations in

Section 2.4). Precisely, in order to facilitate the practical use of the proposed meth-

ods, a package will be built in the statistical software R Core Team [93] containing

methodology proposed on estimation and/or variable selection in FSIM, SFPLSIM,

SSFPLSIM and MFPLSIM. This package will be available in a few months and will

contain functions that will directly allow the adjustment of the studied models using

the proposed methodology.
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Finally, it is natural to think about continuing the work developed in this thesis

from a methodological point of view. Our aspirations go in two directions:

� On the one hand, going much deeper into the SFPLSIM and the SSFPLSIM, in-

cluding measurement error models, varying regression coefficients or responses

missing at random (for related papers with scalar variables, see Zhao and

Huang [117], Feng and Xue [44] and Lai and Wang [72], respectively; for re-

lated models with functional variables, see Zhu et al. [118], Luo et al. [80] and

Ling et al. [78], respectively); and also considering selection of impact points

in these three new versions.

� On the other hand, developing new methodology for semiparametric flexible

models such as the multiple-index model (Ma [81] or Bouraine et al. [18]):

Y = r (〈θ0,1,X1〉+ · · ·+ 〈θ0,p,Xp〉) + ε, (6.1)

or the functional projection pursuit one (Chen et al. [27]; Ferraty et al. [50]):

Y = r1 (〈θ0,1,X〉) + · · ·+ rp (〈θ0,p,X〉) + ε. (6.2)

For example, Chapters 2 and 3 have highlighted the good behaviour of the

proposed automatic and location-adaptive procedure, based on kNN ideas, in

models that contain a functional single-index component. Precisely, location-

adaptive estimates (such as kNN) and fully automatic procedures (such as

cross-validation), as far as we know, have not been developed yet for general

models (6.1) and (6.2). Our guess is that the uniform ideas developed in

Chapters 2 and 3 could pave the way for that challenging purpose.

Asymptotic results will be obtained for the aforementioned procedures related to

new versions of the SFPLSIM and the SSFPLSIM or the new studied models. Simu-

lation studies and applications to real data will illustrate both the finite sample size

behaviour and the usefulness of our proposals. We hope, in the medium term, to

have developed some of the investigations that we have just mentioned.
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Appendix A

Resumo en galego

Na actualidade, os avances tecnolóxicos na recollida e almacenamento de datos fan

cada vez máis frecuente obter observacións de variables medidas nun continuo. Como

consecuencia obtéñense medicións en forma de curvas, imaxes ou incluso estruturas

máis complexas, en lugar de medidas escalares ou vectores como se obtiñan tradi-

cionalmente. Daquela, en moitas ciencias aplicadas (como a medicina, quimiometŕıa,

biometŕıa, econometŕıa...) o estudo de fenómenos reais produce observacións de vari-

ables funcionais, é dicir, datos funcionais.

Dende o punto de vista estat́ıstico, unha variable X considérase funcional se

toma valores nun espazo de dimensión infinita (o espazo funcional). Daquela, un

conxunto de datos funcional está composto por observacións de n variables fun-

cionais (X1, . . . ,Xn) identicamente distribúıdas a X . Neste caso, “os átomos” do

conxunto de datos son funcións aleatorias e os conxuntos de datos conteñen mostras

desas funcións aleatorias. As variables funcionais teñen unha importante carac-

teŕıstica distintiva: teñen dimensión infinita, en contraste cos tipos usuais de datos

atopados na Estat́ıstica. Debido a isto, os métodos estat́ısticos usados no contexto

non-funcional (finito-dimensional) fallan cando traballamos con variables funcionais.

De feito, o uso directo das técnicas tradicionais obrigaŕıanos a traballar coas obser-

vacións discretizadas das variables funcionais, o cal teŕıa, polo menos, tres impor-

tantes desvantaxes: a presenza de correlacións fortes entre as variables resultantes,

o desaproveitamento da orixe funcional da variable ou o problema da dimensión (o

ratio entre o tamaño de mostra e o número de variables). Polo tanto, foi necesario
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desenvolver nova metodolox́ıa espećıfica para tratar os datos funcionais.

O termo Análise de Datos Funcionais (en inglés Functional Data Analysis, usual-

mente referido a través das súas siglas, FDA) foi acuñado por Ramsay [94] e Ramsay

and Dalzell [95] para referirse a todas aquelas ferramentas estat́ısticas deseñadas

para tratar con datos funcionais. Non obstante, ao comezo a produción cient́ıfica

na área foi esporádica. A popularización da FDA veu a finais dos anos noventa,

a medida que os datos funcionais empezaron a aparecer de maneira abundante nas

aplicacións e a medida que xorden varias monograf́ıas revisando unha selección de

tópicos relacionados coa FDA (por exemplo, Bosq [17], Ramsay and Silverman [96],

Ramsay and Silverman [97] ou Ferraty and Vieu [47]). Nas dúas últimas décadas, a

FDA converteuse nunha das disciplinas principais da Estat́ıstica e existe unha ampla

literatura cubrindo diferentes áreas (técnicas de redución da dimensión, correlación e

regresión, clasificación supervisada e non supervisada...), pero existen áında moitos

retos metodolóxicos para analizar os datos funcionais debido a súa dimensión infinita

(véxase, por exemplo, Aneiros et al. [9] para ter unha idea xeral dos tópicos nos que

se traballa actualmente na disciplina).

Precisamente a dimensión foi unha das primeiras preocupacións da literatura

en FDA. Os investigadores déronse conta de que transformar a mostra de datos

funcionais en elementos dun espazo de dimensión finita permit́ıa un tratamento es-

tat́ıstico máis simple e unha interpretación máis doada na práctica. Estes feitos

leváronos ao desenvolvemento de técnicas de redución da dimensión como a análise

de compoñentes principais funcionais (véxase Dauxois et al. [30], Silverman [103],

Boente and Fraiman [16] ou Li and Hsing [73]) mı́nimos cadrados parciais (véxase

Preda and Saporta [91], Krämer et al. [70], Delaigle and Hall [32] ou Aguilera et al.

[2] no contexto da regresión, Preda et al. [92] no marco da clasificación supervisada

e Reiss and Ogden [99] ou Febrero-Bande et al. [43] para unha comparación entre

compoñentes principais funcionais e mı́nimos cadrados parciais) ou a selección de

variables no contexto da regresión (para a extensión de ideas procedentes do marco

multivariante, tales como Tibshirani [104] ou Fan and Lv [40], véxase Aneiros and

Vieu [4] ou Aneiros and Vieu [5]).

Outro dos tópicos fundamentais na FDA é a regresión. A regresión é unha fe-

rramenta usualmente empregada con dous obxectivos principais: por unha banda,
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modelar a dependencia entre unha variable de interese (a variable resposta) e outras

variables (as variables explicativas ou covariables) que usualmente son máis fáciles

de obter ou medir; por outra banda, usar o modelo proposto para predicir o valor da

resposta usando novos valores das variables explicativas. Os problemas de regresión

foron amplamente estudados para variables reais ou multivariantes e a medida que

os datos funcionais se fixeron frecuentes, os investigadores interesáronse en rela-

cionar as variables funcionais con outras variables de interese (funcionais ou non).

Como consecuencia, existe unha extensa literatura en regresión funcional (véxase

Greven and Scheipl [57] para unha presentación xeral). Centrándonos no caso de

resposta escalar e covariables funcionais, esta literatura céntrase ou ben en modelos

paramétricos (véxase o Caṕıtulo 11 de Hsing and Eubank [63]) ou ben en mode-

los non-paramétricos (popularizados por Ferraty and Vieu [47]; véxase Geenens [53]

ou Ling and Vieu [76] para revisións recentes). Non obstante, a regresión semi-

paramétrica é áında un campo moi pouco desenvolvido na FDA (véxase Goia and

Vieu [54] para unha revisión recente). O contexto semi-paramétrico constitúe un

excelente punto medio entre a metodolox́ıa paramétrica e a non-paramétrica, supe-

rando a estas dúas en moitos sentidos, xa que permite flexibilidade (a diferencia dos

modelos paramétricos) e tamén interpretabilidade e redución da dimensión no con-

texto funcional (a diferenza do modelado non-paramétrico). Estas propiedades da

regresión semi-paramétrica resultan fundamentais no contexto funcional, como sina-

lan varios estudos recentes (véxase Cuevas [29], Goia and Vieu [55], Vieu [108] ou

Aneiros et al. [8]), e convértena nunha ferramenta transversal ás técnicas de redución

da dimensión.

Dado que o campo da regresión semi-paramétrica funcional con resposta escalar

está moi pouco desenvolvido e os avances nesta área teñen un enorme interese na

actualidade, nesta tese estudamos varios modelos de regresión semi-paramétricos

que permiten inclúır unha ou varias variables funcionais. Os avances que aportamos

centráronse na tarefa de estimación destes modelos, establecendo propiedades teóricas

dos estimadores derivados e analizando o seu comportamento na práctica con mostras

finitas (tanto por medio de datos simulados como por medio de datos reais). A tese

está dividida en seis caṕıtulos: o Caṕıtulo 1 contén unha introdución á regresión

funcional; os Caṕıtulos 2, 3, 4 e 5, recollen as novas contribucións metodolóxicas
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aportadas, estando cada un deles adicado a un modelo de regresión funcional semi-

paramétrico; finalmente, o Caṕıtulo 6 contén unhas breves conclusións, aśı como o

traballo que se prevé realizar no futuro próximo. A continuación detállase o contido

de cada un destes caṕıtulos.

Caṕıtulo 1: Cara a regresión semi-paramétrica funcional

Neste caṕıtulo proporciónase unha breve introdución do contexto estat́ıstico no que se

sitúa esta tese. Nel presentamos os modelos de regresión semi-paramétricos que imos

estudar. Xunto con eles, imos describir tamén outras formas de modelado propostas

na literatura, as cales constitúen un piar para os modelos estudados e servirannos

para comparalos con eles nas aplicacións a datos reais. A presentación de modelos

comeza cos máis simples para finalmente lidar coas estruturas máis complexas coas

que traballamos nesta tese. Deste xeito, na Sección 1.2 introducimos a regresión con

resposta escalar e unicamente unha variable explicativa funcional. Na Sección 1.3

presentaremos modelos que combinan de maneira aditiva covariables escalares con

efecto linear cunha covariable funcional con efecto non-linear. Finalmente, na Sección

1.4 faremos unha introdución á regresión sparse (termo inglés que indica que do

conxunto de todas as variables explicativas, unicamente algunhas, moi poucas, teñen

influencia na resposta, polo que moitos dos coeficientes asociados van valer cero),

centrándonos nos modelos que imos estudar e naqueles cos que os imos comparar.

Caṕıtulo 2: Contribucións no modelo de ı́ndice único funcional

Neste caṕıtulo desenvólvese un amplo estudo dun modelo de regresión semi-paramé-

trico: o modelo de ı́ndice único funcional (coñecido como FSIM, iniciais do nome

do modelo en inglés functional single-index model). As investigacións desenvolvidas

neste caṕıtulo céntranse na estimación deste modelo e están publicadas no artigo

Novo, Aneiros, and Vieu [87] da revista Journal of Nonparametric Statistics.

Na Sección 2.2 estúdase un novo procedemento automático, con ventá dependente

da variable explicativa funcional, para estimar a regresión no modelo FSIM. Este

procedemento de estimación está baseado no método de k-veciños-máis-próximos

(coñecido como kNN, iniciais de k-Nearest-Neighbours). Na Sección 2.3 reaĺızase

un estudo asintótico da estimación da regresión por medio do estat́ıstico kNN que
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inclúe resultados de consistencia uniforme sobre todos os parámetros involucrados.

Aı́nda que o noso obxectivo era estudar o procedemento kNN, para establecer estes

resultados obtivemos, e usamos como ferramentas preliminares, novos resultados

análogos para o estimador núcleo de tipo Nadaraya-Watson (o máis usado na litera-

tura e na práctica). Os resultados obtidos xeneralizan os proporcionados Kara-Zaitri

et al. [66] e Kara-Zaitri et al. [67] no caso do modelo funcional non-paramétrico.

Unha das principais caracteŕısticas das taxas de converxencia que nós acadamos

é que son similares ás obtidas nos problemas unidimensionais, dando evidencias da

propiedade de redución da dimensión que proporciona a metodolox́ıa estudada. Ade-

mais, unha consecuencia importante destes resultados asintóticos é que dan validez

teórica aos selectores de todos os parámetros involucrados na estimación obtidos de

xeito automático a partir da mostra. Isto fai a ambos procedementos, núcleo e kNN,

directamente utilizables na práctica.

A Sección 2.4 contén algúns consellos para abordar certos problemas prácticos

relacionados coa metodolox́ıa presentada. Tales suxestións apóianse na Sección

2.5 por medio dun estudo de simulación que, ademais, compara o comportamento

práctico dos procedementos núcleo e kNN. Neste estudo de simulación pode verse

que o método kNN supera amplamente o método núcleo en eficiencia preditiva baixo

heteroxeneidade. Na Sección 2.6 ilustramos a metodolox́ıa presentada por medio

dun conxunto de datos reais de referencia, os datos do Tecator. Neste caso tamén

o método kNN ofrece mellores resultados ca o método núcleo. Ademais, mostramos

que o carácter semi-paramétrico do FSIM non só proporciona un bo poder preditivo,

senón que tamén permite obter resultados facilmente interpretables e representables.

Finalmente, na Sección 2.7 recóllense as probas dos resultados teóricos presenta-

dos na Sección 2.3.

Caṕıtulo 3: Contribucións no modelo semi-funcional parcialmente linear

de ı́ndice único

Neste caṕıtulo estudamos a estimación do modelo de ı́ndice único parcialmente linear

semi-funcional (coñecido como SFPLSIM, iniciais do nome do modelo en inglés semi-

functional partial linear single-index model). Unha das caracteŕısticas fundamentais

deste modelo é que permite inclúır como preditores un vector multivariante e unha
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variable funcional. Ademais, o vector multivariante entra de xeito parcialmente

linear, mentres que o preditor funcional entra por medio dunha estrutura de ı́ndice

único, o que convirte a este modelo nun modelo semi-paramétrico, polo que herdará

todas as boas propiedades mencionadas para este tipo de modelado. Os resultados

obtidos neste caṕıtulo están publicados no artigo Novo, Aneiros, and Vieu [89] da

revista Statistics and Probability Letters.

Na Sección 3.2 estudamos o método kNN para realizar a estimación da compoñente

funcional de ı́ndice único do SFPLSIM. Na Sección 3.3 estendemos os resultados

teóricos obtidos no Caṕıtulo 2 para este novo modelo, tanto para a estimación por

medio do procedemento kNN como por medio do procedemento tipo núcleo.

Os resultados asintóticos obtidos acompañáronse de simulacións (Sección 3.4),

as cales poñen de manifesto as vantaxes do procedemento kNN fronte a estimación

tipo núcleo. Finalmente, na Sección 3.5 analizamos os datos do Tecator de novo, e

cun estudo comparativo mostramos tamén que o modelado semi-paramétrico supera

outras formas de modelado existentes.

A Sección 3.6 recolle as probas dos resultados teóricos presentados na Sección

3.3.

Caṕıtulo 4: Contribucións no modelo de ı́ndice único semi-funcional par-

cialmente linear sparse

Neste caṕıtulo realizamos un amplo estudo relativo á estimación do modelo de ı́ndice

único parcialmente linear semi-funcional sparse (coñecido como SSFPLSIM, siglas

do nome en inglés sparse semi-functional partial linear single-index model). Neste

modelo semi-paramétrico os preditores son unha mestura de variable funcional, que

entra no modelo por medio dunha estrutura de ı́ndice único, e un vector de alta

dimensión, que entra no modelo de xeito linear. Desta maneira, o modelo SSFPLSIM

proposto é unha xeneralización do modelo SFPLSIM estudado no Caṕıtulo 3 ao

caso de ter un número diverxente de covariables na compoñente linear (que tende a

infinito a medida que o tamaño de mostra tende a infinito) e que soamente algunhas

delas, moi poucas, inflúan na resposta (é un modelo de regresión sparse). O noso

obxectivo é ser capaces de proporcionar unha redución da dimensión, por medio

do modelado semi-paramétrico e a selección de variables na compoñente linear e,
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ao mesmo tempo, conseguir unha metodolox́ıa flexible con bo poder preditivo. As

investigacións desenvolvidas neste caṕıtulo foron publicadas no artigo Novo, Aneiros,

and Vieu [88] da revista TEST.

Na Sección 4.2 proponse un procedemento de selección de variables e simultánea

estimación da compoñente linear do modelo baseado en mı́nimos cadrados penaliza-

dos. Tamén se propuxo un estimador para a compoñente funcional de ı́ndice único

(baseado na estimación tipo núcleo). Na Sección 4.3 obtivemos unha ampla varie-

dade de resultados asintóticos relativos ao procedemento presentado: dende taxas

de converxencia dos estimadores ata o comportamento asintótico do procedemento

de selección de variables. Debemos salientar que as taxas de converxencia obtidas

para o estimador da compoñente linear son as mesmas que obtiveron nun escena-

rio menos complexo ca o noso Aneiros et al. [7] (e as mesmas que as acadadas en

Fan and Lv [40] no contexto do modelo linear). Ademais, demostramos que o pro-

cedemento de selección de variables proposto satisfai a propiedade do oráculo (véxase

Fan and Li [38]) e que a compoñente funcional de ı́ndice único do modelo se estima

coa mesma taxa que no caso de que a variable fose unidimensional (confirmándose

aśı a propiedade de redución da dimensión).

Na Sección 4.4 analizamos o comportamento práctico da metodolox́ıa proposta

mediante mostras simuladas, mentres que na Sección 4.5 mostramos a súa utilida-

de no modelado de datos reais mediante unha aplicación ao conxunto de datos do

Tecator. Por medio desta aplicación comprobamos as grandes vantaxes que aporta

a metodolox́ıa presentada neste caṕıtulo fronte a outras alternativas existentes na

literatura.

Finalmente, a Sección 4.6 contén as probas dos resultados teóricos presentados

na Sección 4.3.

Caṕıtulo 5: Contribucións no modelo de ı́ndice único bi-funcional parcial-

mente linear sparse

Neste caṕıtulo estúdase de xeito detallado a estimación do modelo de ı́ndice único

parcialmente linear multi-funcional (MFPLSIM, siglas do nome en inglés sparse

multi-functional partial linear single-index model). Este modelo permite incorporar a

influencia na variable resposta escalar de dúas ou máis variables aleatorias funcionais,
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áında que por simplicidade imos centrar a exposición no caso de ter unicamente dúas

variables funcionais (é dicir, no caso bi-funcional). Unha das variables funcionais

inclúese no modelo por medio dunha estrutura de ı́ndice único e a outra linearmente,

pero mediante o vector de alta dimensión formado polas súas observacións discreti-

zadas. É dicir, este modelo permite incorporar tanto efectos continuos como efectos

puntuais das variables funcionais involucrando parámetros interpretables en ambos

casos. Ademais, debemos notar que o modelo MFPLSIM é unha adaptación do mo-

delo SSFPLSIM estudado no Caṕıtulo 4 ao caso no que as covariables na compoñente

linear teñen orixe funcional. O Caṕıtulo 5 ten por obxectivo lidar coa caracteŕıstica

sparse do modelo MFPLSIM. Como neste caso as covariables presentes na parte li-

near proveñen da discretización dunha curva, van presentar fortes correlacións entre

elas e, ademais, é de esperar que o número covariables con efecto linear resultante

sexa moi grande (moito maior que o tamaño de mostra). Nestas condicións a aplica-

ción directa do método de selección de variables presentado no Caṕıtulo 4 (ou doutros

métodos de selección de variables tradicionais) vólvese completamente inviable: por

unha banda, necesitaŕıase un enorme tempo de cálculo para realizar a selección de

variables, incluso para valores moderados do tamaño de discretización; por outra

banda, este procedemento non ten en conta a orixe funcional das variables e, ade-

mais, podeŕıase ver afectado negativamente pola presenza desas fortes correlacións

existentes entre elas. Por tales razóns é preciso desenvolver novos métodos de se-

lección de variables no MFPLSIM. As investigacións contidas neste caṕıtulo forman

parte do artigo Novo, Aneiros, and Vieu [90], o cal foi enviado a unha revista para

a súa publicación.

Na Sección 5.2 preséntanse dous novos algoritmos para seleccionar variables (na

compoñente linear) e estimar o modelo MFPLSIM. Ambos procedementos aproveitan

a orixe funcional das covariables da parte linear.

Na Sección 5.3 realizamos varios estudos de simulación que mostran o ámbito de

aplicación dos dous métodos: o primeiro algoritmo proporciona unha solución, sen

perda de poder de poder de predición, ao grande tempo computacional que precisan

os métodos como o presentado no Caṕıtulo 4 para estimar o modelo MFPLSIM.

Ademais, ao non precisar a división da mostra, proporciona mellores resultados que

o segundo algoritmo no caso de mostras de tamaño pequeno. O segundo algoritmo,
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áında que precisa en xeral máis tempo de computación que o primeiro, mellora a

eficiencia preditiva deste no caso de contarmos cun tamaño de mostra moderado,

e tamén realiza unha selección de variables relevantes máis precisa. Na Sección

5.5, a aplicación a datos reais dunha planta de azucre ilustraranos o triplo interese

da metodolox́ıa presentada, a cal proporciona grande poder de predición xunto con

resultados interpretables e un tempo de computación razoablemente baixo.

Na Sección 5.6 recóllense as probas dos resultados teóricos expostos na Sección

5.3.

Caṕıtulo 6: Conclusións e traballo futuro

Neste caṕıtulo proporciónase un breve resumo das conclusións ás que chegamos na

tese: despois de todo o traballo realizado, puidemos ver o gran potencial do modelado

semi-paramétrico ao combinalo coas ferramentas de estimación (nos modelos FSIM

e SFPLSIM) ou de estimación e selección de variables (nos modelos SSFPLSIM e

MFPLSIM) axeitadas.

Tamén indicamos neste caṕıtulo algunhas ideas de traballo futuro. Unha delas é

a realización dun paquete no software estat́ıstico R Core Team [93] que axude á uti-

lización na práctica de toda a metodolox́ıa presentada, dado que a implementación

da mesma require coñecementos de programación xunto con familiaridade coas fe-

rramentas estat́ısticas empregadas. Ademais, comentamos as liñas nas que temos

previsto continuar coas contribucións no modelado semi-paramétrico, tanto no que

se refire a afondar nos modelos estudados, como no que incumbe á proposta de novos

modelos.
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