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a b s t r a c t 

The purpose of this paper is twofold. We first provide the mathematical analysis of a dy- 

namic contact problem in thermoelasticity, when the contact is governed by a normal 

damped response function and the constitutive thermoelastic law is given by the Duhamel- 

Neumann relation. Under suitable hypotheses on data and using a Faedo-Galerkin strategy, 

we show the existence and uniqueness of solution for this problem. Then, we study the 

particular case when the deformable body is, in fact, a shell and use asymptotic analysis 

to study the convergence to a 2D limit problem when the thickness tends to zero. 
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1. Introduction 

Over the last decades, asymptotic methods have played an important role in the derivation and justification of reduced 

models for problems in solid mechanics involving three-dimensional bodies that feature one or two dimensions much 

smaller than the others. Take for example the case of rods, where the length is much bigger than the diameter of the

cross section, or the case of plates and shells, who have a very small thickness compared to the extension of the middle

section. 

The basis to these methods was introduced by Lions in [1] and they were first applied to obtain models for plate bending

problems (see [2,3] ). Also, a thorough compilation of models for plates can be found in [4] . 

But the application of asymptotic methods goes far beyond plate models, having been used also to justify simplified 

models for elastic shells, or beams. The literature is quite vast, and we cite here just some classic works that use the

asymptotic expansion method for the derivation of several beam models [5–8] while presenting also convergence results. 

The asymptotic modelling of rods in linearized thermoelasticity was also studied in [7] . 
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A complete theory for elastic shells models was presented in [9] , including models for membranes (elliptic and general-

ized) as well as flexural shells. The asymptotic method applied to these problems leads to two-dimensional problems which 

provide an accurate modelisation of the mechanical phenomena of interest, just like their three-dimensional counterparts, 

while showing better properties from the practical point of view, namely they can be numerically solved more efficiently, 

(see, for example [10,11] ). In spite of its background history and growing number of contributions, the theory of asymptotic

analysis for shell structures is far from being a closed subject, particularly when involving contact conditions. That is the 

reason why, in a series of recent papers, we studied the asymptotic analysis of viscoelastic shells [12–15] . Two-dimensional

equations have been derived in [16,17] for dynamic shell problems by using asymptotic analysis, although no strong con- 

vergence results are provided. Recently, the asymptotic limit of the dynamic problem for thermoelastic elliptic shells was 

obtained in [18] . Nevertheless, none of above cited works on shells consider contact conditions on a part of the boundary, a

void which is starting to be dealt with in the recent years, as we shall address below. 

The variety of applications to real life problems with contact conditions has drawn the attention of many researchers 

throughout the years, and many references deal with its modeling, mathematical analysis and numerical approximation 

as long as with the study of the variational inequalities associated to them (see for example [19–23] and the references

therein). Normal compliance and normal damped response conditions are two particular boundary conditions that have 

been used in the modelling of contact problems. For example, normal compliance has been used in [24,25] and [26] to

obtain error estimates and convergence results in various situations, like wear and adhesion phenomena for elastic beams, 

and normal damped response has been considered in [27–28] to obtain results on the existence and uniqueness of solutions 

to some mechanical contact problems. 

Also, focusing on dynamic contact problems one can find that several types of material and different boundary contact 

conditions have been considered. As an example, one can cite the works of Cocou et. al. in [30–32] for viscoelastic bodies

with Signorini conditions and nonlocal friction for general and cracked bodies respectively. Also in [33] a viscoelastic body 

is considered under normal compliance conditions, and in [34] the authors proved some existence and uniqueness results 

concerning dynamic contact problems with friction for a viscoelastic material. With respect to dynamic thermo-viscoelastic 

contact problems, in [35] the author considered Coulomb friction and in [36] the authors extended the results given in

[33] to this kind of materials. 

In the most recent years we have devoted some effort s to the application of the asymptotic method to the analysis of

several contact problems for elastic shells. In particular, in [37] the case of an elastic shell in frictionless unilateral contact

with a rigid foundation was considered, finding a classification of the two dimensional limit problems as membranes or 

flexural shells which is just a natural extension of that obtained by Ciarlet et al. in [9] for the case without contact. Then,

in [38] we studied the case of an elliptic membrane shell with arbitrary surface forces and gap function, and provided

rigorous convergence results. Even more recently, in [39] we followed the work in [40] to obtain error estimates for linearly

elastic shells in unilateral frictionless contact with a rigid foundation, by using several corrector techniques and in [41] a

convergence result for elastic elliptic membrane shells under normal compliance contact conditions is presented. 

In this paper, we will apply the asymptotic method for the first time to a contact problem for elliptic membrane shells

in thermoelasticity, thus obtaining a two-dimensional limit problem whose validity is confirmed by providing rigorous con- 

vergence results. The combination of contact conditions and temperature evolution in a mechanical problem of this kind 

leads to a system of coupled nonlinear variational equations for which, to the best of our knowledge, no previous results of

existence and uniqueness of solution were available in the literature (see the seminal paper [36] , where a variety of contact

problems in thermodynamics for general domains are studied). That is the reason why we devote the first part of the paper

to analyze the existence and uniqueness of solution for both the three dimensional contact problem and its corresponding 

two dimensional limit. Then, we pass to the study of the convergence of the solution of the three-dimensional model to the

two-dimensional one, as the thickness (small parameter) tends to zero, in the particular case of an elliptic membrane. 

From the mathematical point of view, the main new challenges in comparison with our previous works are related with 

the (weak) convergence of sequences of boundary terms (where the contact conditions are defined). We cannot rely on the 

compacity for the trace operator in our functional framework, as we shall see, due to the lack of regularity on the transversal

direction. The contact is modeled with a normal damped response function (see for example [42] ) and the constitutive law

follows the Duhamel-Neumannn relation (see [7] and references therein). Other choices can be made in both cases, thus 

leading to a vast yet unexplored field of mathematical problems, each one of them with its own mathematical challenges 

and with useful applications in real life situations. The present paper will serve of basis for future research in this direction.

The outline of the paper is the following: in Section 2 , we present a result of existence and uniqueness of solution for

the proposed contact problem in cartesian coordinates in a general domain, after describing its mechanical and variational 

formulations. In Section 3 , the deformable body is assumed to be a shell, and the variational formulation of the contact

problem is reformulated in curvilinear coordinates, and scaled to be posed on a reference domain whose thickness does 

not depend on the small parameter. Next, Section 4 is devoted to give a brief description of the formal asymptotic analysis

which leads to the obtention of a two dimensional limit problem. In Section 5 the existence and uniqueness of solution for

that problem is proved. Also, Section 5 contains the main result of the paper, namely the rigorous convergence result for

the elliptic membrane case. Finally, we prove the convergence of the solution to the re-scaled version of this problem which

bears the true physical meaning. The paper ends with conclusions and a compilation of possible future work. 
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2. A three-dimensional dynamic contact problem for thermoelastic bodies. The normal damped response case 

In this section we will present the mathematical model arising when we consider a three-dimensional dynamic problem 

for a thermoelastic body when a contact condition is modeled by a normal damped response law. We will also provide a

variational formulation and study existence and uniqueness of solution. 

2.1. Statement of the problem 

Let ˆ �ε be a three-dimensional bounded domain which is the reference configuration of a deformable body made of an 

homogeneous and isotropic elastic material, with Lamé coefficients ˆ λε ≥ 0 , ˆ με > 0 . Let ˆ �ε = ∂ ˆ �ε denote the boundary of

the body, which is divided into three disjoint parts ˆ �ε + , ˆ �ε 
C 

and 

ˆ �ε 
0 

, where the measure of the latter is strictly positive.

A generic point of ¯̂
 �ε shall be denoted by ˆ x 

ε = ( ̂  x ε 
i 
) but notice that through the whole paper, the explicit dependence of

various functions of space and time will be omitted when there is no ambiguity. Let ˆ αε 
T 

, ˆ βε , ˆ k ε and ˆ ρε denote thermal

dilatation coefficient, thermal conductivity coefficient, specific heat coefficient and specific mass density, respectively. The 

constitutive equation relating the stress tensor components ˆ σε 
i j 

to the linearized strain tensor ˆ e ε 
i j 
( ̂  u 

ε ) components, and the 

temperature ˆ ϑ 

ε is given by the linearized Duhamel-Neumann law (see [7] ): 

ˆ σ ε 
i j = 

ˆ λε ˆ e ε kk ( ̂  u 

ε ) δi j + 2 ̂  με ˆ e ε i j ( ̂  u 

ε ) − ˆ αε 
T (3 ̂

 λε + 2 ̂  με ) ̂  ϑ 

ε δi j , (1) 

where ˆ e ε 
i j 
( ̂ v ε ) = 

1 
2 ( ̂

 ∂ j ̂  v ε i 
+ 

ˆ ∂ i ̂ v ε j ) denotes the linearized deformation operator being ˆ ∂ i the partial derivative with respect to

the i − th component. Also, δi j represents the Kronecker’s symbol. We assume that the body is fixed on a part of the bound-

ary, so we consider that the displacements field vanishes on 

ˆ �ε 
0 

. Further, the body is assumed to be under the effect of a

heat source ˆ q ε , volume forces of density ˆ f 
ε = ( ̂  f i,ε ) and traction forces of density ˆ h 

ε = ( ̂ h i,ε ) applied on 

ˆ �ε + . On the remain-

ing part of the boundary, ˆ �ε 
C 

, the body may enter in contact with a deformable solid, and the distance between both bodies,

measured along the direction of the normal ˆ n 

ε = ( ̂  n ε 
i 
) , at the initial time is given by a known function ˆ s ε . For simplicity, in

the following, we shall take ˆ s ε = 0 . 

We assume that the normal response on the contact surface only happens when the surface element is moving towards 

the foundation, and vanishes when it is moving away. Thus to model contact in the normal direction we are using the

so-called normal damped response (see [23] and references therein). Therefore, 

− ˆ σ ε 
n = 

ˆ p ε ( ̇ ˆ u 

ε 
n ) on 

ˆ �ε 
C × [0 , T ] , 

where T > 0 is the time period of observation, a dot above indicates time derivative and ˆ p ε : R → R + is a non negative

function which vanishes when its argument (the surface velocity) is nonpositive. Specifically, one may use 

ˆ p ε (r) = ˆ κε r + , (2) 

where ˆ κε > 0 stands for the normal damping coefficient, and we denote by r + = max { r, 0 } for any r ∈ R . The mathematical

assumptions for ˆ p ε (·) : R → R 

+ are the following: { 

ˆ p ε (r) = 0 if r ≤ 0 , 

There exists L p > 0 such that | ̂  p ε (r 1 ) − ˆ p ε (r 2 ) | ≤ L p | r 1 − r 2 |∀ r 1 , r 2 ∈ R , 

( ̂  p ε (r 1 ) − ˆ p ε (r 2 ))(r 1 − r 2 ) ≥ 0 ∀ r 1 , r 2 ∈ R . 

(3) 

In particular, hypotheses (3) are verified by (2) . Regarding initial and boundary conditions, they will be all considered as

homogeneous conditions in the aim to simplify the exposition of the asymptotic analysis which follows. Then, the equations 

of the three-dimensional dynamic thermoelastic frictionless contact problem between a regular three-dimensional solid and 

a deformable foundation with normal damped response are the following: 

Problem 1. Find the displacements field 

ˆ u 

ε = ( ̂  u ε 
i 
) and the temperature field 

ˆ ϑ 

ε verifying 

ˆ ρε ¨̂
 u 

ε − div ̂  σ
ε = 

ˆ f 
ε 

in 

ˆ �ε × (0 , T ) , 

ˆ βε ˙ ˆ ϑ 

ε = ∂ j ( ̂ k ε ˆ ∂ ε j 
ˆ ϑ 

ε ) − ˆ αε 
T (3 ̂

 λε + 2 ̂  με ) ̂  e ε kk ( ̇
 ˆ u 

ε ) + 

ˆ q ε in 

ˆ �ε × (0 , T ) , 

ˆ u 

ε = 0 on 

ˆ �ε 
0 × (0 , T ) , 

ˆ ϑ 

ε = 0 on 

ˆ �ε 
0 × (0 , T ) , 

ˆ σ ε ˆ n 

ε = 

ˆ h 

ε 
on 

ˆ �ε 
+ × (0 , T ) , 

− ˆ σ ε 
n = 

ˆ p ε ( ̂  ˙ u 

ε 
n ) , ˆ σ

ε 
t = ( ̂  σ ε 

ti ) = 0 on 

ˆ �ε 
C × (0 , T ) , 

ˆ k ε ˆ ∂ ε j 
ˆ ϑ 

ε n j = 0 on ( ̂  �ε 
+ ∪ 

ˆ �ε 
C ) × (0 , T ) , 

˙ ˆ u 

ε (·, 0) = 

ˆ u 

ε (·, 0) = 0 in 

ˆ �ε , 

ˆ ϑ 

ε (·, 0) = 0 in 

ˆ �ε , 

ε ε 
where ˆ σ = ( ̂  σ
i j 
) is described in (1) . 

3 
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2.2. Variational formulation of the problem 

Let V ( ̂  �ε ) and S( ̂  �ε ) be the spaces of admissible displacements and temperatures, defined by 

V ( ̂  �ε ) := { ̂ v ε = ( ̂ v ε i ) ∈ [ H 

1 ( ̂  �ε )] 3 ; ˆ v ε = 0 on 

ˆ �ε 
0 } , 

S( ̂  �ε ) := { ̂  ϕ 

ε ∈ H 

1 ( ̂  �ε ) ; ˆ ϕ 

ε = 0 on 

ˆ �ε 
0 } , 

respectively. Both of them are Hilbert spaces equipped with the inner products 

( ̂ v ε , ˆ w 

ε ) 
V ( ̂ �ε ) 

= 

∫ 
ˆ �ε 

ˆ e ε i j ( ̂ v 
ε 
) ̂  e ε i j ( ̂  w 

ε ) d ̂  x ε , ∀ ̂

 v ε , ˆ w 

ε ∈ V ( ̂  �ε ) 

( ̂  ϕ 

ε , ˆ ζ ε ) 
S( ̂ �ε ) 

= 

∫ 
ˆ �ε 

ˆ ∂ ε j ˆ ϕ 

ε ˆ ∂ ε j 
ˆ ζ ε d ̂  x ε , ∀ ̂  ϕ 

ε , ˆ ζ ε ∈ S( ̂  �ε ) , 

respectively. Besides, as long as there is no room for confusion, we shall avoid specifying the domain in the subindices for

the corresponding norms notation. Further, for the sake of simplicity in the formulations to come, we define the following 

operators. The bilinear, continuous and coercive forms a V,ε : V ( ̂  �ε ) × V ( ̂  �ε ) → R and a S,ε : S( ̂  �ε ) × S( ̂  �ε ) → R defined by 

( ̂  u 

ε , ̂  v ε ) → a V,ε ( ̂  u 

ε , ̂  v ε ) = 

∫ 
ˆ �ε 

ˆ A 

i jkl,ε ˆ e ε kl ( ̂  u 

ε ) ̂  e ε i j ( ̂ v 
ε 
) d ̂  x ε , 

( ̂  ϕ 

ε , ˆ ψ 

ε ) → a S,ε ( ̂  ϕ 

ε , ˆ ψ 

ε ) = 

∫ 
ˆ �ε 

ˆ k ε ˆ ∂ ε j ˆ ϕ 

ε ˆ ∂ ε j 
ˆ ψ 

ε d ̂  x ε , 

where ˆ A 

i jkl,ε = ̂

 λε δi j δkl + ˆ με (δik δ jl + δil δ jk ) denotes the elasticity fourth-order tensor. The continuous form c ε : S( ̂  �ε ) ×
 ( ̂  �ε ) → R defined by 

( ̂  ϕ 

ε , ̂  v ε ) → c ε ( ̂  ϕ 

ε , ̂  v ε ) = 

∫ 
ˆ �ε 

ˆ αε 
T (3 ̂

 λε + 2 ̂  με ) ̂  ϕ 

ε ˆ e ε kk ( ̂ v 
ε 
) d ̂  x ε . 

The nonlinear map 

ˆ P ε : [ H 

1 ( ̂  �ε )] 3 → [ H 

1 ( ̂  �ε )] 3 
′ 

such that 〈
ˆ P ε ( ̂  u 

ε ) , ̂  v ε 
〉
= 

∫ 
ˆ �ε 

C 

ˆ p ε ( ̂  u 

ε 
n ) ̂ v ε n d ̂  �ε ∀ ̂

 u 

ε , ̂  v ε ∈ [ H 

1 ( ̂  �ε )] 3 . 

Above and below we use the notation for a duality pair 〈 ·, ·〉 in V ′ ( ̂  �ε ) × V ( ̂  �ε ) (also for S ′ ( ̂  �ε ) × S( ̂  �ε ) ). The functional
ˆ J ε (·) is defined a.e. in (0 , T ) as 〈

ˆ J ε (t) , ̂  v ε 
〉
= 

∫ 
ˆ �ε 

ˆ f i,ε (t) ̂ v ε i d ̂  x ε + 

∫ 
ˆ �ε + 

ˆ h 

i,ε (t) ̂ v ε i d ̂  �ε , ∀ ̂

 v ε ∈ V ( ̂  �ε ) , 

and similarly, 〈
ˆ Q 

ε (t) , ˆ ϕ 

ε 
〉
= 

∫ 
ˆ �ε 

ˆ q ε (t) ̂  ϕ 

ε d ̂  x ε ∀ ˆ ϕ 

ε ∈ S( ̂  �ε ) . 

Then, it is straightforward to obtain the following variational formulation: 

Problem 2. Find a pair t �→ ( ̂  u 

ε ( ̂ x 
ε 
, t) , ˆ ϑ 

ε ( ̂ x 
ε 
, t)) of [0 , T ] → V ( ̂  �ε ) × S( ̂  �ε ) verifying 

ˆ ρε 
〈

¨̂
 u 

ε 
i , ̂  v ε i 

〉
+ a V,ε ( ̂  u 

ε , ̂  v ε ) − c ε ( ̂  ϑ 

ε , ̂  v ε ) + 

〈 
ˆ P ε ( ̇ ˆ u 

ε ) , ̂  v ε 
〉 

= 

〈
ˆ J ε (t) , ̂  v ε 

〉 ∀ ̂

 v ε ∈ V ( ̂  �ε ) , a.e. in (0 , T ) , (4) 

ˆ βε 
〈 

˙ ˆ ϑ 

ε , ˆ ϕ 

ε 
〉 
+ a S,ε ( ̂  ϑ 

ε , ˆ ϕ 

ε ) + c ε ( ̂  ϕ 

ε , ˙ ˆ u 

ε ) = 

〈
ˆ Q 

ε (t) , ˆ ϕ 

ε 
〉 ∀ ̂  ϕ 

ε ∈ S( ̂  �ε ) , a.e. in (0 , T ) , (5) 

with 

˙ ˆ u 

ε (·, 0) = 

ˆ u 

ε (·, 0) = 0 and 

ˆ ϑ 

ε (·, 0) = 0 . 

In favour of simplicity, we are going to assume that the different parameters of the problem (thermal conductivity, ther- 

mal dilatation, specific heat coefficient, mass density, Lamé coefficients) are constants. 

Theorem 1. Let us assume that volume forces, tractions and heat source density functions have regularity ˆ f 
ε ∈ 

H 

1 (0 , T ; [ L 2 ( ̂  �ε )] 3 ) , ˆ h 

ε ∈ H 

2 (0 , T ; [ L 2 ( ̂  �ε + )] 3 ) and ˆ q ε ∈ H 

1 (0 , T ; L 2 ( ̂  �ε )) , respectively. Further, assume that ˆ h 

ε 
(·, 0) = 0 . Then,

there exists a unique pair ( ̂  u 

ε ( x , t) , ˆ ϑ 

ε ( ̂ x , t)) solution to Problem 2 such that ⎧ ⎨ 

⎩ 

ˆ u 

ε ∈ L ∞ (0 , T ;V ( ̂  �ε )) 
˙ ˆ u 

ε ∈ L ∞ (0 , T ; [ L 2 ( ̂  �ε )] 3 ) ∩ L ∞ (0 , T ;V ( ̂  �ε )) , 
¨̂
 u 

ε ∈ L ∞ (0 , T ;V 

′ ( ̂  �ε )) ∩ L ∞ (0 , T ; [ L 2 ( ̂  �ε )] 3 ) , 

(6) 
4 
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{
ˆ ϑ 

ε ∈ L ∞ (0 , T ; L 2 ( ̂  �ε )) ∩ L 2 (0 , T ; S( ̂  �ε )) , 
˙ ˆ ϑ 

ε ∈ L ∞ (0 , T ; L 2 ( ̂  �ε )) ∩ L 2 (0 , T ; S( ̂  �ε )) . 
(7) 

Remark 1. The regularity results in ( 6 c) and ( 7 b) imply that the duality products involving ¨̂
 u 

ε and 

˙ ˆ ϑ 

ε in (4) and (5) can

be replaced by the usual inner products in L 2 ( ̂  �ε ) . 

We proceed by following the Faedo-Galerkin method. Let 
{

ˆ w i 

}∞ 

i =1 
be a sequence of functions such that 

ˆ w i ∈ V ( ̂  �ε ) ∀ i, V ( ̂  �ε ) = 

⋃ 

m ≥1 

V m 

, (8) 

where V m 

= 

〈
ˆ w 1 , . . . , ˆ w m 

〉
and 

ˆ w 1 , . . . , ˆ w m 

are orthonormal functions. Similarly, let 
{

ˆ s i 
}∞ 

i =1 
be a sequence of functions such 

that 

ˆ s i ∈ S( ̂  �ε ) ∀ i, S( ̂  �ε ) = 

⋃ 

m ≥1 

S m 

, (9) 

where S m 

= 

〈
ˆ s 1 , . . . , ̂  s m 

〉
and ˆ s 1 , . . . , ̂  s m 

are orthonormal functions for all m ≥ 1 . The approximated solutions ( ̂  u 

m , ˆ ϑ 

m ) are

defined by the following problem: 

Problem 3. Find the functions ˆ u 

m : [0 , T ] → V m 

and 

ˆ ϑ 

m : [0 , T ] → S m 

in the form 

ˆ u 

m ( ̂ x , t) = 

m ∑ 

i =1 

u 

m 

i (t) ̂  w i ( ̂ x ) , ˆ ϑ 

m ( ̂ x , t) = 

m ∑ 

i =1 

ϑ 

m 

i (t) ̂  s i ( ̂ x ) , 

such that 

ˆ ρε 
〈
¨̂
 u 

m , ̂  v m 

〉
+ a V,ε ( ̂  u 

m , ̂  v m 

) − c ε ( ̂  ϑ 

m , ̂  v m 

) + 

〈 
ˆ P ε ( ̇ ˆ u 

m ) , ̂  v m 

〉 
= 

〈
ˆ J ε (t) , ̂  v m 

〉
, ∀ ̂

 v m ∈ V m 

, (10) 

ˆ βε 
〈 

˙ ˆ ϑ 

m , ˆ ϕ 

m 

〉 
+ a S,ε ( ̂  ϑ 

m , ˆ ϕ 

m ) + c ε ( ̂  ϕ 

m , ˙ ˆ u 

m ) = 

〈
ˆ Q 

ε (t) , ˆ ϕ 

m 

〉
, ∀ ˆ ϕ 

m ∈ S m 

. (11) 

with the initial conditions 

ˆ u 

m (0) = 

˙ ˆ u 

m (0) = 0 , ˆ ϑ 

m (0) = 0 . (12) 

Finding a solution for Problem 3 is equivalent to solving a first order differential equation system 

˙ Z (t) = F (t, Z ) , Z (0) = 0 . 

where Z (t) = (v m 

1 
(t) , . . . , v m 

m 

(t) , u m 

1 
(t) , . . . , u m 

m 

(t ) , ϑ 

m 

1 
(t ) , . . . , ϑ 

m 

m 

(t )) , with v m 

j 
(t ) = ˙ u m 

j 
(t) . The Picard-Lindeloff theorem gives

a unique absolutely continuous solution in an interval [0 , t m 

] which depends on the supreme of function F (which does not

depend on time). Then, being the functions F j uniformly Lipschitz in the variable Z , if we prove that the solution Z (t) is

bounded, we can extend the solution to the whole interval [0 , T ] . 

Now the goal is to obtain estimations in appropriate normed spaces for ˆ u 

m , ˙ ˆ u 

m , ˆ ϑ 

m and 

˙ ˆ ϑ 

m . To do that, we can take

ˆ v m = 

˙ ˆ u 

m ∈ V m 

and ˆ ϕ 

m = 

ˆ ϑ 

m ∈ S m 

in (10), (11) , respectively, and add both equations to have that 

1 

2 

d 

dt 

{
ˆ ρε 
∣∣∣ ˙ ˆ u 

m (t) 

∣∣∣2 
0 

+ a V,ε ( ̂  u 

m (t) , ˆ u 

m (t)) + 

ˆ βε 
∣∣∣ ˆ ϑ 

m (t) 

∣∣∣2 
0 

}
+ a S,ε 

(
ˆ ϑ 

m , ˆ ϑ 

m 

)
+ 

〈 
ˆ P ε ( ̇ ˆ u 

m ) , ˙ ˆ u 

m 

〉 
= 

〈 
ˆ J ε (t) , ˙ ˆ u 

m 

〉 
+ 

〈 
ˆ Q 

ε (t) , ˆ ϑ 

m 

〉 
. (13) 

Notice that we shall use the notation | · | 0 for a (vector or scalar) L 2 norm. The same applies for ‖ · ‖ 1 to denote a H 

1 

norm. Integrating in [0 , t] , taking into account (12) , the monotonicity of ˆ p ε , the coercivity of a V,ε , a S,ε , integrating by parts

the term in 

ˆ �ε + and using Korn’s inequality we get 

ˆ ρε 

∣∣∣ ˙ ˆ u 

m (t) 

∣∣∣2 
0 

+ C 
∥∥ ˆ u 

m (t) 
∥∥2 

V 
+ 

ˆ βε 

∣∣∣ ˆ ϑ 

m (t) 

∣∣∣2 
0 

+ ̂

 k ̃  C 
∫ t 

0 

∥∥∥ ˆ ϑ 

m (s ) 

∥∥∥2 

S 
ds 

≤ ∫ t 
0 

{∣∣∣ ˆ f 
ε 
(s ) 

∣∣∣
0 

∣∣∣ ˙ ˆ u 

m (s ) 

∣∣∣
0 

+ 

∣∣∣ ˙ ˆ h 

ε (s ) 

∣∣∣
0 , ̂ �ε + 

∣∣ ˆ u 

m (s ) 
∣∣

0 , ̂ �ε + 
+ 

∣∣ ˆ q ε (s ) 
∣∣

0 

∣∣∣ ˆ ϑ 

m (s ) 

∣∣∣
0 

}
ds. 

(14) 

Above and in what follows, C, ˜ C denote positive constants only depending on data, whose value may change from one 

equation to other. Next, applying Young’s inequality to each term in the right-hand side in (14) and the continuity of the
5 
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trace operator, yields that ∣∣∣ ˙ ˆ u 

m (t) 

∣∣∣2 
0 

+ 

∥∥ ˆ u 

m (t) 
∥∥2 

V 
+ 

∣∣∣ ˆ ϑ 

m (t) 

∣∣∣2 
0 

+ 

∫ t 
0 

∥∥∥ ˆ ϑ 

m (s ) 

∥∥∥2 

S 
ds 

≤ C( ̂  f 
ε 
, 

˙ ˆ h 

ε 
, ̂  q ε ) + 

˜ C 
∫ t 

0 

{∣∣∣ ˙ ˆ u 

m (s ) 

∣∣∣2 
0 

+ 

∥∥ ˆ u 

m (s ) 
∥∥2 

1 
+ 

∣∣∣ ˆ ϑ 

m (s ) 

∣∣∣2 
0 

}
ds, 

(15) 

which, applying Gronwall’s Lemma, gives ∣∣∣ ˙ ˆ u 

m (t) 

∣∣∣2 
0 

+ 

∥∥ ˆ u 

m (t) 
∥∥2 

V 
+ 

∣∣∣ ˆ ϑ 

m (t) 

∣∣∣2 
0 

≤ C( ̂  f 
ε 
, 

˙ ˆ h 

ε 
, ̂  q ε ) + e 

˜ C T , ∀ m, (16) 

from where, 

˙ ˆ u 

m ∈ L ∞ (0 , T ; [ L 2 ( ̂  �ε )] 3 ) , ˆ ϑ 

m ∈ L ∞ (0 , T ; L 2 ( ̂  �ε )) , ˆ u 

m ∈ L ∞ (0 , T ;V ( ̂  �ε )) . 

Further, going back to (15) , we have ˆ ϑ 

m ∈ L 2 (0 , T ; S( ̂  �ε )) and going back to (13) , repeating the process, but keeping the

term ∫ t 

0 

〈 
ˆ P ε ( ̇ ˆ u 

m ) , ˙ ˆ u 

m 

〉 
d r = 

∫ t 

0 

ˆ κε ( ̇ ˆ u 

m 

n ) 
2 
+ d r, 

we find that 

( ̇ ˆ u 

m 

n ) + ∈ L 2 ( 0 , T ; L 2 ( ̂  �ε 
C )) . (17) 

Note that all the estimates above are independent of m . Therefore, we can deduce that 
{

ˆ u 

m 

}
m 

is a bounded subset of

L ∞ (0 , T ;V ( ̂  �ε )) , 
{ 

˙ ˆ u 

m 

} 
m 

is a bounded subset of L ∞ (0 , T ; [ L 2 ( ̂  �ε )] 3 ) , 
{ 

ˆ ϑ 

m 

} 
m 

is a bounded subset of L ∞ (0 , T ; L 2 ( ̂  �ε )) and

L 2 (0 , T ; S( ̂  �ε )) , and 

{
( ̇ ˆ u m 

n ) + 
}

m 

is a bounded subset of L 2 (0 , T ; L 2 ( ̂  �ε 
C 
)) . 

We now sum Eqs. (10) and (11) and write the result at times t + h , with h > 0 and 0 ≤ t ≤ T − h , then subtract the

resulting equations and next we take ˆ v m = 

˙ ˆ u 

m (t + h ) − ˙ ˆ u 

m (t) ∈ V m 

and ˆ ϕ 

m = 

ˆ ϑ 

m (t + h ) − ˆ ϑ 

m (t) ∈ S m 

to obtain 

ˆ ρε 
〈

¨̂
 u 

m 

i (t + h ) − ¨̂
 u 

m 

i (t) , ˙ ˆ u 

m 

i (t + h ) − ˙ ˆ u 

m 

i (t) 
〉
+ a V,ε ( ̂  u 

m (t + h ) − ˆ u 

m (t) , ˙ ˆ u 

m (t + h ) − ˙ ˆ u 

m (t)) 

+ 

〈 
ˆ P ε ( ̇ ˆ u 

m ( t + h )) − ˆ P ε ( ̇ ˆ u 

m ( t)) , ˙ ˆ u 

m ( t + h ) − ˙ ˆ u 

m (t) 
〉 

+ 

ˆ βε 
〈 

˙ ˆ ϑ 

m (t + h ) − ˙ ˆ ϑ 

m (t) , ˆ ϑ 

m (t + h ) − ˆ ϑ 

m (t) 
〉 
+ a S,ε ( ̂  ϑ 

m (t + h ) − ˆ ϑ 

m (t) , ˆ ϑ 

m (t + h ) − ˆ ϑ 

m (t)) 

= 

∫ 
ˆ �ε 

( ̂  f i,ε (t + h ) − ˆ f i,ε (t))( ̇ ˆ u 

m 

i (t + h ) − ˙ ˆ u 

m 

i (t)) d ̂  x ε + 

∫ 
ˆ �ε + 

( ̂ h 

i,ε (t + h ) − ˆ h 

i,ε (t))( ̇ ˆ u 

m 

i (t + h ) − ˙ ˆ u 

m 

i (t)) d ̂  �ε 

+ 

∫ 
ˆ �ε 

( ̂  q ε (t + h ) − ˆ q ε (t))( ̂  ϑ 

m (t + h ) − ˆ ϑ 

m (t)) d ̂  x ε . 

Integrating in time in [0 , t] , using the monotonicity of ˆ p ε , dividing the resulting inequality by h 2 and having in mind (16) ,

we can take limits when h → 0 + to have 

1 

2 

ˆ ρε 
∣∣ ¨̂

 u 

m (t) 
∣∣2 

0 
− 1 

2 

ˆ ρε 
∣∣ ¨̂

 u 

m (0) 
∣∣2 

0 
+ 

1 

2 

a V,ε ( ̇ ˆ u 

m ( t) , ˙ ˆ u 

m ( t)) − 1 

2 

a V,ε ( ̇ ˆ u 

m ( 0) , ˙ ˆ u 

m ( 0)) 

+ 

1 

2 

∫ 
ˆ �ε 

ˆ βε ( 
˙ ˆ ϑ 

m ( t)) 2 d ̂  x ε − 1 

2 

∫ 
ˆ �ε 

ˆ βε ( 
˙ ˆ ϑ 

m ( 0)) 2 d ̂  x ε + 

∫ t 

0 

a S,ε ( 
˙ ˆ ϑ 

m ( r) , 
˙ ˆ ϑ 

m ( r)) dr 

≤
∫ t 

0 

∫ 
ˆ �ε 

˙ ˆ f i,ε (r) ̈̂  u 

m 

i (r) d ̂  x ε dr + 

∫ t 

0 

∫ 
ˆ �ε + 

˙ ˆ h 

i,ε (r) ̈̂  u 

m 

i (r) d ̂  �ε dr + 

∫ t 

0 

∫ 
ˆ �ε 

˙ ˆ q ε (r) 
˙ ˆ ϑ 

m (r) d ̂  x ε dr. (18) 

Integrating by parts the term on 

ˆ �ε + above and applying Young’s inequality, we get 

ˆ ρε | ̈̂  u 

m (t) | 2 0 − ˆ ρε | ̈̂  u 

m (0) | 2 0 + || ̇ ˆ u 

m (t ) || 2 V + 

ˆ βε | ˙ ˆ ϑ 

m (t ) | 2 0 − ˆ βε | ˙ ˆ ϑ 

m (0) | 2 0 + 

∫ t 

0 

‖ 

˙ ˆ ϑ 

m (r) ‖ 

2 
S dr 

≤ ˜ C ( 
˙ ˆ f 
ε 
, 

¨̂
 h 

ε 
, ˙ ˆ q ε ) + C 

∫ t 

0 

{ 
| ̈̂  u 

m (r) | 2 0 + || ̇ ˆ u 

m (r) || 2 1 + | ˙ ˆ ϑ 

m (r) | 2 0 

} 
dr. (19) 

In order to obtain bounds for | ̈̂  u 

m 

(0) | 2 
0 

and | ˙ ˆ ϑ 

m 

(0) | 2 
0 

we first notice that Eqs. (10) and (11) hold for t = 0 due to the

compatibility required between initial and boundary conditions. Therefore, taking t = 0 and 

ˆ v m = 

¨̂
 u 

m (0) ∈ V m 

in (10) and

ˆ ϕ 

m = 

˙ ˆ ϑ 

m (0) ∈ S m 

in (11) , taking into account the initial conditions, and using Young’s inequality, we obtain 

ˆ ρε | ̈̂  u 

m 

( 0 ) | 2 0 = 

∫ 
ˆ �ε 

ˆ f i,ε ( 0 ) ̈̂  u 

m 

i ( 0 ) d ̂  x ε + 

∫ 
ˆ �ε + 

ˆ h 

i,ε ( 0 ) ̈̂  u 

m 

i ( 0 ) d ̂  �ε ≤ 1 
δ
C + δ| ̈̂  u 

m 

( 0 ) | 2 0 , 

ˆ βε | ˙ ˆ ϑ 

m 

( 0 ) | 2 0 = 

∫ 
ˆ �ε ˆ q ε ( 0 ) 

˙ ˆ ϑ 

m 

( 0 ) d ̂  x ε ≤ 1 
˜ 

˜ C + 

˜ δ| ˙ ˆ ϑ 

m 

( 0 ) | 
2 

0 , 
δ

6 



M.T. Cao-Rial, G. Castiñeira, Á. Rodríguez-Arós et al. Commun Nonlinear Sci Numer Simulat 103 (2021) 105995 

 

 

 

 

 

where δ, and 

˜ δ are sufficiently small positive constants. Next, applying Korn’s inequality and Gronwall’s lemma in (19) we 

find 

| ̈̂  u 

m 

( t ) | 2 0 + ‖ ̇

 ˆ u 

m 

( t ) ‖ 

2 
V + | ˙ ˆ ϑ 

m 

( t ) | 2 0 ≤ C. 

Again, all the estimates are independent of m . Then, we can deduce that 

{ 
˙ ˆ u 

m 

} 
m 

is a bounded subset of L ∞ (0 , T ;V ( ̂  �ε )) ,{ 
¨̂
 u 

m 

} 
m 

is a bounded subset of L ∞ (0 , T ; [ L 2 ( ̂  �ε )] 3 ) , and 

{ 
˙ ˆ ϑ 

m 

} 
m 

is a bounded subset of L ∞ (0 , T ; L 2 ( ̂  �ε )) . Observe that the

boundedness of the different sequences above, and earlier in this proof, imply that there exists subsequences of ˆ u 

m and 

ˆ ϑ 

m ,

also denoted by ˆ u 

m and 

ˆ ϑ 

m , and there exist elements ˆ u 

ε , ˙ ˆ u 

ε , ¨̂
 u 

ε , ˆ ϑ 

ε , 
˙ ˆ ϑ 

ε and χε such that 

ˆ u 

m 

∗
⇀ 

m →∞ 

ˆ u 

ε in L ∞ 

(
0 , T ;V 

(
ˆ �ε 
))

, (20) 

˙ ˆ u 

m ∗
⇀ 

m →∞ 

˙ ˆ u 

ε 
in L ∞ 

(
0 , T ;

[
L 2 
(

ˆ �ε 
)]3 
)

∩ L ∞ 

(
0 , T ;V 

(
ˆ �ε 
))

, (21) 

¨̂
 u 

m ∗
⇀ 

m →∞ 

¨̂
 u 

ε 
in L ∞ 

(
0 , T ;

[
L 2 
(

ˆ �ε 
)]3 
)
, (22) 

ˆ ϑ 

m 

∗
⇀ 

m →∞ 

ˆ ϑ 

ε in L ∞ 

(
0 , T ; L 2 

(
ˆ �ε 
))

∩ L ∞ 

(
0 , T ; S 

(
ˆ �ε 
))

, (23) 

˙ ˆ ϑ 

m ∗
⇀ 

m →∞ 

˙ ˆ ϑ 

ε 

in L ∞ 

(
0 , T ; L 2 

(
ˆ �ε 
))

, (24) 

(
˙ ˆ u 

m 

n 

)
+ 

⇀ 

m →∞ 

χε in L 2 
(
0 , T ; L 2 

(
ˆ �ε 

C 

))
. (25) 

In order to show that χε = ( ̇ ˆ u ε n ) + , we first observe that (21) and (22) imply that { 
˙ ˆ u 

m 

} 
m 

is a bounded subset of [ H 

1 ( ̂  �ε × (0 , T ))] 3 . 

Since the trace map is a compact operator from H 

1 ( ̂  �ε × (0 , T )) to L 2 ( ̂  �ε × (0 , T )) , we can affirm that there exists a subse-

quence of ˙ ˆ u 

m (still denoted by ˙ ˆ u 

m ) such that 

˙ ˆ u 

m → 

˙ ˆ u 

ε , strongly in [ L 2 ( ̂  �ε 
C × (0 , T ))] 3 , and then 

˙ ˆ u 

m ( y ) → 

˙ ˆ u 

ε ( y ) a.e. on 

ˆ �ε 
C × (0 , T ) . 

Then, being the positive part a continuous function it holds that 

( ̇ ˆ u 

m 

n ) + → ( ̇ ˆ u 

ε 
n ) + a.e. on 

ˆ �ε 
C × ( 0 , T ) . (26) 

On the other hand, (17) implies that 

( ̇ ˆ u 

m 

n ) + is a bounded subset of L 2 ( ̂  �ε 
C × (0 , T )) . (27) 

From (26), (27) and [ 43 , Lemma 1.3] it follows that 

( ̇ ˆ u 

m 

n ) + ⇀ ( ̇ ˆ u 

ε 
n ) + in L 2 ( ̂  �ε 

C × ( 0 , T )) . 

Since (25) also implies that ( ̇ ˆ u m 

n ) + ⇀ χε in L 2 ( ̂  �ε 
C 

× (0 , T )) , the uniqueness of weak limits implies that χε = ( ̇ ˆ u ε n ) + and (
˙ ˆ u 

m 

n 

)
+ 

⇀ 

m →∞ 

(
˙ ˆ u 

ε 

n 

)
+ 

in L 2 
(
0 , T ; L 2 

(
ˆ �ε 

C 

))
. (28) 

Consider now 

ˆ v m = 

ˆ w j and ˆ ϕ 

m = ˆ s i in Eqs. (10) and (11) fixed, and take m → ∞ . Then, 

ˆ ρε ( ̈̂  u 

ε , ˆ w j ) + a V,ε ( ̂  u 

ε , ˆ w j ) − c ε ( ̂  ϑ 

ε , ˆ w j ) + 

〈 
ˆ P ε ( ̇ ˆ u 

ε ) , ˆ w j 

〉 
= 

〈
ˆ J ε (t) , ˆ w j 

〉
, (29) 

( 
˙ ˆ ϑ 

ε , ̂  s i ) + a S,ε ( ̂  ϑ 

ε , ̂  s i ) + c ε ( ̇ ˆ u 

ε , ̂  s i ) = 

〈
ˆ Q 

ε (t) , ̂  s i 
〉
, (30) 

for all i, j ≥ 1 . Next, from (8), (9), (29) and (30) we conclude that (4) holds in D 

′ (0 , T ) while (5) holds in L ∞ (0 , T ) . Let us

see now that (4) also holds a.e. in (0 , T ) . Indeed, we have that 〈 
ˆ P ε ( ̇ ˆ u 

ε ) , ˆ w j 

〉 
= − ˆ ρε ( ̈̂  u 

ε , ˆ w j ) − a V,ε ( ̂  u 

ε , ˆ w j ) + c ε ( ̂  ϑ 

ε , ˆ w j ) + 

〈
ˆ J ε (t) , ˆ w j 

〉
, in D 

′ (0 , T ) , ∀ j ≥ 1 . 
7 
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We observe that the left-hand side is in D 

′ (0 , T ) , while the right-hand side terms are in L ∞ (0 , T ) , from which we deduce

that ˆ P ε ( ̇ ˆ u 

ε ) ∈ L ∞ (0 , T ;V ′ ) and (4) and (5) hold a.e. in (0 , T ) . Besides, since the initial conditions (12) are null, it is trivial

that, when m → ∞ , the limit functions have null initial conditions as well, which completes the proof for the existence

and regularity of the solutions. The uniqueness follows form the usual argument of taking two solutions, subtracting the 

respective equations with appropriate test functions and using ellipticity and monotonicity to show that, as a matter of fact, 

the two solutions are the same one. Details can be found in [44] . 

3. The three-dimensional shell contact problem 

In this section we focus in the particular case when the deformable body is, in fact, a shell. We refer the reader to [9] for

a detailed exposition of the notations and preliminary results which are given below in a summarised form. 

Let ω be a bounded domain of R 

2 , with boundary γ = ∂ω, assumed to be Lipschitz-continuous and let ω̄ denote its clo-

sure. Also, y = (y α) stands for a point of ω̄ and S := θ( ̄ω ) for the middle surface of the shell, being θ ∈ C 2 ( ̄ω ; R 

3 ) an injective

mapping. Besides, in order to define covariant basis on the tangent plane, we require that the two vectors a α( y ) := ∂ αθ( y )

are linearly independent, for all y ∈ ω. Recall that in this context it is usual that Greek indices take only the values { 1 , 2 }
while Latin indices range between 1 to 3. We define contravariant basis with the two vectors a 

α( y ) defined by the relations

a 

α( y ) · a β ( y ) = δα
β

. Further, the unit outward normal vector to S at a point θ( y ) is denoted by a 3 ( y ) , and it is defined as

the normalized vector product of a 1 ( y ) times a 2 ( y ) . The metric tensor can be given in covariant components a αβ := a α · a β

or in contravariant components a αβ := a 

α · a 

β . Notice that the area element along S is 
√ 

a dy being a := det (a αβ ) . Also, the

curvature tensor can be given in covariant components b αβ := a 

3 · ∂ βa α or mixed components b 
β
α := a βσ · b σα . Similarly, the

Christoffel symbols of the surface S are defined by �σ
αβ

:= a 

σ · ∂ βa α . 

We define now �ε := ω × (−ε , ε ) . The boundary �ε = ∂�ε is divided into three disjoint parts, an upper face �ε + :=
ω × { ε} , a lower face �ε 

C 
:= ω × {−ε} , and a lateral face which contains �ε 

0 
:= γ0 × [ −ε , ε ] , where γ0 ⊆ γ . In what follows,

x ε = (x ε 
i 
) denotes a point of �̄ε and ∂ ε 

i 
denotes the partial derivative with respect to x ε 

i 
. Notice that we can identify x ε α =

y α and ∂ ε α = ∂ α . To describe a three-dimensional shell with S as middle surface, we introduce the mapping � : �̄ε → R 

3 ,

defined by 

�( x ε ) := θ( y ) + x ε 3 a 3 ( y ) ∀ x ε = ( y , x ε 3 ) = (y 1 , y 2 , x 
ε 
3 ) ∈ �̄ε , (31)

and identify ˆ �ε = �(�ε ) . This way, the parts of the boundary of the shell ˆ �ε = �(�ε ) are defined as well, like for example

the part of the lateral face where the Dirichlet conditions are to be implemented: ˆ �ε 
0 

= �(�ε 
0 
) , etc. This way, we may

cast this setting as a particular case of the more general framework of the preceding section. Following [9] , Th. 3.1-1, if

θ : ω̄ → R 

3 is injective and sufficiently smooth, then � : �̄ε → R 

3 is also injective provided that ε > 0 is small enough, and

the vectors g ε 
i 
( x ε ) := ∂ ε 

i 
�( x ε ) are linearly independent. Thus, under these hypotheses, with the three vectors g ε 

i 
( x ε ) we

can build the covariant basis at �( x ε ) . Also, we can build the vectors of the contravariant basis g i,ε ( x ε ) , defined by the

condition g i,ε · g ε 
j 
= δi 

j 
. Then, we can define the metric tensor in covariant components, g ε 

i j 
:= g ε 

i 
· g ε 

j 
. Notice that the volume

element in the set �( ̄�ε ) is 
√ 

g ε dx ε and the surface element in �(�ε ) is 
√ 

g ε d�ε where g ε := det (g ε 
i j 
) . The metric tensor

in contravariant components is given by g i j,ε := g i,ε · g j,ε and the Christoffel symbols by �p,ε 
i j 

:= g p,ε · ∂ ε 
i 

g ε 
j 
. 

The expression of the normal components of any vector on �(�ε 
C 
) is of particular interest for this problem. Recall that

the unit outward normal vector on x ε ∈ �ε is denoted by n 

ε ( x ε ) while on 

ˆ x 
ε = �( x ε ) ∈ �(�ε ) it is denoted by ˆ n 

ε 
( ̂ x 

ε 
) .

Observe that on �ε 
C 

, the normal vector takes the form n 

ε = (0 , 0 , −1) . Besides, from (31) one can deduce that g ε 
3 

= g 3 ,ε = a 3 

and therefore g 33 ,ε = | g 3 ,ε | = 1 . By using the expression of ˆ n 

ε 
in terms of n 

ε (see, for example [ 45 , p. 41]), we deduce that

ˆ n 

ε 
( ̂ x 

ε 
) = −g 3 ( x 

ε ) = −a 3 ( y ) , where ˆ x 
ε = �( x ε ) and x ε = ( y , −ε) ∈ �ε 

C 
. Now, if we denote by { ̂ e 

i } 3 
i =1 

the cartesian basis on

�( ̄�ε ) , given a field 

ˆ v ε , its covariant curvilinear coordinates (v ε 
i 
) in �̄ε are defined as ˆ v ε ( ̂ x 

ε 
) = ̂

 v ε 
i 
( ̂ x 

ε 
) ̂ e 

i =: v ε 
i 
( x ε ) g i,ε ( x ε )

with 

ˆ x 
ε = �( x ε ) . Therefore, on �ε 

C 
, we have 

ˆ v n := 

ˆ v ε · ˆ n 

ε = ( ̂ v ε i ˆ n 

i,ε ) = ( ̂ v ε i ̂  e 
i 
) · (−g 3 ) = (v ε i g 

i,ε ) · (−g 3 ) = −v ε 3 . 

Also, since v ε 
i 
n i,ε = −v ε 

3 
on �ε 

C 
, it is verified in particular that ˆ v n = ( ̂ v ε 

i 
ˆ n i,ε ) = v ε 

i 
n i,ε = −v ε 

3 
. We now focus on the applied

forces densities, whose contravariant components in curvilinear coordinates are defined as: 

ˆ f i,ε ( ̂ x 
ε 
) ̂ e i d ̂  x ε =: f i,ε ( x ε ) g ε i ( x 

ε ) 
√ 

g ε ( x ε ) dx ε , ˆ h 

i,ε ( ̂ x 
ε 
) ̂ e i d ̂  �ε =: h 

i,ε ( x ε ) g ε i ( x 
ε ) 
√ 

g ε ( x ε ) d�ε , 

while for the displacements field, the covariant components in curvilinear coordinates are given by: ˆ u 

ε ( ̂ x 
ε 
) = ˆ u ε 

i 
( ̂ x 

ε 
) ̂ e 

i =:

u ε 
i 
( x ε ) g i,ε ( x ε ) , with 

ˆ x 
ε = �( x ε ) . Notice that forces and unknowns above depend also on the time variable t ∈ [0 , T ] , but we

decided to keep it implicit for the sake of readiness, since the subject of the change of variable is the spatial component. The

same comment applies in a number of situations below. We also define ϑ 

ε ( x ε ) := 

ˆ ϑ 

ε ( ̂ x 
ε 
) and q ε ( x ε ) := ˆ q ε ( ̂ x 

ε 
) . Regarding

the normal damped response function, we define p ε (r ε ) := ˆ p ε (r ε ) . Let us define the spaces, 

V (�ε ) = { v ε = (v ε ) ∈ [ H 

1 (�ε )] 3 ; v ε = 0 on �ε 
0 } , S(�ε ) = { ϕ 

ε ∈ H 

1 (�ε ) ;ϕ 

ε = 0 on �ε 
0 } . 
i 
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Both are real Hilbert spaces with the induced inner product of [ H 

1 (�ε )] d , d ∈ { 1 , 3 } , and we denote by ‖ ·‖ 1 , �ε the corre-

sponding norm in both cases, since no confusion is possible. Using these definitions, the following variational problem can 

be derived straightforwardly from Problem 2 (follow similar arguments to those in [9] for the linear elastic case): 

Problem 4. Find a pair t �→ (u 

ε ( x ε , t) , ϑ 

ε ( x ε , t)) of [0 , T ] → V (�ε ) × S(�ε ) verifying ∫ 
�ε 

ρε ( ̈u 

ε 
αg αβ,ε v ε β + ü 

ε 
3 v 

ε 
3 ) 
√ 

g ε dx ε + 

∫ 
�ε 

A 

i jkl,ε e ε k || l (u 

ε ) e ε i || j ( v 
ε ) 
√ 

g ε dx ε 

−
∫ 
�ε 

αε 
T (3 λε + 2 με ) ϑ 

ε (e ε α|| β ( v ε ) g αβ,ε + e ε 3 || 3 ( v 
ε )) 
√ 

g ε dx ε −
∫ 
�ε 

C 

p ε (− ˙ u 

ε 
3 ) v 

ε 
3 

√ 

g ε d�ε 

= 

∫ 
�ε 

f i,ε v ε i 

√ 

g ε dx ε + 

∫ 
�ε + 

h 

i,ε v ε i 

√ 

g ε d�ε ∀ v ε ∈ V (�ε ) , a.e. in (0 , T ) , 

∫ 
�ε 

βε ˙ ϑ 

ε ϕ 

ε 
√ 

g ε dx ε + 

∫ 
�ε 

k ε (∂ ε αϑ 

ε g αβ,ε ∂ ε βϕ 

ε + ∂ ε 3 ϑ 

ε ∂ ε 3 ϕ 

ε ) 
√ 

g ε dx ε 

+ 

∫ 
�ε 

αε 
T (3 λε + 2 με ) ϕ 

ε (e ε α|| β ( ̇ u 

ε ) g αβ,ε + e ε 3 || 3 ( ̇ u 

ε )) 
√ 

g ε dx ε 

= 

∫ 
�ε 

q ε ϕ 

ε 
√ 

g ε dx ε ∀ ϕ 

ε ∈ S(�ε ) , a.e. in (0 , T ) , 

with 

˙ u 

ε (·, 0) = u 

ε (·, 0) = 0 and ϑ 

ε (·, 0) = 0 . 

Above, A 

i jkl,ε = A 

jikl,ε = A 

kli j,ε ∈ C 1 ( ̄�ε ) , defined by 

A 

i jkl,ε := λg i j,ε g kl,ε + μ(g ik,ε g jl,ε + g il,ε g jk,ε ) , (32) 

stands for the contravariant components of the three-dimensional elasticity tensor, and the functions e ε 
i || j ( v 

ε ) = e ε 
j|| i ( v 

ε ) ∈
L 2 (�ε ) , representing the covariant components of the linearized change of metric tensor, are defined by 

e ε i || j ( v 
ε ) := 

1 

2 

(∂ ε j v 
ε 
i + ∂ ε i v 

ε 
j ) − �p,ε 

i j 
v ε p , 

for all v ε ∈ [ H 

1 (�ε )] 3 . Also note that, as a consequence of (31) , the following simplifications are verified: 

�3 ,ε 
α3 

= �p,ε 
33 

= 0 in �̄ε , A 

αβσ3 ,ε = A 

α333 ,ε = 0 in �̄ε . (33) 

Moreover, in [9] , Theorem 1.8-1 it is shown that for A 

i jkl,ε defined as in (32) and ε > 0 small enough, there exists a constant

 e > 0 , independent of ε, such that, ∑ 

i, j 

| t i j | 2 ≤ C e A 

i jkl,ε ( x ε ) t kl t i j , (34) 

for all x ε ∈ �̄ε and all t = (t i j ) ∈ S 
3 (vector space of 3 × 3 real symmetric matrices). 

Remark 2. We recall that the vector field u 

ε = (u ε 
i 
) : �ε × [0 , T ] → R 

3 solution of Problem 4 needs to be interpreted prop-

erly. The functions u ε 
i 

: �̄ε × [0 , T ] → R 

3 are the covariant, time dependent, components of the “true” displacements field

U 

ε := u ε 
i 
g i,ε : �̄ε × [0 , T ] → R 

3 . 

Next, we consider a scaled domain � := ω × (−1 , 1) which is independent of the small parameter ε and denote by

� = ∂� its boundary where we distinguish three parts: �+ := ω × { 1 } , �C := ω × {−1 } and �0 := γ0 × [ −1 , 1] . A point in

�̄ is denoted by x = (x 1 , x 2 , x 3 ) and ∂ i denotes the i − th partial derivative. A projection map πε : �̄ → �̄ε , verifying that

πε ( x ) = x ε = (x ε 
i 
) = (x ε 

1 
, x ε 

2 
, x ε 

3 
) = (x 1 , x 2 , εx 3 ) ∈ �̄ε , is considered, hence, ∂ ε α = ∂ α and ∂ ε 

3 
= 

1 
ε ∂ 3 . The scaled displacements

u (ε) = (u i (ε)) : �̄ × [0 , T ] → R 

3 and vector fields v = (v i ) : �̄ → R 

3 are defined as u ε 
i 
( x ε ) =: u i (ε)( x ) and v ε 

i 
( x ε ) =: v i ( x )

respectively, for all x ∈ �̄, x ε = πε ( x ) ∈ �̄ε . Besides, we define the scaled temperature ϑ(ε) : �̄ × [0 , T ] → R defined as

ϑ(ε)( x ) := ϑ 

ε ( x ε ) for all x ∈ � where x ε = πε ( x ) ∈ �ε . 

For the sake of simplicity, from now on, we are going to assume that the different parameters of the problem (thermal

conductivity, thermal dilatation, specific heat coefficient, mass density, Lamé coefficients) are all independent of ε. 

Also, let the functions, �p,ε 
i j 

, g ε , A 

i jkl,ε be associated with the functions �p 
i j 
(ε) , g(ε) , A 

i jkl (ε) , defined by �p 
i j 
(ε)( x ) :=

�p,ε 
i j 

( x ε ) , g(ε)( x ) := g ε ( x ε ) and A 

i jkl (ε)( x ) := A 

i jkl,ε ( x ε ) for all x ∈ �̄, x ε = πε ( x ) ∈ �̄ε . For all v = (v i ) ∈ [ H 

1 (�)] 3 , the scaled

linearized strains, denoted as (e i || j (ε)( v )) ∈ [ L 2 (�)] 3 ×3 
sym 

or (e i || j (ε; v )) , are defined by 

e α|| β (ε; v ) := 

1 

2 

(∂ βv α + ∂ αv β ) − �p 

αβ
(ε) v p , (35) 

e α|| 3 (ε; v ) := 

1 

( 
1 

∂ 3 v α + ∂ αv 3 ) − �p 
α3 

(ε) v p , (36) 

2 ε 
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e 3 || 3 (ε; v ) := 

1 

ε 
∂ 3 v 3 . (37) 

Notice that from these definitions one can easily check that e ε 
i || j ( v 

ε )(πε ( x )) = e i || j (ε; v )( x ) for all x ∈ �. 

Remark 3. The functions �p 
i j 
(ε) , g(ε) , A 

i jkl (ε) converge in C 0 ( ̄�) when ε tends to zero. Also, when we consider ε = 0 the

functions will be defined with respect to y ∈ ω̄ . Note that (36) and (37) present a singularity if ε = 0 . In the notation for the

three-dimensional Christoffel symbols we will explicit the dependence on ε as �σ
αβ

(ε) in order to distinguish them from 

the two-dimensional ones associated to S denoted by �σ
αβ

. 

Another important result that can be found in [ 9 , Theorem 3.3-2] states that under suitable regularity conditions, take

for example θ ∈ C 2 ( ̄ω ; R 

3 ) , there exists an ε 0 > 0 such that A 

i jkl (ε) is positive-definite, uniformly with respect to x ∈ �̄ and

ε, provided that 0 < ε ≤ ε 0 . Besides, it shows that the asymptotic behavior of A 

i jkl (ε) is the following: 

A 

i jkl (ε) = A 

i jkl (0) + O(ε) and A 

αβσ3 ,ε = A 

α333 ε = 0 , 

for all ε, 0 < ε ≤ ε 0 , and 

A 

αβστ (0) = λa αβa στ + μ(a ασ a βτ + a ατ a βσ ) , A 

αβ33 (0) = λa αβ, (38) 

A 

α3 σ3 (0) = μa ασ , A 

3333 (0) = λ + 2 μ, A 

αβσ3 (0) = A 

α333 (0) = 0 . (39) 

Moreover, and related with (34) , there exists a constant C e > 0 , independent of the variables and ε, such that ∑ 

i, j 

| t i j | 2 ≤ C e A 

i jkl (ε)( x ) t kl t i j , (40) 

for all ε, 0 < ε ≤ ε 0 , for all x ∈ �̄ and all t = (t i j ) ∈ S 
3 . 

Notice that the limits are functions of y ∈ ω̄ only, that is, independent of the transversal variable x 3 . We also recall

[ 9 , Theorem 3.3-1], which provides the asymptotic behavior of Christoffel’s symbols �p 
i j 
(ε) , g i j (ε ) and g(ε ) . Indeed, if θ ∈

C 3 ( ̄ω ; R 

3 ) , then 

�σ
αβ (ε) = �σ

αβ − εx 3 b 
σ
β | α + O(ε 2 ) , ∂ 3 �

p 

αβ
(ε) = O(ε) , �3 

α3 (ε) = �p 
33 

(ε) = 0 , (41) 

�3 
αβ (ε) = b αβ − εx 3 b 

σ
αb σβ, �σ

α3 (ε) = −b σα − εx 3 b 
τ
αb στ + O(ε 2 ) , (42) 

g αβ (ε) = a αβ + 2 εx 3 a 
ασ b 

β
σ + O(ε 2 ) , g i 3 (ε) = δi 3 , g(ε) = a + O(ε) , (43) 

for all ε, 0 < ε ≤ ε 0 , where the order symbols O(ε) and O(ε 2 ) are meant with respect to the norm ‖ ·‖ 0 , ∞ , ̄� defined by

‖ w ‖ 0 , ∞ , ̄� = sup {| w ( x ) |; x ∈ �̄} , and the covariant derivatives b σ
β
| α are defined by b σ

β
| α := ∂ αb σ

β
+ �σ

ατ b τ
β

− �τ
αβ

b στ . The func-

tions a , b αβ, b σα, �σ
αβ

and b σ
β
| α are identified with functions in C 0 ( ̄�) . Further, there exist constants a 0 , g 0 and g 1 such that 

0 < a 0 ≤ a ( y ) ∀ y ∈ ω̄ , 

0 < g 0 ≤ g(ε)( x ) ≤ g 1 ∀ x ∈ �̄ and ∀ ε, 0 < ε ≤ ε 0 . (44) 

Let the scaled heat source q (ε) : � × (0 , T ) → R and scaled applied forces f (ε) : � × (0 , T ) → R 

3 and h (ε) : �+ × (0 , T ) →
R 

3 be defined by 

q ε ( x ε ) =: q (ε)( x ) ∀ x ∈ �, where x ε = πε ( x ) ∈ �ε , 

f 
ε = ( f i,ε )( x ε ) =: f (ε) = ( f i (ε))( x ) ∀ x ∈ �, where x ε = πε ( x ) ∈ �ε , 

h 

ε = (h 

i,ε )( x ε ) =: h (ε) = (h 

i (ε))( x ) ∀ x ∈ �+ , where x ε = πε ( x ) ∈ �ε 
+ . 

With regard to the normal damped response function, we define p(ε)(r(ε)) := p ε (r ε ) . Also, we define the spaces 

V (�) = { v = (v i ) ∈ [ H 

1 (�)] 3 ; v = 0 on �0 } , S(�) = { ϕ ∈ H 

1 (�) ;ϕ = 0 on �0 } , 
which are Hilbert spaces, with associated norms denoted by ‖ ·‖ 1 , �. Then, the scaled variational problem can be written as 

follows: 

Problem 5. Find a pair t �→ (u (ε)( x , t) , ϑ(ε)( x , t)) of [0 , T ] → V (�) × S(�) verifying ∫ 
ρ( ̈u α(ε) g αβ (ε) v β + ü 3 (ε) v 3 ) 

√ 

g(ε) dx + 

∫ 
A 

i jkl (ε) e k || l (ε; u (ε)) e i || j (ε; v ) 
√ 

g(ε) dx 

� �
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−
∫ 
�

αT (3 λ + 2 μ) ϑ(ε )(e α|| β(ε ; v ) g αβ (ε ) + e 3 || 3 (ε ; v )) 
√ 

g(ε ) dx − 1 

ε 

∫ 
�C 

p(ε )(− ˙ u 3 (ε )) v 3 
√ 

g(ε ) d�

= 

∫ 
�

f i (ε) v i 
√ 

g(ε) dx + 

1 

ε 

∫ 
�+ 

h 

i (ε) v i 
√ 

g(ε) d� ∀ v ∈ V (�) , a.e. in (0 , T ) , (45) 

∫ 
�

β ˙ ϑ (ε) ϕ 

√ 

g(ε) dx + 

∫ 
�

k (∂ αϑ(ε) g αβ (ε) ∂ βϕ + 

1 

ε 2 
∂ 3 ϑ(ε) ∂ 3 ϕ) 

√ 

g(ε) dx 

+ 

∫ 
�

αT (3 λ + 2 μ) ϕ(e α|| β (ε ; ˙ u (ε )) g αβ (ε ) + e 3 || 3 (ε ; ˙ u (ε ))) 
√ 

g(ε ) dx 

= 

∫ 
�

q (ε) ϕ 

√ 

g(ε) dx ∀ ϕ ∈ S(�) , a.e. in (0 , T ) , (46) 

with 

˙ u (ε)(·, 0) = u (ε)(·, 0) = 0 and ϑ(ε)(·, 0) = 0 . 

Remark 4. Notice that the time-dependent version of the linearized strain tensor above is well posed when we define 

e i || j (ε; u (ε))(t) := e i || j (ε; u (ε)(t)) . 

See for example [46] . Further, as commented earlier, we usually omit the explicit time dependence for the sake of a shorter

notation. 

Remark 5. The uniqueness of solution for Problem 5 provided that ε > 0 is small enough is similar to Problem 4 and the

regularity obtained for the solutions is analogue. In particular, we find 

˙ u (ε)(·, t) ∈ V (�) and 

˙ ϑ (ε)(·, t) ∈ S(�) a.e. in (0 , T ) .

4. Formal asymptotic analysis 

In order to identify possible two-dimensonal limit problems, we are going to follow the general procedure described 

in [9] , which has been already used in the framework of contact problems for shells in [37] and [41] . As we shall see, it

depends on the geometry of the middle surface, on the set where the boundary conditions are imposed, and on the order

of the different functions involved. Particularly interesting for us in the present problem is the case of the normal damped

response function. We consider scaled applied forces and heat source of the form 

f (ε)( x ) = ε m f 
m ( x ) , q (ε)( x ) = ε m q m ( x ) ∀ x ∈ �, h (ε)( x ) = ε m +1 h 

m +1 ( x ) ∀ x ∈ �+ , 

where m is an integer that will give the order of the respective forces. We also define the scaled normal damped response

function p(ε)(r(ε)) = ε m +1 p m +1 (r(ε)) . Substituting in (45) we obtain the following scaled problem: 

Problem 6. Find a pair t �→ (u (ε)( x , t) , ϑ(ε)( x , t)) of [0 , T ] → V (�) × S(�) verifying ∫ 
�

ρ( ̈u α(ε) g αβ (ε) v β + ü 3 (ε) v 3 ) 
√ 

g(ε) dx + 

∫ 
�

A 

i jkl (ε) e k || l (ε; u (ε)) e i || j (ε; v ) 
√ 

g(ε) dx 

−
∫ 
�

αT (3 λ + 2 μ) ϑ(ε )(e α|| β (ε ; v ) g αβ (ε ) + e 3 || 3 (ε ; v )) 
√ 

g(ε ) dx −
∫ 
�C 

ε m p m +1 (− ˙ u 3 (ε )) v 3 
√ 

g(ε ) d�

= 

∫ 
�

ε m f i,m v i 
√ 

g(ε) dx + 

∫ 
�+ 

ε m h 

i,m +1 v i 
√ 

g(ε) d� ∀ v ∈ V (�) , a.e. in (0 , T ) , (47) 

∫ 
�

β ˙ ϑ (ε) ϕ 

√ 

g(ε) dx + 

∫ 
�

k (∂ αϑ(ε) g αβ (ε) ∂ βϕ + 

1 

ε 2 
∂ 3 ϑ(ε) ∂ 3 ϕ) 

√ 

g(ε) dx 

+ 

∫ 
�

αT (3 λ + 2 μ) ϕ(e α|| β (ε ; ˙ u (ε )) g αβ (ε ) + e 3 || 3 (ε ; ˙ u (ε ))) 
√ 

g(ε ) dx 

= 

∫ 
�

ε m q m ϕ 

√ 

g(ε) dx ∀ ϕ ∈ S(�) , a.e. in (0 , T ) , (48) 

with 

˙ u (ε)(·, 0) = u (ε)(·, 0) = 0 and ϑ(ε)(·, 0) = 0 . 

Assume that θ ∈ C 3 ( ̄ω ; R 

3 ) and that the scaled unknowns u (ε ) , ϑ(ε ) admit asymptotic expansions taking the following

form: 

u (ε) = u 

0 + εu 

1 + ε 2 u 

2 + . . . , (49) 

ϑ(ε) = ϑ 

0 + εϑ 

1 + ε 2 ϑ 

2 + . . . 

where u 

0 ∈ V (�) , u 

j ∈ [ H 

1 (�)] 3 , ϑ 

0 ∈ S(�) , ϑ 

j ∈ H 

1 (�) , j ≥ 1 . Assumption (49) implies the following asymptotic expansion

of the scaled linear strain: 

e i || j (ε) ≡ e i || j (ε; u (ε)) = 

1 

e −1 
i || j + e 0 i || j + εe 1 i || j + ε 2 e 2 i || j + ε 3 e 3 i || j + . . . 
ε 
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The interested reader can check the expression of e m 

i || j in terms of u m 

k 
and the geometry in [9] , and as an extension of what

is featured in this paper, in [44] . 

The same applies to the expansion of e i || j (ε; v ) for an arbitrary v ∈ V (�) , of the form 

e i || j (ε; v ) = 

1 

ε 
e −1 

i || j ( v ) + e 0 i || j ( v ) + εe 1 i || j ( v ) + . . . 

Upon substitution on (47) and (48) , we can characterize the terms involved in the asymptotic expansions by giving values

for m and grouping terms of the same order. In this way, taking in (47) the order m = −2 and particular cases of test

functions, we reason that f −2 = h 

−1 = 0 and p −1 = 0 , which leads to ∂ 3 u 

0 = 0 . From (48) , we reason that q −2 = 0 and

find that ∂ 3 ϑ 

0 = 0 . Thus the zeroth order terms of both unknowns would be independent of the transversal variable x 3 .

Particularly, u 

0 can be identified with a function ξ
0 ∈ V (ω) , and ϑ 

0 can be identified with a function ζ 0 ∈ S(ω) where 

V (ω) := { η = (ηi ) ∈ [ H 

1 (ω)] 3 ;ηi = 0 on γ0 } , S(ω) := { ϕ ∈ H 

1 (ω) ;ϕ = 0 on γ0 } . 
Taking m = −1 , and using particular cases of test functions, we reason that f −1 = h 

0 = 0 and p 0 = 0 and we find that 

e 0 α|| 3 = 0 , λa αβe 0 α|| β + (λ + 2 μ) e 0 3 || 3 = αT (3 λ + 2 μ) ϑ 

0 , e 0 α|| β = γαβ ( ξ
0 
) , 

where 

γαβ ( η) := 

1 

2 

(∂ βηα + ∂ αηβ ) − �σ
αβησ − b αβη3 , (50) 

denote the covariant components of the linearized change of metric tensor associated with a displacement field ηi a 

i of the 

surface S. From (48) we reason that q −1 = 0 and find that ∂ 3 ϑ 

1 = 0 . 

With these results in mind, for m = 0 , expanding A 

i jkl (0) and taking v = η ∈ V (ω) and ϕ ∈ S(ω) leads to a set of two-

dimensional equations which will be presented and analyzed in the following section, in the framework of the elliptic 

membrane shells, where it is well posed. 

5. Elliptic membrane case. Convergence 

Guided by the formal asymptotic analysis developed in the previous section, we need now a functional framework in 

which the limit problem is well posed and we can find rigorous convergence results. To do that, we now focus in the

particular case in which the middle surface, S, is uniformly elliptic and, further, it is clamped on the whole lateral face, that

is γ0 = γ . These kind of shells are known as elliptic membrane shells. 

Further, we assume the hypotheses that emerged from the formal asymptotic analysis, specifically 

f (ε)( x ) = f 
0 ( x ) , q (ε)( x ) = q 0 ( x ) ∀ x ∈ �, h (ε)( x ) = ε h 

1 ( x ) ∀ x ∈ �+ , 

p(ε)(r(ε)) = εp 1 (r) . 

Since there is no room for confusion, in the following we omit the superindices indicating the order of the functions in-

volved. 

In [ 9 , Theorem 2.7-3] we are provided with a two dimensional Korn’s inequality for the case of elliptic membrane shells.

Thus, there exists a constant c M 

= c M 

(ω, θ) > 0 such that (∑ 

α

‖ 

ηα‖ 

2 
1 ,ω + | η3 | 2 0 ,ω 

)1 / 2 

≤ c M 

( ∑ 

α,β

| γαβ ( η) | 2 0 ,ω 

) 1 / 2 

∀ η ∈ V M 

(ω) , (51) 

where V M 

(ω) := H 

1 
0 
(ω) × H 

1 
0 
(ω) × L 2 (ω) is the appropriate space for guarantying the well-posedness of Problem 7 below.

In this section and in the sequel, C represents a positive constant which is independent of ε and the unknowns and whose

specific value may change from one equation to other. Besides, for the sake of simplicity, we assume that all the parameters

involved are constant. Also, the notation v̄ stands for the average on x 3 , i.e., v̄ := 

1 
2 

∫ 1 
−1 v (x 3 ) dx 3 . 

It is in this context that the limit two-dimensional equations found following the formal asymptotic analysis of the 

previous section are well posed, as we shall see. 

Problem 7. Find a pair t �→ ( ξ( y , t) , ζ ( y , t)) of [0 , T ] → V M 

(ω) × H 

1 
0 (ω) verifying 

2 

∫ 
ω 
ρ( ̈ξαa αβηβ + ξ̈3 η3 ) 

√ 

a dy + 

∫ 
ω 

a αβστ γστ ( ξ) γαβ ( η) 
√ 

a dy − 4 

∫ 
ω 

αT μ(3 λ + 2 μ) 

λ + 2 μ
ζa αβγαβ ( η) 

√ 

a dy 

−
∫ 
�C 

p(− ˙ ξ3 ) η3 

√ 

a d � = 

∫ 
ω 

F i ηi 

√ 

a d y ∀ η = (ηi ) ∈ V M 

(ω) , a.e. in (0 , T ) , (52) 

2 

∫ 
ω 

(
β + 

α2 
T (3 λ + 2 μ) 2 

λ + 2 μ

)
˙ ζϕ 

√ 

a dy + 2 

∫ 
ω 

k∂ αζa αβ∂ βϕ 

√ 

a dy 
12 
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+ 4 

∫ 
ω 

αT μ(3 λ + 2 μ) 

λ + 2 μ
ϕa αβγαβ ( ̇ ξ) 

√ 

a dy = 

∫ 
ω 

Qϕ 

√ 

a dy ∀ ϕ ∈ H 

1 
0 (ω) , a.e. in (0 , T ) , (53) 

with 

˙ ξ(·, 0) = ξ(·, 0) = 0 and ζ (·, 0) = 0 . 

Above, we have used F i := 

∫ 1 
−1 f 

i dx 3 + h i + with h i + (·) = h i (·, +1) and Q := 

∫ 1 
−1 qdx 3 . Also, a αβστ denotes the contravariant

components of the fourth order two-dimensional elasticity tensor, defined as follows: 

a αβστ := 

4 λμ

λ + 2 μ
a αβa στ + 2 μ(a ασ a βτ + a ατ a βσ ) . (54) 

Notice that there exists a constant c e > 0 independent of the variables and ε, such that ∑ 

α,β

| t αβ | 2 ≤ c e a 
αβστ ( y ) t στ t αβ, (55) 

for all y ∈ ω̄ and all t = (t αβ ) ∈ S 
2 (vector space of 2 × 2 real symmetric matrices). The following result shows that there

exists a unique solution for this problem. 

Theorem 2. Let ω be a bounded domain in R 

2 , let θ ∈ C 2 ( ̄ω ; R 

3 ) be an injective mapping such that the two vectors a α = ∂ αθ are

linearly independent at all points of ω̄ . Let f i and q ∈ H 

1 (0 , T ; L 2 (�)) , h i ∈ H 

2 (0 , T ; L 2 (�+ )) and assume (3) . Then the Problem

7 , has a unique solution ( ξ, ζ ) such that 

ξ ∈ L ∞ (0 , T ;V M 

(ω)) , ˙ ξ ∈ L ∞ (0 , T ; [ L 2 (ω)] 3 ) ∩ L ∞ (0 , T ;V M 

(ω)) , ξ̈ ∈ L ∞ (0 , T ; [ L 2 (ω)] 3 ) , 

ζ ∈ L ∞ (0 , T ; L 2 (ω)) ∩ L 2 (0 , T ; H 

1 
0 (ω)) , ˙ ζ ∈ L ∞ (0 , T ; L 2 (ω)) ∩ L 2 (0 , T ; H 

1 
0 (ω)) . 

Proof. Like in Theorem 1 , we will use a Faedo-Galerkin approach to prove the existence part. Then, a proof by contra-

diction will show uniqueness. 

Existence: Since V M 

(ω) is a separable space, there exists a countable base { v m } ⊂ V M 

(ω) such that 

V M 

(ω) = 

⋃ 

m ≥1 

V m 

, where V m 

= Span { v 1 , v 2 , . . . , v m } . 

Similarly, there exists a countable base { χm } ⊂ H 

1 
0 (ω) such that 

H 

1 
0 (ω) = 

⋃ 

m ≥1 

S m 

, where S m 

= Span { χ1 , χ2 , . . . , χm } . 

We now formulate Problem 7 for the finite dimensional subspaces: 

Problem 8. Find a pair t �→ ( ξ
m 

( y , t) , ζ m ( y , t)) of [0 , T ] → V m 

× S m 

verifying 

2 

∫ 
ω 
ρ( ̈ξm 

α a αβηm 

β + ξ̈m 

3 η
m 

3 ) 
√ 

a dy + 

∫ 
ω 

a αβστ γστ ( ξ
m 

) γαβ ( ηm ) 
√ 

a dy − 4 

∫ 
ω 

αT μ(3 λ + 2 μ) 

λ + 2 μ
ζ m a αβγαβ ( ηm ) 

√ 

a dy 

−
∫ 
�C 

p(− ˙ ξm 

3 ) η
m 

3 

√ 

a d� = 

∫ 
ω 

F i ηm 

i 

√ 

a dy ∀ ηm = (ηm 

i ) ∈ V m 

, ∀ t ∈ [0 , T ] , (56) 

2 

∫ 
ω 

(
β + 

α2 
T (3 λ + 2 μ) 2 

λ + 2 μ

)
˙ ζ m ϕ 

m 

√ 

a dy + 2 

∫ 
ω 

k∂ αζ m a αβ∂ βϕ 

m 

√ 

a dy 

+ 4 

∫ 
ω 

αT μ(3 λ + 2 μ) 

λ + 2 μ
ϕ 

m a αβγαβ ( ˙ ξ
m 

) 
√ 

a dy = 

∫ 
ω 

Qϕ 

m 

√ 

a dy ∀ ϕ 

m ∈ S m 

, ∀ t ∈ [0 , T ] , (57) 

with 

˙ ξ
m 

(·, 0) = ξ
m 

(·, 0) = 0 and ζ m (·, 0) = 0 . 

Now, the classical theory of systems of ordinary differential equations guarantees the existence and uniqueness of solu- 

tion for Problem 8 . Taking ηm = 

˙ ξ
m 

in (56) and ϕ 

m = ζ m in (57) , adding both expressions and integrating the time variable

in [0 , t] gives 

ρ| ˙ ξm ( t ) | 2 a,ω + 

1 

2 

‖ ξm ( t ) ‖ 

2 
a,ω + 

(
β + 

α2 
T ( 3 λ + 2 μ) 

2 

λ + 2 μ

)
| ζ m ( t ) | 2 0 ,ω + 2 k 

∫ t 

0 

‖| ζ m ( r ) ‖| 2 a,ω dr (58) 

−
∫ t 

0 

∫ 
�C 

p 
(
− ˙ ξm 

3 ( r ) 
)

˙ ξm 

3 ( r ) 
√ 

a d� dr = 

∫ t 

0 

∫ 
ω 

Q ( r ) ζ m 

√ 

a dy dr (58) 

+ 

∫ t 

0 

∫ 
ω 

∫ 1 

−1 

f i ( r ) d x 3 ˙ ξm 

i ( r ) 
√ 

a dy dr + 

∫ t 

0 

∫ 
�

h 

i ( r ) ˙ ξm 

i ( r ) 
√ 

a d � dr , (58) 

+ 

13 
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where we have introduced the following norms: 

| η| 2 a,ω := 

∫ 
ω 
(ηαa αβηβ + (η3 ) 

2 ) 
√ 

a dy ∀ η ∈ [ L 2 (ω)] 3 , 

which is equivalent to the usual norm | · | 0 ,ω because of the ellipticity of (a αβ ) and the regularity of θ. Also, 

‖ η‖ 

2 
a,ω := 

∫ 
ω 

a αβστ γστ ( η) γαβ ( η) 
√ 

a dy ∀ η ∈ V M 

(ω) , 

which is a norm in V M 

(ω) because of the Korn inequality (51) and the ellipticity of a αβστ (see (55) ). Finally, 

‖| ϕ ‖| 2 a,ω := 

∫ 
ω 
∂ αϕ a αβ∂ βϕ 

√ 

a dy, 

which is a norm in H 

1 
0 
(ω) equivalent to the usual ‖ · ‖ 1 ,ω because of the ellipticity of (a αβ ) , the regularity of θ and the

Poincaré inequality. Further, in [ 18 , Theorem 3] we included, as a standalone theorem, a result that can be found inside the

proof of [ 9 , Theorem 4.4-1], which shows that we can define a kind of trace operator on upper and lower faces, continuous,

in X(�) := { v ∈ L 2 (�) ; ∂ 3 v ∈ L 2 (�) } . Moreover, there exists a constant c 1 > 0 such that 

‖ 

v ‖ L 2 (�+ ∪ �C ) 
≤ c 1 

(| v | 2 0 , � + | ∂ 3 v | 2 0 , �

)1 / 2 

for all v ∈ X(�) , which also implies that there exists a constant c 2 > 0 such that 

‖ 

v 3 ‖ L 2 (�+ ∪ �C ) 
≤ c 2 

( ∑ 

i, j 

| e i || j (ε; v ) | 2 0 , �

) 1 / 2 

∀ v ∈ V (�) . (59) 

By using the monotonicity of p, the Hölder inequality in the right-hand side terms of (58) and using [ 18 , Theorem 3] for

the terms on �+ , followed by the use of Gronwall inequality, we obtain that the following weak convergences take place for

subsequences indexed by m as well: 

ξm 

∗
⇀ 

m →∞ 

ξ in L ∞ ( 0 , T ;V M 

( ω ) ) , ˙ ξm 

∗
⇀ 

m →∞ 

˙ ξ in L ∞ 

(
0 , T ;

[
L 2 ( ω ) 

]3 
)
, (60) 

ζ m 

∗
⇀ 

m →∞ 

ζ in L ∞ 

(
0 , T ; L 2 ( ω ) 

)
, ζ m ⇀ 

m →∞ 

ζ in L 2 
(
0 , T ; H 

1 
0 ( ω ) 

)
, (61) 

p 
(
− ˙ ξm 

3 

) ∗
⇀ 

m →∞ 

χ in L ∞ 

(
0 , T ; L 2 ( ω ) 

)
. (62) 

Notice that (62) is a consequence of the Lipschitz continuity of p, the fact that p(0) = 0 , and the boundedness of its argu-

ment. Using these convergences back in (56) –(57) , we can formulate the following limit problem: 

Problem 9. Find a pair t �→ ( ξ( y , t) , ζ ( y , t)) of [0 , T ] → V M 

(ω) × H 

1 
0 
(ω) verifying 

2 

∫ 
ω 
ρ( ̈ξαa αβηβ + ξ̈3 η3 ) 

√ 

a dy + 

∫ 
ω 

a αβστ γστ ( ξ) γαβ ( η) 
√ 

a dy − 4 

∫ 
ω 

αT μ(3 λ + 2 μ) 

λ + 2 μ
ζa αβγαβ ( η) 

√ 

a dy 

−
∫ 
�C 

χη3 

√ 

a d � = 

∫ 
ω 

F i ηi 

√ 

a d y ∀ η = (ηi ) ∈ V M 

(ω) , a.e. in (0 , T ) , 

2 

∫ 
ω 

(
β + 

α2 
T (3 λ + 2 μ) 2 

λ + 2 μ

)
˙ ζϕ 

√ 

a dy + 2 

∫ 
ω 

k∂ αζa αβ∂ βϕ 

√ 

a dy 

+ 4 

∫ 
ω 

αT μ(3 λ + 2 μ) 

λ + 2 μ
ϕa αβγαβ ( ̇ ξ) 

√ 

a dy = 

∫ 
ω 

Qϕ 

√ 

a dy ∀ ϕ ∈ H 

1 
0 (ω) , a.e. in (0 , T ) , 

with 

˙ ξ(·, 0) = ξ(·, 0) = 0 and ζ (·, 0) = 0 . 

Now, to identify the term on �C , we will use an argument of monotonicity (see, for example, [33] ). We first define for

any given φ ∈ H 

1 (0 , T ; L 2 (ω)) , with φ(0) = 0 , the following quantity: 

X 

m = −
∫ t 

0 

∫ 
�C 

(
p(− ˙ ξm 

3 (r)) − p(− ˙ φ(r)) 
)
( ˙ ξm 

3 (r) − ˙ φ(r)) 
√ 

a d � d r ≥ 0 . 

From (58) we find that 

X 

m = 

∫ t 

0 

∫ 
ω 

F i ( r ) ˙ ξm 

i ( r ) 
√ 

a dy dr − ρ| ˙ ξm ( t ) | 2 a,ω −
1 

2 

‖ ξm ( t ) ‖ 

2 
a,ω 

+ 

∫ t 

0 

∫ 
ω 

Q ( r ) ζ m 

√ 

a dy dr −
(

β + 

α2 
T ( 3 λ + 2 μ) 

2 

λ + 2 μ

)
| ζ m ( t ) | 2 0 ,ω − 2 k 

∫ t 

0 

‖| ζ m ( r ) ‖| 2 a,ω dr 

−
∫ t 

0 

∫ 
�

p 
(
− ˙ ξm 

3 ( r ) 
)(

− ˙ φ( r ) 
)√ 

a d � dr −
∫ t 

0 

∫ 
�

−p 
(
− ˙ φ( r ) 

)(
˙ ξm 

3 ( r ) − ˙ φ( r ) 
)√ 

a d � dr . 

C C 

14 
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Thus, on one hand 

0 ≤ lim sup 

m →∞ 

X 

m ≤
∫ t 

0 

∫ 
ω 

F i (r) ˙ ξi (r) 
√ 

a d y d r − ρ| ̇ ξ(t) | 2 a,ω −
1 

2 

‖ ξ(t) ‖ 

2 
a,ω 

+ 

∫ t 

0 

∫ 
ω 

Q(r) ζ
√ 

a d y d r −
(

β + 

α2 
T (3 λ + 2 μ) 2 

λ + 2 μ

)
| ζ (t) | 2 0 ,ω − 2 k 

∫ t 

0 

‖| ζ (r) ‖| 2 a,ω dr 

−
∫ t 

0 

∫ 
�C 

χ(r)(− ˙ φ(r)) 
√ 

a d � d r −
∫ t 

0 

∫ 
�C 

−p(− ˙ φ(r))( ˙ ξ3 (r) − ˙ φ(r)) 
√ 

a d � d r, 

where he have used the weak upper semicontinuity of various terms. On the other hand, doing in Problem 9 the substi-

tutions η = 

˙ ξ, ϕ = ζ , then the summation of both equations, followed by the integration in [0 , t] , and using the resulting

identity into the inequality above, we find that 

0 ≤ −
∫ t 

0 

∫ 
�C 

χ(r) ˙ ξ3 (r) 
√ 

a d � d r −
∫ t 

0 

∫ 
�C 

χ(r)(− ˙ φ(r)) 
√ 

a d � d r −
∫ t 

0 

∫ 
�C 

−p(− ˙ φ(r))( ˙ ξ3 (r) − ˙ φ(r)) 
√ 

a d � d r 

= −
∫ t 

0 

∫ 
�C 

(χ(r) − p(− ˙ φ(r)))( ˙ ξ3 (r) − ˙ φ(r)) 
√ 

a d � d r. 

Therefore, by using arguments adapted from those in [ 19 , p. 55], we deduce that χ = p(− ˙ ξ3 ) . Indeed, this is because we

can always take φ = ξ3 − ςϕ with ς > 0 and ϕ ∈ H 

1 (0 , T ; L 2 (ω)) , with ϕ(0) = 0 , to find 

0 ≤ −
∫ t 

0 

∫ 
�C 

(χ(r) − p(− ˙ ξ3 (r) + ς ˙ ϕ (r))) ˙ ϕ (r) 
√ 

a d � d r, 

and take ς → 0 , from where χ = p(− ˙ ξ3 ) . Therefore, we find that Problem 9 is indeed the same as Problem 7 . 

We find now additional regularity for ˙ ξ, ξ̈ and 

˙ ζ . The process is similar to what we have done above, in the proof of

Theorem 1 , so we omit it. The interested reader can consult the details in [44] . 

Particularly, we find that 

| ̈ξm ( t ) | 2 0 ,ω + | ˙ ζ m ( t ) | 2 0 ,ω ≤ C, ∀ t ∈ [ 0 , T ] , 

and further 

‖ ̇

 ξ
m 

(t) ‖ 

2 
a,ω + 2 k 

∫ t 

0 

‖| ˙ ζ m (r) ‖| 2 a,ω dr ≤ C ∀ t ∈ [0 , T ] . 

Therefore, the following weak convergences take place for subsequences still indexed by m . 

˙ ξm 

∗
⇀ 

m →∞ 

˙ ξ in L ∞ ( 0 , T ;V M 

( ω ) ) , ξ̈m 

∗
⇀ 

m →∞ 

ξ̈ in L ∞ 

(
0 , T ;

[
L 2 ( ω ) 

]3 
)
, (63) 

˙ ζ m 

∗
⇀ 

m →∞ 

˙ ζ in L ∞ 

(
0 , T ; L 2 ( ω ) 

)
, ˙ ζ m ⇀ 

m →∞ 

˙ ζ in L 2 
(
0 , T ; H 

1 
0 ( ω ) 

)
. (64) 

Uniqueness: We proceed by contradiction. We first assume that there exist two solutions ( ξ
1 
, ζ 1 ) and ( ξ

2 
, ζ 2 ) . Define ξ̄ =

ξ
1 − ξ

2 
and ζ̄ = ζ 1 − ζ 2 . Now, take η = 

˙ ξ̄ in the version of (52) for ξ
1 

and η = − ˙ ξ̄ in the version of (52) for ξ
2 
. We then 

sum both expresions to find that 

2 

∫ 
ω 
ρ( ̈̄ξαa αβ ˙ ξ̄β + 

¨̄ξ3 
˙ ξ̄3 ) 

√ 

a dy + 

∫ 
ω 

a αβστ γστ ( ̄ξ) γαβ ( ̇ ξ̄) 
√ 

a dy − 4 

∫ 
ω 

αT μ(3 λ + 2 μ) 

λ + 2 μ
ζ̄a αβγαβ ( ̇ ξ̄) 

√ 

a dy 

−
∫ 
�C 

(p(− ˙ ξ 1 
3 ) − p(− ˙ ξ 2 

3 )) 
˙ ξ̄3 

√ 

a d� = 0 . 

Similarly, take ϕ = ζ̄ in the version of (53) for ζ 1 and ϕ = −ζ̄ in the version of (53) for ζ 2 . Then, we sum both expresions

to find that 

2 

∫ 
ω 

(
β + 

α2 
T (3 λ + 2 μ) 2 

λ + 2 μ

)
˙ ζ̄ ζ̄

√ 

a dy + 2 

∫ 
ω 

k∂ αζ̄a αβ∂ β ζ̄
√ 

a dy + 4 

∫ 
ω 

αT μ(3 λ + 2 μ) 

λ + 2 μ
ζ̄a αβγαβ ( ̇ ξ̄) 

√ 

a dy = 0 . 

Then, we add both expressions above and integrate with respect to the time variable in [0 , t] , to find 

ρ| ˙ ξ( t ) | 2 a,ω + 

1 

2 

‖ ξ( t ) ‖ 

2 
a,ω + 

(
β + 

α2 
T ( 3 λ + 2 μ) 

2 

λ + 2 μ

)
| ζ ( t ) | 2 0 ,ω + 2 k 

∫ t 

0 

‖| ζ ( r ) ‖| 2 a,ω dr 

= 

∫ t 

0 

∫ 
�C 

(
p 
(
− ˙ ξ 1 

3 ( r ) 
)

− p 
(
− ˙ ξ 2 

3 ( r ) 
))(

˙ ξ 1 
3 ( r ) − ˙ ξ 2 

3 ( r ) 
)√ 

a d� dr ≤ 0 , (65) 

where we have used the monotonicity of p. We deduce from (65) that ξ̄ = 0 and ζ̄ = 0 , thus showing uniqueness. 
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In what follows, and for the sake of simplicity, we assume that for each ε > 0 the initial condition for the scaled linear

strain is 

e i || j (ε)(0 , ·) = 0 , (66) 

this is, the domain is on its natural state with no strains on it at the beginning of the period of observation. 

Theorem 3. For the case of elliptic membrane shells, let (u (ε) , ϑ(ε)) denote the solution of the three-dimensional scaled

Problem 6 (for m = 0 ). Then, under the assumption that θ ∈ C 3 ( ̄ω ; R 

3 ) , and hypotheses (3) and (66) , there exist functions

ϑ, u α ∈ H 

1 (�) a.e. in (0 , T ) satisfying ϑ = 0 , u α = 0 on γ × [ −1 , 1] and a function u 3 ∈ L 2 (�) a.e. in (0 , T ) , such that 

a) ϑ(ε) → ϑ , u α(ε) → u α in H 

1 (�) and u 3 (ε) → u 3 in L 2 (�) a.e. in (0,T), when ε → 0 , 

b) ϑ and u = (u i ) are independent of the transversal variable x 3 . 

Moreover, the pair (u , ϑ) is indeed the solution of Problem 7 . 

Proof. The proof has a similar structure to the one given in [ 9 , Theorem 4.4-1] for the elastic elliptic membrane shells

case. Therefore, some details will be omitted on those steps that can be proved similarly to what is done in there. Below, all

references to (47) or (48) have to be thought of by taking m = 0 and omit the superindices. The proof consists of six parts,

numbered from (i ) to (v i ) . 
(i) A priori boundedness and extraction of weak convergent sequences. For ε > 0 sufficiently small, there exist bounded se-

quences, also indexed by ε, and weak limits as specified below: 

u α( ε ) 
∗

⇀ 

ε→ 0 
u α in L ∞ 

(
0 , T ; H 

1 ( �) 
)
, u 3 ( ε ) 

∗
⇀ 

ε→ 0 
u 3 in L ∞ 

(
0 , T ; L 2 ( �) 

)
, 

˙ u ( ε ) 
∗

⇀ 

ε→ 0 
˙ u in L ∞ 

(
0 , T ;

[
L 2 ( �) 

]3 
)
, e i ‖ j ( ε ) 

∗
⇀ 

ε→ 0 
e i ‖ j in L ∞ 

(
0 , T ; L 2 ( �) 

)
ϑ ( ε ) 

∗
⇀ 

ε→ 0 
ϑ in L ∞ 

(
0 , T ; L 2 ( �) 

)
, ∂ αϑ ( ε ) ⇀ 

ε→ 0 
ϑ α in L 2 

(
0 , T ; L 2 ( �) 

)
, 

ε −1 ∂ 3 ϑ ( ε ) ⇀ 

ε→ 0 
ϑ 3 , −1 in L 2 

(
0 , T ; L 2 ( �) 

)
. 

Moreover, ϑ, u α = 0 on �0 × [0 , T ] . 

Above and below, e i || j (ε; u (ε)) will be shortened to e i || j (ε) := e i || j (ε ; u (ε )) for the sake of readibility. In this step we

take v = 

˙ u (ε) in (47) (see Remark 5 ) and ϕ = ϑ(ε) in (48) and sum both expressions to find ∫ 
�

ρ( ̈u α(ε) g αβ (ε) ̇ u β (ε) + ü 3 (ε) ̇ u 3 (ε)) 
√ 

g(ε) dx + 

∫ 
�

A 

i jkl (ε) e k || l (ε) ̇ e i || j (ε) 
√ 

g(ε) dx 

+ 

∫ 
�

β ˙ ϑ (ε) ϑ(ε) 
√ 

g(ε) dx + 

∫ 
�

k (∂ αϑ(ε) g αβ (ε) ∂ βϑ(ε) + 

1 

ε 2 
∂ 3 ϑ(ε) ∂ 3 ϑ(ε)) 

√ 

g(ε) dx 

−
∫ 
�C 

p(− ˙ u 3 (ε)) ̇ u 3 (ε) 
√ 

g(ε) d�

= 

∫ 
�

f i ˙ u i (ε) 
√ 

g(ε) dx + 

∫ 
�+ 

h 

i ˙ u i (ε) 
√ 

g(ε) d� + 

∫ 
�

qϑ(ε) 
√ 

g(ε) dx. (67) 

We now introduce the following norms: 

| v | 2 g(ε) , � := 

∫ 
�
(v αg αβ (ε) v β + (v 3 ) 2 ) 

√ 

g(ε) dx ∀ v ∈ [ L 2 (�)] 3 , 

which is equivalent to the usual norm | · | 0 , � because of the ellipticity of (g αβ (ε)) and the regularity of �. Also, 

‖ v ‖ 

2 
A (ε) , � := 

∫ 
�

A 

i jkl (ε) e k || l (ε; v ) e i || j (ε; v ) 
√ 

g(ε) dx ∀ v ∈ V (�) , 

which is a norm in V (�) because of the Korn inequality (see [ 9 , Theorem 4.4-1]) and the ellipticity of A 

i jkl (ε) . Finally, 

‖| ϕ ‖| g(ε) , � := 

∫ 
�

∂ αϕ g αβ (ε) ∂ βϕ 

√ 

g(ε) dx, 

which is a seminorm in S(�) . Because of the uniform ellipticity of the tensors and matrices involved, and the properties

of g(ε) , we are going to be able to use constants independent of ε in the estimates below. Indeed, going back to (67) , we

obtain 

ρ

2 

d 

dt 
{| ̇ u (ε) | 2 g(ε) , �} + 

1 

2 

d 

dt 
{‖ u (ε) ‖ 

2 
A (ε) , �} + 

β

2 

d 

dt 
{| ϑ(ε) | 2 0 , �} + k ‖| ϑ (ε) ‖| 2 g(ε) , � + 

k 

ε 2 
| ∂ 3 ϑ (ε) | 2 0 , �

= 

∫ 
�

p(− ˙ u 3 (ε)) ̇ u 3 (ε) 
√ 

g(ε) d� + 

∫ 
�

f i ˙ u i (ε) 
√ 

g(ε) dx + 

∫ 
�

h 

i ˙ u i (ε) 
√ 

g(ε) d� + 

∫ 
�

qϑ(ε) 
√ 

g(ε) dx. 

C + 
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Integrating in [0 , t] with respect to the time variable, using the equivalences mentioned above, together with the uniformity

with respect to ε of the constants involved in those equivalences, integrating by parts the term with the tractions h i , using

[ 18 , Theorem 3] and Young’s inequality, we find that there exist a constant C > 0 independent of ε such that 

| ̇ u (ε)(t) | 2 0 , � + | e i || j (ε)(t) | 2 0 , � + | ϑ(ε)(t) | 2 0 , � + 

∫ t 

0 

(| ∂ αϑ(ε)(r) | 2 0 , � + 

1 

ε 2 
| ∂ 3 ϑ(ε)(r) | 2 0 , �) dr 

−
∫ t 

0 

∫ 
�C 

p(− ˙ u 3 (ε)(r)) ̇ u 3 (ε)(r) 
√ 

g(ε) d � d r ≤ C 

(∫ t 

0 

| ̇ u (ε)(r) | 2 0 , �dr + 

∫ t 

0 

| ϑ(ε)(r) | 2 0 , �dr + 

∫ t 

0 

| e i || j (ε)(r) | 2 0 , �dr 

+ 

∫ t 

0 

| f (r) | 2 0 , �dr + 

∫ t 

0 

| q (r) | 2 0 , �dr + 

∫ t 

0 

| ̇ h (r) | 2 0 , �+ dr + | ̇ h (t) | 2 0 , �+ 

)
Hence, by using Gronwall’s inequality and the three-dimensional Korn’s inequality that can be found in [ 9 , Theorem 4.3-1],

all the assertions of (i) follow. 

(ii) The limits of the scaled unknowns, u i , ϑ found in Step (i ) are independent of x 3 . 

The part corresponding to u i is similar to Step (ii ) in [ 9 , Theorem 4.4-1], so we will omit it. Regarding ϑ , its independence

on x 3 is a consequence of the boundedness of { ε −1 ∂ 3 ϑ(ε) } . 
(iii) Extraction of weakly convergence subsequences on the contact boundary. The norms | u 3 (ε) | 0 , �C 

, | ̇ u 3 (ε) | 0 , �C 
are bounded

independently of ε, 0 < ε ≤ ε 1 almost everywhere in (0 , T ) . Moreover, there exist subsequences, also denoted by (u 3 (ε)) ε> 0 and

( ̇ u 3 (ε)) ε> 0 such that u 3 (ε) 
∗
⇀ u 3 and ˙ u 3 (ε) 

∗
⇀ ˙ u 3 in L ∞ (0 , T ; L 2 (�C )) . 

The first part is an straightforward consequence of Step (i ) and (59) . For v = u 3 (ε) we obtain that 

| u 3 ( ε ) | 0 , �C 
≤ C| e i ‖ j ( ε ) | 0 , � a.e. in ( 0 , T ) . 

Then, there exists ψ ∈ L ∞ (0 , T ; L 2 (�C )) such that for a subsequence keeping the same notation, it holds u 3 (ε) 
∗
⇀

ψ in L ∞ (0 , T ; L 2 (�C )) . Since the conditions of [ 41 , Theorem 3.6] hold, we can identify ψ = u 3 . 

For the second part, we first recall that ˙ u (ε) ∈ V (�) and 

˙ ϑ (ε) ∈ S(�) (see Remark 5 ). Next, we use the technique of

incremental coefficients in the time variable, then integrate on [0 , t] to obtain the expression similar to (18) in the scaled

framework and without tractions. Indeed, 

1 

2 

ρ| ̈u (ε)(t) | 2 0 −
1 

2 

ρ| ̈u (ε)(0) | 2 0 + 

1 

2 

a V ( ̇ u (ε)(t) , ˙ u (ε)(t)) − 1 

2 

a V ( ̇ u (ε)(0) , ˙ u (ε)(0)) 

+ 

1 

2 

∫ 
�

β( ˙ ϑ (ε)(t)) 2 dx − 1 

2 

∫ 
�

β( ˙ ϑ (ε)(0)) 2 dx + 

∫ t 

0 

a S ( ˙ ϑ (ε)(r) , ˙ ϑ (ε)(r)) dr 

≤
∫ t 

0 

∫ 
�

˙ f i (r) ̈u (ε) i (r) d xd r + 

∫ t 

0 

∫ 
�

˙ q (r) ˙ ϑ (ε)(r) d xd r. (68) 

Then, we use Korn’s inequality on the left-hand side and apply Gronwall’s inequality to obtain that | e i || j ( ̇ u )(ε) | 2 
0 , �

is

bounded independently of ε. Then we can proceed like in the first part using (59) for v = ˙ u 3 (ε) to prove that ˙ u 3 (ε) 
∗
⇀

˙ u 3 in L ∞ (0 , T ; L 2 (�C )) . 

(iv) The limits e i || j found in (i ) are independent of the variable x 3 . Moreover, their relations with the limits u := (u i ) and ϑ
are the following: 

e α|| β = γαβ (u ) := 

1 

2 

(∂ αu β + ∂ βu α) − �σ
αβu σ − b αβu 3 , 

e α|| 3 = 0 , (69) 

e 3 || 3 = 

αT (3 λ + 2 μ) 

λ + 2 μ
ϑ − λ

λ + 2 μ
a αβe α|| β. (70) 

Indeed, first taking v = u (ε) in (35) and η = u in (50) ( par abus de langage , since u is independent of x 3 , but actually

u ∈ [ H 

1 (�)] 2 × L 2 (�) ), taking into account the results in Step (i ) and the convergences �σ
αβ

(ε) → �σ
αβ

and �3 
αβ

(ε) → b αβ

in C 0 ( ̄�) given by (41) –(43) , we have that 

e α|| β (ε) = 

1 

2 

(∂ βu α(ε) + ∂ αu β (ε)) − �p 

αβ
(ε) u p (ε) ⇀ e α|| β = γαβ (u ) in L 2 (�) a.e. in (0 , T ) . 

Moreover, e α|| β are independent of x 3 , as a straightforward consequence of u i being independent on x 3 (Step (ii ) ). Besides,

let v ∈ V (�) . From the definition of the scaled strains in (35) –(37) , we get 

ε e α|| β (ε ; v ) → 0 in L 2 (�) , ε e α|| 3 (ε ; v ) → 

1 

2 

∂ 3 v α in L 2 (�) , 

ε e 3 || 3 (ε ; v ) = ∂ 3 v 3 in L 2 (�) , for all ε > 0 . 
17 
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Now, we can take as test function ε v ∈ V (�) in (47) . Then, taking into account (33) , we have 

ε 

∫ 
�

ρ( ̈u α(ε) g αβ (ε) v β + ü 3 (ε) v 3 ) 
√ 

g(ε) dx + ε 

∫ 
�

A 

i jkl (ε) e k || l (ε) e i || j (ε; v ) 
√ 

g(ε) dx 

−
∫ 
�

αT (3 λ + 2 μ) ϑ(ε )(ε e α|| β(ε ; v ) g αβ (ε ) + ε e 3 || 3 (ε ; v )) 
√ 

g(ε ) dx − ε 

∫ 
�C 

p(− ˙ u 3 (ε )) v 3 
√ 

g(ε ) d�

= ε 

∫ 
�

f i v i 
√ 

g(ε) dx. 

Passing to the limit as ε → 0 , decomposing A 

i jkl (ε) into the components with different asymptotic behaviour (see (38) –(39) ),

the properties of g(ε) (see (44) ) and the convergences in Step (i), we obtain the following equality: ∫ 
�

(
2 μa ασ e α|| 3 ∂ 3 v σ + (λ + 2 μ) e 3 || 3 ∂ 3 v 3 

)√ 

a dx + 

∫ 
�

λa αβe α|| β∂ 3 v 3 
√ 

a dx 

= 

∫ 
�

αT (3 λ + 2 μ) ϑ∂ 3 v 3 
√ 

a dx ∀ v ∈ V (�) , a.e. in (0 , T ) . (71) 

By taking particular test functions and using [ 9 , Theorem 3.4-1], we deduce (69) . Then, we go back to (71) and use again [ 9 ,

Theorem 3.4-1] to deduce (70) . The independence of e 3 || 3 on x 3 is a consequence of this relation, as well. 

(v) We find a limit two-dimensional problem verified by functions ū = ( ̄u i ) and ϑ̄ . In particular, since the solution of this

problem is unique, the convergences on Step (i ) are verified for the whole families (u (ε)) ε> 0 and (ϑ(ε)) ε> 0 . We have that

ū (t) = ( ̄u i (t)) ∈ V M 

(ω) and ϑ̄ (t) ∈ S(ω) a.e. in (0,T). 

By using [ 9 , Theorem 4.2-1] (parts (a) and (b)), and Step (ii ) we obtain that ū α ∈ H 

1 
0 
(ω) and ϑ̄ ∈ H 

1 
0 
(ω) . Therefore,

ū ∈ V M 

(ω) a.e. in (0,T). Now, let v = (v i ) ∈ V (�) be independent of the variable x 3 . Then, from the asymptotic behaviour of

�p 

αβ
(ε) and �σ

α3 (ε) (see (41) –(43) ) we find the following convergences when ε → 0 (see (35) –(37) ): 

e α|| β (ε; v ) → γαβ ( v ) := 

1 

2 

(∂ αv β + ∂ βv α) − �σ
αβv σ − b αβv 3 in L 2 (�) , (72) 

e α|| 3 (ε; v ) → 

1 

2 

∂ αv 3 + b σαv σ in L 2 (�) , e 3 || 3 (ε; v ) = 0 . (73) 

Taking this into account, let us take now v = (v i ) ∈ V (�) independent of x 3 in (47) and pass to the limit when ε → 0 . If

we use the asymptotic behaviour of A 

i jkl (ε) (see (38) –(39) ) and g(ε) (see (44) ), take into account the weak convergences

e i || j (ε) 
∗
⇀ e i || j in L ∞ (0 , T ; L 2 (�)) , simplify by using (69) and consider the precise limits of the functions e i || j (ε; v ) in (72) –

(73) we obtain the following equality 

2 

∫ 
ω 
ρ( ̈̄u αa αβ v̄ β + 

¨̄u 3 ̄v 3 ) 
√ 

a dy + 

∫ 
ω 

a αβστ γστ ( ̄u ) γαβ ( ̄v ) 
√ 

a dy 

− 4 

∫ 
ω 

αT μ(3 λ + 2 μ) 

λ + 2 μ
ϑ̄ a αβγαβ ( ̄v ) 

√ 

a dy −
∫ 
�C 

χ v̄ 3 
√ 

a d�

= 

∫ 
ω 

(∫ 1 

−1 

f i dx 3 

)
v̄ i 

√ 

a dy + 

∫ 
�+ 

h 

i v̄ i 
√ 

a d�, a.e. in (0 , T ) , (74) 

where we used Step (iii ) and (3) to find that there exists χ ∈ L ∞ (0 , T ; L 2 (�C )) such that p(− ˙ u 3 (ε)) 
∗
⇀ χ . We also used

(70) and, since u , v and ϑ are all independent of x 3 (see Step (ii ) ), we identified them with their averages. Above,

the components a αβστ are defined as in (54) . Notice that we can formulate the equation above in terms of test func-

tions η = (ηi ) ∈ [ H 

1 
0 
(ω)] 3 . To do that we just have to take v independent of x 3 and consider η( y ) = v ( y , x 3 ) for all

( y , x 3 ) ∈ �. Further, since both sides of the equation are continuous linear forms with respect to v̄ 3 = η3 ∈ L 2 (ω) , and

given that H 

1 
0 (ω) is dense in L 2 (ω) , we find that the problem can be formulated for test functions in η = (ηi ) ∈ V M 

(ω) ,

instead. 

Similarly, we now consider ϕ ∈ S(�) independent of x 3 in (48) and pass to the limit when ε → 0 . Again, if we take into

account the weak convergences in Step (i) and simplify by using the time derivative of (70) we find the equality 

2 

∫ 
ω 

(
β + 

α2 
T (3 λ + 2 μ) 2 

λ + 2 μ

)
˙ ϑ̄ϕ 

√ 

a dy + 2 

∫ 
ω 

k∂ αϑ̄ a αβ∂ βϕ 

√ 

a dy 

+ 4 

∫ 
ω 

αT μ(3 λ + 2 μ) 

λ + 2 μ
ϕa αβγαβ ( ̇ ū ) 

√ 

a dy = 

∫ 
ω 

Qϕ 

√ 

a dy ∀ ϕ ∈ H 

1 
0 (ω) a.e. in (0 , T ) , (75) 

hence obtaining (53) , with ζ identified with ϑ̄ . 

(vi) The weak convergences are, in fact, strong. 

For this step we first consider a case without tractions, that is, we take h = 0 . Then we will show the changes to be

made for the case with tractions. In both cases we are using a monotonicity argument. We define the quantity: 

�(ε) := 

∫ 
ρ
(
( ̈u α(ε) − ü α) g αβ (ε )( ̇ u β (ε ) − ˙ u β ) + ( ̈u 3 (ε) − ü 3 )( ̇ u 3 (ε) − ˙ u 3 ) 

)√ 

g(ε) dx 

�

18 
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+ 

�
A 

i jkl (ε)(e k || l (ε) − e k || l )( ̇ e i || j (ε) − ˙ e i || j ) 
√ 

g(ε) dx 

−
∫ 
�C 

(p(− ˙ u 3 (ε)) − p(− ˙ u 3 ))( ̇ u 3 (ε) − ˙ u 3 ) 
√ 

g(ε) d�

+ 

∫ 
�

β( ˙ ϑ (ε) − ˙ ϑ )(ϑ(ε) − ϑ) 
√ 

g(ε) dx 

+ 

∫ 
�

k { ∂ α(ϑ(ε) − ϑ) g αβ (ε) ∂ β (ϑ(ε) − ϑ) + 

1 

ε 2 
(∂ 3 (ϑ(ε) − ϑ)) 2 } 

√ 

g(ε) dx. 

On one hand, we integrate with respect to the time variable in [0 , t] and take into account (66) and the initial conditions in

Problem 6 to obtain 

2 

∫ t 

0 

�(ε) dr = 

∫ 
�

ρ
(
( ̇ u α(ε) − ˙ u α) g αβ (ε)( ̇ u β (ε) − ˙ u β ) + ( ̇ u 3 (ε) − ˙ u 3 ) 

2 
)√ 

g( ε) dx 

+ 

∫ 
�

A 

i jkl (ε)(e k || l (ε) − e k || l )( e i || j (ε) − e i || j ) 
√ 

g(ε) dx 

+ 2 

∫ t 

0 

∫ 
�C 

(p(− ˙ u 3 (ε)) − p(− ˙ u 3 ))(− ˙ u 3 (ε) + 

˙ u 3 ) 
√ 

g(ε) d � d r + 

∫ 
�

β(ϑ(ε) − ϑ) 2 
√ 

g(ε) dx 

+ 2 

∫ t 

0 

∫ 
�

k { ∂ α(ϑ(ε) − ϑ) g αβ (ε) ∂ β (ϑ(ε) − ϑ) + 

1 

ε 2 
(∂ 3 (ϑ(ε) − ϑ)) 2 } 

√ 

g(ε) d xd r, (76) 

and as consequence of the monotonicity of p, (40) and (44) , we find ∫ t 

0 

�(ε) ds ≥ C 

(
| ̇ u (ε) − ˙ u | 2 0 , � + | e i || j (ε) − e i || j | 2 0 , � + | ϑ(ε) − ϑ | 2 0 , �

+ 

∫ t 

0 

| ∂ αϑ(ε) − ∂ αϑ | 2 0 , �ds + 

1 

ε 2 

∫ t 

0 

| ∂ 3 ϑ(ε) − ∂ 3 ϑ | 2 0 , �ds 

)
. (77) 

On the other hand, from the expression of �(ε) and making use of (47) –(48) for v = 

˙ u (ε) and ϕ = ϑ(ε) , we deduce

that 

�(ε) = 

∫ 
�

f i ˙ u i (ε ) 
√ 

g(ε ) d x − d 

d t 

∫ 
�

A 

i jkl (ε ) e k || l (ε ) e i || j 
√ 

g(ε ) dx + 

∫ 
�

A 

i jkl (ε ) e k || l ̇ e i || j 
√ 

g(ε ) dx 

− d 

dt 

∫ 
�

ρ ˙ u α(ε) g αβ (ε) ̇ u β

√ 

g(ε) dx + 

∫ 
�

ρü αg αβ (ε) ̇ u β

√ 

g(ε) dx 

− d 

dt 

∫ 
�

ρ ˙ u 3 (ε) ̇ u 3 

√ 

g(ε) dx + 

∫ 
�

ρü 3 ˙ u 3 

√ 

g(ε) dx 

+ 

∫ 
�C 

p(− ˙ u 3 )( ̇ u 3 (ε) − ˙ u 3 ) 
√ 

g(ε) d� + 

∫ 
�C 

p(− ˙ u 3 (ε)) ̇ u 3 

√ 

g(ε) d�

+ 

∫ 
�

qϑ(ε) 
√ 

g(ε) d x − d 

d t 

∫ 
�

βϑ (ε) ϑ 

√ 

g(ε) dx + 

∫ 
�

β ˙ ϑ ϑ 

√ 

g(ε) dx 

−
∫ 
�

k∂ αϑg αβ (ε) ∂ β (ϑ(ε) − ϑ) 
√ 

g(ε) dx −
∫ 
�

k∂ αϑ(ε) g αβ (ε) ∂ βϑ 

√ 

g(ε) dx 

− 1 

ε 2 

∫ 
�

k∂ 3 ϑ∂ 3 (ϑ(ε) − ϑ) 
√ 

g(ε) dx − 1 

ε 2 

∫ 
�

k∂ 3 ϑ(ε) ∂ 3 ϑ 

√ 

g(ε) dx. (78) 

Next, integrate with respect to the time variable in [0 , t] , take into account the initial conditions given in Problem 6 and

(66) , use that ∂ 3 ϑ = 0 , and let ε → 0 . Because of the weak convergences studied in steps (i ) , (iii ) and (v ) , the asymptotic

behaviour of the functions A 

i jkl (ε) and g(ε) (see (38) –(39) and (44) ) and by using the Lebesgue dominated convergence

theorem, we find that 

lim 

ε→ 0 

∫ t 

0 

�(ε) d r = 

∫ t 

0 

∫ 
�

f i ˙ u i 

√ 

a d xd r −
∫ t 

0 

∫ 
�

ρü αa αβ ˙ u β

√ 

a d xd r −
∫ t 

0 

∫ 
�

ρü 3 ˙ u 3 

√ 

a d xd r 

−
∫ t 

0 

∫ 
�

A 

i jkl (0) e k || l ̇ e i || j 
√ 

a d xd r + 

∫ t 

0 

∫ 
�C 

χ ˙ u 3 

√ 

a d �d r + 

∫ t 

0 

∫ 
�

qϑ 

√ 

a d xd r 

−
∫ t 

0 

∫ 
�

β ˙ ϑ ϑ 

√ 

a d xd r −
∫ t 

0 

∫ 
�

k∂ αϑ a αβ∂ βϑ 

√ 

a d xd r. (79) 

Moreover, by the expressions of A 

i jkl (0) (see (38) –(39) ) and using (69) we have ∫ 
A 

i jkl (0) e k || l ̇ e i || j 
√ 

a dx = 

∫ (
λa αβa στ + μ(a ασ a βτ + a ατ a βσ ) 

)
e σ || τ ˙ e α|| β

√ 

a dx 

� �
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+ 

�
λa αβe 3 || 3 ̇ e α|| β

√ 

a dx + 

�

(
λa στ e σ || τ + (λ + 2 μ) e 3 || 3 

)
˙ e 3 || 3 

√ 

a dx. 

Then, using (70) , we find that (79) is actually null, since its expression above coincides with the result of adding (74) for

v̄ = 

˙ u to (75) for ϕ = ϑ (both integrated in [0 , t] ). Indeed, 

lim 

ε→ 0 

∫ t 

0 

�(ε) d r = 

∫ t 

0 

(∫ 
�

f i ˙ u i 

√ 

a d x −
∫ 
�

ρü αa αβ ˙ u β

√ 

a dx −
∫ 
�

ρü 3 ˙ u 3 

√ 

a dx 

− 1 

2 

∫ 
�

a αβστ e σ || τ ˙ e α|| β
√ 

a dx + 

∫ 
�C 

χ ˙ u 3 

√ 

a d� + 

∫ 
�

qϑ 

√ 

a dx 

−
∫ 
�

(
β + 

α2 
T (3 λ + 2 μ) 2 

λ + 2 μ

)
˙ ϑ ϑ 

√ 

a dx −
∫ 
�

k∂ αϑ a αβ∂ βϑ 

√ 

a d x 

)
d r = 0 . (80) 

Now, for the case where tractions are not null, in (78) we have an additonal term ∫ 
�+ 

h 

i ˙ u i (ε) 
√ 

g(ε) d�. 

When passing to the limit ε → 0 , the terms with u α(ε) above converge by using compactness arguments, since u α(ε) ∈
H 

1 (� × (0 , T )) and the trace into L 2 (� × (0 , T )) is a compact operator (see [ 33 , p. 416]). For the term with ˙ u 3 (ε) , we

have to combine integration by parts and arguments similar to those in Step (iii) with �C replaced by �+ to find that

˙ u 3 (ε) 
∗
⇀ ˙ u 3 in L ∞ (0 , T ; L 2 (�+ )) . We refer the interested reader to [44] . 

The strong convergences e i || j (ε) → e i || j in L ∞ (0 , T ; L 2 (�)) also imply the strong convergences for u i (ε) , by following

arguments not depending on the particular set of equations, but on the same arguments of differential geometry and func- 

tional analysis used in [ 9 , Theorem 4.4-1]. Therefore, we just omit them here and refer the interested reader to said refer-

ence. 

It only remains to show that χ = p(− ˙ u 3 ) . To do that we can reason like in Step (x ) in [ 41 , Theorem 5.3]. 

Remark 6. Notice that unlike what happens in the references [33,36] , cited several times in this work, we cannot use

compactness arguments for the convergence of all the contact boundary terms, since in our functional framework (that of 

linearly elliptic membrane shells) we do not have enough regularity to conclude that u 3 (ε) ∈ H 

1 (� × (0 , T )) . Indeed, we

have found no uniform upper bounds for ∂ αu 3 (ε) . Furthermore, the trace defined in [ 47 , Theorem 3] is not a compact

operator. 

We still have to provide convergence results in terms of de-scaled unknowns. To do that, we first formulate the limit

problem in a de-scaled form. From the scalings in Section 3 we deduce the de-scalings ξε 
i 
( y ) = ξi ( y ) and ζ ε ( y ) = ζ ( y ) for

all y ∈ ω̄ . Therefore, from Problem 7 we obtain 

Problem 10. Find a pair t �→ ( ξ
ε 
( y , t) , ζ ε ( y , t)) of [0 , T ] → V M 

(ω) × H 

1 
0 
(ω) verifying 

2 ε 

∫ 
ω 
ρ( ̈ξε 

αa αβηβ + ξ̈ ε 
3 η3 ) 

√ 

a dy + ε 

∫ 
ω 

a αβστ,ε γστ ( ξ
ε 
) γαβ ( η) 

√ 

a dy −
∫ 
�ε 

C 

p ε (− ˙ ξε 
3 ) η

ε 
3 

√ 

a d�

− 4 ε 

∫ 
ω 

αT μ(3 λ + 2 μ) 

λ + 2 μ
ζε a αβγαβ ( η) 

√ 

a dy = 

∫ 
ω 

F i,ε ηi 

√ 

a dy ∀ η = (ηi ) ∈ V M 

(ω) , 

2 ε 

∫ 
ω 

(
β + 

α2 
T (3 λ + 2 μ) 2 

λ + 2 μ

)
˙ ζ ε ϕ 

√ 

a dy + 2 ε 

∫ 
ω 

k∂ ε αζ ε a αβ∂ ε βϕ 

√ 

a dy 

+ 4 ε 

∫ 
ω 

αT μ(3 λ + 2 μ) 

λ + 2 μ
ϕa αβγαβ ( ˙ ξ

ε 
) 
√ 

a dy = 

∫ 
ω 

Q 

ε ϕ 

√ 

a dy ∀ ϕ ∈ H 

1 
0 (ω) , 

with 

˙ ξ
ε 
(·, 0) = ξ

ε 
(·, 0) = 0 and ζ ε (·, 0) = 0 , 

where we have used F i,ε := 

∫ ε 
−ε f 

i,ε dx ε 
3 

+ h i,ε + , with h i,ε + (·) = h i,ε (·, ε) , and Q 

ε = 

∫ ε 
−ε q 

ε dx ε 
3 
. 

A brief inspection of the two-dimensional problem above shows that it keeps the structure of its three-dimensional 

counterpart, Problem 4 , with some terms changing its relative weight due to their new coefficients. That is the case of

the thermal dilatation term in the first equation and more noticeable, the thermal conductivity term in the second one. 

We found no record in the existing engineering literature about this contribution of Lamé’s coefficients to these terms. 

Experimental results should provide some insight in this direction, but this exceeds the scope of this paper. Note also that

the three-dimensional information is being taken into account in this two-dimensional problem. Indeed, the ε coefficient in 

most of the left-hand side terms accounts for half the thickness of the three-dimensional shells, while both right-hand sides 

include averages in the transversal direction. Moreover, the contact term is posed on a two-dimensional domain, but it is 

originated in the boundary of the three-dimensional setting (that is the reason why we keep the notation �ε 
C 

). Finally, note

that these terms are of lower order (zero-th order) in terms of ε, thus showing that membranes are prone to deform under

external forces and when entering in (fast) contact with a foundation. 
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Finally, regarding convergence, by combining the results in Theorem 3 and [ 9 , Theorem 4.2-1] we can show that 

1 

2 ε 

∫ ε 

−ε 
u 

ε 
αd x ε 3 → ξα in H 

1 (�) , 
1 

2 ε 

∫ ε 

−ε 
u 

ε 
3 d x 

ε 
3 → ξ3 in L 2 (�) , 

1 

2 ε 

∫ ε 

−ε 
ζ ε dx ε 3 → ζ in L 2 (�) a.e. in (0 , T ) . 

Further, following the same arguments as in [ 9 , Theorem 4.6-1], we can show that the averages of the tangential and normal

components of the three-dimensional displacement vector field converge, as well. 

6. Conclusions and outlook 

For the particular case of the so-called elliptic membrane shells, we have obtained and mathematically justified a two- 

dimensional limit model for a three-dimensional contact problem in thermoelasticity. The contact is modeled by using a 

normal damped response function. In the process we used the insight provided by the asymptotic expansion method and we 

have justified this approach by obtaining convergence theorems. Also, we have proved existence, uniqueness and regularity 

results for both three and two-dimensional problems by combining Faedo-Galerking techniques, monotonicity and compacity 

arguments. 

There are many problems yet to be studied in this field. To begin with, the contact model considered in this paper is

frictionless. But one can easily think of many real life applications where friction can not be neglected. Further, friction may

be coupled with other tribological effects such as wear or adhesion. Besides, many geometries such as cylinders or cones 

are beyond the elliptic membrane framework. Thus, our future work will be devoted to the study of the asymptotic limits

of alternative shell models, such as flexural shells or Koiter shells, when there is contact on a part of their boundary and

where friction is taken into account. 
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