Received: 12 August 2020

Revised: 13 May 2021

W) Check for updates

Accepted: 31 May 2021

DOI: 10.1002/int.22546

RESEARCH ARTICLE

WILEY

Scalable feature selection using ReliefF aided
by locality-sensitive hashing

Carlos Eiras-Franco' ©® |
Amparo Alonso-Betanzos'

'Research Center on Information and
Communication Technologies (CITIC),
Universidade da Coruia, A Corufia,
Spain

*Department of Computer Science,
Universidad de Oviedo, Asturias, Spain

Correspondence

Carlos Eiras-Franco, Research Center on
Information and Communication
Technologies (CITIC), Universidade da
Coruiia, Edificio Area Cientifica D1.02,
Campus de Elvifia, 15008 A

Coruna, Spain.

Email: carlos.eiras.franco@udc.es

Funding information

Ministerio de Economia y
Competitividad, Grant/Award Numbers:
PID2019-109238GB-C2, TIN 2015-65069-
C2-1-R and TIN 2015-65069-C2-2-R;
Xunta de Galicia,

Grant/Award Numbers: ED431C 2018/
34, Centro singular de investigacion de
Galicia, accreditation (2016-2019);
European Union, Grant/Award Number:
FEDER funds

Bertha Guijarro-Berdifas' ©® |

| Antonio Bahamonde?

Abstract

Feature selection algorithms, such as ReliefF, are
very important for processing high-dimensionality
data sets. However, widespread use of popular
and effective such algorithms is limited by their
computational cost. We describe an adaptation of the
ReliefF algorithm that simplifies the costliest of its
step by approximating the nearest neighbor graph
using locality-sensitive hashing (LSH). The resulting
ReliefF-LSH algorithm can process data sets that are
too large for the original ReliefF, a capability further
enhanced by distributed implementation in Apache
Spark. Furthermore, ReliefF-LSH obtains better re-
sults and is more generally applicable than currently
available alternatives to the original ReliefF, as it can
handle regression and multiclass data sets. The fact
that it does not require any additional hyperpara-
meters with respect to ReliefF also avoids costly
tuning. A set of experiments demonstrates the
validity of this new approach and confirms its good
scalability.

KEYWORDS
big data, feature selection, locality-sensitive hashing, ReliefF,
scalability

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use,
distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
© 2021 The Authors. International Journal of Intelligent Systems published by Wiley Periodicals LLC

Int J Intell Syst. 2021;36:6161-6179. wileyonlinelibrary.com/journal/int 6161

https://orcid.org/0000-0001-6322-7593
https://orcid.org/0000-0001-8901-5441
https://orcid.org/0000-0003-0950-0012
https://orcid.org/0000-0002-2188-9035
mailto:carlos.eiras.franco@udc.es
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fint.22546&domain=pdf&date_stamp=2021-06-18

6162 EIRAS-FRANCO FT AL,
—LWI LEY

1 | INTRODUCTION

The greatly increased popularity of data science in recent years is partly due to the accu-
mulation of enormous volumes of data and that continue to be produced daily. So-called big
data' is, nonetheless, a double-edged sword, since the promise of greater insight is coun-
teracted by the inherent difficulty of processing vast amounts of data, rendering many
machine learning algorithms unusable. Data sets may contain many samples, many vari-
ables per sample, or both. For data sets with many variables, dimensionality reduction is
advisable to improve the performance of learning methods.” Dimensionality reduction
techniques can be classified as feature extraction or feature selection techniques. In feature
extraction, the number of features in a data set is reduced by creating new features from
original features that are then discarded, while in feature selection, irrelevant or redundant
variables are discarded to obtain a reduced subset of input variables that still accurately
describes the problem.” Reducing the number of variables enhances the comprehensibility
of the data set and the fit of data by learning methods.

Another important way to tackle big data is distributed computing. Developed as a
software solution are distributed processing platforms based on using clusters of several
desktop computers to process enormous quantities of data. This approach started gaining
popularity with Google's unveiling of the MapReduce programming paradigm in 2008.°
Since then several open-source implementations have been described that follow this
paradigm, the most popular being Apache Hadoop® and, launched a few years later,
Apache Spark.” Their success has given rise to machine learning libraries, such as
Mahout® for Hadoop and MLLib’ for Spark, not to mention the re-implementation of
popular algorithms—including some feature selection algorithms—to leverage distributed
computing.

Nonetheless, sometimes the computational complexity of an algorithm cannot be reduced
or the volume of data is such that even distributed implementation requires lengthy execution
times. A possible solution is for data scientists to use techniques that obtain an approximation
of the exact (but computationally more costly) model, which, despite being approximate, may
be comparable to the exact model in terms of accuracy.

We describe an approximation of the ReliefF feature selection algorithm that addresses
its main limitation—a high computational cost. While the effectiveness of ReliefF has been
amply demonstrated, as will be shown in Section 2, its use for large-scale data sets has been
hindered by the great computational demand. Accounting for most of ReliefF's computa-
tional load is its use of the nearest neighbor graph. To address this crucial limitation, we
used a locality-sensitive hashing (LSH) algorithm to build an approximate, rather than an
exact, graph. This approach, which has yielded encouraging results in preliminary tests,” is
now fully developed and compared with the state of the art. The contributions of this article
are as follows:

1. Our algorithm can accurately approximate the work done by ReliefF for a fraction of the
computational cost.

2. Our implementation in Apache Spark leverages distributed computing to process data sets
beyond the reach of ReliefF. Distributed computation can also be used to speed up the
processing of data sets of any size.

- ET AL. 6163
EIRAS-FRANCO Wl LEY

3. Like the original ReliefF, and unlike current alternatives for approximating the nearest
neighbor graph, our algorithm can handle binary, multiclass, and regression data sets.

4. Since no new hyperparameters are introduced, our method does not require manual
hyperparameter tuning.

2 | RELATED WORK

The original Relief algorithm led to the development of a family of Relief-based feature
selection algorithms, including ReliefF. Relief is a supervised feature ranking algorithm
that estimates the relevance of features and ranks them for classification purposes’ by
establishing a relevance threshold above which only important features are retained.
Weights are assigned to each attribute that help discerns elements that are very close
together. In the case of classification data sets, for each example, Relief searches for the
nearest elements within the same class (nearest hit) and within a different class (nearest
miss) and updates the weight of each attribute A in proportion to the difference between the
example value and the nearest hit and nearest miss values. The resulting weight W of
attribute A can be interpreted in terms of probability. W approximates the following dif-

ference of conditional probabilities'’:

W [A] = P (different value of A |different class))
—P(different value of A |same class).

The good results obtained using Relief encouraged further research that yielded numerous
extensions capable of dealing with multiclass problems and incomplete or noisy examples.'’
ReliefF is one such extension that has become even more popular than the original algorithm.
Implementations of ReliefF are present in many machine learning software libraries. Further
specializations of the algorithm were later introduced'' that enabled it to tackle regression
problems'” and multilabel data sets,'”'* and that factored in the cost of obtaining attributes."’
While ReliefF has been thoroughly tested'®'” and has been shown to be useful in a great variety
of problems,'¥*’ its great computational complexity makes its use on large-scale data sets
prohibitively costly.”*

While modifications to increase ReliefF's ability to handle large data sets have been
developed that use distributed implementations,””*® sampling,”’ or random kd-trees to
approximate the nearest neighbor graph,” their effectiveness in handling very large-
dimensional data sets is limited. Of the ReliefF alternatives, the most efficient is DiReliefF,*°
which approximates ReliefF's attribute ranking by using a sampling scheme that greatly
reduces the number of calculated neighbors. DiReliefF is also parallelizable, with its distributed
implementation in Apache Spark simplifying the handling of large data sets.

Like many other feature selection, information retrieval, data mining, and machine learning
methods, ReliefF relies on the analysis of similarity graphs. The k-nearest neighbor graph
(kNN-graph) is the most popular such graph used in machine learning. A kNN-graph is a
directed graph constructed over a set with n elements D = {X;, X%, ..., X}, such that edges (x;, x;)
indicate that x; is among the k more similar elements to x; according to some similarity
measure o (x;, X;).

The resulting graph is very useful, but is computationally very costly to build because
n(n — 1) /2 pairwise comparisons are required; the result is a computational complexity value

6164 EIRAS-FRANCO FT AL,
—LWI LEY

of O(n?). Some variations of the algorithm speed up calculations in specific conditions, for
example, small dimensionality in the input space” or use of certain similarity measures.”
However, only approximate solutions to dealing with high-dimensionality data in a reasonable
time have been developed. One approach is to use generic similarity measures to replicate the
exact graph as closely as possible while maintaining a low computational cost. Algorithms that
obtain approximate graphs—as opposed to exact graphs—have been based on divide-and-
conquer approaches” and local search.”” However, LSH’** is the approach that has shown
most success to date.

Although the optimal way to exploit this technique remains an open problem, LSH
essentially builds data structures that enable an element in a data set to be searched for in
sublinear time. LSH maps data of any size into a smaller space using a hashing function that
maximizes the possibility of assigning the same value to elements that are similar. It has
been used, for instance, selection’ and also has been successfully employed for kNN-graph
construction’”** and for the related problem of kNN search.’® Solutions are based on iso-
lating small clusters of similar elements, used to calculate small isolated subgraphs that are
then merged to obtain the complete approximate graph. Each element is only compared to
other elements that LSH deems to be similar, that is, comparisons are avoided with
elements that are very distant in the input space and so not among the nearest neighbors.
This reduction in the number of unnecessary pairwise comparisons is what brings the
computational cost down.

2.1 | Variable resolution LSH

Variable resolution LSH (VRLSH)***” is the most recent algorithm that uses the LSH approach.
As shown in Algorithm 1 and as described in detail below, it takes iterative LSH steps to obtain
an approximate kKNN-graph.

To compute the approximate kNN-graph, VRLSH first assigns one or several hash keys
to each element x; in the data set D, using the selected LSH function (line 4). This function
gives the same hash key to elements that are similar according to a specific similarity
measure. A given, initially large, resolution level for similarity is used to assign the same
hash key to very similar elements that are then grouped (line 5). Thanks to the properties of
the hash function, these groups—or buckets—will contain elements that are very similar
according to the similarity measure selected. An exact subgraph is constructed for each of
the groups using the brute-force procedure, that is, computing each possible pairwise
similarity. Since each element x; is assigned several keys, it can appear in various groups
and, therefore, in various subgraphs; those elements can be used to merge the initially
isolated subgraphs, yielding larger subgraphs (loop in line 6). The data set D is then sim-
plified by removing elements that have been involved in a prespecified Cyax > k number of
pairwise comparisons. Those steps are repeated using the simplified D, generating new
subgraphs that are merged with the existing subgraphs until the result is a single graph
containing all points and links to the nearest neighbors. After each iteration the search
resolution is reduced, forcing LSH to create groups of elements that are slightly more
dissimilar than in the previous iteration. As a final step (line 10 on), if the simplified data
set has fewer than k elements, the process is stopped and, for every x; € D, the nearest
neighbors will be sought among the neighbors of the neighbors, or, if there are no outgoing
links in the graph, among the neighbors of elements selected at random.

- ET AL. 6165
EIRAS-FRANCO Wl LEY

Algorithm 1: VRLSH algorithm.

Input: D,k +Dataset, Desired number of neighbors of
each class
Output: G < Graph linking each point to its k
nearest neighbors
Ro.Cpax « estimateHyperparameters(D)
G+ 0,D «D, R+ Ry
while |D’| > k and |buckets| > 1 do
hashElems < LSH(D', R)
buckets < hashElems.groupByH ash()
foreach b in buckets do
if (b.size > 1) then
G < G U ezactKNN (b.elems, k) end
end
8 D« D —
G.get NodesWith At LeastComparisons(Cuax)

BN - N N

9 decrease R
end
10 D+
D' UG.getNodesWithFewerNeighborsThan(k)
u if |D’| > 1 then

12 foreach p in D’ do
13 if |p.neighbors| = 0 then
14 | p.neighbors < randomSample(D, k)
end
else
15 p.neighbors < topK (k,p.neighbors U
neighbor Descent(p, G))
end
end
end

An additional advantage of VRLSH is that the estimation procedure finds suitable values for
the hyperparameters of the method. It does this by efficiently searching for resolution values
and hash function hyperparameters that yield adequately sized buckets to start computing the
graph (a process described in detail in Reference [34]). With this automated procedure, the user
only needs to provide the data set and indicate the desired number of neighbors to be obtained
in the graph. In avoiding costly test runs of the complete algorithm with different hy-
perparameter values, the total computational effort of using this method is effectively reduced.
Moreover, although VRLSH automatically finds a suitable value for Cy4x that offers a rea-
sonable trade-off between execution time and accuracy, this value can be overridden by users to
obtain, depending on their needs, either a faster or a more accurate approximation.

2.2 | Limitations of kNN-graph computing algorithms for ReliefF
The above-described algorithms are designed to obtain a single kNN-graph for the whole data

set, while ReliefF requires a graph that links each element to its k nearest neighbors in each
class in the data. Needed to approximate the graph required by ReliefF are nontrivial

6166 EIRAS-FRANCO FT AL,
—LWI LEY

modifications, which depend on the structure of the graph-building algorithm. Those mod-
ifications can have a great impact on the performance and scalability of the resulting method.
In the worst-case scenario, the building process needs to be repeated for the whole data set as
many times as there are classes in the data, which, for multiclass data sets, results in a great
computational overhead. To enhance VRLSH suitability for tackling this type of problem, we
propose a profound modification that obtains the desired graph in a single pass over the data.

3 | PROPOSED ALGORITHM

Our aim was to obtain an algorithm that is capable of handling all the data set types that can be
processed with the most popular implementations of ReliefF—including multiclass and re-
gression data sets—and that yields an approximation of the ReliefF ranking output while
requiring less computational effort.'” The computational cost of this algorithm predominantly
comes from the process that obtains the nearest hits and misses for each element, which entails
obtaining the kNN-graph. Our proposal to reduce the computational cost is, therefore, to
substitute the exact KkNN-graph required for ReliefF with an approximate kNN-graph computed
with a new VRLSH-based method.

For regression data sets, VRLSH does not need to be changed for ReliefF to use the
resulting approximate kNN-graph, as no distinction needs to be made between hits and
misses for regression data. For classification data sets, however, VRLSH has to be vastly
changed for ReliefF to be able to rank attributes by weight. While the approximate graph
calculated by VRLSH has a single list of neighbors for each element in the data set, for
classification data sets ReliefF needs to distinguish between hits and misses. VRLSH
therefore has to be extended to maintain, for each element in the data set, a list of neighbors
for each class.

VRLSH also simplifies the initial data set D after each iteration (see line 8 in Algorithm 1), a
process that needs to be modified to accommodate classification problems. In particular, given
element x;, VRLSH keeps count_x;, which is a count of pairwise comparisons, to determine if x;
needs to be removed from the data set (wWhen count_x; > Cyax). The count_x; scalar count has
to be transformed to a vector of counts count_x;’ of pairwise comparisons with elements of each
class ¢;. In this new scenario, x; is only removed from the data set when it has been involved in
at least Cyjux comparisons for every possible class, that is, count_xij > Cyux V ¢ € C where C is
the set of possible classes. Moreover, depending on the distribution of the classes in the input
space, some points may be distant from a given class ¢ and, for these to be involved in Cyax,
pairwise comparison requires maintaining them in the data set for a large number of iterations.
Those points will therefore accumulate a much larger number of pairwise comparisons than
Cuax for some classes, that is, count_xij > Cpax for some j # k. This challenges the ability of
the method to perform a low total number of pairwise calculations.

We propose tackling this problem by modifying the bucketing step so that we avoid
comparing points x; with points of class ¢; if count_xij > Cpax. To simplify the notation, we
will say that point x; requests class c; if count_xij < Cpax, that is, it still needs to be compared
to elements of class ¢; before it is removed. This new bucketing step requires adding an
additional component h, for each hash. Considering the requested classes, h, effectively
splits the buckets of similar elements originated by the LSH function. Hence, point X; of
class ¢; given hash h by the LSH function will have an updated set of hashes H’ computed as
described in Algorithm 2.

EIRAS-FRANCO ET AL.

WILEY-%

Algorithm 2: Hashing procedure modification for mul-
ticlass problems

[S

Input: h < Hash given to x; by the LSH function

Input: c; < Class of x;

Input: count_x; < Vector containing the number of
pairwise comparisons of x; to elements of each
class.

Output: H’ < Set of modified hashes for x;

H' « (h,cj)

if count_xf < CyaxVey € C then

| H'.append((h,2))
end

else

if count_:ri-" < Cuax then
| H'.append((h,ci))
end
end
end

4
5 foreach c;, in C do
6
7

The first element of H' is always the hash (h, ¢;), as described in line 1, intended to keep Xx;
available for other elements that request class ¢;. H' is completed by one of two alternatives: if x;
requests all possible classes, line 3 forces x; to be compared to any element in the same

situation; otherwise
two types of buckets

line 7 adds a hash for every requested class to H'. This process originates
that have to be treated differently according to their characteristics. Since

this has the effect of invalidating the bucketing step in VRLSH (corresponding to the loop in
line 6 of Algorithm 1), an updated version (detailed in Algorithm 3) is required.

Algorithm 3: Updated bucket processing procedure

1
2
3

Input: G < Graph containing the computed nearest
neighbors for each point

Input: buckets < Buckets of points that received the
same hash value

Output: G < Updated graph

foreach ((h, h,.), points) in buckets do

if h, = @ then

| G« GU ezactKNN (points, k)
end
else

targets < (), requesters <)
foreach p in points do
if (h, = p.class) then targets.append(p)
end
if (h, # p.class or
p.countsPl%s < Chrax) then
requesters.append(p) end
end
G <+ G U pairKNN (requesters, targets, k)

end
end

6168 EIRAS-FRANCO FT AL,
—LWI LEY

Figure 1 summarizes the modified bucketing procedure, in which buckets containing ele-
ments given the same hash are handled according to h,, the modifier component added to their
hash. The first option, shown in line 3 of Algorithm 2, processes buckets of elements requesting
all classes by computing all possible pairwise comparisons between elements in the bucket, as
in the original Algorithm 1. This guarantees that those elements are compared to all points
deemed similar by the LSH function, quickly retrieving neighbors from every nearby class. The
second option deals with buckets containing elements that either request a class or belong to a
requested class. Lines 6 and 7 divide each bucket with hash (h, h,) into two sets: requesters, that
is, points requesting h,, and targets, that is, points with class h,. The pairKNN function then
measures the similarity of each target to each requester and builds the corresponding subgraph,
as described in line 8. In doing this, no requester-requester or target-target comparisons are
performed, which saves on a great number of operations, as does division of each bucket into
smaller and more specific buckets by appending h, to hashes.

We refer to the resulting algorithm that integrates all these parts as ReliefF-LSH, for which
a distributed implementation in the Apache Spark framework is available for download from
https://github.com/eirasf/ReliefF-LSH. Although the ReliefF-LSH algorithm is designed to
work with any family of LSH functions, in this study we implement and test it for a commonly
used family, sensitive to Euclidean distance, which performs hashing through random pro-
jections onto one-dimensional lines.”® As shown in Section 5, satisfactory results are obtained
with this family of functions.

3.1 | Spatial and computational complexity

Given a data set with n elements, each described with d variables, and a hasher that generates
hashes of length [for each element ¢, the greatest memory demand on the algorithm is from

"
] h, PAIRWISE
) . (xuhe) BUCKETING COMPARISONS
xuhe)) Bucket #1 - (h,c)
Requesters Targets (x,X,)
D' (simplified dataset) . Eiegﬂgogg ; . > (XX,
/ 2\ Ty 1 2 &
Features Class Requesty/ / I'H
A XX
X, c, C, / S|, ((he) Bucket #2 — (h,c,) ‘ EXEXS
X, c, c, of g (%,(h.2)) Requesters Targets " (X,%,)
X, c, @ | - X, g (%)
L e B |
4 1 Xu 5 (Xa’ 4
X c, 1) N x B;cket#B—(h,(Zi)} we (Xa’xs)
N 2 X X ‘ (X«Xs)
Al K(he)
(x5:(h.2))
HASHING (Algorithm 2) BUCKET PROCEéSING (Algorithm 3)

FIGURE 1 Proposed hashing and bucket-forming procedure. x; are, in this example, similar enough to be
assigned the same hash value h and the hasher outputs only one hash per element. This hash, augmented with
the h, value, informs the bucket-forming procedure. A different number of pairwise comparisons are performed
for each type of bucket, as described in Algorithm 3

https://github.com/eirasf/ReliefF-LSH

- ET AL. 6169
EIRAS-FRANCO Wl LEY

storing the generated hashes. The proposed algorithm therefore requires memory in proportion
to the product of n, [, and ¢, that is, O(nlt). The memory requirement is managed by distributing
calculations across various computing nodes. Furthermore, given that the number of variables
d in the data set does not directly impact on memory requirements, for high-dimensionality
data the space needed to store the hashes and the space occupied by the data set are com-
parable. The memory overhead is therefore smaller for high-dimensionality data sets, which is
the focus of our approach. The computational complexity of the method cannot be analytically
established, as the probabilistic nature of the hashing function (and, therefore, of the bucketing
process) makes it difficult to establish an upper bound for the complexity of both the parameter
tuning and bucketing procedures. Computational complexity also depends on the data set, so
even an average-case study is not possible. Nonetheless, the experimental results reported in
Section 5 highlight the efficiency of this algorithm in terms of computational complexity.

4 | EXPERIMENTAL SETTINGS

We report two sets of experiments performed to validate the effectiveness of ReliefF-LSH,
whose performance is compared with those of ReliefF and of DiReliefF—the best alter-
native to ReliefF,*® as discussed in Section 2. We also compared results to those for ReliefF
with an approximate kNN-graph precomputed using the most popular method for this task,
namely, the Fast Library for Approximate Nearest Neighbors (FLANN),”” which relies on
randomized kd-trees’ to build the graph. In this composite method, the algorithm, which
we call ReliefF-FLANN, was run over the whole data set for each class and the resulting
graphs were merged to obtain the graph required for ReliefF.

In a first set of experiments, for real data sets we recorded the execution time required to
compute exact weights using ReliefF and then compared that time with the times taken by
ReliefF-LSH, DiReliefF, and ReliefF-FLANN. Since ReliefF-LSH, DiReliefF, and ReliefF-
FLANN are all approximate methods, the accuracy of their rankings was determined by
measuring the level of agreement of the approximate rankings with the ground-truth rankings
calculated by ReliefF. In a second set of experiments, we determined the level of scalability of
ReliefF-LSH, reporting the ReliefF-LSH runtimes when applied to the same problem with
varying amounts of computational resources assigned to the task.

41 | Equipment and data sets

Each experiment was executed in a computer cluster consisting of machines with 12 computing
cores. The cluster nodes are described in Table 1. We ran ReliefF-LSH on Apache Spark version
2.4.0 on Hadoop 3.0.0-6.1.0, and DiReliefF on Apache Spark version 1.6.1 on Hadoop
2.7.1.2.4.2.0-258, because the available implementation required it. CentOS Linux release
7.4.1708 is the operating system used by those machines. ReliefF-FLANN was run on a single
machine using the Python bindings contained in PyFLANN 1.6.14.

For the experiments we selected nine real-world high-dimensional data sets, as described in
Table 2, selected to represent all problems that ReliefF can handle, namely, regression
(Yeakman), binary classification (Higgs," Higgs,,,.;» Epsilon,,;), and multiclass classification

(KDD99%na1, CTyman, Cifar10,”SVHN," Sensorless™"). The data sets reflect various problems,
including computer vision and intrusion detection.*

6170 EIRAS-FRANCO FT AL,
—LWI LEY

TABLE 1 Cluster description

32 Nodes. Individual specifications

Processor 2x Intel Xeon E5-2620 v3 and 2.40 GHz
Cores 6 per processor (12 per node)

Threads 2 per core (24 total per node)

Storage 12X 2TB NL SATA 6 Gbps 3.5" G2HS
RAM 64 GB

Network 1x 10 Gbps + 2x 1 Gbps

TABLE 2 Data set description

Data set Attributes Elements Classes
Year,an 920 46,371 -

Higgs 28 11,000,000 2
Higgs, 28 55,000 2
Epsilon,, ., 2000 50,000 2
KDD99an 1 48,984 23
CTiman 54 58,101 7
Cifar10 3072 50,000 10
SVHN 3072 73,257 10
Sensorless 84 58,509 11

Some of the data sets contain a very large number of elements, making their processing with
the original ReliefF unfeasible (several weeks would be required, even using 12 computing
cores). In the first set of experiments, to compare runtimes for ReliefF, DiReliefF, and ReliefF-
LSH, therefore, we used trimmed versions of the largest data sets, that is, only the top N
elements were used: Yeary, is the top 10% of the YearPredictionMSD** data set, Higgs,,,,; is
the top 0.5% of the Higgs data set (55,000 samples), Epsilon,,,,; is the top 10% (50,000 elements)
of Epsilon, " KDD99,,,,q; is the top 1% (48,984 elements) of KDD99,"® and CT,y is the top 10% of
CoverType.” In our second set of experiments we used the full Higgs data set to test the
capability of our method to handle large data sets.

4.2 | Methodology

We used three different measures to compare the results achieved with ReliefF and with
DiReliefF, ReliefF-LSH, and ReliefF-FLANN: runtimes, recall, and weight error. First, we
evaluated time efficiency by measuring algorithm runtimes for each data set. Second, we
measured the accuracy of the results, using the recall measure at various selection levels to
determine the correctness of the retrieved rankings of attributes. Since the main purpose of the
ReliefF ranking is to determine a subset of relevant attributes, comparing the retrieved subsets

- ET AL. 6171
EIRAS-FRANCO Wl LEY

shows the effectiveness of the approximate algorithms, that is, DiReliefF, ReliefF-LSH, and
ReliefF-FLANN. For a given selection level ¢, attribute ranking £ obtained with ReliefF and
attribute ranking A computed by an approximate algorithm, we define recall as

|E. first(t) N A. first (t)|
;)

()

recall(t) =

where X.first (¢t) symbolizes the top ¢ elements of list X. Third, to give a more fine-grained
account of the accuracy of the rankings, a distinction had to be drawn between sets of attributes
with the same number of wrong selections. Since ReliefF is a ranking method, attribute se-
lection is based on ranking attributes by weight and keeping the top N. For some data sets,
many attributes may have similar weights; hence, keeping one of these similarly weighted
attributes does not have as adverse an impact as keeping an attribute with a much smaller
weight. We quantified the magnitude of errors for a given selection level by measuring the
difference between the weights in the exact list and the weights in the approximate list, that is,

WD) =-[D -), & 3)

a€eé. first(t) aeA. first(t)

where £ is the ReliefF attribute ranking, A is the approximate attribute ranking being assessed,
and &(a) represents the weight given to attribute a by ReliefF. Changing the sign is merely an
aesthetic device to obtain a measure with a positive value that should be minimized.

Note that the random nature of some of the steps in the DiReliefF, ReliefF-LSH, and ReliefF-
FLANN algorithm makes their results nondeterministic, that is, output rankings may vary in
different executions with the same data. To mitigate the impact of randomness in our measure-
ments, we reported the average value for four separate runs for each of the three methods. We also
used the same method of listing the average runtime of four separate executions to mitigate the
slight variation in runtimes for the random bucketing procedure at the heart of ReliefF-LSH.

It is also noteworthy that, unlike ReliefF-LSH and DiReliefF, ReliefF-FLANN is not im-
plemented in a distributed framework, and, while it leverages multithreading to use all
available cores in a machine, it cannot take advantage of a cluster of computers to handle larger
data sets or to expedite the processing of small data sets. This lack of distributed computing,
however, allows ReliefF-FLANN to compute the approximate kNN-graph without the overhead
of cluster handling procedures, resulting in faster times for smaller data sets that can be
processed by a single machine. Therefore, the above factors need to be kept in mind when
comparing ReliefF-FLANN with ReliefF-LSH and DiReliefF in terms of execution times.

Finally, DiReliefF allows the user to define a sampling level to indicate how precise the
computed ranking should be. In all experiments with DiReliefF we used 1000 samples so as to
achieve the most precise ranking possible without exceeding the ReliefF runtime. ReliefF-
FLANN was configured to compute each graph using eight random kd-trees; larger values were
also tested but offered no improvement despite the increased computational effort.

5 | EXPERIMENTAL RESULTS

As detailed in Section 3, the kNN-graph-building procedure was modified to enable the linking of
all elements to their k nearest neighbors in each class and to retrieve the graph required for
ReliefF to be applied to classification problems. The challenge is exacerbated as the number of

6172 EIRAS-FRANCO FT AL,
—I—Wl LEY

classes grew. We therefore report the results of our first set of experiments in two separate groups:
(1) regression and binary classification data sets, and (2) multiclass classification data sets.

5.1 | Regression and binary classification

In this first set of experiments, we performed feature selection on regression and binary clas-
sification data sets using the DiReliefF, ReliefF-FLANN, and ReliefF-LSH algorithms, with the
results pointing to the superiority of ReliefF-LSH over the other methods in terms of recall and
weight error, as depicted in Figures 2 and 3, respectively, at various threshold selection levels
for DiReliefF, ReliefF-FLANN, and ReliefF-LSH. Since regression data sets are not supported by
DiReliefF, no results are listed for DiReliefF for the Year,,,; data set.

ReliefF-LSH obtained results that are clearly superior to ReliefF-FLANN in all cases and to
DiReliefF for both Epsilon,,, and Higgs,, ;- ReliefF-LSH also outperformed ReliefF-FLANN
for the regression data set, recalling perfectly the five most relevant attributes and accurately
retrieving the rest of the list (the lowest recall, achieved at selection level 15, was a competent
0.82, that is, 12 or 13 correct attributes out of 15 depending on the execution, with a weight
error of only 5 % 1073). Of the three compared alternatives, the ReliefF-LSH rankings were the
most reliable approximations to the exact rankings.

Yearsmall EPSilonsmall Higgssmall
1F ‘ s 10 ‘ 1k
= L)
[+ 1
E 0.5 1 051 0.5
°,00°
- - DiReliefF
—4— ReliefF-LSH
0 | | | 0 | | | O
0 0.5 1 0 0.5 1
Fraction of attributes Fraction of attributes Fraction of attributes
FIGURE 2 Recall obtained for data sets Year,au, Epsilong,,;, and Higgs,, ;- LSH, locality-sensitive hashing

[Color figure can be viewed at wileyonlinelibrary.com]

10-3 Yeargman 10-3 Epsilonsman 10-3 Higgssmail
T T T T T

1.5} - 1.5 1.5+ —m— FLANN [
- . - ®- DiReliefF
E Ll - L —4— ReliefF-LSH ||
. — A}
2 05 105l e®, 1 05

pr—
0 0 0

0 0.5 1 0 0.5 1 0 0.5 1
Fraction of attributes Fraction of attributes Fraction of attributes

FIGURE 3 Weight error for data sets Year,q, Epsilon
[Color figure can be viewed at wileyonlinelibrary.com]

and Higgs,,,.;- LSH, locality-sensitive hashing

small®

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com

- ET AL. 6173
EIRAS-FRANCO Wl LEY

ReliefF § § FLANN B 8DiReliefF | ILSH \

Time (s)

FIGURE 4 Execution times (logarithmic scale) of ReliefF, ReliefF-FLANN, DiReliefF, and ReliefF-LSH for

data sets Yearqy, Epsilon and Higgs

mai- LSH, locality-sensitive hashing [Color figure can be viewed at

wileyonlinelibrary.com] e

Comparisons of total processing runtimes for each data set are depicted in Figure 4, which
shows that ReliefF-LSH offered a consistent time reduction over ReliefF and competed well with
DiReliefF and ReliefF-FLANN. Execution times with ReliefF-LSH were always significantly
lower than those for ReliefF. Compared with DiReliefF, while ReliefF-LSH was significantly
faster in the case of higher dimensionality data sets, it was slightly slower with the Higgs,, ., data
set, consisting of elements with only 28 attributes. This effect, which only appeared with small
data sets, can be attributed to the overhead caused by the hashing and grouping stages in VRLSH,
which is notable only in low-dimensionality and small data sets, like Higgs,,,,;- However, since
real-life data sets typically have many attributes, this effect becomes negligible because pairwise
comparisons are more costly. Similarly, for data sets containing many instances, the time saved
by ReliefF-LSH for pairwise comparisons compensates for and greatly exceeds any overhead.
Note that the ReliefF-LSH runtime to obtain the ranking for Epsilon,,,, was significantly
smaller, yet the accuracy of its results was clearly superior. While ReliefF-FLANN obtained the
approximate kNN-graphs very rapidly, when used by ReliefF those graphs performed poorly.
Overall, ReliefF-LSH, in offering the best balance between recall and execution time, achieves the
most accurate approximations with a consistent time reduction.

5.2 | Multiclass data sets

Figures 5 and 6 show accuracy results for DiReliefF, ReliefF-FLANN, and ReliefF-LSH for
multiclass data sets. ReliefF-LSH again obtained the most accurate approximations while
competently handling all types of data. Results were superior in all cases except for CTgqn
between selection levels 3 and 30, for which DiReliefF achieved better results. The execution
times shown in Figure 7 confirm that ReliefF-LSH took significantly less time than the original
ReliefF. As for the previously mentioned overhead caused by ReliefF-LSH, this adverse effect
was only noted for the smallest data sets. Thus, while the time overhead was perceptible,

http://wileyonlinelibrary.com

6174 EIRAS-FRANCO ET AL.
——L“”LEY

KDD99man CTsmaut Cifar10 SVHN Sensorless

—=— FLANN
- - DiReliefF

—— LSH
O O Il Il Il 0 Il Il Il O Il Il Il 0 Il T
0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1
Fraction of attributes Fraction of attributes Fraction of attributes Fraction of attributes Fraction of attributes

FIGURE 5 Recall obtained for data sets KDD99yq11, CTyman, Cifar10, SVHN, and Sensorless. LSH, locality-
sensitive hashing [Color figure can be viewed at wileyonlinelibrary.com]

KDD99:mat _y CTamau _, Cifarl0 _, SVHN _, Sensorless
-10 -107° -10 -10
T T T T T 1FT T =1 T T
N | oaf 4ol | n —=— FLANN ||
2 - - DiReliefF
o
= 05| | 05 . —— LSH
E‘“ 0.5 2l 1L | ol J|
L
g - A
0¢ I g ore 1 g0 0 | (U 1 d o I
0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1
Fraction of attributes Fraction of attributes Fraction of attributes Fraction of attributes Fraction of attributes

FIGURE 6 Weight error for data sets KDD9%q11, CTymau, Cifar10, SVHN, and Sensorless. LSH, locality-
sensitive hashing [Color figure can be viewed at wileyonlinelibrary.com]

10° ReliefF § § FLANN BB DiReliefF | ILSH
7
7 Z
10* Z Z
g 7 é . .]
TRl
L1002 HE miN BN |7
EohEoN b
= 72 2N N AN % =
% ElZN 2\ Z\ 7 |
102 7 BERZNEEZN B\ N7 &
R RRIR
7 ERONERAN NPN BPNE
02 HEPNER AN NON Bi\E
z ZNENZN N7\ D2\E
ZNENZN BN BZNEN
ZNEINZ\ D7\ L7\

A\ N\ Q o o
%&& %a& c{b‘\ & ,\\ef'v‘
7 L7 (O S &0

CJ %@

FIGURE 7 Execution times (logarithmic scale) for ReliefF, ReliefF-FLANN, DiReliefF, and ReliefF-LSH for
data sets KDD99%q11, CTyman, Cifar10, SVHN, and Sensorless. LSH, locality-sensitive hashing [Color figure can be
viewed at wileyonlinelibrary.com]

execution did not take as long as it did for ReliefF. As data set dimensionality and/or size grew,
the time overhead was dwarfed by the time saved in unnecessary pairwise comparisons, im-
proving the time reduction accordingly.

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
http://wileyonlinelibrary.com

- ET AL. 6175
EIRAS-FRANCO Wl LEY

cD

ReliefF-LSH — —— FLANN
DiReliefF

FIGURE 8 Nemenyi test for recall: critical distance diagram highlighting the statistically significant
advantage of ReliefF-LSH over ReliefF-FLANN and DiReliefF. Since differences were only minor for weight
error, the corresponding diagram has been omitted in the interest of brevity. LSH, locality-sensitive hashing

Contrary to what happened with the binary classification data sets, for the smallest data sets,
ReliefF-LSH was slower than DiReliefF, which highlights the fact that multiclass problems demand
more effort from ReliefF-LSH. However, the available implementation of DiReliefF could not
handle the larger and therefore more computationally demanding Cifar10 and SVHN data sets,
because the memory available in the computational nodes was exceeded, independently of how
many partitions were used for the distributed task. Although ReliefF-FLANN retained its advantage
in terms of processing time, its rankings differed vastly from the ground truth, to the point of being
unusable in most cases. Overall, even if the multiclass data sets demanded more computational
effort from ReliefF-LSH, our method maintained a competitive advantage by achieving high-quality
approximations with consistent time reductions across all types of data.

To determine whether the performance advantage of our method was statistically significant we
implemented Nemenyi testing covering all the results across the different selection levels for the
data sets (the data sets that could not be processed by DiReliefF were excluded to maintain
DiReliefF in the comparison). The Nemenyi test results (depicted in Figure 8) show that ReliefF-
LSH had a statistically significant advantage over DiReliefF and ReliefF-FLANN. Moreover, the
closest competitor, DiReliefF, was unable to process data sets that ReliefF-LSH handled correctly.

5.3 | Scalability

In another experiment we evaluated the scalability of ReliefF-LSH in terms of its ability to
leverage distributed computing, for which purpose we used the full Higgs data set, comprising
11 million instances. The attribute ranking was calculated repeatedly, with the number of
computing cores used increasing in each run. Table 3, which lists the resulting runtimes, shows
that ReliefF-LSH could process data sets that were beyond the reach of ReliefF. While the
original algorithm took 5550s to select features for Higgs,,.;» ReliefF-LSH was able to tackle
the full Higgs data set, with 200 times more elements, in just 48,283 s and with the same
number of computing cores. Note that, since the original ReliefF has quadratic computational
complexity, execution would be expected to take in the order of 107 s, which is inoperative in
practice.

These results also highlight that, since many of the operations required by ReliefF-LSH
could be independently calculated in parallel, the use of computational nodes involved in the
run was efficient, as shown by an inversely proportional relationship between number of nodes
and runtime, with a slope close to the desired value of —1. A larger experiment with a synthetic
data set comprising 50 million elements, also reported in Table 3, yielded similar results,
demonstrating that the efficiency of computational nodes was maintained when larger data sets
were tackled.

6176 EIRAS-FRANCO FT AL,
—LWI LEY

TABLE 3 Efficient use of computational nodes as a measure of scalability

Nodes Time (s) Scan rate Ops/s Speed-up
Higgs

1 48,283 2421073 3.03-10° 1.00

2 19,864 1.71-1073 5.19-10° 1.72

4 15,402 251077 9.96-10° 3.29
Synth-50M

2 73,478 5.43.107° 0.92-10° 1.00

4 44,533 6.81:107° 1.91-10° 2.07

8 26,300 7.00-107° 3.33.10° 3.60

Note: Values correspond to the ReliefF-LSH algorithm run on the full Higgs data set and on a synthetic data set with 50 million
elements. Scan rate refers to the fraction of operations executed with respect to the exact brute-force calculation, while speed-
up is the ratio between operations per second for a given execution and operations per second for a single computational nodes
(12 cores).

6 | CONCLUSIONS

Currently available feature selection algorithms are either incapable of handling very large data
sets or are limited to a specific type of input data. We describe our modification of the widely
used ReliefF algorithm aimed at enabling the processing of large data sets. In our approach, the
computationally costly process of obtaining the kNN graph is approximated using a mod-
ification of the VRLSH algorithm, called ReliefF-LSH, which greatly reduces execution time
while preserving accuracy. A distributed implementation of ReliefF-LSH using the Apache
Spark framework is available for free download.” The described experiments confirm the fol-
lowing advantages of our method:

1. The approximate ranking by ReliefF-LSH, in terms of both recall and weight error, is more
accurate than competing methods to a statistically significant degree.

2. The distributed computing approach of ReliefF-LSH leverages computing power to scale up
to very large data sets, far beyond the reach of the original ReliefF and achieving better
approximations than competing methods.

3. The efficient use of memory by ReliefF-LSH allows the processing of very high-dimensionality
data sets that are too memory-demanding for the most scalable alternative, that is, DiReliefF.

4. ReliefF-LSH is not restricted to certain types of input data and can be implemented for any
classification or regression data set, unlike other approaches.

5. ReliefF-LSH lacks any additional hyperparameters with respect to ReliefF, which means that
tuning processes that are computationally costly when dealing with large data sets can be
sidestepped.

6. ReliefF-LSH is customizable and can prioritize runtime over accuracy and vice versa, giving
users the option to output results suited to their needs.

As future work, the strategies used by ReliefF-LSH to process multiclass data sets could be
analyzed in an attempt to develop refinements aimed at further reducing computational
demands.

- ET AL. 6177
EIRAS-FRANCO Wl LEY

ACKNOWLEDGMENTS

This study has been supported in part by the Spanish Ministerio de Economia y Competitividad
(projects PID2019-109238GB-C2 and TIN 2015-65069-C2-1-R and 2-R), partially funded by FEDER
funds of the EU and by the Xunta de Galicia (projects ED431C 2018/34 and Centro Singular de
Investigacion de Galicia, accreditation 2016-2019). The authors wish to thank the Fundacién
Publica Galega Centro Tecnoldxico de Supercomputacion de Galicia (CESGA) for the use of their
computing resources. Funding for open access charge: Universidade da Corufia/CISUG.

ENDNOTES

*All data sets are publicly available for download at https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/ except
KDD99, which can be downloaded from http://www.kdd.ics.uci.edu/databases/kddcup99/kddcup99.html.

*https://github.com/eirasf/ReliefF-LSH.

ORCID

Carlos Eiras-Franco © https://orcid.org/0000-0001-6322-7593
Bertha Guijarro-Berdifias © https://orcid.org/0000-0001-8901-5441
Amparo Alonso-Betanzos (© https://orcid.org/0000-0003-0950-0012
Antonio Bahamonde © https://orcid.org/0000-0002-2188-9035

REFERENCES

1. Mayer-Schonberger V, Cukier K. Big Data: a Revolution That Will Transform How We Live, Work, and
Think. USA: Houghton Mifflin Harcourt; 2013.

2. Guyon I, Gunn S, Nikravesh M, Zadeh LA. Feature Extraction: Foundations and Applications. Vol. 207.
USA: Springer; 2008.

3. DeanJ, Ghemawat S. MapReduce: simplified data processing on large clusters. Commun ACM. 2008;51(1):
107-113.

4. Apache Foundation. Apache Hadoop Project. Wilmington, DE: The Apache Software Foundation; 2006.
http://hadoop.apache.org/. Accessed April 19, 2019.

5. Zaharia M, Chowdhury M, Franklin MJ, Shenker S, Stoica I. Spark: cluster computing with working sets.
HotCloud. 2010;10(10-10):95.

6. Apache Foundation. Apache Hadoop Project. Wilmington, DE: The Apache Software Foundation; 2009.
http://mahout.apache.org/. Accessed April 19, 2019.

7. Meng X, Bradley J, Yavuz B, et al. Mllib: machine learning in Apache Spark. J Mach Learn Res. 2016;17(1):
1235-1241.

8. Eiras-Franco C, Guijarro-Berdinas B, Alonso-Betanzos A, Bahamonde A. Seleccion de caracteristicas es-
calable con ReliefF mediante el uso de hashing sensible a la localidad. In: XVIIT Conferencia de la Aso-
ciacion Espafiola para la Inteligencia Artificial; 2018.

9. Kenji K, Rendell LA. A practical approach to feature selection. In: Machine Learning Proceedings 1992.
Netherlands: Elsevier; 1992:249-256.

10. Kononenko I. Estimating attributes: analysis and extensions of relief. In: European Conference on Machine
Learning. USA: Springer; 1994:171-182.

11. Urbanowicz RJ, Meeker M, LaCava W, Olson RS, Moore JH. Relief-based feature selection: introduction
and review. 2017. arXiv preprint arXiv:1711.08421.

12. Robnik-Sikonja M, Kononenko I. An adaptation of relief for attribute estimation in regression. In: Proceedings of
the Fourteenth International Conference Machine Learning (ICML ’97). USA: ACM; 1997:296-304.

13. Spoladr N, Cherman EA, Monard MC, Lee HD. ReliefF for multi-label feature selection. In: 2013 Bragzilian
Conference on Intelligent Systems (BRACIS). IEEE; 2013:6-11.

14. Slavkov I, Karcheska J, Kocev D, Kalajdziski S, DZeroski S. ReliefF for hierarchical multi-label classifica-
tion. In: International Workshop on New Frontiers in Mining Complex Patterns. Springer; 2013:148-161.

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
http://www.kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
https://github.com/eirasf/ReliefF-LSH
https://orcid.org/0000-0001-6322-7593
https://orcid.org/0000-0001-8901-5441
https://orcid.org/0000-0003-0950-0012
https://orcid.org/0000-0002-2188-9035
http://hadoop.apache.org/
http://mahout.apache.org/

6178 EIRAS-FRANCO FT AL,
—LWI LEY

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

Bolén-Canedo V, Remeseiro B, Sdnchez-Marofio N, Alonso-Betanzos A. mC-ReliefF—an extension of
ReliefF for cost-based feature selection. In: ICAART (1); 2014:42-51.

Robnik-Sikonja M, Kononenko I. Theoretical and empirical analysis of ReliefF and RReliefF. Mach Learn.
2003;53(1-2):23-69.

Bol6n-Canedo V, Sadnchez-Marofio N, Alonso-Betanzos A. A review of feature selection methods on syn-
thetic data. Knowl Inf Syst. 2013;34(3):483-519.

Zhang J, Chen M, Zhao S, Hu S, Shi Z, Cao Y. ReliefF-based EEG sensor selection methods for emotion
recognition. Sensors. 2016;16(10):1558.

Zhang Y, Ren X, Zhang J. Intrusion detection method based on information gain and ReliefF feature
selection. In: 2019 International Joint Conference on Neural Networks (IICNN). USA: IEEE; 2019:1-5.

Li B, Wen T, Hu C, Zhou B. Power system transient stability prediction algorithm based on ReliefF and
ISTM. In: International Conference on Artificial Intelligence and Security. USA: Springer; 2019:74-84.
Kononenko I, Simec E, Robnik-Sikonja M. Overcoming the myopia of inductive learning algorithms with
ReliefF. Appl Intell. 1997;7(1):39-55.

Zheng X, Liu X, Zhang Y, Cui L, Yu X. A portable HCI system-oriented EEG feature extraction and channel
selection for emotion recognition. Int J Intell Syst. 2021;36(1):152-176.

Sun L, Yin T, Ding W, Qian Y, Xu J. Multilabel feature selection using ML-ReliefF and neighborhood
mutual information for multilabel neighborhood decision systems. Inf Sci. 2020;537(4):401-424.
Bolon-Canedo V, Rego-Fernandez D, Peteiro-Barral D, Alonso-Betanzos A, Guijarro-Berdifias B, Sdinchez-Marofio
N. On the scalability of feature selection methods on high-dimensional data. Knowl Inf Syst. 2018;56(2):395-442.
Eiras-Franco C, Bolén-Canedo V, Ramos S, Gonzélez-Dominguez J, Alonso-Betanzos A, Tourifio J. Mul-
tithreaded and spark parallelization of feature selection filters. J Comput Sci. 2016;17:609-619.
Palma-Mendoza R-J, Rodriguez D, de Marcos L. Distributed ReliefF-based feature selection in spark. Knowl
Inf Syst. 2018:1-20.

Eppstein MJ, Haake P. Very large scale ReliefF for genome-wide association analysis. In: IEEE Symposium on
Computational Intelligence in Bioinformatics and Computational Biology, 2008 (CIBCB 08). USA: IEEE; 2008:
112-119.

Xu S, Li X, Lu WF. Randomized K-d tree ReliefF algorithm for feature selection in handling high di-
mensional process parameter data. In: 2016 IEEE 21st International Conference on Emerging Technologies
and Factory Automation (ETFA). USA: 1EEE; 2016:1-8.

Bentley JL. Multidimensional binary search trees used for associative searching. Commun ACM. 1975;
18(9):509-517.

Anastasiu DC, Karypis G. L2Knng: fast exact k-nearest neighbor graph construction with 12-norm pruning.
In: Proceedings of the 24th ACM International on Conference on Information and Knowledge Management.
USA: ACM; 2015:791-800.

Chen J, Fang H-r, Saad Y. Fast approximate kNN graph construction for high dimensional data via
recursive Lanczos bisection. J Mach Learn Res. 2009;10:1989-2012.

Dong W, Moses C, Li K. Efficient k-nearest neighbor graph construction for generic similarity measures.
In: Proceedings of the 20th International Conference on World Wide Web. USA: ACM; 2011:577-586.
Zhang Y-M, Huang K, Geng G, Liu C-L. Fast kNN graph construction with locality sensitive hashing. In: Joint
European Conference on Machine Learning and Knowledge Discovery in Databases. USA: Springer; 2013:660-674.
Eiras-Franco C, Martinez-Rego D, Kanthan L, et al. Fast distributed kNN graph construction using auto-
tuned locality-sensitive hashing. ACM Trans Intell Syst Technol (TIST). 2020;11(6):1-18.

Arnaiz-Gonzélez A, Diez-Pastor J-F, Rodriguez JJ, Garcia-Osorio C. Instance selection of linear complexity
for big data. Knowl-Based Syst. 2016;107:83-95.

Wang J, Qian T, Yang A, Wang H, Qian J. LSR-forest: an locality sensitive hashing-based approximate k-
nearest neighbor query algorithm on high-dimensional uncertain data. Concurrency Comput: Pract Exper.
2020. https://doi.org/10.1002/cpe.5795

Eiras-Franco C, Kanthan L, Alonso-Betanzos A, Martinez-Rego D. Scalable approximate k-NN graph
construction based on locality sensitive hashing. In: 25th European Symposium on Artificial Neural Net-
works, Computational Intelligence and Machine Learning; 2017.

Andoni A, Indyk P. Near-optimal hashing algorithms for approximate nearest neighbor in high dimen-
sions. In: 47th Annual IEEE Symposium on Foundations of Computer Science, 2006 (FOCS *06). USA: IEEE;
2006:459-468.

https://doi.org/10.1002/cpe.5795

- ET AL. 6179
EIRAS-FRANCO Wl LEY

39.

40.

41.

42.

43.

44.

45.

46.

Muja M, Lowe DG. Fast approximate nearest neighbors with automatic algorithm configuration. VISAPP
(1). 2009;2(331-340):2.

Baldi P, Sadowski P, Whiteson D. Searching for exotic particles in high-energy physics with deep learning.
Nat Commun. 2014;5(1):4308.

Silpa-Anan C, Hartley R. Optimised KD-trees for fast image descriptor matching. In: 2008 IEEE Conference
on Computer Vision and Pattern Recognition. IEEE; 2008:1-8.

Krizhevsky A, Hinton G. Learning Multiple Layers of Features from Tiny Images [Technical Report].
Citeseer; 2009.

Netzer Y, Wang T, Coates A, Bissacco A, Wu B, Ng AY. Reading digits in natural images with unsupervised
feature learning. In NIPS Workshop on Deep Learning and Unsupervised Feature Learning 2011; 2011.
Dua D, Graff C. UCI Machine Learning Repository; 2017.

Sonnenburg S, Franc V, Yom-Tov E, Sebag M. Pascal large scale learning challenge. In: 25th International
Conference on Machine Learning (ICML 2008) Workshop. Vol. 10, 2008:1937-1953. http://largescale.first.
fraunhofer.de.J.Mach.Learn.Res

Lee W, Stolfo SJ. A framework for constructing features and models for intrusion detection systems. ACM
Trans Inf Syst Secur (TiSSEC). 2000;3(4):227-261.

How to cite this article: Eiras-Franco C, Guijarro-Berdifias B, Alonso-Betanzos A,
Bahamonde A. Scalable feature selection using ReliefF aided by locality-sensitive
hashing. Int J Intell Syst. 2021;36:6161-6179. https://doi.org/10.1002/int.22546

APPENDIX A: SYMBOLS USED
See Table Al.

TABLE Al List of symbols used

Symbol Description

A Attribute. Each of the input variables
WIA] Weight assigned to attribute A by ReliefF
D Data set consisting of many input elements

x Vector. Bold, small letter
o (xi, X)) Similarity between x; and x; (real number)
O(n) Computational complexity of order n
Dl Number of elements in D
b. size Number of elements contained in bucket b
b. elems Set of elements contained in bucket b
p. neighbors Neighbors of element p
p. class Class of element p
Cy Class label with value v
h Hash
. Augmented hash component for multiclass data sets
%) Empty set

http://largescale.first.fraunhofer.de.J.Mach.Learn.Res
http://largescale.first.fraunhofer.de.J.Mach.Learn.Res
https://doi.org/10.1002/int.22546

