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Abstract: Memory management is one of the main tasks of an Operating System, where the data of
each process running in the system is kept. In this context, there exist several types of attacks that
exploit memory-related vulnerabilities, forcing Operating Systems to feature memory protection
techniques that make difficult to exploit them. One of these techniques is ASLR, whose function
is to introduce randomness into the virtual address space of a process. The goal of this work was
to measure, analyze and compare the behavior of ASLR on the 64-bit versions of Windows 10
and Ubuntu 18.04 LTS. The results have shown that the implementation of ASLR has improved
significantly on these two Operating Systems compared to previous versions. However, there are
aspects, such as partial correlations or a frequency distribution that is not always uniform, so it can
still be improved.
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1. Introduction

One of the main jobs performed by an Operating System is memory management.
From a security perspective, there are plenty of attacks that leverage in the determinism of
the memory space’s layout to access and modify some parts of the memory. As an example
of the most widespread ones, buffer overflow and string format must be mentioned.

In this context, ASLR (Address Space Layout Randomization) is a memory security
mechanism which adds randomness into the virtual memory address space of a process.
The aim of this technique is not to implement a patch to some specific problem, but making
more difficult to exploit existing or future vulnerabilities.

The evolution and perfection of ASLR is notable during the last years. However, there
exist an important amount of reports and studies that question the effectivity and solidity
of this technique, even for the most recent Windows and Linux Operating Systems. In [1]
Whitehouse performs a complete and detailed analysis of Windows Vista and, in its results,
it reveals implementation errors that make the system not completely protected, situation
that attackers can take advantage of to exploit memory vulnerabilities.

The main objective of this work was to base the methodology and transpararency on
the Whitehouse study to obtain results of the real protection that offers ASLR, by comparing
the behaviours and implementations on two recent distributions of Windows and Linux:
Windows 10 and Ubuntu 18.04 LTS.
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2. Materials and Methods

This section includes the methodology of the performed comparative analysis on
the presented Operating Systems. Both the code and methodology are based on [1], but
adapted to the modern versions of Windows and the specific features available on Linux.

2.1. Developed Code

The developed code [2], written in C for Linux and Windows, prints a log of the
assigned memory addresses in each of the different areas of the process itself. With these
logs, some bash scripts were crafted for the iterated execution of the tool, storing the
memory addresses of each area in a CSV file. It is noteworthy that, for the compilation of
the C programs, both Linux GCC and Windows WinGW compilers need concrete flags for
ASLR to work.

In order to develop a comparative analysis for Windows and Linux, the code for
both Operating Systems include almost identical verifications for memory addresses, from
higher positions to lower ones: (1) stack, regarding variables inside a function; (2) heap,
containing dynamic memory assignments; (3) BSS, where the uninitialized variables are
kept; (4) data, regarding initialized static variables; (5) code.

In the case of Windows, the heap is verified by three means: creating a new heap,
allocating memory in the heap and by using the malloc() function. Besides, the code for
Windows also gets the PEB (Process Environment Block) address, which is a structure not
existing in Linux. On the other hand, in Linux the code gets the heap address directly
with the malloc() function. In the same way the Windows code gets the PEB address,
the Linux code also gets addresses for some specific Linux memory parts like the VDSO
(Virtual Dynamic Shared Object), as well as brk() and mmap() libraries.

2.2. Execution and Analysis

For the execution of the iterations, some batch and bash scripts were developed for
Windows and Linux respectively, which are also available at [2]. These executions were
performed in a PC with the following characteristics: AMD Athlon 64 ×2 4400+ with
4 GB de RAM. Regarding the specific releases of the Operating Systems, the tests were
executed on Windows 10 10.0.17763 version and Ubuntu 18.04.2 LTS. In both of them, the
scripts were run in two ways: continuously with 5 million iterations based on the work of
Marco and Ripoll in [3]; and with system reboots each 100 iterations until reaching 500,000,
considering a reasonable execution time and a significant number of repetitions, widely
increased compared to the previous work of Whitehouse in [1].

Regarding the analysis, the logs resulting from the executions were pre-processed with
the Pandas python library and then imported in Power BI Desktop, used as the main tool.
The work is focused in the analysis of the level of entropy of the memory addresses, and
the possible alterations compared with a desirable uniform distribution. For this purpose,
we have used some techniques like pattern detection, correlations among areas, percentage
of duplicated values and frequency distribution analysis.

3. Results and Conclusions

The first conclusion of this work is that the difference in the size of the user memory
addressing space it is a determining factor in the behavioral differences between both
Operating Systems. In Ubuntu, memory addresses present more entropy bits than in
Windows, it presents a lower percentage of duplicated values and there exist fewer cor-
relations among the different memory areas. In Windows, due to its memory addressing
size, correlations seem not to be avoidable. Even though the addressing space in Ubuntu
should be enough to avoid the correlations, they exist and in some cases are quite marked.

Regarding the frequency distribution in both systems, it tends to be uniform. It
represents an improvement with respect to previous versions, as analyzed in Windows [1,4]
and Linux [3,5]. However, in Windows the stack and PEB presents a bias towards lower
memory addresses and in Linux, the percentage of repeated addresses in the VDSO is high.
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Finally, the ratio of duplicated address values between the test without reboots and
the test with reboots is higher in Ubuntu than in Windows. This factor can be understood
as the impact of a reboot in the randomness of the addresses, and presents an unexpected
behaviour. As shared libraries in Ubuntu are compiled as PIC, they take different virtual
memory addresses in each process, in contrast with Windows where the values are equal
between processes. Consequently, the impact of a reboot in Ubuntu should be lower on this
matter in comparison with Windows. However, the results are higher in Ubuntu, maybe
because of a specific characteristic in the implementation of ASLR in this Operating System.

In conclusion, ASLR has a better behaviour in Linux than in Windows, following
the historical trend: it presents more entropy bits, less correlations and a better frequency
distribution. However, considering its current memory addressing space, there are aspects
that could be improved, like better correlation avoidance among the memory areas. In
Windows, the correlation among memory areas is higher. In Windows 10, it would be
convenient that the user memory addressing space was increased, for ASLR to be able to
use more entropy bits and, in this way, the majority of the correlations would be avoided.
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