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ARTICLE INFO ABSTRACT

Keywords: Diabetes is a disease that is closely linked to genetics and epigenetics, yet mechanisms for clarifying the

Machine Learning onset and/or progression of the disease have sometimes not been fully managed. In recent years and due to

Diabetes the large number of recent studies, it is known that changes in the balance of the microbiota can cause a

I;D biot high battery of diseases, including diabetes. Machine Learning (ML) techniques are able to identify complex,
1crobiota

non-linear patterns of expression and relationships within the data set to extract intrinsic knowledge without
any biological assumptions about the data. At the same time, mass sequencing techniques allow us to obtain
the metagenomic profile of an individual, whether it is a body part, organ or tissue, and thus identify the
composition of a given microbe. The great increase in the development of both technologies in their respective
fields of study leads to the logical union of both to try to identify the bases of a complex disease such as
diabetes. To this end, a Random Forest model has been developed at different taxonomic levels, obtaining
results above 0.80 in AUC for families and above 0.98 at species level, following a strict experimental design to
ensure that results are compared under equal conditions. It is identified how, in infants, the species Bacteroides
uniformis, Bacteroides dorei and Bacteroides thetaiotaomicron are reduced in the microbiota of those with T1D,
while, the populations of Prevotella copri increase slightly and that of Bacteroides vulgatus is much higher.
Finally, thanks to the more specific metagenomic signature at species level, a model has been generated to
predict those seroconverted patients not previously diagnosed with diabetes but who have expressed at least
two of the autoantibodies analysed.

Metagenomics

Feature selection
Random forest
Generalized Linear Model

1. Introduction functions and the relationships between the host organism and these
microorganisms. This is why the impact of the microbiota on human
health is currently one of the greatest challenges in clinical care, drug

discovery and biomedicine.

The microbiota is a complex ecosystem of microorganisms com-
posed of bacteria, viruses, protozoa and fungi, which live in different
locations in the human body, such as the gastrointestinal tract, skin,

. . Therefore, disturbances in the composition and/or proportion of the
mouth, respiratory system and vagina. In the last decade, numerous

works have reported certain metabolic activities and host/host interac-
tions that influence the normal physiology of the human being (Belkaid
& Hand, 2014; Heijtz et al., 2011; Lozupone, Stombaugh, Gordon,
Jansson, & Knight, 2012). Over 70% of the microbiota live in the
gastrointestinal tract, in symbiosis with human eukaryotic cells. This
community consists of about 100 trillion commensal microorganisms,
about 10 times the total number of human cells. The difference is much
greater if we look at the genome that makes up the set of all these
microorganisms, known as the metagenome. Knowing the role played
by this entire genomic network is crucial to understanding both their

microbiota can result in the development of a significant physiological
change or even a pathology. This type of change is known as dysbiosis
and can be due to multiple factors, the most common of which are: the
individual’s own genetics, the diet carried out throughout his or her life,
personal hygiene, different infections, uncontrolled intake of drugs and
antibiotics or certain medical interventions (Petersen & Round, 2014).
These processes of dysbiosis that affect the balance in the microbiota
play an important role in complex diseases such as asthma (Petersen
& Round, 2014), neurodevelopmental disorders (Hsiao et al., 2013),
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cancer (Garrett, 2015) and diabetes (Karlsson et al., 2013; Petersen &
Round, 2014) among others.

Diabetes is a group of metabolic diseases characterized by hyper-
glycaemia resulting from defects in insulin secretion, insulin action or
both biological processes. Several pathogenic processes are involved in
the development of diabetes. These range from autoimmune destruction
of pancreatic cells, with consequent insulin deficiency, to abnormal dis-
eases causing resistance to insulin action. Deficient insulin action is the
result of inadequate insulin creation and/or decreased tissue responses
to insulin at one or more points along complex hormonal pathways.
Impaired insulin secretion and defects in insulin action usually coexist
in the same patient and it is often not clear which abnormality, if any,
is the main cause of hyperglycaemia (Mellitus, 2005).

Specifically, Type I diabetes (T1D) (Mellitus, 2005) is an organ-
specific autoimmune disease due to the infiltration and attack of T-
lymphocytes and other immune cells on pancreatic cells g, resulting in
the destruction of g cells and progression to insulin deficiency (Boldison
& Wong, 2016). Most T1D is of the autoimmune type (TIA), and a
smaller proportion is of the non-autoimmune type, also known as
idiopathic type I diabetes (TIB). Genetic factors play an important role
in the origin of T1D. To date, many loci have been associated with the
disease, although there is a lack of knowledge about the environmental
factors involved. This is evident from the fact that less than ten percent
of individuals who are genetically predisposed end up developing it
and there is an increasing frequency of lower-risk genotypes in patients
diagnosed with TIB (Zhou et al., 2020).

The environmental factors that the scientific community has re-
ported to be most related to the development of T1D are, for example,
the diet of the individual (Norris et al., 2003; Wahlberg, Vaarala,
Ludvigsson, Group, et al., 2006; Ziegler, Schmid, Huber, Hummel, &
Bonifacio, 2003), different viral infections (Kaufman et al., 1992; Stene
& Rewers, 2012) as well as the gut microbiota itself as it is colonized
by hundreds of microbial species selected for a mutually beneficial
relationship with its host. During infancy and childhood, the intestinal
microbiota undergoes constant remodelling and instructs the develop-
ment of the immune system. Therefore, if this microbiota is affected, it
can generate complications in the future, including triggering the onset
of T1D. For example, the intestinal microbiota of a newborn will be
different depending on whether it is born vaginally or by caesarean
section, resulting in a significant difference in the populations of the
species that inhabit it. Numerous studies have also reported that there is
a difference between the gastrointestinal microbiota of breastfed infants
and those not fed by this route, with significant differences being in
bifidobacteria, which almost always dominate the gastrointestinal mi-
crobiota of infants breastfed at several weeks of age (Favier, Vaughan,
De Vos, & Akkermans, 2002; Penders et al., 2006; Stark & Lee, 1982).
There are also studies that maintain that the microbiota of infants who
have been hospitalized, suffered from fever or had to take antibiotics
during the first month, show significant differences from those infants
who have been completely healthy during this time (Penders et al.,
2006; Schwiertz et al., 2003). All these factors, which modulate the
composition of gastrointestinal microbiota, are also risk factors in the
development of T1D, so it is reasonable to consider microbiota as a link
between these factors and the promotion of the disease.

Currently, the diagnostic form of T1D is mainly concerned with the
analysis of antibodies, such as auto-insulin antibodies (AIA), glutamic
acid decarboxylase (GADA) antibodies, antibodies to ICA512 or IA-2, a
transmembrane protein of the tyrosine phosphatase family and the zinc
transporter 8 (ZnT8A) (Boldison & Wong, 2016; Chen et al., 2013; Vi,
Huang, & Zhou, 2015). Normally, because the main effect of the disease
is changes in glucose levels, other diagnostic tests are available, such
as fasting plasma glucose (FPG), 2-h plasma glucose (2-h PG) during an
oral glucose tolerance test of 75 g (OGTT) or by the A1C test.

With the gradual incorporation of mass sequencing platforms into
the daily routine of a laboratory and the reduction of costs, more
and more data is produced every day to study a specific problem.
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Today, most bacterial identification is already carried out by genome
sequencing methods. In addition, major initiatives are making these
data available to the scientific community for analysis and different
scientific groups are offering new possibilities for analysis and ex-
ploitation of the data. The problem has shifted towards managing the
analysis of huge amounts of data with their relationships and balances,
generating problems that are difficult to address with conventional
approaches. At the same time, the rise of Machine Learning (ML) for the
computational analysis of complex and high capacity biomedical data
makes use of models (Harrington, 2012) with great predictive capacity
developed specifically for problems with large amounts of data and
with noise. Once trained, the ML algorithm is intended to have the
highest possible generalization capacity so that the model works not
only with the data it has learned, but also with the data we will obtain
in the future (Alpaydin, 2020; Marsland, 2015; Mohri, Rostamizadeh,
& Talwalkar, 2018).

The good results obtained in the application of these algorithms
in various fields has been the reason why they are also being ap-
plied in the field of biomedicine. These algorithms have been used
for cancer diagnosis (Huang et al., 2018; Kourou, Exarchos, Exar-
chos, Karamouzis, & Fotiadis, 2015; Zhao et al.,, 2019), to predict
the best synergies between drug pairs and biomarkers (Menden et al.,
2019), prediction of high anti-angiogenic activity peptides (Lifares-
Blanco, Porto-Pazos, Munteanu, Pazos, & Fernandez-Lozano, 2018),
neurological diseases (Liu et al., 2014; Ludwig et al., 2019), heart
diseases (Guvenir, Acar, Demiroz, & Cekin, 1997; Ozcift, 2011) and
metabolic diseases (Dugan, Mukhopadhyay, Carroll, & Downs, 2015;
LaFreniere, Zulkernine, Barber, & Martin, 2016) among others such as
groundwater modelling (Choubin & Rahmati, 2021; Mosavi et al., 2020,
2021). Regarding the analysis of sequencing and ML data, based on
clustering techniques in OTUs (Operational Taxonomic Unit) according
to their abundance, there are several works (Karlsson et al., 2013)
to generate a RF model to predict patients affected by T2D. The
prediction power of metagenomic data with different disease states on
six available disease-associated datasets using ML and feature selection
with AUC scores ranging from 0.65 for obesity to 0.94 for cirrhosis
and 0.74 for T2D (Pasolli, Truong, Malik, Waldron, & Segata, 2016).
Based on the arrhythmic microbiota throughout the day, attempts have
been made to classify individuals according to their risk of suffering
T2D (Reitmeier et al., 2020). Supervised ML analysis of relative abun-
dance in T1D an onset showed with sensitivity and specificity of 0.54,
0.62 differences with respect to controls (Biassoni et al., 2020). Also, to
look for biomarkers of the association between the microbiome and the
development of colorectal cancer (Thomas et al., 2019), irritable bowel
syndrome (Fukui et al., 2020) or inflammatory bowel disease (Wing-
field, Coleman, McGinnity, & Bjourson, 2018). Furthermore, following
this methodology, an attempt has been made to obtain a universal
metagenomic signature based on microbiota to predict cirrhosis (Oh
et al., 2020). For more information about comparative study of machine
learning classifiers for human microbiome data we refer to Wang and
Liu (2020).

Due to the above, the aim of this study arises from the potential use
of ML models for the diagnosis of T1D from data from the intestinal mi-
crobiota of infants to search for species that influence the development
of T1D. Furthermore, the analysis of the models will offer the possibility
of extracting new knowledge about the possible role played by the
microbiota in the development of the disease and at what taxonomic
level the greatest amount of information is found, allowing the focus
of future research to be on modifying the existing balance to alter a
study condition.

The main contributions of this paper can be listed as: first, we have
proven that with metagenomic data (sparse matrices) we can build a
Machine Learning model capable of obtaining great results; second,
we propose a new metagenomic signature highly correlated with T1D
diagnosis to be studied by clinicians and as a new reference for future
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Table 1
Summary of DIABIMMUNE project samples.

#Samples Gender (M/F) Average age Std. age
Control 53 25/28 1.70 0.74
Cases 75 30/45 1.56 0.69

work; and third, we present a robust Machine Learning methodology
for further research of the diagnosis of T1D in infants.

The current paper is organized as follows: the Materials and Meth-
ods section describes the dataset, the technical aspects of the method-
ology and the machine learning models; the Results section includes a
comparison with baseline models, feature selection, best model deter-
mination and how we defined the metagenomic signature; the Discus-
sion and the Conclusions sections are presented before a final section
with the data and code used in the paper.

2. Materials and methods

2.1. Dataset

The data used in this work was downloaded from the DIABIM-
MUNE (Kostic et al., 2015) project. This project arises with the objec-
tive of testing the hypothesis of hygiene and its role in the development
of T1D. For this study, the T1D cohort was used, which aims to
compare the microbiome of infants who have developed T1D with
healthy controls from the same geographical area. Fecal samples were
extracted from each individual and ribosomal 16S RNA sequencing was
performed to characterize the metagenomic profile. For this study, data
on the relative abundance of each operative taxonomic unit (OTU) of
the different infants that make up the cohort were downloaded. The
samples have been labelled according to patients and T1D controls. In
total, 124 samples have been included for analysis, from a total of 33
infants.

The relative abundance matrix of OTUs presents abundance at the
following 6 different taxonomic levels: phylum, order, class, family,
genus and species. The general data of the samples analysed are shown
in Table 1.

2.2. Machine learning

For the experiments the following ML algorithms have been used
in R (R Core Team, 2020): Random Forest (RF) (Breiman, 2001), Sup-
port Vector Machines (SVM) (Cortes & Vapnik, 1995) and Generalized
Linear Model (glmnet) (Friedman, Hastie, & Tibshirani, 2010).

2.2.1. Random forest

The RF algorithm consists of a set of independent decision trees
based on the random resampling of the variables for the construction
of each tree. A search was made for the appropriate values for the
hyperparameters mtry (number of variables randomly sampled in each
data division), nodesize (minimum size of the terminal nodes) and
number of trees. The range for the number of variables was set between
1 and, as an upper limit, the square root of the number of variables with
the largest data set. The minimum size of the terminal nodes was set
between 1 and 3. Low values of this parameter provide high growth and
depth of each tree, which improves the accuracy of the predictions. In
addition, the number of trees was 1000. A large number of trees ensures
that each observation is predicted at least several times.
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2.2.2. Support vector machines

The SVM algorithm in binary classification tasks tries to find the
best hyper plane that separates the two target classes, minimizing
the error. Since most of the real problems do not have a linear rela-
tion, the SVM algorithm offers the possibility of calculating a kernel
function to map the data in a greater number of dimensions, which
allows to separate the data linearly. For this study we used the kernel
function RBF (radial Gaussian base) and we made a search of the
appropriate values for C (penalty for misclassified observations) and
sigma (standard deviation of Gaussian distribution). The values of the
hyperparameters C and sigma were investigated, both with a range
between 2712 and 2!2.

2.2.3. Generalized linear model

The glmnet algorithm is a rapid regularization algorithm that fits a
generalized linear model with elastic network penalties. The network
penalty depends on two terms: the ridge penalty, which aims to reduce
the coefficients of the predictors correlated with each other, and the
lasso penalty, which tends to choose one of them and discard the
others. A search was carried out for the appropriate values for alpha
(controls the penalty of the elastic network) and lambda (controls the
total strength of the penalty). The values of alpha ranged from 0.0001,
0.001, 0.01, 0.1 and 1, while those of lambda were 0, 0.15, 0.25, 0.35,
0.5, 0.65, 0.75, 0.85, 1.

2.3. Feature selection

The vast majority of genetic data generated by biomedical research
consists of a large number of variables compared to available observa-
tions and/or samples, mainly due to their cost. A large number of these
variables may not be useful, as they do not provide information to the
model, or they cause noise and generate a possible over-fitting. There
are different approaches in this field designed to avoid this problem, as
it is the case of the selection of characteristics (FS). The aim of these
methods is to find a subset of variables that contain the most informa-
tion from the original data and that by generating a model are able to
maintain a similar or higher performance, maintaining the fidelity of
the original models, reducing the search times and generating simpler
and faster models. All this is achieved by eliminating variables that
have a strong correlation and do not propose new information to the
model, redundant variables and variables that only increase noise when
generating a model (Guyon & Elisseeff, 2003; Liu & Motoda, 2012).
In particular the Filter methods measure the relevance of variables in
relation to the class of output by looking only at the intrinsic properties
of the data without taking into account any assumptions about the
classification algorithms that will be used later for the analysis. There-
fore, this approach is computationally simple and fast and because it
is independent of the classification algorithm (Chandrashekar & Sahin,
2014; Saeys, Inza, & Larrafiaga, 2007).

2.4. Best model determination

One of the key points in the use of ML techniques is the use of a
robust and fair experimental design that allows the identification of
the models and configurations that can obtain better generalization
results on future unknown data (Fernandez-Lozano, Gestal, Munteanu,
Dorado, & Pazos, 2016). That is why a two-level cross validation
(CV) was performed for the training of the algorithms. This type of
validation consists of two CV processes, an independent internal level
(2/3 holdout for training and 1/3 for validation) for the selection of the
best hyperparameters of each algorithm and an independent external
level (in this case, 5 repetitions of a 10-fold CV) to evaluate the model’s
capacity for generalization and ensure that there are no biases in the
data.
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2.5. Performance

For the evaluation of the models, the following three measures have
been calculated: accuracy (ACC), area under the ROC curve (AUC)
and the mean of the error in classification (MMCE). The ACC is the
fraction of predictions that the model has made correctly, in binary
classification, we usually talk about the fraction of true positives and
negatives. The AUC measure is the area under the ROC curve. A ROC
curve represents the rate of true positives (TPR) versus the rate of
false positives (FPR) at different classification thresholds, so that, if the
classification threshold is reduced, more elements will be classified as
positive. This measure refers to the ability of the models to distinguish
between classes, the value is between 0 and 1 and the higher it is, in
our case, the better the model will be to differentiate between controls
and cases. There are also more specific measures for imbalanced data
such as concordant partial AUC (Carrington et al., 2020) that could
be of interest in the medical domain. The MMCE is the average of the
predicted values that are different from the true values.

3. Results

From the original data set new datasets were generated based on
relative abundance according to taxonomic level (phylum, class, order,
family, genus and species). A pre-processing was then carried out for
each dataset in which samples with unavailable values and variables
with variance of zero or close to zero were checked and eliminated.
The latter was carried out thanks to the function NearZeroVariance
within the R (Kuhn, 2008) Caret package. In addition, the data were
normalized to have mean O and standard deviation 1 and those vari-
ables that had a value of 0 in at least 95 percent of their observations
were eliminated. For each of the six data sets, a univariate FS method
(Wilcoxon test) was applied to rank the variables according to statistical
significance with the dependent variable. Version R/4.0.2 was used
and the training of the models was carried out in a high performance
computing (HPC) environment.

3.1. Baseline experiments

Initially three ML models (SVM, RF and glmnet) were trained with
data from each of the six taxonomic levels: phylum, class, order, family,
genus and species.

In Fig. 1 it is observed how RF presents the best results in AUC
for each one of the taxonomic levels in comparison to the other two
algorithms. RF also achieves the best result at the species level. It is
interesting to stop at the taxonomic level in which the three algorithms
start to present good yields. In the case of RF, it is from the family
level, with 0.82 in AUC, to 0.987 in AUC at the species level. As for
the other two algorithms, glmnet and SVM, both present very similar
results although lower in performance. In this case, the two algorithms
begin to present significant results at the species level, not being able
to model the data at the family or genus level. Furthermore, their best
results at species level are comparable to the results obtained by RF at
family level.

Furthermore, in view of what these results suggest, we consider it
necessary to carry out a more exhaustive analysis of the taxonomic
species level, due to its good performance with the three algorithms
used. For this purpose, a search and selection of the best characteristics
within this abundance matrix will be carried out by means of FS
techniques.
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Fig. 2. AUC results at species taxonomic level according to the number of features
and algorithm.

3.2. Feature selection

The results reported in the previous section motivated the search
for a simpler model capable of obtaining a similar or better perfor-
mance than the previous one. For this purpose, based on the relative
abundance of 102 species, a search was made for characteristics to
include in the final model. Each variable was subjected to the Wilcoxon
statistical test, in order to order the variables according to their relative
importance in the problem. Fig. 2 shows the results according to the
AUC of the three algorithms. The results for the other taxonomic levels
can also be accessed in Figures S1-S5 (Supplementary Materials).

The results observed in Fig. 2 coincide with those of the previous
section, showing the RF algorithm as the one with the best perfor-
mance. In addition, a stability of the three models is observed as
soon as they exceed a certain number of characteristics. This fact is
important when selecting the best model, since it tells us which are
the characteristics that really present the information. The lines drawn
in Fig. 2 show the final model that has been chosen for each algorithm.
For RF it was decided to keep 25 characteristics, for the SVM model
with 28 characteristics, while for glmnet it was 15 characteristics.

A selection of the best model will then be made based on statistical
criteria in order to continue the analysis and deepen the model.

3.3. Best model determination

Table 2 shows the performance of each algorithm according to the
three measures reported, as well as the number of characteristics used
for their construction.

It is interesting to know if the RF model, besides being better in
the average of the performance, is significantly better than the other
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Table 2
Results of the best models of each algorithm.
ACC AUC MMCE N¢ features
glmnet 0.834 0.903 0.166 18
RF 0.947 0.99 0.053 25
SVM 0.783 0.887 0.217 28
0.69
T 1
0.0079
0.0079
1.00
———
Algorithm
8 0.95 = GLMNET
=4 = RF

SVM

0.90

0.85

Fig. 3. Comparison of the best models. The p-values were obtained using the Wilcoxon
test.

two models as in other domains (Choubin et al., 2019; Rahmati et al.,
2019). For this purpose, the box diagram of the performance measures
of the three models is shown in the Fig. 3. Because 5 repetitions of
a 10 fold CV were performed for the validations of each model, a
total of 50 measures of each model were obtained. It can be seen in
the figure, how the RF algorithm is the most stable among the three,
obtaining all the measures very close to one. In addition, a test of
multiple comparisons was made, as it is the Wilcoxon test, being the
null hypothesis that both populations have the same probability of
presenting greater observations to the other population. A significance
value of 0.0079 is observed between the distribution of RF yields and
the other two, while there are no significant differences between glmnet
and SVM as they have a p-value of 0.69. In addition, we can observe
how the RF AUC values have very little dispersion since they go from
0.97 to 0.99, so, it remains very stable in the predictions and always
maintains precision. On the other hand, glmnet, being the second
algorithm with better results, its AUC has a much higher dispersion.
Therefore, the RF algorithm with 25 characteristics was selected for a
more in-depth study.

3.4. Definition of the metagenomic signature

In accordance with the previous section, a model with a metage-
nomic signature of 25 characteristics was retained, since, although the
stability of the model can be seen from the 15 characteristics, the
objective was to analyse a wider and more heterogeneous signature,
with a view to the biological discussion of the results and the search
for new species that could be related to the disease. In order to observe
which characteristics were given more importance by the model, an
analysis of their importance was carried out. In Fig. 4 the importance
of each species for the winning model is represented. In this case, the
importance is based on the Gini impurity index, which is the total of
the impurities of the nodes by the division in the variable, averaged
over all the trees. The figure shows a species that predominates over
the rest, Bacteroides uniformis. There are another four species that are
very important in comparison with the rest, Bacteroides dorei, Prevotella
copri, Bacteroides vulgatus and Bacteroides thetaiotaomicron.

Fig. 5 shows the abundances of the species belonging to the best
model according to whether they are controls or have T1D, in addition,
a Wilcoxon test was carried out to compare the populations of both and
to check if they had significant differences. By comparing the results
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Fig. 4. Importance of the features of the selected model.

shown in this figure with those shown in Fig. 4, it can be seen that
the species that present more importance in the model of ML, like
Bacteroides uniformis, Bacteroides dorei and Bacteroides thetaiotaomicron
are reduced in the microbiota of the infants with T1D, whereas, the
populations of Prevotella copri increases slightly and Bacteroides vulgatus
is much greater. We can also observe in some species that the great
majority of the samples present values equal to or very close to zero, but
that the samples that present very significant differences to the average
belong to a specific class. This fact, which can be observed in species
such as Odoribacter splanchnicus, Eubacterium rectale or Bifidobacterium
adolescentis, indicates the capacity of the model to find variables that,
although not significant with respect to the dependent variable, may
be important in the development of the disease.

3.5. Identification of seroconverted patients by metagenomic signature

There are patients who have not been clinically diagnosed with
T1D but have expressed at least two of the autoantibodies analysed.
These patients, called seroconverts, have a predisposition to present
T1D at some point but belong to an intermediate class between healthy
and sick. It is interesting to know if our metagenomic signature is
able to identify this subgroup of patients, which will have different
treatment routes after their diagnosis. For this purpose, the patients
were re-labelled in three classes (controls, seroconverts and patients).
The selected metagenomic signature was then defined and 90% of the
samples were used to train a new RF algorithm to predict which of
the three classes each sample belongs to. In the results of the training,
following the same methodology as in the previous section, a fairly high
and stable performance of the model in terms of ACC is observed, with
constant values of 0.94. The remaining 10% of the samples were used
as a test to evaluate the model’s capacity of generalization. The result of
the predictions is shown in Table 3. The model, in this case, was able to
classify all the samples correctly, concluding that the model is capable
of distinguishing between the three classes, a fact which, at the same
time, confirms that the metagenomic signature obtained has a strong
relationship with the disease to be treated and has a high specificity
when stratifying patients with T1D.

4. Discussion

Previous studies have indicated that gastrointestinal microbiota can
play a modulating role in the susceptibility to T1D. This work refers
to the differences in gastrointestinal microbiota between cases and
controls, in addition to analysing the phenomena that this may cause in
the pathogenesis of the disease (Alkanani et al., 2015; Knip & Siljander,
2016; Vaarala, Atkinson, & Neu, 2008; Wen et al., 2008).

The gastrointestinal microbiota of an adult contains approximately
500 to 1000 different bacterial species and is usually dominated by 4
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Fig. 5. Comparison of the relative abundances of the species belonging to the metagenomic signature according to the state of the patients. For each box diagram the p-value

obtained by the Wilcoxon test is shown.

Table 3

Results of the RF model predictions with test data.
Real cases Prob.Contro Prob.Serocon Prob.T1D Prediction
Control 0.713 0.14 0.147 Control
Serocon 0.196 0.595 0.209 Serocon
Control 0.695 0.148 0.157 Control
Control 0.812 0.074 0.114 Control
T1D 0.273 0.227 0.5 T1D
T1D 0.318 0.21 0.472 T1D
Control 0.644 0.305 0.051 Control
Control 0.536 0.374 0.09 Control
Serocon 0.338 0.562 0.1 Serocon
Serocon 0.392 0.476 0.132 Serocon
Control 0.697 0.17 0.133 Control
Control 0.695 0.128 0.177 Control

phylum, Firmicutes, Bacteroides, Proteobacteria and Actinobacteria
(Bibbo, Dore, Pes, Delitala, & Delitala, 2017; Hooper & Gordon, 2001).
In contrast, a child’s gastrointestinal microbiota shows greater vari-
ability in its composition and remains less stable over time. During
the first year, the child’s intestinal tract progresses from sterility to
extraordinarily dense intestinal colonization, being dominated by two
main phyla, Actinobacteria and Proteobacteria, and finally, by the age
of 2 years, the composition, diversity and function of the microbiota is
very similar to that of adults, with a predominance of Firmicutes and
Bacteroidetes phyla. (Durazzo, Ferro, & Gruden, 2019; Giilden, Wong,
& Wen, 2015; Stark & Lee, 1982).

The baseline results of this work have shown how certain ML
models, in particular RF, begin to present significant results from the
taxonomic family level. Furthermore, it has been observed that as
the metagenomic level is lowered, better model yields are obtained,
which indicates the relationship that may exist between the presence
or absence of genera and/or species with the development of the
pathology. In other words, the development of diabetes, in terms of
its relationship with microbiota, is not related to the correct balance

between different phyla or orders, but to the presence or absence of
certain bacterial species.

These results motivated the search for a metagenomic signature at
the species level. The vast majority of studies that have been carried out
in relation to the metagenome used data on the relative abundance of
the genus, which are not as specific in finding the cause of the disease.
For this reason, this work proposes a metagenomic signature based on
species with the aim of specifically identifying which are the potential
species to play a major role in the development of T1D. The findings are
consistent with those of previous studies using RF as classifier with 16S
rRNA microbiome data (Corrigan et al., 2018; Roguet, Eren, Newton,
& McLellan, 2018; Thompson, Johansen, Dunbar, & Munsky, 2019) or
using quantitative metagenomic sequencing (Loomba et al., 2017).

In Table 4, scientific evidence reported in previous works has been
gathered that relates the ten most important species to some type of
diabetes, immunological pathologies and/or metabolic pathologies. As
shown in Table 4 Bacteroides uniformis is present in articles related to
obesity, which increases a person’s risk of suffering from some type of
diabetes, and coeliac disease, which together with diabetes itself are
both autoimmune diseases, and diabetics are also at risk of coeliac
disease. Others such as Bacteroides dorei, Prevotella copri, Bacteroides
vulgatus, Escherichia coli, Bifidobacterium animalis, Eubacterium rectale
and Clostridium symbiosum are directly related to diabetes, with pop-
ulations of these species playing a decisive role in the stratification
between controls and cases. There are also some species that are related
to metabolic pathways in which glucose is present, such as glucose
intolerance or impaired insulin sensitivity, disturbances that can lead
to increased blood glucose and result in a diabetic condition.

Fig. 6(a-b) shows the representation of edges and Fig. 6(c-d) shows
the genera of the metagenomic signature compared to the total metage-
nomic population. In terms of the proportion of phyla, the metagenomic
signature presented in this work shows that Verrucomicrobia is not
represented, while there is a large proportional increase in Bacteroidetes
which becomes the most representative phylum, with a total of twelve
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Table 4
Evidence of the first 10 species of the metagenomic signature.

Species Importance Type Gram Genus Evidences

Bacteroides uniformis 405.00 Host-associated - Bacteroides Obesity (Cano, Santacruz, Moya, & Sanz, 2012), Coeliac disease (Sanchez,
Donat, Ribes-Koninckx, Calabuig, & Sanz, 2010)

Bacteroides dorei 245.96 Host-associated - Bacteroides Diabetes (Davis-Richardson et al., 2014; Higuchi et al., 2018; Wu et al.,
2019), Coeliac disease (Sanchez et al., 2010)

Prevotella copri 241.60 Host-associated - Prevotella Diabetes (Higuchi et al., 2018; Kasselman, Vernice, DeLeon, & Reiss, 2018;
Leite et al., 2017; Medina-Vera et al., 2019), Insulin sensitivity (Pedersen
et al., 2016)

Bacteroides vulgatus 176.44 Host-associated - Bacteroides Diabetes (Davis-Richardson et al., 2014; Higuchi et al., 2018; Leite et al.,
2017), Insulin sensitivity (Pedersen et al., 2016), Coeliac disease (Sanchez
et al., 2010)

Bacteroides thetaiotaomicron 174.51 Host-associated - Bacteroides Coeliac disease (Sanchez et al., 2010)

Escherichia coli 118.80 Host-associated - Escherichia Diabetes (Qin et al., 2012)

Bifidobacterium animalis 113.29 Host-associated + Bifidobacterium Diabetes (Amar et al., 2011; Tonucci, Dos Santos, de Oliveira, Ribeiro, &
Martino, 2017), Glucose intolerance (Stenman et al., 2014), Coeliac disease
(Sanchez et al., 2010)

Anaerotruncus colihominis 112.70 Host-associated + Anaerotruncus -

Eubacterium rectale 112.48 Host-associated + Eubacterium Diabetes (Everard & Cani, 2013; Larsen et al., 2010; Murri et al., 2013;
Venema, 2010), Chron’s disease (Wensinck & Van de Merwe, 1981)

Clostridium symbiosum 94.80 Host-associated + Clostridium Diabetes (Harsch & Konturek, 2018; Larsen et al., 2010)

species represented, five of which are the most important, indicating
the importance of these species in the model (see Fig. 4). On the other
hand, the phylum Actinobacteria and Proteinobacteria maintain a similar
proportion in the metagenomic signature. A decrease of Firmicutes is
detected, being this the second edge with more representation in the
signature, but with a minor weight in the model of ML, being its species
in low areas in the importance ranking. Therefore, the knowledge
embedded in the decision can be extracted from RF by calculating a
relative importance value intrinsic to the model, allowing the inter-
pretability and increasing the explainability of the results (Adadi &
Berrada, 2018), a key aspect in the medical domain (Holzinger et al.,
2019).

With regard to the genera, we first observe that of 42 genera present
in the initial dataset, the metagenomic signature remains with only
thirteen of them. There is a slight increase in the proportion of all
the genera represented in the metagenomic signature in comparison
with the original proportions, except for Streptococcus, which suffers
a decrease in the same, Eubacterium, which remains the same, and
Bacteroides, which suffers a significant increase in comparison with the
original. The latter has become the genus with the highest proportion,
with eight different species, of which four of the five best species belong
to it, and if we look at Fig. 6, we can see that the number of species
that have been identified is very high (see Fig. 4). The accumulated
importance of these species accounts for most of the weight of the
model (as was the case with Bacteroidetes in the case of the phylum) and
as genera such as Prevotella, Escherichia, Anaerotruncus and Eubacterium,
despite having a very small proportion of species, these are of great
importance to the model. The comparison of the proportion for the rest
of the metagenomic levels has also been carried out (Supplementary
materials Figures S6-S8)

Previous studies have found significant differences in the popula-
tions of the genera Bacteroides and Prevotella, between healthy patients
and patients with diabetes (Alkanani et al., 2015; Brown et al., 2011;
Dunne et al., 2014; Giongo et al., 2011; Harbison et al., 2019; Mejia-
Leon, Petrosino, Ajami, Dominguez-Bello, & Calderon de la Barca,
2014; Murri et al., 2013). Although a direct comparison with our results
cannot be made, due to the size and nature of the cohorts (age, culture,
country), our results are in line with these statements since the five
species where half of the total importance of the model resides, Table 4,
are part of these two genera, although in our study, making consensus
of all the species that are part of each genus we did not observe a
significant difference in the abundance of these genera, but there are
individual species that do present a significant difference between the
populations of cases and controls, such as Bacteroides cellulosilyticus,
Bacteroides unclassified, Bacteroides uniformis and Bacteroides vulgatus.

These observations serve to corroborate that our model has given im-
portance to species that have already been reported with a relationship
to T1D.

In Davis-Richardson et al. (2014) a study of the early microbiota of
76 Finnish children at high genetic risk of T1D from stool samples up
to 2 years of age was carried out. The results of that study showed that
the populations of Bacteroides dorei and Bacteroides vulgatus were signif-
icantly higher in cases than in controls. These two species are found in
the metagenomic signature reported in this work. Furthermore, both
species are positioned with great importance in the creation of the
model, specifically in the second and fourth position, respectively. In
Fig. 5 is shown that the abundance of Bacteroides dorei is higher in the
controls than in the cases, whereas Bacteroides vulgatus is significantly
higher in the cases. Even so, the positions they occupy after analysing
the importance of the model indicate the possible role they may play
in the development of the disease.

In Amar et al. (2011) and Tonucci et al. (2017) authors proposed
the use of species belonging to the genus bifidobacterium to act as a
probiotic against diabetes, by controlling bacterial translocation and
blood glucose levels. Among the species used, Bifidobacterium animalis,
being evidently more abundant in specimens whose glycaemia values
were more beneficial, in our study the populations of this species
are higher in individuals belonging to controls, so they can play an
important role against the triggering of the disease.

Reviewing the proposed metagenomic signature, a relationship was
observed in terms of the function of Bacteroides uniformis, Bacteroides
dorei, Prevotella copri, Bacteroides vulgatus and Bacteroides thetaiotaomi-
cro with metabolic activities that can be related to T1D. The databases
of the Kyoto Encyclopedia at Genes and Genomes (KEGG) and the
National Center for Biotechnology Information (NCBI) were consulted.
Host and host shared metabolic pathways were detected as the insulin
resistance metabolic pathway, the glucagon signalling pathway, glycol-
ysis, gluconeogenesis, the insulin signalling pathway and even in the
Type I and Type II diabetes pathways themselves. All these metabolic
pathways are involved in the regulation of blood glucose, both its
introduction into cells and its metabolism, degradation and storage.
These observations show how certain species of gastrointestinal micro-
biota can play a crucial role in the development of diabetes and be an
important source of knowledge for the diagnosis of patients.

Therefore, a stable model has been obtained that achieves a very
precise performance. Furthermore, the reported metagenomic signature
is capable of differentiating intermediate stages such as seroconversion.
The results shown in this work show a starting point in the use of ML
models for the diagnosis and prediction of microbiota-related diseases,
such as T1D.
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Fig. 7. Screenshot of the developed Shiny application. The application offers the
possibility of deepening and observing the results in an interactive way.

Finally, all the results of the tests carried out are available in an
interactive Shiny (Chang, Cheng, Allaire, Xie, & McPherson, 2020)
app, as shown in Fig. 7 for in-depth analysis and external validation.
Analysis code is also available.

5. Conclusions

A metagenomic signature has been obtained that is representative
of the influence at the species level on the microbiome of infants
with T1D, and after reviewing the literature we have found scientific
evidence that confirms that most species have a biological relationship

with T1D. In addition, some have been reported to be unrelated, so
further study of them should be carried out for the extraction of new
knowledge about the disease.

Due to the diversity of other external cohorts and the heterogene-
ity of their samples, validation of the model has not been possible.
Therefore, this study has limitations in terms of its generalization, so
it is specific to this cohort with such specific characteristics. Therefore,
given the promising results in this pilot study, this methodology should
be applied to much larger cohorts for possible transfer to actual clinical
practice. It is clear that the methodology that has been carried out
works for this type of data and this type of problem. Furthermore, the
code of the analyses, the data and the results are available and a Shiny
has been published which allows interaction with the experiments
carried out and the results obtained.
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tld-cohort/resources/16s-sequence-data. The Docker image can be
obtained from Docker Hub: https://hub.docker.com/r/cafernandezlo/
mlmicrobiomet1d. Therefore, MLMicrobiomeT1D is available as Docker
(Merkel, 2014) image which can be downloaded from Docker Hub to
interactively explore the results of the analysis locally.
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