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Abstract

Study objectives

Development of inter-database generalizable sleep staging algorithms represents a chal-

lenge due to increased data variability across different datasets. Sharing data between dif-

ferent centers is also a problem due to potential restrictions due to patient privacy

protection. In this work, we describe a new deep learning approach for automatic sleep stag-

ing, and address its generalization capabilities on a wide range of public sleep staging data-

bases. We also examine the suitability of a novel approach that uses an ensemble of

individual local models and evaluate its impact on the resulting inter-database generalization

performance.

Methods

A general deep learning network architecture for automatic sleep staging is presented. Dif-

ferent preprocessing and architectural variant options are tested. The resulting prediction

capabilities are evaluated and compared on a heterogeneous collection of six public sleep

staging datasets. Validation is carried out in the context of independent local and external

dataset generalization scenarios.

Results

Best results were achieved using the CNN_LSTM_5 neural network variant. Average pre-

diction capabilities on independent local testing sets achieved 0.80 kappa score. When indi-

vidual local models predict data from external datasets, average kappa score decreases to

0.54. Using the proposed ensemble-based approach, average kappa performance on the

external dataset prediction scenario increases to 0.62. To our knowledge this is the largest

study by the number of datasets so far on validating the generalization capabilities of an

automatic sleep staging algorithm using external databases.

Conclusions

Validation results show good general performance of our method, as compared with the

expected levels of human agreement, as well as to state-of-the-art automatic sleep staging

methods. The proposed ensemble-based approach enables flexible and scalable design,
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allowing dynamic integration of local models into the final ensemble, preserving data locality,

and increasing generalization capabilities of the resulting system at the same time.

Introduction

Sleep staging is one of the most important tasks during the clinical examination of polysomno-

graphic sleep recordings (PSGs). A PSG records the relevant biomedical signals of a patient in

the context of Sleep Medicine studies, representing the basic tool for the diagnosis of many

sleep disorders. Sleep staging characterizes the patient’s sleep macrostructure leading to the so-

called hypnogram. The hypnogram plays also a fundamental role for the interpretation of sev-

eral other biosignal activities of interest, such as the evaluation of the respiratory function, or

the identification of different body and limb movement [1,2]. Current standard guidelines for

sleep scoring carry out segmentation of the subject’s neurophysiological activity following a

discrete 30s-epoch time basis. Each epoch can be classified into five possible states (wakeful-

ness, stages N1, N2, N3, and R) according to the observed signal pattern activity in the refer-

ence PSG interval. Specifically, for sleep staging, neurophysiological activity of interest

involves monitoring of different traces of electroencephalographic (EEG), electromyographic

(EMG) and electrooculographic (EOG) activity [1].

A typical PSG examination comprises 8 up to 24 hours of continuous signal recording, and

its analysis is usually carried out manually by an expert clinician. The scoring process is conse-

quently expensive and highly demanding, due to the involved clinician’s time, and the com-

plexity of the analysis itself. Moreover, the demand for PSG investigations is growing in

relation with the general public awareness, motivated by clinical findings over the last years

uncovering the negative impact that sleep disorders exert over health. This represents a chal-

lenge for the already congested sleep centers, with steadily increasing waiting lists.

Automatic analysis of the sleep macrostructure is thus of interest, given the potential great

savings in terms of time and human resources. An additional advantage is the possibility of

providing deterministic (repeatable) diagnostic outcomes, hence contributing to the standard-

ization and quality improvement in the diagnosis. The topic, in fact, is not new, and first

related approximations can be traced back to the 1970’s [3,4]. Numerous attempts have fol-

lowed since then and up to now [5–14], evidencing that the task still represents a challenge,

and an open area of research interest. More recently, several approximations have been

appearing based on the use of deep learning, claiming advantages over previous realizations

which include improved performance, and the possibility to skip handcrafted feature engineer-

ing processes [15–23]. However, despite the promising results reported in some of these

works, practical acceptance of these systems among the clinical community remains low.

Effectively, an unsolved problem remains the inability of these systems to sustain their results

beyond the research lab, failing to make them extensible to the practical clinical environment.

The problem is closely related with the so-called database variability problem, whereby the

automatic scoring algorithm is not able to hold its performance beyond a specific testing data-

set or the original experimental conditions. More specifically, estimation of the algorithm´s

performance is commonly approached using a subset of independent (testing) data, taken

from the whole set available in a specific reference database. This testing subset, while indepen-

dent of the training data, remains effectively “local” to the reference database, meaning train-

ing and testing data share characteristics bounded to their common data generation process.

However, when considering a multiple-database validation scenario, heterogeneity associated

with the various external data sources adds an extra component of variability. In the case of
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sleep staging, sources of data variability are multiple and include, for example, differences

among the subject’s conditions or physiology, the signal acquisition and digitalization methods

(e.g. sampling rates, electrode positions, amplification factors or noise-to-signal ratios), and

also important, disagreement among expert’s interpretation due to the inherent human subjec-

tivity, or different training backgrounds. Detailed discussion on the topic can be found in a

previous work of the authors [24], in which a general trend of performance degradation has

been reported among the few works that have attempted validation procedures involving mul-

tiple independent external databases.

In this work we describe a new deep learning approach for automatic sleep staging. Given

the scarcity of comprehensive validation studies in the literature, one of the major contribu-

tions of this work involves addressing the real generalization capabilities of the learning model

on a wide range of public sleep staging databases. For this purpose, prediction performance of

the proposed approach is evaluated, for each database, in the context of both, independent

local, and external generalization scenarios. In the first case, part of each dataset is set aside to

be used as independent testing set, while the rest of the data are used for training and parame-

terization of the machine learning model. On the second scenario (external database valida-

tion) the whole dataset is presented as brand-new to the model, which was derived based on

data from external and completely independent database(s). Effectively, by comparing both

procedures it is possible to extrapolate the expected performance of the method, regardless of

a specific local database used for the development of the model; hence, a better estimation of

the real generalization capabilities of the algorithm on the general reference task of sleep stag-

ing can be achieved. Architecture of the proposed deep learning approach uses a novel flexible

design combining different layers of Convolutional Neural Networks (CNN) and Long-Short

Term Memory (LSTM). The new design adds the capacity for learning of transition rules

among sleep stages, i.e. epoch sequence learning, resulting on improved performance of the

approach. We investigate the use of different architectural variants and epoch sequence lengths

to analyze their impact on the generalization of the resulting models. In addition, we also

examine the suitability of a novel approach introduced on a previous work [24], based on the

use of an ensemble of individual local models. This approach has potential advantages in terms

of modelling and learning scalability, and at the same time, it reduces the necessity of exchang-

ing data between centers for the development of generalizable machine learning models. The

impact of this novel ensemble approach on the resulting inter-database generalization perfor-

mance is also evaluated using the new deep learning approach introduced in this work. Valida-

tion results are contextualized with respect to the expected levels of human agreement, and the

performance of current state-of-the-art automatic scoring solutions on the sleep staging task.

Our approach shows robust behavior in comparison with the available references.

Materials and methods

Datasets

A set of heterogeneous and independent clinical sleep scoring datasets was used as testing

benchmark during the course of our experiments. In order to enhance reproducibility, all data-

sets were gathered from public online repositories, and recordings were digitally encoded

using the open EDF(+) format [25,26]. An overview of the general characteristics of each inte-

grating dataset is given next. Extended description, including specifications of the correspond-

ing signal montages can be found in S1 Table.

Haaglanden Medisch Centrum Sleep Center Database (HMC). This dataset includes a

total of 154 PSG recordings gathered retrospectively from the sleep center database of the Haa-

glanden Medisch Centrum (The Netherlands). Recordings were randomly selected from a
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heterogeneous population which was referred for PSG examination on the context of different

sleep disorders during the year 2018. Data were acquired in the course of common clinical

practice, and thus did not subject people to any other treatment nor prescribed any additional

behavior outside of the usual clinical procedures. PSGs were anonymized avoiding any possi-

bility of individual patient identification. Explicit participant consent was not required by the

ethics committee due to the retrospective nature of the study and the fact that data were de-

identified. Study was approved under identification code METC-19-065. The dataset has been

made publicly available online [27].

St. Vicent’s Hospital/University College Dublin Sleep Apnea Database (Dublin). This

dataset contains 25 full overnight PSGs from adult subjects with suspected sleep-disordered

breathing. Subjects were originally randomly selected over a 6-month period (September 02 to

February 03) from patients referred to the Sleep Disorders Clinic at St Vincent’s University

Hospital, Dublin, for possible diagnosis of obstructive sleep apnea, central sleep apnea or pri-

mary snoring. The 2011 revised version of the dataset was used which is available online on

the PhysioNet website [28].

Sleep Health Heart Study (SHHS). The Sleep Heart Health Study (SHHS) is a multi-cen-

ter cohort study implemented by the National Heart Lung & Blood Institute to determine the

cardiovascular and other consequences of sleep-disordered breathing. The database is available

online upon permission at the National Sleep Research Resource (NSRR) [29,30]. More infor-

mation about the rationale, design, and protocol of the SHHS study can be found in the dedi-

cated NSRR section [30] and in the literature [31,32]. For this study a random subset of 100

PSG recordings were selected from the SHHS-2 study. A list of the recording numbers

included in the selection is included as supplementary information for reproducibility pur-

poses (S1 File).

Sleep Telemetry Study (Telemetry). This dataset contains 44 whole-night PSGs obtained

in a 1994 study of temazepam effects on sleep in 22 caucasian males and females without other

medication. Subjects had mild difficulty falling asleep but were otherwise healthy. The PSGs

were recorded in the hospital during two nights, one of which was after temazepam intake,

and the other of which was after placebo intake. More details on the subjects and the recording

conditions are further described in the works of Kemp et al. [33,34]. The dataset is fully avail-

able at the PhysioNet website as part of the more extensive Sleep-EDF database [35].

DREAMS subject database (DREAMS). The DREAMS dataset is composed of 20 whole-

night PSG recordings from healthy subjects. It was collected during the DREAMS project, to

tune, train, and test automatic sleep staging algorithms [36]. The dataset is available online

granted by University of MONS—TCTS Laboratory (Stéphanie Devuyst, Thierry Dutoit) and

Université Libre de Bruxelles—CHU de Charleroi Sleep Laboratory (Myriam Kerkhofs) under

terms of the Attribution-NonCommercial-NoDerivs 3.0 Unported (CC BY-NC-ND 3.0) [37].

ISRUC-SLEEP dataset (ISRUC). This dataset is composed of 100 PSGs from adult sub-

jects with evidence of having sleep disorders. PSG recordings were originally selected from the

Sleep Medicine Centre of the Hospital of Coimbra University (CHUC) database during the

period 2009–2013. More details about the rationale and the design of the database can be

found in Khalighi et al. [38]. The database is publicly accessible online [39].

Neural network architecture

Here we describe the general deep learning architecture proposed for the implementation of

an automatic sleep staging model. As illustrated in Fig 1, the general architecture is composed

of three main processing modules: (i) pre-processing block, (ii) Convolutional Neural Network

(CNN), and (iii) a Long-Short Term Memory (LSTM).
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Pre-processing. The preprocessing block is in charge of processing the PSG signals for

input homogenization and for (optionally) artifact cancellation. Input signal homogenization

is necessary to confer the model the capacity to handle inter-database differences due to the

use of different montages and digitalization procedures. Specifically the model receives as

input two EEG, the chin EMG, and one EOG channel derivations, which are resampled at 100

Hz, representing a compromise between the limiting the size of the input dimensionality, and

the preservation of the necessary signal properties for carrying out the sleep scoring task.

Resampling at 100 Hz allows a working frequency up to 50 Hz which captures most of the

meaningful EEG, EMG and EOG frequencies. Signals are then segmented using a 30s window

following the standard epoch-based scoring procedures [1], resulting on input patterns of size

4x3000 that are fed into the following CNN processing block. Each of these input patterns is

subsequently normalized in amplitude using a Gaussian standardization procedure [40].

Input signal filtering is left as an optional pre-processing step. The main purpose of this

module is the removal of noise and signal artifacts, which are patient and database specific,

and thus can interfere with the generalization capabilities of the resulting model. Application

of the optional filtering step takes place over the original raw signals, i.e. at the original signal

frequencies before resampling them at 100 Hz. Experimentation is carried out in this work to

study the effects of applying the following pre-processing step on the different tested datasets.

The filtering step is composed of the following filters:

• Notch filtering: It is meant to remove the interference caused by the power grid. Notice that

the AC frequency differs per country (e.g. 50 Hz in Europe, and 60 Hz in North America)

and therefore, depending on the source dataset, mains interference will affect signals at dif-

ferent frequency ranges. Design and implementation of the used digital filter has been

described in previous works [41,42].

• High-pass filter: It is applied to the chin EMG only, and the purpose is to get rid of the DC

and low frequency components unrelated to the baseline muscle activity. A first order imple-

mentation has been described elsewhere [42]. In this work a cut-off value at 15 Hz has been

used for the filter.

• ECG filtering: Applied only in the case that an additional ECG derivation is included in the

corresponding montage (see S1 Table) the filter is used for getting rid of possible spurious

twitches caused by the ECG, affecting the input signals. An adaptive filtering algorithm has

been used which has been described in detail in a previous work [41].

CNN block. The CNN block design is an updated version of previous CNN models devel-

oped by the authors [19,24]. As stated before, this block receives input patterns of size 4x3000,

Fig 1. Preprocessing steps and general CNN-LSTM neural network architecture.

https://doi.org/10.1371/journal.pone.0256111.g001
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representing a 30s epoch window of PSG signals (2xEEG, 1xEMG, and 1xEOG). The block can

produce a valid sleep staging output for each input pattern (CNN-only), or act as intermediate

processing layer to feed a subsequent LSTM block (CNN-LSTM configuration). Experimenta-

tion will be carried out in this work to compare the two possible neural network configurations.

The CNN design is composed of the concatenation of N operational blocks. Each opera-

tional block B(k), k = 1. . .N, is at the same time composed of four layers, namely (i) a 1D con-

volutional step (kernel size 1x100, preserving the input size with zero padding at edges,

stride = 1), followed by (ii) ReLu activation [43], (iii) batch normalization [44], and (iv) an

average pool layer (pool dimension 1x2, stride = 2). While the kernel size (1x100) at the convo-

lutional step is maintained through all the N operational blocks, the number of filters in B(k),
is doubled as with respect to B(k-1). Based on previous experiments [19] the initial number of

filters in B(1) was set for this work at 8, while the number of operational blocks was fixed at

N = 3.

Output of the last operational block is fed into a subsequent CNN output block. The first

processing layer in the output block is a full-connected step which takes the output from the

last operational block and reduces the feature space to an output size of 50. This will be used as

the input for the subsequent LSTM processing block when the network is working under the

CNN-LSTM configuration. When the network is configured as CNN-only, then four addi-

tional processing steps follow. Specifically the 50-length feature vector is filtered through an

additional ReLu activation, and then a dropout step with probability 0.5 is applied to improve

regularization. Finally a final dense full-connected layer with softmax activation is used at the

output with size 5, each representing a possible sleep stage assignment (W, N1, N2, N3, or R).

The output of the softmax is interpreted as the corresponding posterior class probability, with

the highest probability determining the final classification decision.

LSTM block. When the network follows the CNN-LSTM configuration, the 50-length fea-

ture vector is fed into a subsequent LSTM processing block. The inclusion of an additional

LSTM layer in the design is meant to provide the resulting network with the capacity of model-

ling the effect of epoch sequence on the final scoring. Indeed, the medical expert decision on

the classification of the current PSG epoch is partially influenced by the sleep state of the pre-

ceding and subsequent epochs [1].

The LSTM block is composed of a first sequence configuration layer, a unidirectional

LSTM layer [45], and finally, a fully-connected layer followed by softmax activation for pro-

ducing the final output. The sequence configuration step composes the corresponding epoch

feature sequence relative to the epoch k under evaluation. Specifically given a PSG recording

containing M epoch intervals, for a given epoch k, k = 1. . .M, the sequence S(k) is composed

as F k � dL� 1

2
e

� �
; F kþ 1 � dL� 1

2
e

� �
; . . . ; F k � 1ð Þ; F kð Þ; F kþ 1ð Þ; . . . ; F k � 1þ dL� 1

2
e

� �
;

�

F kþ bL� 1

2
c

� �
�, where de and bc respectively represent the ceil and the floor operations, L is the

length of the sequence, and F stands for the corresponding input feature vector, in this case

out of the preceding CNN node. For example, if L = 3, then the sequence would result as [F(k-
1), F(k), F(K+1)], and if L = 4, then [F(k-2), F(k-1), F(k), F(k+1)], and so on. The number of

hidden neurons for the LSTM layer was set to 100 in this study.

Ensemble of local models

The intuitive approach to achieve better generalization of a machine learning model is to

increment the amount and heterogeneity of the input training data. In the scenario where data

from different sources (in our case, different databases) are involved, the former would trans-

late into using data from the all the available datasets. Thereby the amount of training data

increases, as well as their heterogeneity, hence boosting the chances of ending up with a better
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generalist model minimizing the dataset overfitting risk. This approach, however, has its own

drawbacks. First, from a computational perspective, higher memory and computational

resources are needed, the resulting model becomes inflexible to data evolving dynamically in

time, and a combinatory explosion occurs when finding the best input dataset partition combi-

nation [24]. In addition, from a regulatory perspective, collecting data from different centers

can be a problem due to potential privacy-protection restrictions on exchanging of patient data.

At this respect a proposal was depicted on a previous work [24] based on the use of an

ensemble of local models. Under this approach an independent “local” model is developed for

each dataset using exclusively its data. For this purpose each dataset is split whereby part of the

data are used for training and parameterization of the machine learning model, and the

remaining are set aside to be used as independent local testing set. The resulting individual

local models can be then combined using an ensemble. Specifically, in this work we are assum-

ing that the ensemble output takes place using the majority vote [46,47].

The proposed approach shows advantages in the scalability of the design, making it flexible

to dynamic evolution of the input datasets, i.e. the ensemble can be easily expanded by adding

new local models when new training data, or new datasets are available. This, in addition,

allows each individual model to be developed locally, meaning each center can develop its own

model based on its data without the need of sharing and/or collecting data from other centers.

This minimizes potential issues due to patient privacy protection regulations. Eventually only

the resulting local model would need to be shared for its integration in the final ensemble.

In this study we want to check the working hypothesis that by combining “local expert

models” by means of an ensemble we can also increase the overall generalization capabilities of

the resulting model when predicting external datasets.

Experimental design

An experimental design was scheduled aimed at testing the prediction and generalization

capabilities of the deep learning architecture for automatic sleep staging described in the pre-

ceding sections. In order to characterize the effects on generalization performance due to vary-

ing characteristics of the target database, validation was carried out on a multiple-database

setup. Experiments were designed to assess and compare both independent local and external

database prediction scenarios separately.

No a posteriori exclusion criteria were applied on any of the benchmark datasets used for

this study. Thus, all the recordings integrating the datasets as described above were included in

the validation. The underlying motivation is to assess the reliability of the resulting models on

the most realistic situation, including the most general and heterogeneous patient phenotype

possible.

Remarkably, signal montages, recording methods, and manual scoring references can differ

across the different source databases. That represents an extra challenge on testing the general-

ization capabilities of the sleep scoring algorithm. As stated before, our deep learning model

assumes as input two channels of EEG, one submental EMG, and one EOG derivation. When

more than two EEG derivations were available in the corresponding montage, the general

rationale was to select the traditional central derivations (C4/M1 and C3/M2) as input. If cen-

tral derivations were not available, then frontal electrodes were used as backup. In some cases,

no choice was possible according to this rationale, therefore the only available derivations

must to be used (e.g. for Telemetry, Pz-Oz and Fpz-Cz). In the case of the EOG, horizontal

derivations were preferred as they are less sensitive to EEG and movement artifacts. S1 Table

describes the specific selected derivations according to the available set of channels as well as

the main characteristics for each dataset.
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The current AASM scoring standard [1] was set as reference for labelling the output classes

for validation. Hence, when the reference dataset was originally scored using the R&K method

(see S1 Table), NREM stages 3 and 4 were merged into one unique N3.

For each dataset k, k = 1. . .K, the following experiments are carried out:

Experiment 1:

• Each dataset k, is split following an independent training TR(k) and testing TS(k) partition.

Let us denote the whole original dataset by W(k) = TR(k)[ TS(k). A model M(k) is derived

by learning from data in TR(k). Notice that a subset of TR(k)–namely the validation subset

VAL(k)- is used to implement the early stopping criterion during the network’s learning pro-

cess. The “local” generalization performance of the resulting model M(k) is evaluated by

assessing the predictability of data contained in TS(k). This is the performance that is usually

reported in the literature when data from only one database is used for experimentation.

Experiment 2:

• Each resulting model M(k), is used to predict the reference scorings on each of the complete

datasets W(j), j = 1. . .K. Effectively, 8j/j<>k, M(k) is predicting unseen data from an exter-

nal database. Hence, by comparing the results of Experiment 1 and Experiment 2, the effects

of varying the database target can be assessed. In effect, for each M(k), the expected local

generalization in TS(k) can be compared with the effective inter-database generalization

performance among all W(j), j<>k. Notice that when j = k the results would be biased since

TR(k) =>M(k) and TR(k)�W(k).

Experiment 3:

• Each datasetW(k) is predicted by an ensemble ENS(k) of individual local modelsM(j), j = 1. . .K,

j<>k. For instance, ENS(2) = ENS[M(1),M(3),. . .,M(K)]. As in Experiment 2, exclusion ofM(k)
from ENS(k) aims to keepW(k) completely independent and external to ENS(k). By comparing

the results of Experiment 3with those of Experiment 1 and Experiment 2, it is possible to assess the

effects on the resulting inter-database generalization of the proposed ensemble approach.

Each of the previously described experiments is repeated using different variations of the

general network architecture described in the preceding sections. The purpose is to analyze

the impact of each configuration variation on the resulting generalization capabilities of the

resulting models. Specifically, the following variants are tested:

• Using the CCN-only configuration, first the default segments of 30s (1 epoch, input size

4x3000) configure the input to the network’s CNN block. The input segments are afterwards

expanded to form sequences of consecutive epochs with the aim of implementing the effect of

epoch sequence learning. Different sequence lengths L = {3,5,7} are investigated at this respect.

Gaussian normalization takes place in this case over the whole 4x(3000L) resulting input pat-

terns. This approach to implement epoch sequence learning using a CCN-only configuration

will be later on compared with the results achieved using the full CNN-LSTM design.

• Using CNN-LSTM configuration, the sequence length parameter is similarly tested on dif-

ferent values L = {3,5,7}, using as input reference the 50-length feature vector of the preced-

ing CNN output block. As stated before, the resulting models will be compared against the

respective sequence learning implementations using the CNN-only configuration.

• Finally, in order to test the effects of the optional signal preprocessing filtering step, each of

the previous described experiments is repeated again, respectively, with and without apply-

ing the filtering pipeline.
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Thus, for each of the datasets included in our experimentation, a total of 14 different indi-

vidual local models are developed, based on the data contained on each respective dataset. For

identification, the following nomenclature is used: CNN_1, CNN_3, CNN_5, CNN_7,

CNN_F_1, CNN_F_3, CNN_F_5, CNN_F_7, CNN_LSTM_3, CNN_LSTM_5, CNN_LSTM_7,

CNN_LSTM_F_3, CNN_LSTM_F_5, CNN_LSTM_F_7, where the subscript F denotes the use

of the pre-processing filtering step, and the suffix number indicates the corresponding number

of sequence epochs used (value of the L parameter).

For homogenization purposes, the same training configuration is applied in the develop-

ment of above mentioned learning models for each dataset. In this respect the stochastic gradi-

ent descent approach is used to guide the weight’s update, with the cross-entropy loss as the

target cost function [40]. Each dataset is partitioned using 80% of data for training (TR), using

the remaining 20% as independent local testing set (TS). A validation subset (VAL) is arranged

by successively splitting 20% of the available training data apart. The validation set is used as

reference to implement the early stopping mechanism to avoid overfitting to training data.

The stopping criterion takes as reference the validation loss, which is evaluated 5 times per

training epoch. A patience of 10 is established thereby stopping training when the validation

loss has not been further improved after the whole training dataset is presented two times. The

number of patterns within each training epoch (internal training batch) is set to 100 patterns,

imposed by the available hardware resources relative to the size of the tested networks. The

maximum number of training epochs is set to 30, and the initial learning rate to 0.001. The

learning rate is decreased by a factor of 10 every 10 training epochs (thus 10−4, 10−5, up to a

minimum of 10−6). The same random initialization seed is used on each experiment to exclude

variability due to initialization conditions, hence enabling deterministic training processes. This

is important to assess the influence of the different tested architecture variants, as described

before, and to make fair comparisons among the different resulting models and datasets.

Performance evaluation of each experiment is carried out by taking the Cohen’s kappa

index (κ) as reference score. Cohen’s kappa is preferred over other widespread validation met-

rics (e.g. accuracy, sensitivity/specificity, or F1-score) because it corrects for agreement due to

chance, showing robustness in the presence of various class distributions [48]. This is an

important property to allow performance comparison among differently distributed datasets,

or when some classes are underrepresented in proportion to the rest (e.g. N1 vs N2 or W), as it

is the case (see S1 Table for details on the different class distributions among the benchmark

datasets). Remarkably, Cohen´s kappa is the standard metric being reported among studies

analyzing human inter-rater agreement in the context of sleep scoring [49–54].

Results

The following tables contain the results of the experiments described in the previous sections.

Table 1 shows the results of Experiment 1, where each of the learning models is trained and

evaluated using data from its respective local testing dataset.

Subsequent Table 2 shows the results of the second experiment in which the resulting indi-

vidual local models have been used to predict the reference scorings on each of the complete

datasets. Results in Table 2 therefore involve performance evaluations of the models using an

external validation setting, with the only exception of the main diagonal. The main diagonal in

Table 2 represents the situation in which M(k) is used to predict W(k), resulting in a biased

prediction since TR(k) =>M(k) and TR(k)�W(k). Regardless, these results have been kept in

Table 2 for reference.

Results regarding the third experiment (ensemble predictions) are shown in Table 3. These

are compared with the reference predictions of the individual local models, both in the local
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Table 1. Performance results of each individual model on the local validation scenario.

Local dataset Model configuration Training iterations TR VAL TS

HMC CNN_1 15 0.79 0.73 0.74

CNN_3 7 0.83 0.72 0.71

CNN_5 7 0.87 0.71 0.7

CNN_7 5 0.83 0.69 0.69

CNN_LSTM_3 7 0.81 0.78 0.78

CNN_LSTM_5 17 0.84 0.79 0.79

CNN_LSTM_7 27 0.83 0.77 0.77

CNN_F_1 14 0.78 0.73 0.74

CNN_F_3 8 0.84 0.71 0.71

CNN_F_5 6 0.84 0.7 0.7

CNN_F_7 5 0.85 0.69 0.69

CNN_LSTM_F_3 7 0.79 0.77 0.77

CNN_LSTM_F_5 8 0.77 0.75 0.75

CNN_LSTM_F_7 10 0.76 0.74 0.74

Dublin CNN_1 10 0.76 0.68 0.68

CNN_3 7 0.85 0.66 0.66

CNN_5 6 0.89 0.62 0.64

CNN_7 7 0.89 0.65 0.67

CNN_LSTM_3 8 0.82 0.76 0.77

CNN_LSTM_5 9 0.84 0.78 0.79

CNN_LSTM_7 9 0.84 0.77 0.77

CNN_F_1 14 0.77 0.65 0.65

CNN_F_3 8 0.83 0.65 0.64

CNN_F_5 8 0.88 0.6 0.61

CNN_F_7 13 0.9 0.67 0.66

CNN_LSTM_F_3 8 0.81 0.76 0.77

CNN_LSTM_F_5 8 0.82 0.78 0.79

CNN_LSTM_F_7 9 0.84 0.77 0.78

SHHS CNN_1 9 0.8 0.76 0.75

CNN_3 7 0.89 0.79 0.79

CNN_5 7 0.95 0.78 0.79

CNN_7 6 0.92 0.76 0.76

CNN_LSTM_3 17 0.87 0.83 0.84

CNN_LSTM_5 18 0.86 0.83 0.82

CNN_LSTM_7 7 0.79 0.78 0.77

CNN_F_1 9 0.8 0.77 0.76

CNN_F_3 8 0.89 0.79 0.79

CNN_F_5 5 0.9 0.78 0.78

CNN_F_7 6 0.94 0.78 0.77

CNN_LSTM_F_3 10 0.85 0.82 0.83

CNN_LSTM_F_5 18 0.86 0.83 0.82

CNN_LSTM_F_7 5 0.8 0.79 0.79

(Continued)
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Table 1. (Continued)

Local dataset Model configuration Training iterations TR VAL TS

Telemetry CNN_1 14 0.81 0.76 0.76

CNN_3 10 0.88 0.73 0.75

CNN_5 8 0.9 0.73 0.72

CNN_7 6 0.88 0.72 0.7

CNN_LSTM_3 10 0.85 0.8 0.81

CNN_LSTM_5 9 0.85 0.79 0.8

CNN_LSTM_7 8 0.84 0.8 0.8

CNN_F_1 14 0.82 0.77 0.77

CNN_F_3 8 0.87 0.71 0.71

CNN_F_5 9 0.88 0.73 0.73

CNN_F_7 9 0.91 0.73 0.71

CNN_LSTM_F_3 10 0.84 0.81 0.81

CNN_LSTM_F_5 15 0.89 0.82 0.83

CNN_LSTM_F_7 16 0.89 0.82 0.82

DREAMS CNN_1 9 0.81 0.75 0.76

CNN_3 8 0.92 0.76 0.76

CNN_5 7 0.91 0.75 0.75

CNN_7 5 0.85 0.73 0.73

CNN_LSTM_3 17 0.88 0.84 0.83

CNN_LSTM_5 20 0.9 0.83 0.83

CNN_LSTM_7 5 0.81 0.78 0.78

CNN_F_1 9 0.82 0.76 0.77

CNN_F_3 7 0.91 0.77 0.78

CNN_F_5 7 0.92 0.74 0.75

CNN_F_7 6 0.88 0.73 0.72

CNN_LSTM_F_3 20 0.89 0.84 0.83

CNN_LSTM_F_5 28 0.9 0.84 0.84

CNN_LSTM_F_7 10 0.85 0.81 0.8

ISRUC CNN_1 17 0.81 0.77 0.76

CNN_3 6 0.83 0.74 0.75

CNN_5 7 0.9 0.73 0.73

CNN_7 6 0.86 0.72 0.73

CNN_LSTM_3 10 0.81 0.8 0.8

CNN_LSTM_5 10 0.8 0.78 0.78

CNN_LSTM_7 6 0.75 0.75 0.75

CNN_F_1 9 0.79 0.76 0.75

CNN_F_3 7 0.84 0.75 0.75

CNN_F_5 7 0.9 0.73 0.73

CNN_F_7 6 0.86 0.71 0.72

CNN_LSTM_F_3 10 0.81 0.79 0.79

CNN_LSTM_F_5 9 0.78 0.77 0.76

CNN_LSTM_F_7 9 0.75 0.74 0.74

Results report agreement in terms of kappa index with respect to the corresponding human clinical scorings for each dataset. Agreement is reported separately for each

corresponding training (TR), validation (VAL) and testing (TS) dataset partitions. The number of effective training iterations is indicated in the third column. Rows

within each dataset correspond to the different tested neural network configurations as described in the experimental design.

https://doi.org/10.1371/journal.pone.0256111.t001
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Table 2. Performance results of the individual local models on the external validation scenario.

Individual local models

Predicted dataset Model configuration M(HMC) M(Dublin) M(SHHS) M(Telemetry) M(DREAMS) M(ISRUC)

HMC CNN_1 0.77 0.51 0.56 0.53 0.52 0.6

CNN_3 0.79 0.46 0.6 0.42 0.47 0.56

CNN_5 0.81 0.37 0.57 0.39 0.44 0.54

CNN_7 0.78 0.4 0.5 0.34 0.43 0.55

CNN_LSTM_3 0.8 0.54 0.58 0.51 0.5 0.61

CNN_LSTM_5 0.82 0.53 0.6 0.5 0.49 0.62

CNN_LSTM_7 0.81 0.52 0.59 0.52 0.51 0.61

CNN_F_1 0.76 0.39 0.58 0.49 0.56 0.62

CNN_F_3 0.79 0.37 0.6 0.48 0.48 0.63

CNN_F_5 0.79 0.35 0.57 0.42 0.46 0.61

CNN_F_7 0.79 0.35 0.54 0.37 0.5 0.58

CNN_LSTM_F_3 0.78 0.38 0.62 0.45 0.55 0.64

CNN_LSTM_F_5 0.76 0.37 0.63 0.48 0.55 0.65

CNN_LSTM_F_7 0.75 0.34 0.62 0.47 0.55 0.62

Dublin CNN_1 0.53 0.73 0.44 0.41 0.53 0.51

CNN_3 0.57 0.78 0.5 0.34 0.49 0.57

CNN_5 0.52 0.79 0.51 0.32 0.51 0.59

CNN_7 0.53 0.81 0.39 0.31 0.49 0.57

CNN_LSTM_3 0.54 0.8 0.48 0.38 0.58 0.55

CNN_LSTM_5 0.54 0.82 0.5 0.39 0.58 0.55

CNN_LSTM_7 0.5 0.81 0.5 0.42 0.57 0.55

CNN_F_1 0.2 0.73 0.13 0.03 0.01 0.07

CNN_F_3 0.15 0.77 0.1 0.01 0.02 0.05

CNN_F_5 0.04 0.78 0.02 0.01 0.03 0.04

CNN_F_7 0.04 0.81 0.13 0.01 0.02 0.14

CNN_LSTM_F_3 0.24 0.8 0.07 0.02 0.01 0.05

CNN_LSTM_F_5 0.22 0.81 0.07 0.01 0.01 0.05

CNN_LSTM_F_7 0.17 0.81 0.06 0.01 0.01 0.04

SHHS CNN_1 0.57 0.5 0.78 0.42 0.59 0.64

CNN_3 0.59 0.52 0.86 0.3 0.6 0.63

CNN_5 0.55 0.42 0.89 0.27 0.6 0.63

CNN_7 0.61 0.4 0.86 0.26 0.6 0.65

CNN_LSTM_3 0.54 0.57 0.86 0.42 0.54 0.62

CNN_LSTM_5 0.5 0.56 0.85 0.46 0.52 0.67

CNN_LSTM_7 0.47 0.53 0.78 0.46 0.56 0.66

CNN_F_1 0.68 0.35 0.78 0.43 0.6 0.65

CNN_F_3 0.53 0.29 0.85 0.38 0.59 0.65

CNN_F_5 0.52 0.32 0.86 0.39 0.58 0.68

CNN_F_7 0.52 0.28 0.88 0.31 0.63 0.67

CNN_LSTM_F_3 0.68 0.29 0.84 0.4 0.57 0.63

CNN_LSTM_F_5 0.66 0.31 0.85 0.39 0.53 0.65

CNN_LSTM_F_7 0.67 0.22 0.79 0.41 0.57 0.62

(Continued)
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Table 2. (Continued)

Individual local models

Predicted dataset Model configuration M(HMC) M(Dublin) M(SHHS) M(Telemetry) M(DREAMS) M(ISRUC)

Telemetry CNN_1 0.67 0.53 0.51 0.79 0.48 0.63

CNN_3 0.6 0.42 0.55 0.81 0.43 0.53

CNN_5 0.6 0.43 0.54 0.83 0.48 0.57

CNN_7 0.5 0.45 0.38 0.82 0.45 0.52

CNN_LSTM_3 0.68 0.59 0.49 0.83 0.45 0.62

CNN_LSTM_5 0.69 0.59 0.5 0.83 0.43 0.64

CNN_LSTM_7 0.67 0.61 0.5 0.82 0.48 0.65

CNN_F_1 0.7 0.39 0.61 0.8 0.44 0.61

CNN_F_3 0.67 0.46 0.57 0.83 0.46 0.62

CNN_F_5 0.63 0.43 0.41 0.83 0.42 0.55

CNN_F_7 0.64 0.44 0.33 0.84 0.46 0.54

CNN_LSTM_F_3 0.72 0.44 0.6 0.83 0.43 0.6

CNN_LSTM_F_5 0.71 0.48 0.62 0.87 0.44 0.63

CNN_LSTM_F_7 0.68 0.44 0.6 0.86 0.44 0.61

DREAMS CNN_1 0.5 0.56 0.58 0.34 0.79 0.71

CNN_3 0.46 0.52 0.59 0.34 0.86 0.71

CNN_5 0.42 0.33 0.36 0.31 0.85 0.68

CNN_7 0.61 0.51 0.58 0.27 0.81 0.67

CNN_LSTM_3 0.5 0.56 0.54 0.43 0.87 0.73

CNN_LSTM_5 0.41 0.56 0.54 0.47 0.87 0.75

CNN_LSTM_7 0.45 0.5 0.51 0.42 0.8 0.74

CNN_F_1 0.52 0.39 0.66 0.42 0.8 0.7

CNN_F_3 0.59 0.25 0.56 0.46 0.86 0.67

CNN_F_5 0.55 0.36 0.55 0.4 0.86 0.65

CNN_F_7 0.52 0.32 0.58 0.35 0.82 0.71

CNN_LSTM_F_3 0.53 0.32 0.6 0.43 0.87 0.71

CNN_LSTM_F_5 0.55 0.31 0.63 0.46 0.88 0.72

CNN_LSTM_F_7 0.51 0.16 0.6 0.43 0.83 0.71

ISRUC CNN_1 0.56 0.57 0.6 0.29 0.63 0.79

CNN_3 0.57 0.54 0.64 0.29 0.56 0.8

CNN_5 0.51 0.46 0.63 0.26 0.57 0.84

CNN_7 0.57 0.48 0.54 0.24 0.52 0.81

CNN_LSTM_3 0.54 0.55 0.65 0.36 0.61 0.81

CNN_LSTM_5 0.51 0.55 0.66 0.42 0.58 0.79

CNN_LSTM_7 0.43 0.53 0.6 0.38 0.6 0.75

CNN_F_1 0.68 0.42 0.63 0.42 0.65 0.77

CNN_F_3 0.59 0.35 0.65 0.41 0.61 0.81

CNN_F_5 0.57 0.41 0.66 0.37 0.57 0.84

CNN_F_7 0.55 0.38 0.62 0.35 0.56 0.81

CNN_LSTM_F_3 0.68 0.41 0.68 0.4 0.63 0.8

CNN_LSTM_F_5 0.67 0.43 0.69 0.44 0.61 0.78

CNN_LSTM_F_7 0.66 0.29 0.66 0.43 0.61 0.75

Results report agreement in terms of kappa index with respect to the corresponding human clinical scorings for each dataset. The notation M(X) is used to indicate that

the model was trained based on data on the dataset X. Rows within each dataset correspond to the different tested neural network configurations as described in the

experimental design. The main diagonal (in greyed background) shows the results when the model is predicting its own complete local dataset (biased prediction).

https://doi.org/10.1371/journal.pone.0256111.t002
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Table 3. Performance comparison between individual models and the ensemble approach in the local and external validation scenarios.

Predicted dataset Model configuration Individual local models Ensemble

Local performance External performance External performance

Range Average

HMC CNN_1 0.74 0.51–0.60 0.54 0.61

CNN_3 0.71 0.42–0.60 0.5 0.58

CNN_5 0.7 0.37–0.57 0.46 0.55

CNN_7 0.69 0.34–0.55 0.44 0.53

CNN_LSTM_3 0.78 0.50–0.61 0.55 0.62

CNN_LSTM_5 0.79 0.49–0.62 0.55 0.63

CNN_LSTM_7 0.77 0.51–0.61 0.55 0.62

CNN_F_1 0.74 0.39–0.62 0.53 0.61

CNN_F_3 0.71 0.37–0.63 0.51 0.6

CNN_F_5 0.7 0.35–0.61 0.48 0.58

CNN_F_7 0.69 0.35–0.58 0.47 0.56

CNN_LSTM_F_3 0.77 0.38–0.64 0.53 0.62

CNN_LSTM_F_5 0.75 0.37–0.65 0.54 0.64

CNN_LSTM_F_7 0.74 0.34–0.62 0.52 0.63

Dublin CNN_1 0.68 0.41–0.53 0.49 0.6

CNN_3 0.66 0.34–0.57 0.49 0.62

CNN_5 0.64 0.32–0.59 0.49 0.6

CNN_7 0.67 0.31–0.57 0.46 0.59

CNN_LSTM_3 0.77 0.38–0.58 0.51 0.63

CNN_LSTM_5 0.79 0.39–0.58 0.51 0.63

CNN_LSTM_7 0.77 0.42–0.57 0.51 0.62

CNN_F_1 0.65 0.01–0.20 0.09 0.08

CNN_F_3 0.64 0.01–0.15 0.07 0.04

CNN_F_5 0.61 0.01–0.04 0.03 0.01

CNN_F_7 0.66 0.01–0.14 0.07 0.03

CNN_LSTM_F_3 0.77 0.01–0.24 0.08 0.06

CNN_LSTM_F_5 0.79 0.01–0.22 0.07 0.05

CNN_LSTM_F_7 0.78 0.01–0.17 0.06 0.04

SHHS CNN_1 0.75 0.42–0.64 0.54 0.62

CNN_3 0.79 0.30–0.63 0.53 0.65

CNN_5 0.79 0.27–0.63 0.49 0.61

CNN_7 0.76 0.26–0.65 0.5 0.65

CNN_LSTM_3 0.84 0.42–0.62 0.54 0.62

CNN_LSTM_5 0.82 0.46–0.67 0.54 0.61

CNN_LSTM_7 0.77 0.46–0.66 0.54 0.61

CNN_F_1 0.76 0.35–0.68 0.54 0.66

CNN_F_3 0.79 0.29–0.65 0.49 0.62

CNN_F_5 0.78 0.32–0.68 0.5 0.62

CNN_F_7 0.77 0.28–0.67 0.48 0.62

CNN_LSTM_F_3 0.83 0.29–0.68 0.52 0.62

CNN_LSTM_F_5 0.82 0.31–0.66 0.51 0.62

CNN_LSTM_F_7 0.79 0.22–0.67 0.5 0.62
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Table 3. (Continued)

Predicted dataset Model configuration Individual local models Ensemble

Local performance External performance External performance

Range Average

Telemetry CNN_1 0.76 0.48–0.67 0.56 0.67

CNN_3 0.75 0.42–0.60 0.51 0.61

CNN_5 0.72 0.43–0.60 0.53 0.62

CNN_7 0.7 0.38–0.52 0.46 0.58

CNN_LSTM_3 0.81 0.45–0.68 0.57 0.67

CNN_LSTM_5 0.8 0.43–0.69 0.57 0.69

CNN_LSTM_7 0.8 0.48–0.67 0.58 0.68

CNN_F_1 0.77 0.39–0.70 0.55 0.66

CNN_F_3 0.71 0.46–0.67 0.56 0.66

CNN_F_5 0.73 0.41–0.63 0.49 0.62

CNN_F_7 0.71 0.33–0.64 0.48 0.63

CNN_LSTM_F_3 0.81 0.43–0.72 0.56 0.69

CNN_LSTM_F_5 0.83 0.44–0.71 0.58 0.7

CNN_LSTM_F_7 0.82 0.44–0.68 0.56 0.68

DREAMS CNN_1 0.76 0.34–0.71 0.54 0.61

CNN_3 0.76 0.34–0.71 0.52 0.61

CNN_5 0.75 0.31–0.68 0.42 0.56

CNN_7 0.73 0.27–0.67 0.53 0.63

CNN_LSTM_3 0.83 0.43–0.73 0.55 0.61

CNN_LSTM_5 0.83 0.41–0.75 0.55 0.59

CNN_LSTM_7 0.78 0.42–0.74 0.52 0.58

CNN_F_1 0.77 0.39–0.70 0.54 0.62

CNN_F_3 0.78 0.25–0.67 0.51 0.66

CNN_F_5 0.75 0.36–0.65 0.5 0.64

CNN_F_7 0.72 0.32–0.71 0.5 0.63

CNN_LSTM_F_3 0.83 0.32–0.71 0.52 0.61

CNN_LSTM_F_5 0.84 0.31–0.72 0.54 0.64

CNN_LSTM_F_7 0.8 0.16–0.71 0.48 0.59

ISRUC CNN_1 0.76 0.29–0.63 0.53 0.59

CNN_3 0.75 0.29–0.64 0.52 0.61

CNN_5 0.73 0.26–0.63 0.48 0.58

CNN_7 0.73 0.24–0.57 0.47 0.56

CNN_LSTM_3 0.8 0.36–0.65 0.54 0.6

CNN_LSTM_5 0.78 0.42–0.66 0.54 0.61

CNN_LSTM_7 0.75 0.38–0.60 0.51 0.57

CNN_F_1 0.75 0.42–0.68 0.56 0.64

CNN_F_3 0.75 0.35–0.65 0.52 0.63

CNN_F_5 0.73 0.37–0.66 0.51 0.6

CNN_F_7 0.72 0.35–0.62 0.49 0.58

CNN_LSTM_F_3 0.79 0.40–0.68 0.56 0.65

CNN_LSTM_F_5 0.76 0.43–0.69 0.57 0.66

CNN_LSTM_F_7 0.74 0.29–0.66 0.53 0.64

Results report agreement in terms of kappa index with respect to the corresponding human clinical scorings for each dataset. Rows within each dataset correspond to

the different tested neural network configurations as described in the experimental design.

https://doi.org/10.1371/journal.pone.0256111.t003
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and external validation scenarios. The third column in Table 3 shows the reference local pre-

dictions achieved by the models in their respective testing sets (last column of Table 1). Subse-

quently, the fourth column shows the corresponding ranges of the inter-database external

predictions as derived from data in Table 2. These ranges exclude data from the main diagonal

of Table 2, i.e. for dataset k, performance of M(k) is excluded, hence regarding performance

when the individual models are presented with the target dataset on an external prediction sce-

nario exclusively. The resulting average performance is shown in the fifth column. Finally, the

last column of Table 3 shows the corresponding performance when the ensemble model is

used for predicting the corresponding dataset. Similarly, ENS(k) excludes M(k) from the

ensemble, e.g. for HMC, the derived predictions result from ENS[M(Dublin), M(SHHS), M
(Telemetry), M(DREAMS), M(ISRUC)], and so for.

Finally, Table 4 shows the global results by aggregating performance of the respective mod-

els across all the tested datasets. Specifically, each row in the second, third, and fourth columns

of Table 4 is calculated by averaging the corresponding rows of columns three, five, and six, in

Table 3, i.e. across all the six datasets. Columns five, six, and seven in Table 4 respectively rep-

resent the averaged inter-database performance differences between (i) the individual models

in their respective local testing datasets and their averaged external dataset predictions, (ii) the

individual models in their respective local testing datasets and the prediction of the ensemble

model, and (iii) the averaged external dataset predictions of the individual models and the cor-

responding ensemble model prediction.

Analysis of experimental data

Best model (CNN vs CNN-LSTM)

According to Table 4, the proposed deep neural network approach achieves its best generaliza-

tion performance across all the tested datasets on its CNN_LSTM_5 architectural variant. This

configuration did achieve the best overall performance both in the local as well as in the

Table 4. Global performance comparison by aggregating results across all datasets.

Model

configuration

Individual models—local

dataset (I)

Individual models—external

datasets (II)

Ensemble—external

dataset (III)

I vs II

differences

I vs III

differences

II vs III

differences

CNN_1 0.7417 0.5333 0.6167 -0.2083 -0.125 0.0833

CNN_3 0.7367 0.5117 0.6133 -0.225 -0.1233 0.1017

CNN_5 0.7217 0.4783 0.5833 -0.2433 -0.1383 0.105

CNN_7 0.7133 0.485 0.59 -0.2283 -0.1233 0.105

CNN_LSTM_3 0.7967 0.5433 0.625 -0.2533 -0.1717 0.0817

CNN_LSTM_5 0.8017 0.5433 0.6267 -0.2583 -0.175 0.0833

CNN_LSTM_7 0.7733 0.535 0.6133 -0.2383 -0.16 0.0783

CNN_F_1 0.74 0.4683 0.545 -0.2717 -0.195 0.0767

CNN_F_3 0.73 0.4433 0.535 -0.2867 -0.195 0.0917

CNN_F_5 0.7167 0.4183 0.5117 -0.2983 -0.205 0.0933

CNN_F_7 0.7117 0.415 0.5083 -0.2967 -0.2033 0.0933

CNN_LSTM_F_3 0.8 0.4617 0.5417 -0.3383 -0.2583 0.08

CNN_LSTM_F_5 0.7983 0.4683 0.5517 -0.33 -0.2467 0.0833

CNN_LSTM_F_7 0.7783 0.4417 0.5333 -0.3367 -0.245 0.0917

Results report average agreement in terms of kappa index with respect to the corresponding human clinical scorings for each dataset: Local testing sets using individual

models (I), external datasets using individual models (II), and external datasets using an ensemble of individual models (III). Each row corresponds to the different

tested neural network configurations as described in the experimental design. The highest absolute values on each column are highlighted in bold.

https://doi.org/10.1371/journal.pone.0256111.t004
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external dataset prediction scenarios. The implementation of epoch sequence learning by

concatenating the LSTM processing block to the output of the preceding CNN feature output

layer results on an overall improvement of the model’s performance. In general the

CNN-LSTM configuration outperforms the respective CNN-only counterpart for the same

sequence length at both local and external generalization scenarios. Performance improves

with increasing L, reaching a saturation value around L = 5, after which generalization of the

model decreases again below the validation indices obtained for L = 3. When using the CNN-

only configuration, on the other hand, augmentation of the epoch sequence length does not

translate on any network´s prediction improvement. This result for the CNN-only configura-

tion seems to be a consequence of learning overfitting, as Table 1 shows that performance on

the respective training sets nevertheless keeps improving with higher values of L. For the

CNN-LSTM configuration, however, the trend seems to be consistent between the respective

training and generalization performances.

Signal prefiltering

Data from Table 4 seems to rather advise against the use of the optional filtering pre-process-

ing step. A closer look to the results of Tables 1–3, however, does show an inconsistent effect

across the individual tested datasets. Actually data could be regarded as inconclusive or even

favorable to the use of filters, with the notable exception of the results achieved for the Dublin

dataset. As evidenced by data in Tables 2 and 3, the filtering step seems to have a totally differ-

ent effect on the predictability of this dataset as compared with the rest. Remarkably, however,

notice that difficulties of the models in predicting Dublin’s data are only evidenced when the

validation is carried out on an external prediction scenario. When using Dulin as independent

local testing dataset, corresponding data in Table 1 do not show the pronounced performance

decay as in the previous setting. This result evidences the database variability problem, and

thus importance of expanding the validation procedures beyond the usual local testing sce-

nario, including a sufficiently heterogeneous and independent data sample from a variety of

external sources.

Database generalization performance

Having the expanded validation scenario in mind, and attending to experimental data con-

tained in Tables 1–4, the following general statements might be formulated:

1. The individual model’s local-dataset generalization performance overestimates the actual

inter-dataset external generalization. This is a consistent result across all the tested datasets

and network configurations (see Table 3). The trend is globally evidenced in Table 4 as well,

as I vs II differences in the fifth column consistently show negative values. The downgrade

in performance when evaluating external data is considerable, with associated kappa indices

decreasing on the range between 0.21 up to 0.34 for the tested architectural variants.

2. The proposed ensemble method improves external inter-dataset generalization perfor-

mance. This result is also consistent across all experimental simulations as evidenced in

Tables 3 and 4. The improvement as with respect to the performance of the individual mod-

el’s estimations ranges between 0.08 and 0.10 on the related kappa indices (see II vs III dif-
ferences in column 7 of Table 4).

3. Individual model’s local-dataset generalization estimation still represents an upper bound

for the external inter-dataset generalization achieved by the ensemble approach. Similarly,

evidence is consistent across data of Tables 3 and 4, with absolute kappa differences ranging

between 0.12 and 0.26 in this case (I vs III differences in column six of Table 4).
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Analysis in the context of the expected human performance

Table 5 summarizes literature results reporting on the expected human inter-scorer variability

for the sleep staging task. Only works reporting agreement in terms of kappa index are

included. Results in Table 5 are structured depending upon if experimentation implements a

local or an external validation scenario, enabling a corresponding comparison with our results.

In this regard, it is interpreted that a local validation was carried out when agreement among

different human scorers belonging to a same center is compared. Usually this also involves the

use of their own local database as the source for comparing their scorings. External inter-rater

validations, on the other hand, refer to the cases in which experts compare their scorings using

an independent dataset external to their center of origin. As reference for our results the

CNN_LSTM_5 architectural variant is used, which achieved the best overall performance both

in the local as well as in the external dataset prediction scenarios through our experimentation.

Attending to data in Table 5, our results in the local database generalization scenario are in

the range of the expected human agreement under similar conditions (Table 5, κ = 0.78–0.83

ours vs 0.73–0.87 reference). As per dataset, the trend holds for HMC (Table 5, κ = 0.79 vs 0.74

reference) and SHHS (Table 5, κ = 0.82 vs 0.81–0.83 reference), while for ISRUC, the auto-

matic system performs somewhat under the expected expert levels (Table 5, κ = 0.78 vs 0.87

reference). For HMC, human reference agreement levels were estimated using a subset of five

recordings that were rescored by a total of 12 clinical experts from our sleep lab. The resulting

pair-wise kappa agreements between all the combinations of experts were then averaged. To

minimize the possibility of a biased case representation, the five recordings were selected, out

of the 154 available, using a structured approach based on their relative positioning in the

human-computer kappa performance distribution (12.5, 37.5, 50, 62.5 and 87.5 percentiles),

where the original clinical expert scorings were used as reference. A similar selection approach

was used on a previous study of the authors for the validation of an EEG arousal detection

Table 5. Indices of human inter-rater agreement reported in the literature compared with the performance achieved by our proposed deep-learning approach.

Dataset Inter-rater agreement (same

center/database)

Our results (local

validation)

Inter-rater agreement (different

center/database)

Our results (external

validation)

HMC 0.74 0.79 --- 0.63

Dublin --- 0.79 --- 0.63

SHHS 0.81–0.83 [52] 0.82 --- 0.61

Telemetry --- 0.80 --- 0.69

DREAMS --- 0.83 --- 0.59

ISRUC 0.87 [38] 0.78 --- 0.61

Overall range (our testing
benchmark)

0.74–0.87 0.78–0.83 --- 0.59–0.69

Other databases 0.73 [11]

0.77–0.80 [55]

0.84–0.86 [56]

0.86 [54]

--- 0.46–0.89 [55]

0.72–0.75 [50]

0.62 [57]

0.76 [51]

0.68 [49]

0.63 [53]

0.58 [21]

0.75 [54]

0.66 [23]

---

Overall range (all databases) 0.73–0.87 0.78–0.83 0.46–0.89 0.59–0.69

Results report agreement in terms of kappa index. The CNN_LSTM_5 model is taken as reference for the results regarding our automatic approach. Overall results

across databases are highlighted in bold.

https://doi.org/10.1371/journal.pone.0256111.t005
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algorithm [58]. No other studies reporting on human kappa agreement were found in the liter-

ature for the rest of the datasets used in this work.

As with respect to the external inter-database scenario, analysis of the literature shows a

general decrease in human performance when compared to the respective local variability ref-

erences. Specifically, two works, [54] and [55], allow comparison between local and external

inter-scorer variability on the same dataset. In general results on these works follow the previ-

ously mentioned downgrading trend. In [55], however, an exception to this trend is reported

in one of the two tested subgroups: 23 recordings scored using the R&K standard, and 21

recordings scored using the AASM rules. Specifically for the first subgroup of 23 recordings,

inter-scorer agreement seems to actually increase among scorers coming from different cen-

ters (from κ = 0.77, when scorers belong to the same center, up to κ = 0.85–0.89 [55]). This

result seems to represent an outlier, and for the second subgroup the results seem to support

again the general downgrading trend reported in the literature (from κ = 0.80, when scorers

belong to the same center, down to κ = 0.46–0.49 [55]).

Unfortunately, baseline levels of human agreement for the external prediction scenario can-

not be determined from the current available literature for none of the databases used in this

work. With that in mind, external generalization performance of our automatic scoring

approach still seems to fall within the range of the expected human agreement reported for

other databases (Table 5, κ = 0.59–0.69 ours vs 0.46–0.89 in general).

Analysis in the context of other automatic approaches

In Table 6 validation results comprising other automatic approaches reported in the literature

are summarized. As in the previous case, results are structured considering if the performance

metrics were obtained on the basis of a local or an external validation scenario. Only studies

reporting agreement in terms of kappa index were considered. As reference for our results the

CNN_LSTM_5 architectural variant is used.

According to Table 6, when comparing local generalization performance on the datasets

used in this work, our approach falls within the upper range of the corresponding state-of-the-

art results (Table 6, κ = 0.78–0.83 in this work vs 0.44–0.84 overall). In particular, the architec-

ture presented in this work clearly outperforms the previous results reported by the authors

using the exact same datasets (κ = 0.44–0.68 in [24]). Other works have reported results in the

case of the Dublin, SHHS, and ISRUC datasets. In the Dublin dataset our approach (κ = 0.79)

outperforms results in existing literature [59,60] (κ = 0.66–0.74) but in the case of [18] (κ =

0.84). Notice [18] does not report results regarding external independent validation, and there-

fore overfitting to the local database should not be discarded. In the case of SHHS, our results

(κ = 0.82) outperforms those reported in [62] and [64] (κ = 0.73 and 0.81, respectively) and

matches those in [61]. On one another author’s previous work [63] slightly better results were

reported for SHHS (κ = 0.83), however the results in [63] shared the limitation that validation

was only carried out the local dataset prediction scenario. No local performance reference has

been found in the literature for HMC, Telemetry, and DREAMS datasets.

When considering performance on the local dataset scenario globally, including results

reported on other benchmarks, performance of our approach still holds on the upper range

(Table 6, κ = 0.44–0.86 globally vs 0.78–0.83 in this work). Notice that the highest performance

reported in [65] (κ = 0.86) was obtained using 50% of the data from a small dataset of 8 record-

ings only, also not including validation data on external datasets.

When considering data on the external dataset validation, Table 6 shows a general global

decrease in the performance of the automatic methods as with respect to the corresponding

indices on the local database validation scenario. Specifically, in all the works that allow
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comparison between local and external database generalization using the same algorithm

[20,23,24,62,64] decrease in performance in noticeable when tested using external indepen-

dent datasets. This trend is consistent with the results of our experimentation, as well as with

data regarding human inter-rater agreement analyzed in Table 5.

Overall, the highest external database generalization performance reported in the literature

has been described in [21] (κ = 0.72–0.77). Results regard the best model on a leaving-one-out

consensus of experts using one independent external dataset (IS-RC, see Table 1 in [21]).

Unfortunately, local generalization performance in terms of kappa was not reported for the

same model in that work. Therefore, it is not possible to evaluate possible differences between

local and external database generalization using kappa as reference. Very recently, however,

generalization of the same algorithm was evaluated on two additional external datasets, in this

case reporting a combined average performance of κ = 0.61, almost in line with the reference

human levels in the corresponding cohort (κ = 0.66) [23], but underperforming with respect

to the original values reported in [21] (κ = 0.72–0.77).

Table 6. Indices of automatic scoring agreement reported in the literature in comparison with the results achieved by the proposed deep-learning approach.

Dataset Local dataset prediction scenario Our results (local dataset) External dataset prediction scenario Our results

(external dataset)

HMC 0.62 [24] 0.79 0.60 [24] 0.63

Dublin 0.44 [24] 0.79 0.19 [24] 0.63

0.84 [18]

0.74 [59]

0.66 [60]

SHHS 0.65 [24] 0.82 0.62 [24] 0.61

0.82 [61] 0.53–0.56 [61]

0.73 [62] 0.73 [62]

0.83 [63] 0.52–0.73 [64]

0.81 [64]

Telemetry 0.58 [24] 0.8 0.53 [24] 0.69

DREAMS 0.62 [24] 0.83 0.43 [24] 0.59

ISRUC 0.68 [24] 0.78 0.63 [24] 0.61

0.65 [64] 0.57–0.68 [64]

Overall range (our testing benchmark) 0.44–0.84 0.78–0.83 0.19–0.73 0.59–0.69

Other databases 0.86 [65] --- 0.42–0.63 [55] ---

0.76–0.80 [17] 0.68–0.70 [61]

0.84 [66] 0.69 [62]

0.80 [59] 0.72–0.77 [21]

0.68 [67] 0.45–0.70 [20]

0.81 [62] 0.61 [23]

0.73–0.76 [20] 0.50–0.76 [64]

0.82 [68]

0.77 [60]

0.66 [23]

0.70–0.79 [64]

Overall range (all databases) 0.44–0.86 0.78–0.83 0.19–0.77 0.59–0.69

Results report agreement in terms of kappa index. The CNN_LSTM_5 model is taken as reference for the results regarding our automatic approach. Overall results

across databases are highlighted in bold.

https://doi.org/10.1371/journal.pone.0256111.t006
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Four studies [24,61,62,64] validate their approach over the SHHS database. Comparatively

performance of our algorithm (κ = 0.61) falls within the range of the reported results (κ =

0.52–0.73). Two studies [24] and [64] have in addition used the ISRUC dataset as external

independent test set, with respective results of κ = 0.63 and κ = 0.57–0.68. Of these two previ-

ous studies only the results in [24] are fully comparable to ours (κ = 0.61), as they involve the

exact same patient selections in both SHHS and ISRUC. The results in [24] correspond to a

previous work of the authors using the exact same datasets as in the present work, but using a

different neural network architecture. When comparing the average performance of the

method presented in [24] across the full set of external datasets used in both studies, it can be

shown that the new architecture proposed in the current study improves the overall generaliza-

tion capabilities both in the local (κ = 0.60 in [24] vs 0.80 in this work) as well as in the external

(κ = 0.50 in [24] vs 0.63 in this work) validation scenarios.

Discussion

This study has addressed the extensive validation of a deep-learning based solution for the

automatic scoring of sleep stages in polysomnographic recordings. Proper handling of the dif-

ferent sources of variability associated with the task has been one of the major traditional prob-

lems in the development of automated sleep staging systems. While clinical standard

guidelines, such as those contained in the R&K [69] or AASM [1] manuals, aim for a certain

level of homogenization in the recording and analysis process, inter-database differences are

inevitable in practice. Data variability includes differences in the targeted patient populations,

recording methods, or human-related interpretability, see [24] for a detailed discussion. Vali-

dation procedures reported in the literature have been so far limited. Performance of the

reported methods is often extrapolated using small or non-independent datasets, mostly

involving data limited to one particular database. Consequently, the performance is usually

bounded to a particular data source, risking overfitting bias. Validation studies usually lack of

enough data heterogeneity to allow establishment of valid generalizations. Our experimenta-

tion, together with the analysis of the existing literature, has shown the non-triviality of trans-

lating the estimated model’s local generalization capabilities in the predictability of

independent external datasets. When a system trained with some particular data is presented

with similar examples, which are gathered from an external database, performance tends to

decrease. This result further motivates the necessity of considering external multi-database

prediction as a fundamental mandatory step in the validation of this class of systems. It also

suggests a critical revision of the related existing literature in this regard.

In this work we wanted to address this issue and challenge our design by evaluating its per-

formance beyond data from a local database testing set (local generalization validation). For

this purpose we have expanded our tests to include a wide selection of previously unseen exter-

nal databases (external generalization validation). Effectively, by comparing both procedures it

is possible to better extrapolate the real generalization performance of the method. For that

purpose we have intentionally aimed at selecting databases freely available online in order to

enhance reproducibility of the experiments. In total, six independent public databases have

been included in this study. To our knowledge this is largest number of datasets to have ever

been included on a study of this kind.

On this challenging validation scenario, the deep learning architecture proposed in this

work has shown good general performance, as compared with both human and automatic ref-

erences available throughout the literature. We remit to the respective analyses carried out

around data collected in Tables 5 and 6. Still, direct comparison of the results with other works

has to be performed with caution. Effectively, even when referencing the same database source,
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studies might differ on the specific used validation approach, the number of involved record-

ings, or the particular patient conditions in their respective data selections or training parti-

tions. The specific protocols and subject selection details of each particular study can be found

within the referenced publications in Tables 5 and 6. Only the results provided on an earlier

study of the authors [24] can be directly compared, as they address the exact same database

benchmark. In this regard, the new architecture proposed in the current study outperforms

the overall generalization capabilities previously achieved both in the local (κ = 0.60 in [24] vs

0.80 in this work) as well as in the external (κ = 0.50 in [24] vs 0.63 in this work) validation

scenarios.

Results from our experimentation have shown that the new CNN+LSTM architecture

design introduced in this work translates into considerable improved generalization perfor-

mance. This improvement has been noticeable on both the local and the external database vali-

dation scenarios, and across all the tested configuration variants of the proposed neural

network architecture. Experimental data have pointed out as well toward the convenience of

adding epoch sequence learning mechanisms using an additional LSTM output block, as with

respect to the approach of increasing the length of the input pattern on the CNN-only configu-

ration mode. Moreover, as dimensionality of the CNN input space (4x3000xL) is much bigger

than the dimensionality of the LSTM input feature space (50xL), scalability of the solution also

improves. Overall, the best performance achieved throughout our experimentation has corre-

sponded to the CNN_LSTM_5 configuration. No further benefits on increasing the length of

the sequence beyond the five epochs have been noticed.

On the other hand, our global results have casted doubt on the convenience of using the

proposed optional signal pre-filtering step. This result seems counterintuitive at first sight, as

filtering was hypothesized to contribute to the homogenization of input data. Thereby, to can-

cel out patient and database-specific artifacts unrelated to the relevant neurophysiological

activity, which could hinder generalization of the resulting models. However, data have not

shown a consistent effect across all the tested datasets. More research is hence needed to fully

understand the underlying causes of the high inter-dataset variability when using the proposed

filtering pipeline. The same variability, on the other hand, evidences once again the impor-

tance of using a sufficiently heterogeneous and independent data sample, from a variety of

external sources, to allow the establishment of valid and generalizable conclusions about the

performance of an automatic scoring algorithm.

Last but not least, our experimentation has shown that the use of an ensemble of local mod-

els leads to better generalization performance in comparison with the use of individual local

models alone, hence confirming our preliminary results [24]. In this regard, it is a well-known

result that incrementing the amount and heterogeneity of the input training data is an effective

approach to achieve better generalization in machine learning. The proposed ensemble

approach, however, provides additional advantages in terms of scalability and flexibility of the

design. That means the ensemble can be easily expanded by adding new local models when

new training data, or new datasets, are available. Moreover, the possibility to develop models

based on local datasets reduces the necessity to exchange patient data between different cen-

ters, otherwise needed to increase heterogeneity of one big learning dataset. This addresses

potential issues in relation with preservation of patient privacy. Altogether, our results thus

motivate further exploration of the proposed ensemble-based design in future investigations.

Some possible limitations of our study should be mentioned as well. Specifically, although

the proposed ensemble strategy suggests a quantitative improvement in the generalization

capabilities among independent databases, there is still notable degradation in the generaliza-

tion performance in reference to the corresponding local testing datasets. The origin of this

degradation must be studied in more detail, investigating alternative approaches to possibly
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reduce these differences. On the other hand, analysis of the literature regarding human inter-

scorer variability has suggested that differences between local and external validation scenarios

are likely to affect human experts in a similar manner. As the goal for an automatic scoring

algorithm (in which the reference gold standard is based on subjective human scorings) is to

achieve comparable agreement with respect to the human inter-scorer levels, it remains to be

investigated how much of this degradation can actually be explained by the same intrinsic

effect in human scoring. For this purpose, the reference levels of expected human agreement,

and the corresponding local-external validation differences, need to be assessed for each par-

ticular database subject to validation. However, among the databases used in this study, refer-

ence levels of human scoring variability were only available for the HMC, SHHS, and ISRUC

datasets, all of them constrained to a local validation scenario. Further investigation is there-

fore needed involving databases for which the reference levels of human agreement are avail-

able including the external validation scenario.

In the case of the SHHS dataset a random selection of 100 PSG recordings was performed,

however we could have used more data available for this cohort and study the generalization

effects of the derived local models. Some recent studies have suggested that diversity of data

plays a more important role on generalization than the amount of data itself [64], however our

study did not include a specific protocol to test this hypothesis. Future work might explore

increasing the local sample size and add additional datasets to the testing benchmark. Future

research will also include the exploration of alternative ensemble combination strategies. The

Naive-Bayes combiner [70], for example, might be an appealing approach in taking advantage

of the different output probability distributions associated with each individual model in the

ensemble. Better hyper-parameterization and data pre-processing methods must be also inves-

tigated. In particular, variability of the results for the Dublin dataset with respect to the pro-

posed filtering pipeline remain unclear, and need to be studied in more detail. Finally, future

work will be conducted toward addressing the effects of the input sampling rate (in this study

signals were resampled to 100 Hz) and study the contribution of the selected input signal deri-

vations to the resulting model’s generalization capabilities.
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back loop: the slow-wave microcontinuity of the EEG. IEEE Transactions on Biomedical Engineering.

2000; 47(9): p. 1185–1194. https://doi.org/10.1109/10.867928 PMID: 11008419

35. Kemp B. The Sleep-EDF Database [Expanded]. [Online].; 2013 [cited 2018. Available from: https://doi.

org/10.13026/C2X676.

36. Devuyst S. Analyse automatique de tracés polysomnographiques d’adultes. PhD Thesis.; 2011.

37. Devuyst S. The DREAMS Databases and Assessment Algorithm. [Online].; 2005 [cited 2021 07 01.

Available from: http://doi.org/10.5281/zenodo.2650142.

38. Khalighi S, Sousa T, Moutinho-Santos J, Nunes U. ISRUC-Sleep: A comprehensive publica database

for sleep researchers. Computer Methods and Programs in Biomedicine. 2016; 124: p. 180–192.

https://doi.org/10.1016/j.cmpb.2015.10.013 PMID: 26589468

39. ISRUC-SLEEP Dataset. [Online]. [cited 2018. Available from: https://sleeptight.isr.uc.pt/ISRUC_Sleep/.

40. Bishop C. Pattern recognition and machine learning New York: Springer; 2006.

41. Alvarez-Estevez D, van Velzen I, Ottolini-Capellen T, Kemp B. Derivation and modeling of two new fea-

tures for the characterization of rapid and slow eye movements in electrooculographic sleep recordings.

Biomedical Signal Processing and Control. 2017; 35: p. 87–99.

PLOS ONE Inter-database validation of automatic sleep scoring

PLOS ONE | https://doi.org/10.1371/journal.pone.0256111 August 16, 2021 25 / 27

https://doi.org/10.3389/fncom.2018.00085
http://www.ncbi.nlm.nih.gov/pubmed/30386226
https://doi.org/10.1038/s41467-018-07229-3
http://www.ncbi.nlm.nih.gov/pubmed/30523329
https://doi.org/10.3389/fnins.2018.00781
https://doi.org/10.3389/fnins.2018.00781
http://www.ncbi.nlm.nih.gov/pubmed/30459544
https://doi.org/10.5664/jcsm.9174
http://www.ncbi.nlm.nih.gov/pubmed/33599203
https://doi.org/10.1016/j.compbiomed.2020.103697
https://doi.org/10.1016/j.compbiomed.2020.103697
http://www.ncbi.nlm.nih.gov/pubmed/32339128
https://doi.org/10.1016/0013-4694%2892%2990009-7
https://doi.org/10.1016/0013-4694%2892%2990009-7
http://www.ncbi.nlm.nih.gov/pubmed/1374708
https://doi.org/10.1016/s1388-2457%2803%2900123-8
https://doi.org/10.1016/s1388-2457%2803%2900123-8
http://www.ncbi.nlm.nih.gov/pubmed/12948806
https://doi.org/10.13026/gp48-ea60
https://doi.org/10.13026/C26C7D
http://sleepdata.org
https://sleepdata.org/datasets/shhs/
https://sleepdata.org/datasets/shhs/
http://www.ncbi.nlm.nih.gov/pubmed/9493915
http://www.ncbi.nlm.nih.gov/pubmed/11300121
https://doi.org/10.1109/10.867928
http://www.ncbi.nlm.nih.gov/pubmed/11008419
https://doi.org/10.13026/C2X676
https://doi.org/10.13026/C2X676
http://doi.org/10.5281/zenodo.2650142
https://doi.org/10.1016/j.cmpb.2015.10.013
http://www.ncbi.nlm.nih.gov/pubmed/26589468
https://sleeptight.isr.uc.pt/ISRUC_Sleep/
https://doi.org/10.1371/journal.pone.0256111


42. Alvarez-Estevez D. A new automatic method for the detection of limb movements and the analysis of

their periodicity. Biomedical Signal Processing and Control. 2016; 26: p. 117–125.

43. Nair V, Hinton G. Rectified Linear Units improve restricted Boltzmann machines. In Proceedings of the

27th International Conference on Machine Learning; 2010; Haifa, Israel. p. 807–814.

44. Ioffe S, Szegedy C. Batch normalization: accelerating deep network training by reducing internal covari-

ance shift. ArXiv. 2015;(arXiv:1502.03167v3).

45. Goodfellow I, Bengio Y, Courville A. Deep Learning Cambridge, MA: MIT Press; 2016.

46. Lin X, Yacoub S, Burns J, Simske S. Performance analysis of pattern classifier combination by plurality

voting. Pattern Recognition Letters. 2003; 24(12): p. 1959–1969.

47. Lam L, Suen C. Application of majority voting to pattern recognition: an analysis of its behavior and per-

formance. IEEE Transactions on Systems, Man, and Cybernetics—Part A: Systems and Humans.

1997; 27(5): p. 553–568.

48. Cohen J. A coefficient of agreement for nominal scales. Educational and Psychological Measurement.

1960; 20: p. 37–46.
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