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Abstract

The evaluation of contact forces during an impact requires the use of continuous force

based methods. An accurate prediction of the impact force demands the identification of the

contact parameters on a case-by-case basis. In this paper, the pre-impact effective kinetic

energy, T−
c , is put forward as an indicator of the intensity of the impact force along the

contact normal direction. This represents a part of the total kinetic energy of the system

that is associated with the subspace of constrained motion defined by the impact constraints

at the moment of contact onset. Its value depends only on the mechanical parameters and

the configuration of the system. We illustrate in this paper that this indicator can be used

to characterize the impact force intensity. The suitability of this indicator is confirmed with

numerical simulations and experiments.

Keywords: Multibody impact, Effective kinetic energy, Impact intensity

1 Introduction

Impact dynamics is generally addressed in multibody systems using one of two approaches: 1)

impulse-momentum level formulations and 2) penalty formulations or continuous force based

methods [15], [4]. The main assumption for impulse-momentum level approaches is that the
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duration of impact is negligible on the time scale determined by the finite motion of the system.

This makes it possible to integrate the dynamic equations and consider them at the impulse-

momentum level (e.g. [16], [1], [18]). This, however, eliminates the contact forces from the

formulation and includes only their impulse, which can be appropriate for various applications

(e.g. for motion simulation). However, for many engineering applications, such as engineering

design problems, often more explicit knowledge about the contact loads and their intensity is

needed.

A natural choice for a performance indicator to assess these loads is the contact force de-

veloped and its maximum value during the impact period. This requires the use of continuous

force models. A significant number of such force models is available (e.g. [10], [12], [7], [19]).

These are often based on the assumption of Hertzian contact together with various representa-

tions for dissipation. However, continuous force models can result in high uncertainty for the

contact forces, and can make reliable force estimation difficult for several reasons. For example,

all of these methods are highly dependent on the parametrization of the contact interfaces, e.g.

stiffness, damping, and contact geometry. The related parameters can be difficult to identify,

and even if identified properly they are usually representative for one single setup only. As these

parameters are usually associated with simplified contact models, their values also depend on

the global system properties so any change in those requires re-calibration.

Engineering design and decision making generally rely on the use of indicators to charac-

terize the required system function and performance. We generally term such quantities perfor-

mance indicators. Here, we propose an alternative performance indicator to assess the intensity

of loads developed during impact and contact transition in general. This indicator does not re-

quire the use of a contact model and its corresponding parametrization, but it is a parametric

function of the system dimensions and inertias, and can reflect their overall effect on the max-

imum impact loads. Our main concept for the performance indicator is that at the onset of the

contact the geometry of the system determines the main relative motions to be constrained via

the impact (e.g. normal directions). In turn, this makes it possible to decompose the dynam-

ics of the system to constrained and admissible motions [11]. This decomposition can be used

together with both impulse-momentum and continuous force model based approaches. Our pro-

posal is that the kinetic energy associated with the constrained motion at the beginning of the

contact can be used as performance indicator to characterize impact loads as an alternative to

contact forces. This will also be termed effective pre-impact kinetic energy.
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The expectation from mathematical and mechanical modelling is essentially to provide per-

formance indicators; both the concepts and the algorithms to determine them. For a performance

indicator often the importance is not on its actual numerical value, but rather on the way how its

behaviour reflects changes in system parameters or designs. For example, we will demonstrate

that the value of our proposed performance indicator changes in the same way as the peak con-

tact force developed during impact does. If we evaluate two different designs against each other

for the same contact task and the effective pre-impact kinetic energy is greater for one of the

designs then the peak impact force will also be greater for that case. This can help the designer

to make a decision and also to see how the different possible design solutions influence the im-

pact. This performance indicator is applicable to a large class of problems of direct engineering

relevance, ranging from biomechanics to aerospace applications [6], [5], [8].

We will primarily consider scenarios where the impact can be represented with one single

representative relative motion. This includes so-called single-point impacts, but also cases in

which a resultant direction is determined for an impact system. We note that a single-point

impact model does not mean an idealized situation. It simply means that the impact between

two bodies can be well-represented with a resultant relative motion of one degree of freedom,

which is being constrained by the contact, i.e., the motion that will be primarily affected by the

impact, and the interaction is described by the reaction force developed. The interpretation of

the representative relative motion of impact can be done in terms of a selected set of generalized

velocities, which leads to a Jacobian matrix, the Jacobian of the impact. The treatment of multi-

point impacts has been discussed in the literature and several ways to deal with the problem have

been proposed, e.g. [13], [17], [2], [3]. However, single-point impact scenarios are especially

suitable to highlight the validity of the effective pre-impact kinetic energy as indicator of the

maximum force during a collision. Moreover, such a representation is valid in a wide range of

real-life applications that involve impacts between multi-rigid-body systems.

2 Effective pre-impact kinetic energy

2.1 Illustration of the concept

Let us consider a simple example first to illustrate the idea. This example is shown on Fig 1. Two

circular-shaped objects are to collide with each other. We consider that the system is modelled
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Figure 1: Two circular objects about to undergo a single-point impact

along one single direction, which results in a two degree-of-freedom (DoF) model, described

by the absolute coordinates x1 and x2 of the centres of mass of the two objects. At the time

when the impact begins the locations of the contact points in each body can be described as

x1 +R1 and x2 −R2. The relative motion to be constrained by the impact can be characterized

as ẋ2 − ẋ1 = ḋc. In terms of the original set of absolute velocities q̇ = [ẋ1 ẋ2]
T this leads to

Aq̇ = ḋc (1)

where A = [−1 1] is the Jacobian of the impact.

The dynamic equations for this system can be expressed as

Mq̈ = ATλ (2)

where

M =

 m1 0

0 m2

 ; q̈ =

 ẍ1

ẍ2

 ; ATλ =

 −fc

fc

 (3)

where λ = fc = fc(dc, ḋc) represents the contact force developed due to the impact; it is zero

before the bodies make contact. The kinetic energy of the system can be expressed as T =

(m1ẋ
2
1 +m2ẋ

2
2)/2.

The dynamics can be reformulated considering the impact representation and the method

described in [11] to decouple the system dynamics; this leads to the introduction of new gener-

alized velocities, ḋc = ẋ2− ẋ1 and ḋa = m1
m2

ẋ1+ ẋ2. These can be integrated, and the appropriate

generalized coordinates, dc, da, can also be introduced. Applying this coordinate transformation
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to (2) a new dynamic formulation can be obtained as
m1m2

m1 +m2
0

0
m2

2

m1 +m2


 d̈c

d̈a

 =

 fc

0

 (4)

where (m1m2) / (m1 +m2) is the effective mass [9] associated with the impact. The details of

this transformation can be found in Appendix A. This leads to two decoupled equations. The

first one,

m1m2

m1 +m2
d̈c = fc (5)

completely characterizes the impact, and the second equation defines ḋa = const. as a first

integral of motion, which is not affected by the impact. This decomposition also splits the kinetic

energy into two parts:

T =
1

2

m1m2

m1 +m2
ḋ2c +

1

2

m2
2

m1 +m2
ḋ2a = Tc + Ta (6)

where

Tc =
1

2

m1m2

m1 +m2
ḋ2c (7)

is the effective kinetic energy, associated with the impact, and

Ta =
1

2

m2
2

m1 +m2
ḋ2a (8)

is the kinetic energy part admissible with the impact which is not affected by the impact and

remains constant.

From the structure of Eq. (5) we can see that the intensity of impact is very much governed

by the effective kinetic energy at the contact onset, T−
c , i.e. at instant t0. The effective kinetic

energy can also be used to characterize the different phases of the impact. If we consider the

simplest case that the contact force behaviour is represented with a linear or nonlinear elastic

constitutive relation, a spring, then it becomes apparent that in the compression phase all of the

effective impact kinetic energy is converted into potential energy, V , the strain energy of the

spring. The end of the compression phase is the instant when the entire effective pre-impact
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kinetic energy T−
c has been transferred into potential energy.1 This condition to determine the

end of the compression phase can also be used when the contact interaction representation

involves dissipative terms. In such a case part of T−
c is dissipated during the compression phase

and cannot be recovered. However, still the Tc = 0 condition can mark the end of compression.

In the so-called restitution phase potential energy is again converted back into kinetic energy. If

only a linear or nonlinear spring is used to represent the contact then the entire stored potential

energy will be converted back to kinetic energy and the end of the restitution phase can be

defined when that process is finished.

Considering these, for the case of most practically relevant conservative constitutive relations

it is straightforward to show that the peak contact force is monotonically related to the maximum

deformation, which, in turn, is also monotonically related to the effective pre-impact kinetic

energy, T−
c . For the case when dissipative effects are also present it is more difficult to show this

relationship analytically. However, even for that general case we can consider that the work of

the contact force done during the compression phase equals T−
c . We can also consider that this

T−
c can vary but the structural properties of the system do not change. An increase in the value

of T−
c will lead to higher contact forces, as confirmed by simulation and experimental results

reported in Sections 3, 4, and 5. We will also illustrate this later by considering different contact

force models.

2.2 Generalization to multibody systems

The formulation developed above can be generalized for mechanical systems, Fig. 2, represented

by n generalized velocities collected in an n× 1 array v. The formulation for the representative

relative motion can be written as

Av = uc (9)

where A is the 1 × n Jacobian of the impact and uc describes the representative relative mo-

tion that is primarily constrained during the compression phase. The dynamic equations can be

1The use of this condition to determine the end of the compression phase is actually more appropriate than some
of the other usual assumptions. For example, often the end of the compression phase is defined when the relative
velocity of the contact points becomes zero. But, that velocity becomes zero at the very beginning of impact, at the
contact onset. After that it can be questioned the relative velocity of what point we mean.
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Figure 2: Two generic impacting multibody chains

expressed as

Mv̇ + c = f +ATλ (10)

where M is the n×n mass matrix, c represents the n×1 array of Coriolis and centrifugal effects,

λ again represents the contact force developed due to the impact, and n × 1 array f stands for

other generalized forces that may act on the system. A decoupling transformation can also be

introduced here as

u =

 uc

ua

 =

 A

B

v (11)

where ua is an (n − 1) × 1 array of new generalized velocities that describe the motion of

the system admissible to the representative relative motion of impact, B is the corresponding

(n − 1) × n Jacobian that defines ua and has to satisfy the condition AM−1BT = 0 to achieve

decoupling [11]. This is the condition that was also used to select ua for the formulation of

the problem in Section 2.1 to arrive at Eq. (4). With this selection the general formulation of

Eq. (10) can be transformed into

 (
AM−1AT

)−1
0

0 (BM−1BT)−1


 u̇c

u̇a

+

 zc

za

 =

 τc

τa

+

 λ

0

 (12)

where

zc =
(
AM−1AT

)−1
AM−1c−

(
AM−1AT

)−1
Ȧv (13)
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za =
(
BM−1BT

)−1
BM−1c−

(
BM−1BT

)−1
Ḃv (14)

are the new Coriolis and centrifugal terms, and

τc =
(
AM−1AT

)−1
AM−1f , and τa =

(
BM−1BT

)−1
BM−1f (15)

are the new other generalized force terms. The dynamics representation of Eq. (12) is again

decoupled in terms of the contact force developed during the impact. The kinetic energy function

is also decoupled to two parts as

T = Tc + Ta =
1

2

(
AM−1AT

)−1
u2c +

1

2
uT
a

(
BM−1BT

)−1
ua (16)

where the first part Tc is associated with the first equation in (12), meff u̇c + zc = τc + λ, and

meff = (AM−1AT)−1 is the effective inertia associated with the impact. The contact reaction

force, λ, starts to develop at the onset of contact at the beginning of the compression phase.

The duration of the compression phase is usually short compared to the basic time scale set

by the fundamental frequencies of the system, hence the configuration of the system does not

change much during this phase. The dynamics in the compression phase will be dominated by

the contact force and the power of this force is what will mostly consume the initial effective

kinetic energy, T−
c . Therefore, we can arrive at the same conclusion as in the case of the simple

example above: the intensity of the contact and the maximum contact load are directly related

to the effective pre-impact kinetic energy.

Based on these, our claim is that the effective pre-impact kinetic energy, T−
c can be used for

the determination of how the maximum load changes. This is a parametric function and does

not depend on the contact properties of the materials and the contact model. This fact can be

very important in the design, operation and control of impact systems. To determine the peak

force we need a contact model. However, in many cases, what is important is to be able to make

a difference between two designs. For this T−
c can be equivalently used as it is monotonically

related to the peak contact force, and it directly reflects the effect of the mechanical design

parameters.

The decomposition and the representative relative motion described above can also be es-

tablished using the original parametrization without the need to explicitly introduce uc and ua
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in the kinetic energy decomposition and in the dynamic equations. It can be shown, [11], that

Tc =
1

2
vT
c Mvc and Ta =

1

2
vT
aMva (17)

where

vc = Pcv and va = Pav (18)

and

Pc = M−1AT
(
AM−1AT

)−1
A and Pa = I−Pc (19)

represent projector operators, where I is the n × n identity matrix. These projector operators

can also be used to decompose the dynamic equations. Here we do not present those general

relations as the main objective is to illustrate the importance of the effective kinetic energy, Tc.

Based on Eqs. (17) and (19) Tc can also be written as

Tc =
1

2
vTAT

(
AM−1AT

)−1
Av (20)

where Meff = AT(AM−1AT)−1A can be seen as an effective mass matrix of the impact as-

sociated with the original parametrization of the motion of the system, v. From the above the

effective pre-impact kinetic energy can be determined by substituting the values of the gen-

eralized velocities at the contact onset t0, the beginning of the compression phase, which are

included in v−.

A challenge is generally to determine what the representative relative motion is, as the con-

tact interaction due to the impact is generally quite complex; the rigid surface assumption will

certainly not hold and the deformation and dissipation properties can be very complicated to

identify. A first guess can be established via considering the contact normal defined by the ge-

ometry of the interfaces. Then a sensitivity analysis can also be performed by varying the repre-

sentative relative motion within a range around the normal.
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Figure 3: Model of a double pendulum used as test example

3 Numerical example: double pendulum

The suitability of the effective pre-impact kinetic energy T−
c as indicator of the contact force

intensity during an impact was assessed in a set of numerical experiments with the model of a

planar double pendulum (Fig. 3). The mass of the links is assumed to be concentrated at the

tip of each rod (points P1 and P2). Point P2 can collide with the ground, located at a distance h

along the y axis from the origin of the global reference frame. Similar models can be found in

the literature, e.g. [14], [7]; the physical parameters of the current example have been chosen

to match those proposed in [7] and are detailed in Table 1.

Table 1: Physical parameters of the double pendulum used as example

Link 1 Link 2
mass [kg] length [m] mass [kg] length [m]

5.0 0.5 2.0 0.25

During the motion prior to the contact with the ground, the double pendulum is a 2-DoF

system. Following the developments in Section 2, the contact between the pendulum and the

floor can be considered with a representative motion of point P2 along the y direction relative

to the ground, so that uc = ẏ2. This allows one to evaluate the effective pre-impact kinetic

energy T−
c using Eq. (20), based on the configuration and velocities of the system at the contact

onset. Determining the value of the normal contact force fn, however, requires the simulation

of the motion during the impact interval using a continuous force-based model to represent the

interaction between the pendulum and the ground.
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The system configuration can be described with a set of two independent coordinates, ϕ1

and ϕ2. Eq. (9) for this example becomes

[
l1 sinϕ1 + l2 sin (ϕ1 + ϕ2) l2 sin (ϕ1 + ϕ2)

] ϕ̇1

ϕ̇2

 = ẏ2 = uc (21)

where A =

[
l1 sinϕ1 + l2 sin (ϕ1 + ϕ2) l2 sin (ϕ1 + ϕ2)

]
is the 1× 2 impact Jacobian.

3.1 Initial simulation set

An initial set of simulations was carried out to compare the evolution of the effective pre-impact

kinetic energy T−
c and the peak normal force for different configurations of the system.

For each set of simulations, the y coordinate of point P2 was set to y2 = −h. The x and y

components of the velocity of the same point, ẋ2 and ẏ2, were also given fixed initial values.

Then, coordinate x2 was varied within a range
[
xmin
2 xmax

2

]
to generate different impact con-

figurations. It must be noted that for each position of point P2 given by (x2, y2) there are two

possible configurations of the mechanism, with ϕ2 > 0 and with ϕ2 < 0. Both cases have been

considered in this study. The corresponding velocity problem for each configuration was solved

afterwards, with ẋ2 and ẏ2 as inputs, to obtain ϕ̇1 and ϕ̇2.

In an initial approach, the contact between point P2 and the ground was considered to be

frictionless and perfectly elastic, resulting in an effective coefficient of restitution eeff = 1.0. The

vertical distance between the floor and the global origin was set to h = 0.6 m. For this distance,

a configuration range −0.38 m ≤ x2 ≤ 0.38 m was chosen. This range avoids situations in which

the mechanism is too close to its limit configurations (i.e. the two rods are aligned and ϕ2 = 0).

In the initial simulations, the normal impact velocity was set to ẏ−2 = −1 m/s, and the tangential

one was varied from ẋ2 = 0 m/s up to ẋ2 = 2.5 m/s.

Once the generalized coordinates and velocities at the contact onset were determined, the

pre-impact kinetic energy T− and effective kinetic energy T−
c of the double pendulum were eval-

uated using Eqs. (16) and (20). Afterwards, a forward-dynamics simulation from time t0 when

the impact starts to time tF in which the impact ends was carried out. The trapezoidal rule was

used as numerical integrator, with an integration step-size ∆t = 10−6 s. During the simulation,
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Figure 4: Total pre-impact kinetic energy (T−), effective pre-impact kinetic energy (T−
c ), and

peak normal contact force (fpk
n ) for the different impact configurations of the double pendulum

(left); correlation between total and effective kinetic energies and peak normal force (right).
Velocities of the end effector at t0: ẋ2 = 0 m/s and ẏ2 = −1 m/s. The values correspond to the
configuration in which ϕ2 < 0

the normal contact force fn can be evaluated according to any of the several force models avail-

able in the literature [15]. The peak value of this force during each collision, fpk
n , characterizes

the impact intensity. In this first set of simulations, the normal contact force was evaluated using

the nonlinear spring-damper representation described in [7] to model the pendulum-ground

interaction. The expression of the normal contact force according to this model is

fn

(
δ, δ̇

)
= −kδp − (ηδp) δ̇ (22)

where p = 3/2 according to Hertzian theory, k is the contact stiffness in the normal direction

(set to k = 109N/m3/2 in the example), δ is the separation between the bodies in contact (in

this example, δ = y2 + h), and η is a hysteresis damping factor

η =
kd

eeffu
−
c

(23)

where u−c is the initial penetration velocity and d is a dimensionless factor that depends only on

eeff and u−c , and is implicitly obtained by solving [7]

1 + d/eeff
1− d

= ed(1+1/eeff) (24)

Other existing contact models were also used in the simulations; details are provided in Sec-

tion 3.2.
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Figure 5: Total pre-impact kinetic energy (T−), effective pre-impact kinetic energy (T−
c ), and

peak normal contact force (fpk
n ) for the different impact configurations of the double pendulum

(left); correlation between total and effective kinetic energies and peak normal force (right).
Velocities of the end effector at t0: ẋ2 = 1 m/s and ẏ2 = −1 m/s. The values correspond to the
configuration in which ϕ2 < 0

Figure 4 shows the peak normal contact force fpk
n , the pre-impact kinetic energy T−, and

the effective pre-impact kinetic T−
c for different values of the x2 coordinate of the pendulum

tip. The velocities of point P2 at the contact onset t0 were set to ẋ2 = 0 m/s and ẏ2 = −1

m/s. Fig. 4 was obtained for the configuration in which ϕ2 < 0. The condition ẋ2 = 0 causes

both the configuration and the velocities of the system to be symmetric for ϕ2 < 0 and ϕ2 > 0.

Therefore, the right plot in Fig. 4 would remain unchanged if the configurations with ϕ2 > 0

were considered instead, and the left plot would be a mirror reflection of the current one. Fig. 4

demonstrates that the total pre-impact kinetic energy T− of the system at time t0 when the

contact is established does not convey enough information about the peak contact force fpk
n

that will be developed during the impact. Conversely, T−
c can be used as a valid indicator to

represent this. An increase in T−
c results in an increase of the peak force fpk

n reached. The right

plot in Fig. 4 shows that this correlation is not linear, but it confirms the existence of a monotonic

relationship between T−
c and the peak force during impact.

Figures 5 and 6 correspond to the case in which ẋ2 = 1 m/s and ẏ2 = −1 m/s. In this case,

the two possible configurations with ϕ2 < 0 and ϕ2 > 0 cannot be considered equivalent as they

are no longer symmetric (because ẋ2 ̸= 0). In these cases the maximum force and T−
c follow

again the same trends, further confirming our previous conclusions. These results also show

more explicitly that the changes in the total pre-impact kinetic energy do not reflect how the

maximum force varies. It is the effective pre-impact kinetic energy T−
c that can represent these
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Figure 6: Total pre-impact kinetic energy (T−), effective pre-impact kinetic energy (T−
c ), and

peak normal contact force (fpk
n ) for the different impact configurations of the double pendulum

(left); correlation between total and effective kinetic energies and peak normal force (right).
Velocities of the end effector at t0: ẋ2 = 1 m/s and ẏ2 = −1 m/s. The values correspond to the
configuration in which ϕ2 > 0

variations.

3.2 Effect of contact force model

As mentioned in Section 3.1, many models are available for the evaluation of the contact force

between two bodies. Most of these are based on Hertz’s formula for the contact force between

two spheres, and they represent the contact as a viscoelastic phenomenon. Accordingly, the

normal contact force takes the form

fn

(
δ, δ̇

)
= −kδp − cδmδ̇ (25)

where k and c stand for the stiffness and damping of the contact, which can be either linear or

non-linear, depending on the value of the exponent p. The vast majority of non-linear models

consider p = 3/2, following Hertzian theory; an example of this is the contact model used in

Section 3.1. Two more models were employed in this study. The first one is the formula proposed

in [10]

fn

(
δ, δ̇

)
= −kδp

[
1 +

3 (1− eeff )

2

δ̇

u−c

]
(26)
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Figure 7: Effective pre-impact kinetic energy and peak normal contact force with different con-
tact models for the selected range of impact configurations of the double pendulum (left); cor-
relation between effective kinetic energy and peak normal force (right). Velocities of the end
effector at t0: ẋ2 = 1 m/s and ẏ2 = −1 m/s. The values correspond to the configuration in which
ϕ2 < 0. The coefficient of restitution was set to eeff = 0.5

The second one is the expression developed for low impact velocities in [12],

fn

(
δ, δ̇

)
= −kδp

1 + 3
(
1− e2eff

)
4

δ̇

u−c

 (27)

The three models corresponding to Eqs. (22), (26), and (27) were used in the simulation of

the motion of the double pendulum. The selection of a different contact model causes a variation

of the normal force fn observed during the simulation. It must be noted that these three force

models are equivalent if the coefficient of restitution is eeff = 1, so the simulations designed

to compare them were carried out selecting eeff = 0.5. Fig. 7 shows the correlation between

T−
c and fpk

n for each contact force model. The results show that the three models predict very

similar behaviour and values for the maximum normal force. This fact is in agreement with

similar results reported in the literature [20]. The results also show, as discussed in Section 2,

the suitability of T−
c as indicator of impact intensity does not depend on the force model chosen

to obtain the normal force value.
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Figure 8: Effective pre-impact kinetic energy and peak normal contact force with different coeffi-
cients of restitution eeff for the selected range of impact configurations of the double pendulum
(left); correlation between effective kinetic energy and peak normal force (right). Velocities of
the end effector at t0: ẋ2 = 1 m/s and ẏ2 = −1 m/s. The values correspond to the configuration
in which ϕ2 < 0

3.3 Variation of the coefficient of restitution

The relationship between T−
c and fpk

n observed in Section 3.1 can be generalized for the case

of non perfectly elastic impacts (eeff < 1), in which damping causes the dissipation of a part

of the kinetic energy during the impact. Another series of simulations was performed in which

the effective coefficient of restitution was varied from eeff = 1 to eeff = 0.3. The corresponding

damping parameter required in Eq, (22) was computed for each case solving Eq. (24). Results

for ẋ2 = 1 m/s and ẏ2 = −1 m/s, with ϕ2 < 0 are shown in Fig. 8. The rest of the investigated

cases followed similar trends.

Figure 8 confirms that, while a variation in the effective coefficient of restitution modifies

the maximum normal contact force fpk
n , the relationship between fpk

n and T−
c still holds and the

shapes of the two curves follow the same trend.

3.4 Effect of friction

We also investigated the effect of friction. The simulations were repeated considering friction

between the ground and the pendulum tip. The friction coefficient range investigated was

µ ∈ [0, 0.3]. The tangent force at the contact interface was evaluated in the simulations us-

ing the bristle friction model described in [7]. Results are shown in Fig. 9. It can be seen that,
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Figure 9: Effective pre-impact kinetic energy and peak normal contact force for different values
of the friction coefficient µ for the selected range of impact configurations of the double pen-
dulum (left); correlation between effective kinetic energy and normal force (right). Velocities of
the end effector at t0: ẋ2 = 1 m/s and ẏ2 = −1 m/s. The values correspond to the configuration
in which ϕ2 < 0

even though the presence of friction modifies the maximum normal force curve, the correlation

between peak normal force and effective kinetic energy remains: the peak normal force changes

the same way as T−
c does.

4 Numerical example: wheeled vehicle

A two-axle wheeled robot (Fig. 10) operating on flat terrain was selected as test problem. For

generality, the wheel-terrain contact is represented using constitutive relations. This makes it

possible to model the system with five independent coordinates: the x and y coordinates of the

centre of mass of the vehicle chassis, and the rotations of the main body, θ, and the wheels, θ1

and θ2. The mass and moment of inertia of the chassis about its centre of mass are mb and Izb.

Each wheel has mass mw, radius rw, and moment of inertia Izw. The physical properties of the

system are summarized in Table 2.

The impact of the vehicle against a rigid obstacle was considered as shown in Fig. 10 for a

range of values of angle β from 10◦ to 90◦, with 10◦ increments. At the time of contact onset,

t0, the vehicle is moving forward with velocity ẋ = 1 m/s and both sets of wheels are assumed

to roll on the terrain. The effective pre-impact kinetic energy T−
c was evaluated for each case

considering that the motion along the normal direction at the contact point is the representa-
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Figure 10: A model of a wheeled robot in contact with an obstacle

Table 2: Physical parameters of the wheeled robot

mb [kg] Izb [kgm2] mw [kg] Izw [kgm2] hG [m] b1 [m] b2 [m] rw [m]

280.0 26.716 20.0 0.7812 0.261 0.4175 0.4175 0.2795

tive relative motion to be constrained by the impact. The same time integration algorithm was

employed as described in Section 3. In the first set of simulations the normal contact force was

represented using the model of [7] without friction.

Results in Fig. 11 show that T−
c predicts accurately the evolution of the peak contact force

fpk
n . It is worth noting that the highest value of the peak normal force does not occur for an

obstacle angle β = 90◦, but the maximum is reached around β = 70◦.

Figure 12 contains the results of two other sets of simulations. The first one includes the

variation of the coefficient of restitution between eeff = 1 and eeff = 0.7. The peak impact

force experienced significant changes as a consequence. While the maximum was about 132

N with eeff = 1, it increased beyond 240 N in the case of eeff = 0.7. The second series of

Figure 11: Total (T−) and effective (T−
c ) pre-impact kinetic energy and peak normal contact

force (fpk
n ) for different values of the obstacle angle β in the wheeled robot impact example
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Figure 12: Effective pre-impact kinetic energy and peak normal contact force during impact of
the wheeled robot example for different values of the coefficient of restitution (left) and for
several contact models with eeff = 0.8 (right)

simulations involved repeating the simulations with the two additional contact force models

introduced in Section 3.2, with a coefficient of restitution eeff = 0.8. This resulted in a variation

of more than 25% in the maximum value of the peak force. In all cases, however, the pre-impact

effective kinetic energy correctly predicted the angle for which the maximum peak force was

observed, as well as the trend of change of this quantity with angle β.

5 Experimental illustration

An experimental testbed based on two dual-pantograph devices (Fig. 13) was used to investigate

the correlation between the pre-impact effective kinetic energy, T−
c , and the peak normal force

during the establishment of the contact. Each device was equipped with optical encoders at the

motor joints and high-resolution force/torque sensors at the end effector. For this study, one of

these devices (passive device) emulated a stiff environment with a flat surface and the other

(active device) came to a contact interaction with the passive one at one single contact point.

An interface with a conical shape was mounted onto the end effector of the active device to

develop single-point contact with the flat end plate of the passive system.

The trajectories were programmed so that the system motion can be considered planar. The

planes of the two pantographs were parallel so they can be considered with one single planar

five-bar linkage model, shown in Fig. 14. Angles qi denote the absolute orientation of the ith
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Figure 13: Experimental setup using two dual-pantograph devices

Table 3: Physical parameters of the dual-pantograph device

Parameter Value Description
l1, l3 0.1449 m Length of links 1 and 3
l2, l4 0.1984 m Length of links 2 and 4
a1, a3 0.0519 m Position of the COM of links 1 and 3
a2, a4 0.1081 m Position of the COM of links 2 and 4
l5 0.0445 m Distance between axes of actuated joints
m1, m3 0.1202 kg Mass of links 1 and 3
m2, m4 0.1084 kg Mass of links 2 and 4
mEE 0.3144 kg Mass of the end effector
I1, I3 0.0004 kgm2 Moment of inertia of links 1 and 3
I2, I4 0.0007 kgm2 Moment of inertia of links 2 and 4

link (i = 1, 2, 3, 4), li and ai represent the length and the position of the centre of mass of the ith

link, mi and Ii denote the link mass and moment of inertia about its centre of mass, and mEE

stands for the mass of the end effector. Parameter l5 indicates the distance between the axes of

the two base joints. The values of these parameters are summarized in Table 3.

We performed five sets of experiments where the end point of the active device impacted the

flat end plate of the passive one with different velocities. All the experiments were carried out

with the same asymmetric impact configuration (Fig. 14) and a total pre-impact kinetic energy

of 10 mJ. The five cases correspond to different directions of the velocity vector of the reference

point. Table 4 contains the experiment parameters v−
EE and γ, magnitude and angle with respect
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Figure 14: Planar dynamic model of the pantograph (left) and contact configuration considered
in the experiments (right)

Table 4: Pre-impact quantities for the five experimental cases

Case γ ∥v−
EE∥ (m/s) T−

c (mJ) T− (mJ) ξ

1 −7.58◦ 0.1955 10 10 1
2 0◦ 0.1921 9.82 10 0.98
3 15◦ 0.1857 8.57 10 0.86
4 30◦ 0.1812 6.56 10 0.66
5 45◦ 0.1794 4.28 10 0.43

to the y axis of the end effector velocity, respectively, and the values of the pre-impact kinetic

energy and the effective pre-impact kinetic energy T−
c . In this table, parameter ξ indicates the

ratio between effective pre-impact kinetic energy and total pre-impact kinetic energy.

For each pre-impact velocity, the experiment was performed three times and the mean and

the standard deviation of T−, T−
c , and the peak normal force, fpk

n , were evaluated. Their values

are shown in Table 5. The T−
c obtained from the measurements of the encoders is in good

agreement with the analytical and computational predictions of Table 4.

The plots in Fig. 15 show the total and effective pre-impact kinetic energies T− and T−
c

Table 5: Experimental results for the five cases. x̄ and σ (x) stand for the mean and the standard
deviation of quantity x respectively

Case T̄− (mJ) σ (T−) (mJ) T̄−
c (mJ) σ (T−

c ) (mJ) f̄n (N) σ
(
fpk
n

)
(N)

1 9.83 0.166 9.82 0.168 33.5 0.82
2 9.89 0.071 9.68 0.075 31.9 1.13
3 10.02 0.092 8.54 0.091 29.9 0.85
4 10.21 0.165 6.68 0.133 25.8 1.33
5 10.25 0.086 4.46 0.035 20.0 2.42
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F. González et al.

Figure 15: Pre-impact kinetic energies T− and T−
c (left) and peak normal force fpk

n for each
case. The error bars show the mean and one standard deviation

Figure 16: Peak normal force fpk
n as a function of the effective pre-impact kinetic energy T−

c

and the peak normal force fpk
n , respectively, for each set of experiments. As mentioned, the

experiments are designed in a way in which the total pre-impact energy T− is always 10 mJ.

Conversely, T−
c varies for each case. Note that for this configuration, the case of maximum T−

c

does not correspond with the pre-impact velocity of the end effector aligned with the represen-

tative relative motion of impact. The plot on the right shows that the peak of the maximum

normal force decreases for impacts with lower T−
c . This further substantiates our claim that the

proposed performance indicator can be used to predict the intensity of the impact loads.

Fig. 16 shows the peak force fpk
n as a function of T−

c . The plot shows both the mean and the

standard deviation of this quantity. A second-order polynomial adjusted by least-squares is also

included in the plot to show the good correlation between the two quantities
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6 Conclusions

We illustrated in this paper that the so-called effective pre-impact kinetic energy can be used

to analyse the intensity of impact. This results in a parametric performance indicator that can

be employed to compare different designs and investigate how parameter changes affect the

intensity of contact onset. The evaluation of this quantity can be achieved via decomposing the

total pre-impact kinetic energy using the representative relative motion of impact. The mass and

inertia properties and the configuration of the mechanical system constitute the only information

required for this; it avoids the need for a continuous contact force model. Information about the

contact stiffness and damping is not required. The suitability of the indicator to predict the

variation of the peak normal force experienced during an impact when the system parameters

change was confirmed with numerical simulations and experiments.
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Appendix: Coordinate transformation

The dynamics of the two circular objects selected as example in Section 2.1 can be expressed in

terms of the set of absolute velocities q̇ = [ẋ1 ẋ2]
T with Eq. (2)

Mq̈ = ATλ (28)

where

M =

 m1 0

0 m2

 ; q̈ =

 ẍ1

ẍ2

 ; ATλ =

 −fc

fc

 (29)
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The system motion can also be described in terms of a new set of velocities ḋ =
[
ḋc ḋa

]T
,

where ḋc = ẋ2 − ẋ1 and ḋa = m1
m2

ẋ1 + ẋ2. The relation between the two velocity sets is given by

ḋ =

 ḋc

ḋa

 =

 A

B

 q̇ (30)

where

A =

[
−1 1

]
; B =

[
m1/m2 1

]
(31)

Matrix B has been selected to verify the decoupling condition AM−1BT = 0.

The dynamics can be expressed in terms of the new set of velocities ḋ via the velocity trans-

formation

q̇ = Rḋ (32)

where R is the constant matrix

R =
1

m1 +m2

 −m2 m2

m1 m2

 (33)

and so differentiation of Eq. (32) with respect to time gives

q̈ = Rd̈ (34)

Pre-multiplying Eq. (28) with RT and substituting in it the expression of q̈ from Eq. (34) allows

one to obtain the dynamics equations in terms of the set of velocities ḋ, as expressed in Eq. (4)

RTMRd̈ = RTATλ (35)

where

RTMR =
1

m1 +m2

 m1m2 0

0 m2
2

 ; RTATλ =

 fc

0

 (36)
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F. González et al.

[11] Kövecses, J.: Dynamics of mechanical systems and the generalized free–body diagram –

part I: General formulation. Journal of Applied Mechanics 75(6, paper 061012), 1 – 12

(2008)

[12] Lankarani, H.M., Nikravesh, P.E.: Continuous contact force models for impact analysis in

multibody systems. Nonlinear Dynamics 5(2), 193–207 (1994)

[13] Marghitu, D.B., Hurmuzlu, Y.: Three-dimensional rigid-body collisions with multiple con-

tact points. Journal of Applied Mechanics 62(3), 725–732 (1995)

[14] Marghitu, D.B., Stoenescu, E.D.: Rigid body impact with moment of rolling friction. Non-

linear Dynamics 50(3), 597–608 (2007)
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