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Abstract
In this work, a new discretization of the source term of the shallow water equations with non-
flat bottom geometry is proposed to obtain a well-balanced scheme. A Smoothed Particle
Hydrodynamics Arbitrary Lagrangian-Eulerian formulation based on Riemann solvers is
presented to solve the SWE.Moving-Least Squares approximations are used to compute high-
order reconstructions of the numerical fluxes and, stability is achieved using the a posteriori
MOOD paradigm. Several benchmark 1D and 2D numerical problems are considered to test
and validate the properties and behavior of the presented schemes.

Keywords Shallow water equations · SPH-ALE · Smoothed particle hydrodynamics ·
Well-balanced methods · Moving least squares

1 Introduction

The shallow water equations (SWE) with non-flat bottom geometry problems suppose a
hyperbolic system of conservation laws with a source term, also called balance laws. In these
problems we can achieve steady state solutions in which the flux gradients are not zero, but
rather they are exactly cancelled by the contribution of the source term. In practice, the exact
cancellation of the flux gradients with the source term is difficult to achieve numerically, if
there are no additional considerations when it comes to discretize the source term [1–7].

When a non-well-balanced scheme is used in SWE with variable bathymetry some fixed-
valued artificial perturbations will appear throughout the domain [8]. These perturbations
are proportional to the mesh size or to the distance between particles in meshless methods.
Well-balanced schemes [9] or schemes that satisfy the C-property, as they were called in
early works [10,11], are those which can successfully compensate (balance) the source term
with the flux gradients and reproduce steady state solutions. Hence, a well-balanced scheme
should preserve static states over time regardless of the bathymetry. Balancing the SWE is a
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problem that has gained a lot of attention during the past few decades to date and it has been
faced using many different numerical methods [1,6,7,12].

Smoothed Particle Hydrodynamics (SPH) methods were originally designed by Gingold
andMonaghan [13] and, Lucy [14] to be used in the field of astrophysics in the late seventies.
This use was soon after extended into many other fields of hydrodynamics. SPH methods
have been notably used in the solution of problems involving huge deformations or moving
boundaries, considering their Lagrangian approach and the absence of geometrical limitations
of classical mesh-based methods [15,16].

The method presented in this work is based on the SPH Arbitrary Lagrangian-Eulerian
(SPH-ALE) scheme proposed by Vila and Ben Moussa [17–19]. Unlike classical SPH for-
mulations [20], this meshless formulation is based on Riemann solvers. The use of Riemann
solvers avoids the need for explicit artificial dissipation and, the accuracy of the resulting
scheme is increased with the aid of Moving Least Squares (MLS) [21–26].

Moreover, the SPH-ALE method has an Arbitrary Eulerian-Lagrangian nature and thus,
it combines the advantages of the Lagrangian and Eulerian methods.

Nonetheless, the use of meshless SPH methods to solve well balanced SWE has not been
widely developed yet. We can refer to previous works from Vacondio et al [27,28], Xia et
al [29] and Berthon et al [30] . To the authors’ knowledge, the work of Rossi et al [31] is
the only successful attempt employing the SPH-ALE formulation. In their work, Rossi et al.
presented a path-conservative scheme. This scheme introduces an additional discretization
term to obtain the well-balance property. This term considers the contribution of the non-
conservative terms based on Roe-matrix integrated through a straight line path. In the present
work, we obtain the well-balancedness by an alternative new discretization of the source
term based on splitting the source term into two different terms. This procedure is based on
the approach presented in [6,7] for Finite Differences, Finite Volumes and Discontinuous
Galerkin schemes. The aim of the present work is to design a well-balanced, high-order
SPH-ALE scheme to solve the SWE. The proposed method is designed to solve problems
with non-smooth flows and variable bathymetry with high accuracy and preserving steady
states and, static solutions over time.

Stabilization is achieved using the Multi-Order Optimal Detection (MOOD) procedure
[24,32,33]. In common limiting procedures, the limiting is performed a priori, that is, pre-
dicting the troubled particles of the next time step. In MOOD the limiting procedure is
performed a posteriori, and thus, the prediction of the troubled particles is substituted by
the precise determination of the particles requiring limitation. In this work, we adapt the
approach proposed in [24] for the Euler equations to the SWE.

This paper is organized as follows: in Sect. 2 the SWE equations are presented. Section 3
is devoted to show the proposed discretization, with particular attention on the discretization
of the source term, required to achieve a well-balanced method (Sect. 3.2). Several numerical
tests are presented in Sect. 4, to test the accuracy and robustness of the proposed method.
Finally, in Sect. 5, some concluding remarks are drawn.

2 Governing Equations

TheSWEwith non-flat bottomgeometry suppose a hyperbolic systemof balance laws defined
as follows:

∂UUU

∂t
+ ∇ ·FFF(UUU ) = SSS(UUU ), (1)
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Fig. 1 Schematic diagram of water at rest over irregular bottom bathymetry

whereUUU is the vector of conservative variables andFFF = (FFFx (UUU ), FFFy(UUU )) is the flux tensor,
that are defined as

UUU =
⎛
⎝

h
hu
hv

⎞
⎠ ; FFFx (UUU ) =

⎛
⎜⎝

hu

hu2 + g

2
h2

huv

⎞
⎟⎠ ; FFFy(UUU ) =

⎛
⎜⎝

hv

huv

hv2 + g

2
h2

⎞
⎟⎠ .

The source term vector, SSS(UUU ), accounts for the effects of the bottom bathymetry and is
defined as

SSS(UUU ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0

−gh
∂b

∂x

−gh
∂b

∂ y

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

The terms h and g stand for the water height and the gravity acceleration. The position is
defined by rrr = (x, y)T , and the elevation of the bottom bathymetry is defined by a smooth
functionb(rrr) that is included in the source term.Thewater flowvelocity vector isuuu = (u, v)T ,
and the elevation of water surface is denoted as η = h + b. In Figure 1 a schematic diagram
with h(rrr), b(rrr) and η(rrr) is shown.

3 AWell-Balanced, High-Order SPH-ALE Scheme

In SPH-ALE methods the problem’s domain is discretized into a set of particles that hold
the values of the variables in their positions. We can solve the SWE described in section 2
for a given particle i as the weighted sum of the interactions between this particle i and
the neighbouring particles j within its influence domain, denoted as stencil. This interaction
between particles is conceived as a Riemann problem (RP) at the integration point i j at
midpoint between particles i and j . In Figure 2 a schematic representation of the fluid
particles, the particle i , its stencil, the neighbour particle j , and the integration point i j
located at midpoint between i and j are shown. The positions of these points are denoted by
rrr i , rrr j and rrr i j respectively. The normal vector of the i j path is noted as nnni j = rrr j−rrr i

||rrr j−rrr i || .
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Fig. 2 Schematic 2D diagram of particle i and its neighbour particles within its stencil

In the present work, we use the SPH-ALE formulation [17–19] with the correction term
proposed in [34]:

d

dt
(ViUUUi ) = −

Ni∑
j=1

2
(
GGGi j − HHHi

)
Vi Vj ∇Wi j + Vi SSSi ; (2)

dVi
dt

=
Ni∑
j=1

2Vi Vj
(
wwwi j − wwwi

) ∇Wi j ; (3)

drrr i
dt

=
∑Ni

j=1www j V jWi j∑Ni
j=1 VjWi j

, (4)

where rrr i is the position vector of particle i , GGGi j is the numerical flux tensor computed by a
Riemann solver in the integration point i j , which will be defined later, and HHHi = HHH(UUUi ,wwwi )

is the Lagrangian flux tensor of the SWE in a reference moving frame with velocity www. It is
defined as

HHHi = FFF(UUUi ) − wwwi ⊗UUUi . (5)

The terms wwwi ,www j refer to the Lagrangian velocity of particles i , j , while the Lagrangian
velocity at the integration point i j iswwwi j , which will be defined in section 3.1. In an Eulerian
frame wwwi = www j = 0, and in a Lagrangian frame they are coincident with particle velocities
uuui ,uuu j . The flux tensor defined in Eq. (5) leads to a flux difference formulation of the SPH-ALE
scheme [34].
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Fig. 3 Schematic diagram of the reconstruction at midpoint (i j) between two particles i and j . A 1D Riemann
problem is solved at i j . The left and right Riemann states (α−(x) and α+(x)) are computed from Taylor
polynomial reconstructions of the variable α(x). These reconstructions are computed separately, using the
information of the stencils associated to particles i (for the left state) and j (for the right state). Note that α

stands for any of the variables of the problem, either h, u or b

In Eqs. (2), (3) and (4), the term Vj represent the volume associated to the particle j , and
Wi j is a kernel function. Here, the kernel function is defined as

Wi j = C

lDi j

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 − 3

2
q2i j + 3

4
q3i j qi j ≤ 1

1

4

(
2 − qi j

)3 1 ≤ qi j ≤ 2

0 qi j > 2

. (6)

In Eq. (6), D is the number of space dimensions. The value of the kernel depends on the

positions of the particle i and its neighbouring particles j , as qi j = ||rrr j − rrr i ||
li j

. The value

of li j is defined from the smoothing lengths associated to the particle i and particle j and
related to their volume as

li j = 1

2
(li + l j ) , li = 2 V

1
D
i .

The value of the constant C depends on the number of spatial dimensions. We use C = 1 for

1D problems and C = 10

7π
for 2D problems. We refer to [24] and its references for a more

exhaustive and complete description of the SPH kernel formulations used in this work.

3.1 Discretization of the Numerical Fluxes

The numerical flux tensorGGGi j is computed by a Riemann solver, considering that the left and
right states of the RP at the integration point i j are given by the polynomial reconstructions of
the variables at the integration point i j . In the following, for a given variable α, we consider
α−
i j and α+

i j as the left and right states of the RP respectively. In Fig. 3 a schematic diagram
of the mentioned RP and the reconstructions at i j is shown. In this work, the Rusanov flux
is considered [35].

GGGi j = 1

2

(
HHH+

i j + HHH−
i j

)
− 1

2

∣∣∣S∗
i j

∣∣∣
(
UUU+

i j −UUU−
i j

)
· nnnTi j . (7)
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In Eq. (7) the term
∣∣∣S∗

i j

∣∣∣ is the maximum eigenvalue of the flux’s Jacobian matrix [35], which

in the ALE framework reads as

S∗
i j = max

(
(uuu+

i j − wwwi j ) · nnnTi j + c+
i j , (uuu−

i j − wwwi j ) · nnnTi j − c−
i j )

)
, (8)

where wwwi j = 1
2

(
www+

i j + www−
i j

)
is the Lagrangian velocity associated to the integration point,

c±
i j =

√
g · h±

i j denotes the left and right states of the wave celerities in the RP. Moreover,

HHH−
i j = HHH(UUU−

i j ,wwwi j ) and HHH+
i j = HHH(UUU+

i j ,wwwi j ) are the flux approximations of HHH on the left
and right sides of the integration point (located at the midpoint between particles i and j),
rrr i j with the positive orientation given by rrr j − rrr i and represented by the normalized vector
nnni j , whileUUU

+
i j −UUU−

i j is the jump of the reconstructed conservative variables.

3.1.1 High Order Reconstructions with Moving Least Squares

The left and right states at integration points of the conservative variables (UUU−
i j andUUU

+
i j ) and

the bathymetry (b−
i j and b

+
i j ) are computed using a cubic Taylor polynomial. These polynomial

reconstructions are used to calculate the fluxes HHH−
i j and HHH+

i j in equation (7), as well as the
source term (that will be described in the next section).

The derivatives required to compute the Taylor polynomials are obtained using MLS
approximations. In the following, we present very succinctly the MLS approximations
approach, and we refer the reader to [21,23–26] for a complete description of the method.

We can approximate the value of the variablesUUU at a given point, rrr = (x, y)T , usingMLS
reconstruction as

ÛîUîUi (rrr) =
Ni∑
j=1

φ j (rrr)UUU j , (9)

where Ni is the number of neighbour particles in the stencil of particle i and φ j (rrr) are
each of the MLS shape functions associated o the neighbour particles j [21,25]. These
shape functions, are calculated in function of the relative positions of the particles j and i
and they are weighted by a kernel function. The shape functions, gathered in vector ΦΦΦ =
(φ1, φ2, . . . , φNi ) ∈ R

Ni , are computed as follows

ΦΦΦT (rrr) = pppT (rrr) MMM−1(rrr) PPP(rrr) WWWD(rrr),

where pppT (rrr) = (1, x, y, x2, y2, xy, ...) ∈ R
m is the m-dimensional basis functions vector,

PPP is a m × Ni matrix where the basis functions are evaluated at each point of the stencil,
namely PPP = [pppT (rrr j )]i and MMM(rrr) is the m × m moment matrix given by

MMM(rrr) = PPP(rrr) WWWD(rrr) PPPT (rrr),

where WWWD(rrr) is a diagonal matrix which is obtained from the kernel function evaluated at
rrr j − rrr i for the Ni neighbouring particles. In the numerical applications of the present work,
we use the truncated exponential kernel function [23,24]

Wi j = W (rrr i ,rrr j ) = e1−β2 − 1

e − 1
; β = |rrr j − rrr i |

2 · max(|rrrk − rrr i |) ,∀k ∈ Ni

123



Journal of Scientific Computing (2021) 88 :84 Page 7 of 29 84

3.2 Well BalancedMethods: Source Term Discretization

In order to obtain awell balanced scheme, a newdiscretization of the source term is presented.
The proposed discretization is based on the splitting of the source term, and it adapts to the
SPH-ALE scheme the source term separation procedure presented by Xing and Shu for FD
methods [7] and to FV and DG methods [6].

If we consider the contribution of the non-flat bathymetry and no other external forces,
such as bed friction, the source term on a 2D SWE scheme reads:

SSS(UUU ) =
⎛
⎝

S1
S2
S3

⎞
⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0

−gh
∂b

∂x

−gh
∂b

∂ y

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (10)

The discretization of S2 and S3 components of the vector (10) is the same, so in the following
only the S2 term is derived. First, we proceed to separate the source term into two different
terms:

S2 = −gh
∂b

∂x
= −g(η − b)

∂b

∂x
= g

(
1

2

∂b2

∂x
− η

∂b

∂x

)
,

S2 = SA
2 + SB

2 ;

⎧⎪⎨
⎪⎩
SA
2 = g

2

∂b2

∂x

SB
2 = −gη

∂b

∂x

. (11)

Usual kernel approximations of a function and its gradient, read as

f (rrr i ) ≈
Ni∑
j=1

f (rrr j )VjWi j ;

∇ f (rrr i ) ≈
Ni∑
j=1

f (rrr j )Vj∇Wi j .

In order to ensure zeroth-order consistency, it is usual to approximate the gradient as [17,36].

∇ f (rrr i ) ≈
Ni∑
j=1

(
f (rrr j ) − f (rrr i )

)
Vj∇Wi j ≈

Ni∑
j=1

2
(
f (rrr i j ) − f (rrr i )

)
Vj∇Wi j .

The value of a function at the midpoint between particles can be computed as

f (rrr i j ) = f (rrr+
i j ) + f (rrr−

i j )

2
,

and then,

∇ f (rrr i ) ≈
Ni∑
j=1

(
f (rrr+

i j ) + f (rrr−
i j ) − 2 f (rrr i )

)
Vj∇Wi j .
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Thus, applying this approximation to the gradient of b, ∇b = ( ∂b
∂x , ∂b

∂ y )
T , the term SA

2 , only
involving the first component of the gradient, can be expressed as:

SA
2 = g

2

Ni∑
j=1

(
b2j − b2i

)
Vj

∂Wi j

∂x

= g

2

Ni∑
j=1

(
(b+

i j )
2 + (b−

i j )
2 − 2b2i

)
Vj

∂Wi j

∂x
.

(12)

An analogous procedure applied to the SB
2 term leads to:

SB
2 = −gηi

Ni∑
j=1

(
b j − bi

)
Vj

∂Wi j

∂x

= −gηi

Ni∑
j=1

(
b+
i j + b−

i j − 2bi
)
Vj

∂Wi j

∂x
.

(13)

If we add both split terms (12,13) into a single sum, we finally obtain S2, and S3 as the
proposed discretization of the source term:

S2 = g

2

Ni∑
j=1

[(
(b+

i j )
2 + (b−

i j )
2 − 2b2i

)
− 2ηi

(
b+
i j + b−

i j − 2bi
)]

Vj
∂Wi j

∂x
;

S3 = g

2

Ni∑
j=1

[(
(b+

i j )
2 + (b−

i j )
2 − 2b2i

)
− 2ηi

(
b+
i j + b−

i j − 2bi
)]

Vj
∂Wi j

∂ y
.

(14)

Applying the following discretization of the source term to the SWE hyperbolic system (7),
the flux gradient is explicitly canceled by the source term when water at rest conditions are
considered (h + b = η =constant; u = v = 0 for all the particles). This is strictly true for
the equations derived from the conservation of momentum (those that consider S2 and S3
respectively). The equation of the water height, derived frommass conservation, is examined
in the following. We consider the water height equation, and we define

HHHi 1 =
(
Hi 1x

Hi 1y

)
= FFFi 1 − hi wwwi =

(
hui
hvi

)
− hi wwwi ;

and the high-order reconstructions

HHH±
i j 1 =

⎛
⎝

H±
i j 1x

H±
i j 1y

⎞
⎠ = FFF±

i j 1 − h±
i j wwwi j =

⎛
⎝
hu±

i j

hv±
i j

⎞
⎠ − h±

i j wwwi j ;

Then, the water height equation reads as

d

dt
(Vihi ) = −

Ni∑
j=1

(
H+
i j 1x + H−

i j 1x −
∣∣∣S∗

i j

∣∣∣
(
h+
i j − h−

i j

)
nx − 2Hi 1x

)
Vi Vj

∂Wi j

∂x

−
Ni∑
j=1

(
H+
i j 1y + H−

i j 1y −
∣∣∣S∗

i j

∣∣∣
(
h+
i j − h−

i j

)
ny − 2Hi 1y

)
Vi Vj

∂Wi j

∂ y
,

(15)

123



Journal of Scientific Computing (2021) 88 :84 Page 9 of 29 84

Considering water at rest conditions, we obtain:

d

dt
(Vihi ) =

Ni∑
j=1

∣∣∣S∗
i j

∣∣∣
(
h+
i j − h−

i j

)
nx Vi Vj

∂Wi j

∂x

+
Ni∑
j=1

∣∣∣S∗
i j

∣∣∣
(
h+
i j − h−

i j

)
ny Vi Vj

∂Wi j

∂ y
.

(16)

Note that wwwi j = 000 and wwwi = 000 for the water at rest conditions for both Lagrangian and
Eulerian approaches. Eq. (16) shows that the difference of the jump term is not exactly
neglected for the water at rest conditions, as the reconstructed values of the water height (h)

may be different in the presence of non-flat bottom bathymetry, and the resulting numerical
scheme is not well-balanced.

In this work, following the works presented in [5,37], we propose a well-balanced SPH-
ALEdiscretizationof themass conservation equation.Weconsider a non-erodible bathymetry
hypothesis, and under this hypothesis, the transport operators of the water height (h) and the
bathymetry (b) can be expressed as

Lw (h) = ∂h

∂t
+ ∇ · (hwww) ;

Lw (b) = ∂b

∂t
+ ∇ · (bwww) = ∇b · www + b∇ · www ;

Then, the mass conservation equation in terms of h reads

∂h

∂t
+ ∇ ·FFF1 (UUU ) = 0 ;

and, introducing the operator Lw (h) and the flux HHH1 (UUU ) = FFF1 (UUU )− hwww, this equation can
be written as

Lw (h) + ∇ · HHH1 (UUU ) = 0 .

Since η = h+b and the bathymetry is non-erodible we can rewrite the mass conservation
equation in terms of η as

Lw (η) = Lw (h) + Lw (b) = −∇ · HHH1 (UUU ) + Lw (b) ; (17)

We can discretize Eq. (17) in particle i approximating the ALE flux term as a numerical
flux [17] including the kernel gradient correction [34] as follows

1

Vi

d (Viηi )

dt
= −

Ni∑
j=1

Vj2
(
ĜGGi j1 − HHHi

) · ∇Wi j +
Ni∑
j=1

Vj
(
biwww j + b jwwwi

) · ∇Wi j ,
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Note that we use the Rusanov numerical flux [35] considering the water surface elevation η

as the updating variable on time, since Eq. (17) is written in terms of this variable.

ĜGGi j1 = HHH+
i j1 + HHH−

i j1

2
−

∣∣∣S∗
i j

∣∣∣
2

(
η+
i j − η−

i j

)
nnnTi j .

d (Viηi )

dt
= −

Ni∑
j=1

ViVj 2

⎛
⎝HHH+

i j1 + HHH−
i j1

2
−

∣∣∣S∗
i j

∣∣∣
2

(
η+
i j − η−

i j

)
nnnTi j − HHHi

⎞
⎠ · ∇Wi j

+
Ni∑
j=1

ViVj
(
biwww j + b jwwwi

) · ∇Wi j . (18)

We can now revert the change of variables to write Eq. (18) in terms of water height h before
proceeding with the time discretization

d (Viηi )

dt
= d (Vi (hi + bi ))

dt
= d (Vihi )

dt
+ d (Vibi )

dt
,

Using that

d (Vibi )

dt
= Vi

dbi
dt

+ dVi
dt

bi = Vi

(
∂bi
∂t

+ ∇b · wwwi

)
+ (Vi∇ · wwwi ) bi ,

we can write

d (Viηi )

dt
= d (Vihi )

dt
+

Ni∑
j=1

Vi Vj
(
biwww j + b jwwwi

) · ∇Wi j .

Finally, substituting in Eq. (18) we get

d (Vihi )

dt
= −

Ni∑
j=1

Vi Vj 2

⎛
⎝HHH+

i j1 + HHH−
i j1

2
−

∣∣∣S∗
i j

∣∣∣
2

(
η+
i j − η−

i j

)
nnnTi j − HHHi

⎞
⎠ · ∇Wi j .

When water at rest conditions are considered, we obtain

d

dt
(Vihi ) =

Ni∑
j=1

∣∣∣S∗
i j

∣∣∣
(
η+
i j − η−

i j

)
Vi Vj∇Wi j · n

Hence, since η is constant, an exact zero mass flux is granted. Thus, we have derived a
new SPH-ALE method in which the numerical flux for the mass conservation equation is
discretized considering the water surface elevation η as the updated variable, instead of h. It is
important to note that in the proposed method the conservative variable is h. This is different
of the procedure followed by the pre-balanced methods [38–41] in which the conservative
variable is changed for the water elevation η.
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3.3 Final Discretization

To summarise, and for the sake of clarity, we write down the system of equations to be solved
and discretizations adopted in the presented method.

d

dt
(ViUUUi ) = −

Ni∑
j=1

2
(
GGGi j − HHHi

)
Vi Vj ∇Wi j + Vi SSSi ;

dVi
dt

=
Ni∑
j=1

2Vi Vj
(
wwwi j − wwwi

) ∇Wi j ;

drrr i
dt

=

Ni∑
j=1

www j V jWi j

Ni∑
j=1

VjWi j

. (19)

And the source term is discretized as

S1 = 0 ;

S2 = g

2

Ni∑
j=1

[(
(b+

i j )
2 + (b−

i j )
2 − 2b2i

)
− 2ηi

(
b+
i j + b−

i j − 2bi
)]

Vj
∂Wi j

∂x
;

S3 = g

2

Ni∑
j=1

[(
(b+

i j )
2 + (b−

i j )
2 − 2b2i

)
− 2ηi

(
b+
i j + b−

i j − 2bi
)]

Vj
∂Wi j

∂ y
.

3.3.1 Time Discretization

A TVD third-order Runge-Kutta time discretization [42] is used in this work

α I = αNi + ΔtF(αn) ;
α I I = 3

4
αNi + 1

4

(
α I + ΔtF

(
α I

))
;

αNi+1 = 1

3
αNi + 2

3

(
α I I + ΔtF

(
α I I

))
,

where F(α) is the spatial operator, and α is any of the time dependant variables from Eq.
(19).

In this work the time step is defined according to

Δt = CFL · min

(
V 1/D
i

||uuui || + ci

)
.

3.3.2 MOODMethod: A posteriori stabilization

High order reconstruction methods, such as the fourth-order MLS polynomial reconstruction
employed in this method, may produce artificial oscillations in the vicinity of shocks or
discontinuities of the solution. In order to avoid these non-physical oscillations, some kind
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of stabilization procedures must be introduced. The classic approaches for stabilization are
based on artificial viscosity terms or slope limiters, that are estimated a priori. Thismeans that
the method predicts at time step n the cells/particles/elements that will become problematic
in the next time step n + 1.

In the present work, the a posteriori paradigm is used. In particular, we use the multi-
dimensional Optimal Order Detection (MOOD) limiting procedure [24,32,33,43–46]. In this
a posteriori method, a candidate solution is obtained by solving the system of equations
using the most accurate method at disposal without any stabilization mechanism.

This candidate solution may contain NaN values or excessive numerical oscillations. In
order to prevent that, some detection chains are applied to that candidate solution to identify
the troubled particles.

After the MOOD detecting procedure, the fluxes are recalculated considering a lower
reconstruction order for those particles which were detected. This procedure (MOOD loop)
continues until all the particles of the candidate solution successfully pass the detection
chain. It has been shown that the schemes built with this approach are convergent and stable,
provided that the last scheme used is convergent and stable. Thus, the last scheme (termed
as the parachute scheme [32]), must be convergent and stable. In our case, the parachute
or base scheme is the first-order SPH-ALE method. In the present implementation of the
MOOD procedure, if a particle is marked as problematic, the order of the reconstructions
switches from fourth to first order.

In this work, we implemented a MOOD loop based on the method proposed in [24]. The
first detector of the detection chain is the Physical Admissible Detector (PAD). The PAD
ensures the positivity of the water height and of the particle volume, and also search for
NaN values. The second detector is the Discrete Maximum Principle (DMP) that detects
local maximum of the water elevation (η) as a potential numerical oscillation. Finally, the
Plateau Detector (PD) relax the DMP detector by admitting oscillations under a margin of
10−15, that is, machine truncating errors that would mistakenly trigger the DMP detector. For
a comprehensive explanation of the implementation of the MOOD method in the SPH-ALE
scheme, we refer the interested reader to [24].

3.3.3 Bathymetry Reconstruction

When a Lagrangian approach is considered, the location of the particles changes over time
and thus, the points where the bottom bathymetry must be evaluated are different each time
step. At the same time, in practical applications of the SWE, the bottom bathymetry is only
known at a discrete set of points. Hence, a SWE method must consider a procedure to obtain
the bathymetry at any given point inside the problem’s domain.

In order to design an algorithm able to deal with scattered bathymetry data, we propose a
new procedure to reconstruct the bathymetry from a discrete set of points. We consider that
the bathymetry is only known at a discrete set of points that we call bathymetry points. In
our numerical tests the bathymetry points are coincident with the initial location of the fluid
particles but, any other locations are also valid for the proposed algorithm. We approximate
the bathymetry at any given position rrr i inside of the problem’s domain employingmth-order
Taylor polynomial reconstructions, namely bp(rrr) where the gradients and derivatives are
computed with MLS from its closest bathymetry point rrr p
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b(rrr i ) ≈ bp(rrr i ) = b0p +
m−1∑
j=1

Ψ j ;

Ψ j = 1

j

(∇Ψ j−1
)T · (

rrr p − rrr i
) ; Ψ0 = b0p,

∇nb(rrr p) ≈ ∇nb̂0p =
Mp∑
k=1

∇nΦ0
k (rrrk) · b0k ;

where ∇nb̂0p(rrr) are the MLS derivatives of the bathymetry at rrr p , b0k are the values of the

bathymetry at the bathymetry points rrrk , and Φ0
k are the MLS shape functions of each

neighbouring bathymetry point of rrr p , Mp . The mth-order polynomial reconstruction of
the bathymetry based on rrr p is denoted as bp(rrr). Note that we use this procedure even though
in the proposed numerical examples, an analytical expression for the bathymetry is known.

Then, a MOOD procedure for the bathymetry approximation starts with a candidate
bathymetry computed using a fourth-order polynomial reconstruction. Then, the DMP and
PD detectors are applied to assess that the approximation is valid in terms of smoothness. If
the approximation is identified as troubled by the detectors, a new candidate approximation
employing a lower order MLS reconstruction is checked. This MOOD loop continues until
the candidate solution successfully passes the detection chain. This MOOD procedure grants
a smooth bathymetry reconstruction, compatible with the formulation presented in Sect. 2.

4 Numerical Results

This section presents the numerical results for several benchmark problems which aim to
assess the accuracy and efficiency of the proposed method. These problems also aim to
assess the Well Balancedness of the method for both, the high-order reconstruction scheme
and also the first-order base scheme. Thus, in the following test cases we are employing and
comparing the performance of the proposed method, labelled as SPH-ALE-MOOD, with the
first-order SPH-ALE scheme which is labelled as the Base scheme.

A Lagrangian approach and homogeneous boundary conditions are used for the proposed
test cases, unless indicated in the text. The boundary conditions in this work were imple-
mented using the mirroring ghost particles procedure, as in [47,48].

4.1 Convergence Test: Steady Subcritical Flow Over a Bump

In this test the order of convergence of our scheme is checked for a smooth solution. This
test case presents a steady subcritical flow over a bump with a smooth bathymetry and it is
commonly use to analyze the accuracy and convergence of the numerical methods [30,49,53].
The bathymetry is given by

b(x) = 0.2 exp
(−0.16(x − 10)2

)
, x ∈ [0, 20] .

Considering a steady state, we can obtain the analytical solution of the problem as

⎧⎨
⎩
hu = qc
q2c
2h2

+ g(h + b) = Eo

; Eo = q2c
2h2o

+ g ho .
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Table 1 Convergence test

N .particles L2 error h L2 Order h L2 error u L2 Order u

20 6.81 × 10−3 – 1.58 × 10−2 –

40 1.17 × 10−3 2.54 3.04 × 10−3 2.38

80 8.86 × 10−5 3.73 2.27 × 10−4 3.74

160 4.89 × 10−6 4.18 1.03 × 10−5 4.46

320 6.72 × 10−7 2.86 9.42 × 10−7 3.46

640 1.44 × 10−7 2.23 1.92 × 10−7 2.30

L2 norm errors and orders of convergence for the results with different refinements from the scheme with
fourth-order MLS reconstructions

As initial conditions, all the particles are started with η = 2 and hu = qc = 4.42. On the
left boundary (inlet), a null Neumann boundary condition is imposed for the water height
h, while a Dirichlet boundary condition (hu = qc = 4.42) is imposed for the discharge.
On the right boundary (outlet), null Neumann is imposed to the discharge, while a Dirichlet
boundary condition (ho = 2) is imposed on the water height.

This problem was computed until convergence with different refinements, using a SPH-
ALE scheme with fourth-order MLS reconstructions.

In table 1, the L2 − norm of h and u and the obtained order of convergence are presented
for several particle discretizations. In the first set of particles, until 160, tends to fourth-order
convergence, but after it decays to the expected second-order [17]. This behaviour is due the
fourth-order reconstruction of the variables and the second-order spatial integration of the
scheme.

4.2 Lake at Rest Test Cases

This set of cases is widely used to test thewell balancedness of numerical methods [1,29,50].
These problems test the ability of the schemes to preserve the water at rest solution (null
velocity and constant water surface elevation) over time for an arbitrary bottom bathymetry .

In the following test cases, the proposed method is compared with an SPH-ALE method
with a non-well balanced discretization of its source term. This non-WB source term is
discretized as

SNonW B
2 = −ghi

Ni∑
j=1

(
b+
i j + b−

i j − 2bi
)

Vj
∂Wi j

∂x
;

SNonW B
3 = −ghi

Ni∑
j=1

(
b+
i j + b−

i j − 2bi
)

Vj
∂Wi j

∂ y
.

4.2.1 1D Lake at Rest Test Cases

In this first test case, we tested two different bottom bathymetries. The first bathymetry
b1(x), consists of a single bump [1,29,51,52]. The second bottom bathymetry b2(x), is more
complex and considers a variable ground elevation [53].
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The two bottom bathymetries are defined as follows:

b1(x) =
{
0.25 [1 + cos(10π(x − 0.5))] , if 0.4 ≤ x ≤ 0.6

0, otherwise
; Ω1 : x ∈ [0, 1]. (20)

b2(x) = 1

20

(
10 exp(−x2) + 15 exp(−(x − 2.5)2) + 10 exp(−0.5(x − 5)2)

+6 exp(−2(x − 7.5)2) + 16 exp(−(x − 10)2)
)
;

for: Ω2 : x ∈ [0, 10]. (21)

For these cases, 200 particles were equally distributed throughout the computational domain.
All of the particles were given the same water surface elevation η = 1 and null velocity as
initial conditions. The CFL number was set to CFL = 0.9.

The results of the two bathymetries test cases for T = 1 are shown in Figs. 4 and 5 .
As it is shown in the mentioned figures, the non-well-balanced methods introduce artificial
perturbations. The high order non-well-balanced method reduce the magnitude of the oscil-
lations, but it still fails to obtain an exact flat surface. The proposed well-balanced SPH-ALE
method is able to preserve the stationary static solution over time for both, the high-order and
the base schemes, keeping the relative error of water surface elevation at the order of 10−16,
which is at the level of the machine precision.

4.2.2 2D Lake at Rest Over a Bump

We consider a test case that takes the lake at rest conditions for a 2D domain. This test case
involves a circular domain with a radius of R = 45 discretized with 60429 scattered particles.
All particles were initialized with lake at rest conditions with η = 1. The CFL number was
set to CFL = 0.9. The bottom bathymetry is defined as follows:

b(r) =
{
0.25

[
1 + cos

(πr

9

)]
, if r ≤ 9

0, otherwise
; r =

√
x2 + y2 . (22)

We run the simulation until a final time of T = 1. Figure 6 shows that the proposed
method is able to preserve the stationary static solution over time for both, the base scheme
and the SPH-ALE-MOOD methods. Note that all the particles are represented in the figure.
The relative error of water surface elevation is of the order of 10−16.

4.3 Propagation of SmallWater Surface Perturbations onWater at Rest Cases

The goal of these problems is to asses theWell Balancedness of the presented method when
a small water perturbation is present on the water at rest initial conditions.

We consider initial null velocity and constant water surface elevation for all the particles,
except in a subregion of the domain, in which a small perturbation is added to the water
surface as initial conditions.

The setup of the following test caseswere taken from [1]. These test cases have beenwidely
used by other researchers to test different mesh-based numerical methods, in 1D [6,49,54]
and in 2D [6,12,54,55]. For SPH methods, these test cases have been used in [29,31]. A
CFL = 0.15 was employed in these cases.
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Fig. 4 Water surface elevation and bottom bathymetry of the Lake at rest over a single bump (bathymetry
b1) for the base scheme and the SPH-ALE-MOOD method at T = 1. Top row: General view. Bottom row:
Close up view of the difference between the numerical results and the exact water elevation ηexact = 1. Left
column: Non-Well-balanced methods. Right column: Well-balanced methods

4.3.1 Propagation of Small Water Surface Perturbations on 1D Lake at Rest Cases

In this test case, we consider a domain Ω : x ∈ [0, 1] . The bottom bathymetry is

b(x) =
{
0.25 [1 + cos(10π(x − 0.5))] , if 0.4 ≤ x ≤ 0.6

0, otherwise
. (23)

Throughout the problem’s domain, we set 200 particles with null velocity and the following
water height

h(x) =
{

(1 − b(x)) + ε, if 0.1 ≤ x ≤ 0.2

1 − b(x), otherwise
. (24)
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Fig. 5 Water surface elevation and bottom bathymetry of the Lake at rest over a variable bathymetry
(bathymetry b2) for the base scheme and the SPH-ALE-MOOD methods at T = 1. Top row: General view.
Bottom row: Close up view of the difference between the numerical results and the exact water elevation
ηexact = 1. Left column: Non-Well-balanced methods. Right column: Well-balanced methods

Two different cases were considered, imposing different initial perturbations: (a) ε = 0.2 and
(b) ε = 0.01. The numerical results and the reference solution for both initial perturbations
at time T = 0.7 are presented in Fig. 7.

In Fig. 7 our results are compared with a reference solution obtained by LeVeque [1]
employing a finite volume method with a very fine grid. For the small perturbation case, we
also plot the results obtained in [29] using a well-balanced SPH scheme with 400 particles.
Neither of the proposed methods show any artificial perturbation due to the bathymetry
bump, in consonance with the well-balanced behaviour of the schemes. The SPH-ALE-
MOOD method obtains a very accurate representation of the solution. It is also important to
remark that the MOODmethod is employing two different reconstruction orders in different
particles simultaneously (fourth-order reconstruction in non-troubled cells and first-order
reconstruction in troubled cells) throughout the domain. Despite this, the method is able to
keep the well-balanced behaviour. For the small perturbation case, we note that the result
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(a)

(b) (c)

Fig. 6 2D Lake at rest over a bump test case for T = 1. Water surface elevation and bottom bed for the base
scheme and the SPH-ALE-MOODmethods. a 3D view. b Radial representation of the water surface elevation
and bathymetry of all the fluid particles. The horizontal axis represents the radial distance of each particle to
the center of the domain. c Difference between exact water surface elevation and the result of the proposed
methods. The horizontal axis represents the radial distance of each particle to the center of the domain

Fig. 7 water surface elevation of the propagation of a small perturbation on water at rest. Results for the base
scheme and the SPH-ALE-MOOD methods for T = 0.7. Left: Initial water surface perturbation of ε = 0.2,
right: initial water surface perturbation of ε = 0.01. The results of Xia et al. have been digitized from [29]
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of the proposed SPH-ALE-MOOD method is comparable to that of [29], using half of the
particles.

4.3.2 Propagation of Small Water Surface Perturbations on 2D Lake at Rest Case

In this test case, we consider a rectangular domainΩ : (x, y) ∈ [0, 2]×[0, 1] and the bottom
bathymetry reads as

b(x, y) = 0.8 exp(−5(x − 0.9)2 − 50(y − 0.5)2). (25)

The computational domain is discretizedwith an equally distributed set of 200×100 particles,
with initial null velocity and the water height defined as

h(x, y) =
{

(1 − b(x, y)) + ε, if 0.05 ≤ x ≤ 0.15

1 − b(x, y), otherwise
; ε = 0.01 . (26)

The numerical results for T = 0.6, T = 1.2 and T = 1.8 are presented in Fig. 8 both for the
SPH-ALE Base scheme and for the SPH-ALE-MOOD methods. In Fig. 9 a 3D view of the
results from the SPH-ALE-MOOD method are shown.

Figures 8 and 9 show the results obtained using the base scheme and the SPH-ALE-MOOD
methods.Wenotice that bothmethods obtains a solution free of spurious oscillations, showing
the well-balanced character of the proposed schemes. Moreover, the proposed SPH-ALE-
MOOD method obtains a very accurate solution, which is comparable to those obtained in
the literature [29,55].

4.4 Moving Fluid with Height Discontinuity over Constant Bed Slope

This academic numerical test was set to check the performance of the proposed method in an
extreme situation when water height discontinuities, fluid velocity and, non-flat bathymetry
are present at the same time. Here, we examine if the scheme preserves the well-balance
property when shocks, contact discontinuities and, rarefactions are present in the solution.
This test case was first proposed in [57] as a modified version of a test from [56]. The initial
conditions are defined as

{
hl = 1.3, ul = −2.0, if x ≤ 0.5

hr = 0.1, ur = −2.0, if x > 0.5
.

The bottom bathymetry is given by

b(x) = 0.4 − 0.4x, x ∈ [0, 1].
Thediscretization is performedusing 240particles, initially distributed in an extended domain
Ω0 : x ∈ [0, 1.2]. We did this in order to get 200 particles on the computational domain
(Ω : x ∈ [0, 1]) at the final computing time T = 0.1, as it is shown in Fig. 10.The CFL
number was set to CFL = 0.6. In Fig. 10 the results of this problem are shown for the
SPH-ALE-MOOD method compared to reference solution from [57]. It is observed that the
proposed method captures accurately the position of the shock. The MOOD procedure is
able to prevent the appearance of non-physical oscillations at the surroundings of the shock.
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Fig. 8 Elevation of the water surface at the propagation of a small perturbation through water at rest in 2D.
From top to bottom, we present the results at T = 0.0, T = 0.6, T = 1.2 and T = 1.8. Left: SPH-ALE Base
scheme. Right: SPH-ALE-MOOD method

4.5 2D Circular Dam Break on Flat Bathymetry

Dam break tests are a classic way to test the accuracy of SWE methods and specially, their
ability to correctly solve problems with discontinuities and shock waves. This test case was
introduced in [58] and has been used in many different works since then, i.e. [12,59,60]. This
problem considers a squared domain [−25, 25] × [−25, 25] in which we distribute 40090
particles with an scattered disposition. All of the particles were initialized with null velocity,
null bottom bathymetry, and the following water height as initial condition:

h(r) =
{
10, if r ≤ 11

1, otherwise
; r =

√
x2 + y2 . (27)
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Fig. 9 3D view of the elevation of the water surface and bathymetry at the propagation of a small perturbation
through water at rest in 2D. The represented vertical scale of η is augmented 20 times the bathymetry’s vertical
scale. Results from the SPH-ALE-MOOD method for different times: a T = 0.0, b T = 0.6, c T = 1.2 and
d T = 1.8

Fig. 10 Numerical test: Moving fluid with height discontinuity over constant bed slope at T = 0.1. SPH-
ALE-MOOD method and reference solution [57]. Left: Elevation of water surface η and bottom bathymetry.
Right: u velocity
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Fig. 11 2D circular dam break problem over a flat bathymetry: Elevation of water surface for T = 0.69 of
the particles contained in the cut [−25, 25] × [−1, 1] of the domain. Left: SPH-ALE Base scheme method
compared with a FV-HLLC first order method [60]. Right: SPH-ALE-MOOD method compared with a FV-
HLLC MUSCL method. [60]

The final results for different times are shown in Figs. 11 and 12 . The CFL number was set
to CFL = 0.90.

In Fig. 11 the results obtained with the SPH-ALE Base scheme and SPH-ALE-MOOD
methods for T = 0.69 are comparedwith [100×100]FV-HLLCfirst-order and second-order-
MUSCL reference solutions from [60], respectively. We can see that the SPH-ALE-MOOD
method’s results agreewellwith theHLLC-MUSCLFVmethod reference solution. InFig. 12,
the 3D view of the water surface elevation obtained with the SPH-ALE-MOOD method for
six different times T = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0 is shown.

4.6 2D Circular Dam Break Problem on a Non-Flat Bed

This 2D dam break benchmark problem was firstly introduced in [61], and it was later
reproduced in different SWEworks such as [12,59,62]. This test case considers a [0, 2]×[0, 2]
domain inwhich 201×201 particles are equally distributed along both axis.All of the particles
were given null velocity and the following water surface elevation as initial condition:

η(x, y) =
{
1.1, if (x − 1.25)2 + (y − 1)2 ≤ 0.01

0.6, otherwise
.

And the bathymetry is given by:

b(x, y) =
{
b1(x, y), if (x − 1.5)2 + (y − 1)2 ≤ 0.25

0, otherwise
,

with:

b1(x, y) = 1

8
[1 + cos (2π(x − 0.5))] [1 + cos (2π y)] .
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Fig. 12 2D circular dam break problem with over a flat bathymetry: 3D view of the elevation of water surface
for the SPH-ALE-MOOD method. a Initial condition. b Solution for T = 0.2. c Solution for T = 0.4. d
Solution for T = 0.6. e Solution for T = 0.8. f Solution for T = 1.0

The initial condition and the results for T = 0.05, T = 0.1 and T = 0.15 from the SPH-
ALE-MOODmethod are shown in Figs. 13 and 14 . The CFL number was set toCFL = 0.6.
Solid wall boundary conditions were considered at the y = 0 and y = 2 contours, as null
Neumann boundary conditions were considered at the x = 0 and x = 2 contours.

The results obtained with the SPH-ALE-MOOD method are compared in Fig. 13 with
a reference solution (fourth-order FV 800 × 800 grid method) digitized from [59]. We see
that the presented method provides accurate solutions, specially at detecting the position and
strength of the shock wave.

4.7 Steady Flow Over a BumpTest Cases

The following cases were first proposed by Goutal and Maurel in [51] and, since then, they
have become classic benchmark test problems to test the behaviour of new numerical schemes
for the SWE [3,6,30,63].

For this test case we consider a purely Eulerian approach, using 200 particles which are
equally distributed in the domainΩ : x ∈ [0, 25]. The gravity acceleration is g = 9.812. The
CFL number was set to CFL = 0.9. The bathymetry of the problems is defined as follows

b(x) =
{
0.2 − 0.05(x − 10)2, if 8 ≤ x ≤ 12

0, otherwise
. (28)
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(a) (b)

(c) (d)

Fig. 13 2D circular dam break problem on a non-flat bed: Elevation of water surface of points at y = 1.
Results from the SPH-ALE-MOOD method. The reference solution is obtained by a fourth-order FV method
using a 800 × 800 grid and it was digitized from [59]. a General view of initial conditions. b Close up of
solution at T = 0.05. c Close up of solution at T = 0.10. d) Close up of solution at T = 0.15

Table 2 Boundary and initial
conditions for the three different
cases of Steady flow over a bump.
Subcritical flow (SF),
Transcritical flow without a
shock (TF), and Transcritical
flow with a shock (TFsh). * :
when the flow is subcritical

Boundary conditions Initial conditions
Upstream Downstream η hu

SF hu = 4.42 h = 2.00 2.00 4.42

TF hu = 1.53 h = 0.66* 0.75 1.53

TFsh hu = 0.18 h = 0.33 0.37 0.18

We consider three different flow cases using the same bottom bathymetry: A subcritical flow
(SF), a Transcritical flow without a shock (TF), and a Transcritical flow with a shock(TFsh).
The Dirichlet boundary conditions and initial conditions for each of the three different flow
cases are shown in Table 2. Note that the boundary conditions that are not determined in the
table for the inlet and the outlet are considered as null Neumann boundary conditions.

The subcritical flow case (SF) remains in the subcritical regime all along the problem’s
domain. However, in the steady solution of the transcritical flow without a shock case (TF)
the flow regime changes from subcritical at the inlet, to supercritical downstream the bump.
In the steady solution of the transcritical flow with a shock (TFsh), the flow regime changes
from subcritical at the inlet, to supercritical downstream the bump and then abruptly changes
again into subcritical thorugh a shock wave.
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(c)

(a) (b)

(d)

Fig. 14 2D circular dam break problem on a non-flat bed: Cut at y = 1 of 3D view of the elevation of water
surface and bathymetry. Results from SPH-ALE-MOODmethod. a Solution at T = 0. b Solution at T = 0.05.
c Solution at T = 0.10. d Solution at T = 0.15

The results of the calculations are presented in Fig. 15. As we can see, the presented
SPH-ALE-MOOD method obtains solutions in very close agreement with the analytical
solution. The method is able to reach and preserve the steady state solution over time. No
artificial perturbations due to the bottom bathymetry are observed, in consonance with the
well balanced behaviour of the proposed scheme. The presented solutions are comparable
to those obtained using mesh-based methods [2,3,6,53,55] or SPH methods like [30].

5 Conclusions

A new well balanced SPH-ALE-MOOD scheme to solve the SWE is presented in this work.
The presented numerical method is accurate and provides well-balanced solutions. The well-
balanced behavior is obtained through a new discretization of the source term. The proposed

123



84 Page 26 of 29 Journal of Scientific Computing (2021) 88 :84

Fig. 15 Steady flow over a bump. water surface elevation for subcritical flow at T = 40 (left), transcritical
flow without a shock at T = 25 (center) and transcritical flow with a shock at T = 60 (right)

discretization of the source term is able to exactly cancel the contribution of the flux gradient
for water at rest conditions.

A series of 1D and 2D benchmark problems were considered to assess the performance
of the proposed method. It is shown that the proposed methodology is able to solve the
SWE with variable bottom bathymetry and discontinuities in the solution. Moreover, the
ALE formulation allows to consider Lagrangian and Eulerian approaches to solve the SWE,
and provides high-accurate, well-balanced and robust solutions for both purely Eulerian and
Lagrangian approaches. The MOOD limiting procedure is able to prevent artificial oscilla-
tions in the vicinity of discontinuities and shocks, preserving the well-balanced behaviour of
the proposed scheme.
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